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Abstract

Data with mixed type (metric/ordinal/nominal) variables are typical for
social stratification, i.e., partitioning a population into social classes. Ap-
proaches to cluster such data are compared, namely a latent class mixture
model assuming local independence and dissimilarity based methods such as
k-medoids. The design of an appropriate dissimilarity measure and the esti-
mation of the number of clusters are discussed as well, comparing the BIC
with dissimilarity based criteria.

The comparison is based on a philosophy of cluster analysis that con-
nects the problem of a choice of a suitable clustering method closely to the
application by considering direct interpretations of the implications of the
methodology. According to this philosophy, model assumptions serve to un-
derstand such implications but are not taken to be true. It is emphasised that
researchers implicitly define the “true” clustering and number of clusters by
the choice of a particular methodology. The researcher has to take the re-
sponsibility to specify the criteria on which such a comparison can be made.
The application of this philosophy to socioeconomic data from the 2007 US
Survey of Consumer Finances demonstrates some techniques to obtain an
interpretable clustering in an ambiguous situation.

Keywords: social stratification, cluster philosophy, latent class cluster-
ing, mixture model, k-medoids clustering, dissimilarity measure, number of
clusters, average silhouette width, interpretation of clustering

1 Introduction

There are various approaches for cluster analysis in the literature and a lack of
clear guidance about how to choose an appropriate one for a given problem. In this
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paper, we explore the use of formal cluster analysis methods for social stratification
based on mixed type data with continuous, ordinal and nominal variables.

A main feature of the paper is that the social stratification application illustrates
a more general “philosophy of clustering”, which involves considerations of how
to define the clustering problem of interest, how to understand and “tune” the
various available clustering approaches and how to choose between them.

Two quite different approaches are compared, namely a model based clustering
approach (Vermunt and Magidson, 2002), in which different clusters are modelled
by underlying latent classes or mixture components, and a dissimilarity based
partitioning approach not based on probability models (k-medoids, Kaufman and
Rouseeuw, 1990) with some methods to estimate the number of clusters. Such
data typically arise in social stratification and generally in social science. Social
stratification is about partitioning a population into several different social classes.
Although the concept of social classes is central to social science research, there
is no agreed-upon definition of a social class. It is of interest here whether social
stratification based on formal clustering can contribute to the controversy about
social classes. In this paper we analyse data from the US Survey of Consumer
Finances, for which the more appropriate term is “socioeconomic stratification”,
though many of the considerations apply to social stratification in general.

The philosophy behind the choice of a cluster analysis method in the present paper
is that it should be driven by the way concepts like “similarity” and “belonging to-
gether in the same class” are interpreted by the subject-matter researchers and by
the way the clustering results are used. This requires thinking different from what
is normally found in the literature. Particularly, model assumptions are no longer
treated as referring to an “underlying truth”, but rather serve to characterise the
methods based on them.

Section 2 introduces the problem of social stratification and discusses how cluster
analysis can contribute to it. In Section 3 latent class clustering is introduced.
Section 4 introduces k-medoids along with some indices to estimate the number
of clusters. Section 5 discusses the philosophy underlying the choice of suitable
cluster analysis methodology. Aspects of this are the definition of dissimilarity,
treated in Section 6, and the choice of the number of clusters, discussed in Section
7. Section 8 compares the clustering methods that were introduced in previous
sections. In Section 9, the US Survey of Consumer Finances dataset is analysed.
Section 10 gives a concluding discussion.

There is a vast literature on cluster analysis beyond the scope of our paper that
we do not attempt to review here. Some justification of our choice of methods is
given in Section 8.
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2 Social stratification

The concept of social class is central to social science research, either as a subject
in itself or as an explanatory basis for social, behavioural, and health outcomes.
The study of social class has a long history, from the social investigation by the
classical social thinker Marx to todays ongoing academic interest in issues of social
class and stratification for both research and teaching purposes (e.g., Grusky, Ku,
and Szelnyi 2008). Researchers in various social sciences use social class and social
stratification as explanatory variables to study a wide range of outcomes from
health and mortality (Pekkanen et al. 1995) to cultural consumption (Chan and
Goldthorpe 2007).

When social scientists employ social class or stratification as an explanatory vari-
able, they follow either or both of two common practices, namely using one or
more indicators of social stratification such as education and income and using
some version of occupation class, often aggregated or grouped into a small number
of occupation categories. For example, Pekkanen et al. (1995) compared health
outcomes and mortality between white-collar and blue-collar workers; Chan and
Goldthorpe (2007) analysed the effects of social stratification on cultural consump-
tion with a variety of variables representing stratification, including education, in-
come, occupation classification, and social status (a variable they operationalised
themselves). The reason for researchers routinely using some indicators of social
class is that there is no agreed-upon definition of social class, let alone a specific
agreed-upon operationalisation of it. Neither is the use of social stratification
unified.

Various different concepts of social classes are present in the sociological literature,
including a “classless” society (e.g., Kingston, 2000), society with a gradational
structure (e.g., Lenski, 1954) and a society in which discrete classes (interpreted in
various, but usually not data-based ways) are an unmistakable social reality (e.g.,
Wright, 1997).

The question to be addressed by cluster analysis is to “let the data speak” concern-
ing the issues discussed in the literature, acknowledging that data alone cannot
decide the issue objectively. Our aim is to see if meaningful or useful social or
socioeconomic classes may emerge from a cluster analysis. It is of interest whether
clear clusters are apparent in data consisting of indicators of social or socioeco-
nomic class, but also how these data can be partitioned in a potentially useful
way even without assuming that the classes correspond to essentially different un-
derlying subpopulations. They may serve as efficient reduction of the information
in the data and as a tool to decompose and interpret inequality. A latent class
model was proposed for this by Grusky and Weeden (2008). A similar finite model
was proposed and applied to income inequality data by Liao (2006). It is also of
interest how data clusterings relate to theoretical concepts of social stratification.

A crucial question for data based social stratification is the choice of variables on
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which the classification is based, although this is restricted by what is available for
observation. For the dataset analysed here, the focus is on socioeconomic classes.
The allocation of individuals to such classes is an exercise of classification along the
dimensions of the individuals socioeconomic wellbeing. There is a general consen-
sus on how socioeconomic wellbeing is measured. People’s current socioeconomic
statuses and future outlooks depend on the levels of their income and wealth (Levy
and Michel 1991). There has been a long tradition of using income to measure
socioeconomic wellbeing, and an influential approach to operationalise economic
welfare proposed by Weisbrod and Hansen (1968) is a measure based on a combi-
nation of current income and current net worth (i.e., assets minus liabilities). This
approach has the obvious advantage of treating someone with a great value of real
estate but a lot of liabilities as not necessarily having a high level of economic
welfare.

In addition to income, occupation and education have been two important dimen-
sions of stratification since at least Hollingshead’s (1957) research. While occupa-
tional categories may change and get updates, occupation is central to studying
stratification. Blau and Duncan’s (1967) landmark study of the American occu-
pational structure started a modern tradition that was more or less unchallenged
until Spilerman’s (2000) criticism of the preoccupation with labour market rewards
including such as occupation and income and with the consideration of family sta-
tus as derivative of head’s occupational status, at the disregard of wealth. We
intend to employ a balanced set of variables measuring rewards (occupation and
income), achievement (education), and wealth (savings and housing). One of the
issues of interest regarding the analysed dataset is to what extent the occupa-
tion classes given there agree with classes that could be obtained from the other
variables.

Although it is a standard practice in the social, economic, and health sciences
to represent one’s socioeconomic status by a minimum set of the three variables
education, income, and occupation, we extend this approach to including more
socioeconomic measures tapping one’s wealth. Without available data on all the
necessary components such as the values of owned properties and of current mort-
gages, we turn to personal savings as an indicator of net worth. An individuals
savings in various accounts represent a significant part of ones net worth (see
Poterba, Venti, and Wise (1994) who studied retirement savings and net worth of
American household heads aged 55-69). As reported by Bernheim, Garrett, and
Maki (2001), the correlation between self-reported saving and net worth is highly
statistically significant.

Another dimension of socioeconomic welfare we examine is the diversification of
the place one keeps ones disposable income and saving. The number of check-
ing and savings accounts, in addition to income, is what Srivastava, Alpert, and
Shocker (1984) examined to ascertain that their respondents did not differ from
nonrespondents economically. Another reason to consider the number of checking
and savings accounts is also that of diversification especially in the age of globali-
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sation and internationalisation when people with greater socioeconomic wellbeing
tend to have multiple accounts in banks located in more than just their home
cities, states, or countries.

There are other forms of assets that an individual may own. Home ownership has
often been included as an indicator of economic class, in addition to monetary
items such as income and wealth (e.g., von dem Knesebeck 2002). Life insurance
is also often equated with a form of financial asset (Brennan and Schwartz 1976).
While the majority of people earn income and have checking accounts, many may
not own a home or life insurance, further differentiating socioeconomic classes. We
will however weight some of these variables differently, see Section 9.1.

According to the philosophy of clustering applied in this paper, it has to be decided
how “similarity” and “belonging together in the same class” are to be interpreted in
social stratification. This is a difficult task that cannot be solved uniquely because
of the controversy about the meaning of “social classes” and the various different
conceivable uses of a social classification. However, the clarification of the required
decisions on the statistical side may help with improving the understanding of what
is implied by speaking of “classes”.

3 Latent class clustering

This paper deals with the cluster analysis of data with continuous, ordinal and

nominal variables. Denote the data wy,...,w,, w; = (X;,yi,2%i), X; € IRP, y; €
O1x...x0y, zi€Uy X...xU, i=1,...,n, where O;, j =1,...,q are ordered
finite sets and U;, j = 1,...,r are unordered finite sets.

A standard method to cluster such datasets is latent class clustering (LCC; Ver-
munt and Magidson 2002), where wy,...,w,, are modelled as i.i.d., generated by
a distribution with density

k q r
Fow) =" mpans, () ] 705 W) T hiari(z5) | - (3.1)
h=1 j=1 j=1

where w = (x,y,z) is defined as w; above without subscript i. Furthermore 7, >
0 Vh, 22:1 7T = 1, @ay denotes the p-dimensional Gaussian density with mean
vector a and covariance matrix ¥ (which may be restricted), and Zyeoj Thi(y) =
Zzeuj Th(q+j)(z) == 1, Th > O,Thj > OVh,j.
The main assumption in (3.1), apart from Gaussianity for the continuous variables,
is that the variables are “locally” independent within a mixture component (except
of possible non-zero covariances between continuous variables).

A way to use the ordinal information in the y-variables is to restrict, for j =

1,...,q,
exp(nhgy)

ZUEOJ' eXP(Uhju

Thi(y) = o iy = Biew) + Bri&(w), (3.2)
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where £(y) is a score for the ordinal values y. This is based on the adjacent-category
logit model (Agresti, 2002) as used in Vermunt and Magidson (2005a). The score
can be assigned by use of background information, certain scaling methods (e.g.,
Gifi, 1990), or as standard Likert scores (i.e., numbers 1,2, ..., |O;|) for the ordered
values. In some sense, through &, ordinal information is used at interval scale level,
as in most techniques for ordinal data.

The parameters of (3.1) can be fitted by the method of maximum likelihood (ML)
using the EM- or more sophisticated algorithms, and given estimators of the pa-
rameters (denoted by hats), points can be classified into clusters (in terms of
interpretation identified with mixture components) by maximising the estimated
posterior probability that observation w; had been generated by mixture com-
ponent h under a two-step model for (3.1) in which first a mixture component
vi € {1,...,k} is generated with P(vy; = h) = 7, and then w; given 7; = h
according to the density

q r
Sow) = a5, () T] 7 W5) T1 mhigri) (25)-
j=1 j=1

The estimated mixture component for w; then is

% = arg max i fn(wi), (3:3)

where fh denotes the density with all parameter estimators plugged in. The num-
ber of mixture components k can be estimated by the Bayesian Information Crite-
rion (BIC). A problem with the ML-estimator is that the likelihood can degenerate
or yield spurious solutions at the border of the parameter space (e.g., if a vari-
ance parameter is close to zero). In the software package LatentGOLD (Vermunt
and Magidson, 2005a) this is treated by computing a penalised ML-estimator
maximising the sum of log-likelihood and the logarithm of the prior density of
the parameters from using Dirichlet priors for the multinomial probabilities and
inverse-Wishart priors for the error variance-covariance matrices. The user can
tune how critical borders of the parameter space are penalised.

4 Dissimilarity based clustering

Assuming that a dissimilarity measure between observations exists (discussed in
Section 6), a dissimilarity based clustering method that is suitable as an alterna-
tive to LCC is k-medoids (Kaufman and Rouseeuw, 1990). This is implemented
as function pam in the add-on package cluster for the software system R (R
development core team, 2011). pam is based on the full dissimilarity matrix and
therefore requires too much memory for large datasets (as the one analysed here).
Function clara in cluster is an approximative version for Euclidean distances
that can be computed for much larger datasets. It performs pam on several data
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subsets, assigns the further observations to the closest cluster medoid and selects
from these the solution that is best according to the k-medoids objective function,
which, for a dissimilarity measure d, is

n

Wi, ..., W)= min d(w;, w} 4.1
g( 1 ) k:) izlje{l,...,k} ( iy ]) ( )
for k medoids w7,...,wj} from w. This is similar to the popular k-means clus-

tering, where d is the squared Euclidean distance and the “medoids” are cluster
means.

There are several possibilities to estimate the number of clusters for k-medoids.
Some of them are listed (though treated there in connection to k-means) in Sugar
and James (2003); an older but more comprehensive simulation study is Milligan
and Cooper (1985). In the present paper, three such criteria are considered (see
Section 7 for more discussion of them).

Average Silhouette Width (ASW) (Kaufman and Rousseeuw, 1990). For a
partition of w into clusters C1,...,Ck let s(i, k) = % be the

so-called “silhouette width”, where

_ 1

a(i, k) = G =1

Z d(w;,w;), b(i,k) = min — Z d(w;, w;)

WjECh
for w; € C},. The ASW estimate kg maximises %2?21 s(i, k).
Calinski and Harabasz index (CH) (Calinski and Harabasz, 1974). The CH

B(k)(n—k)
W) (k—1)°

W(k) = Zi:1 ﬁ Zwi,WjECh d(WZ, Wj)Q? a‘nd
B(k) = 5 X7o1 d(wi, wy)? — W (k).

n 2Y)

estimate koy maximises the CH index where

In the original definition, assuming Euclidean distances, B(k) is the between-
cluster means sum of squares and W (k) is the within-clusters sum of squares.

This index was quite successful in Milligan and Cooper (1985). Using squared
dissimilarities in the index makes it more directly connected to k-means
than to k-medoids. However, Milligan and Cooper (1985) used the index
with various clustering methods some of which were not based on squared
dissimilarities. CH can be more easily computed for large datasets than
ASW because a complete dissimilarity matrix is not required.

Pearson version of Hubert’s I' (PH) The PH estimator kr maximises the Pear-
son correlation p(d, m) between the vector d of pairwise dissimilarities and
the binary vector m that is 0 for every pair of observations in the same
cluster and 1 for every pair of observations in different clusters. Hubert’s I"
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Figure 1: Two groups of points with variance 1 along the z-axis and mean differ-
ence of 4, 3 and 2.

(Baker and Hubert 1975) was originally defined in a way similar to the above
definition, but with Goodman and Kruskal’s rank correlation coefficient I’
instead of the Pearson correlation. The Pearson version (as proposed under
the name “Normalised I'"” in Halkidi, Batistakis and Vazirgiannis, 2001) is
used here for computational reasons.

5 Clustering philosophy

The main principle of the clustering philosophy discussed here is as follows. There
are no unique objective “true” or “best” clusters in a dataset. Clustering requires
that the researchers define what kind of clusters they are looking for. This depends
on the subject matter and the aim of clustering. Selecting a suitable clustering
method requires to match the data analytic features of the resulting clustering
with the context-dependent requirements desired by the researcher. The present
paper attempts to give the reader guidance on how to think about the necessary
decisions.

Much of the literature in which clustering methods are introduced is based on
not explicitly discussed assumptions about what the “true clusters” are (the issue
is acknowledged in some books, e.g., Gordon 1999). In most cases, one or both
of the following are assumed (often without realising that they are not always
compatible).

1. Given a dataset, there is a “natural human intuition” of what the true clus-
ters are.

2. The data can be assumed to be generated from a statistical model in which
different clusters are modelled by different distributions from the same family
(be it a mixture or fixed partition model). A less restrictive version of this,
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Figure 2: Artificial dataset from a 3-components Gaussian mixture (components
indicated on left side) with optimal clustering (right side) from Gaussian mixture
model according to the BIC with within-component covariance matrices restricted
to be diagonal.

which has not been applied yet to mixed type data and is therefore not further
discussed here, is to assume that the data are generated by a distribution
and clusters are identified with density modes or other features of it.

Neither of these make any reference to the meaning of the data and to the aim of
clustering in the given situation.

Reference to “natural human intuition” is not of explanatory value and in typical
real situations with unknown truth, there is no agreement about it. Imagine two
initially strongly separated populations and shift them closer together as in Figure
1. Obviously there is no clear intuition from when on precisely this is a single
rather than two clusters. “Human clustering intuition” is normally Euclidean,
and neither applies to categorical variables nor to alternative dissimilarities.

An obvious problem with the model-based approach is that statisticians usually
do not believe models to be true. If clusters are identified with components of
a mixture model, they are no longer well defined if the mixture model is not
precisely true. It does not help to claim that the model may be “approximately
true”, because, e.g., in any reasonably defined neighbourhood of a mixture with
two Gaussian components there are Gaussian mixtures (i.e., the latent class model
(3.1) with ¢ = r = 0) with arbitrarily larger numbers of components.

We now illustrate that even in situations where a mixture model is true and most
people may have a “natural intuition” about the “true clusters”, these are not
necessarily the clusters a researcher may be interested in.
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The left side of Figure 2 shows a mixture of three Gaussian distributions with
p = 2. In some applications, it makes sense to define the appropriate number of
clusters as 3, with clusters corresponding to the mixture components. However,
if the application is social stratification, and the variables are, e.g., income and
a status indicator, this is not appropriate, because it would mean that the same
social stratum (interpreted to correspond to mixture component no. 1) would
contain the poorest people with lowest status as well as the richest people with
the highest status. The cluster concept imposed by the Gaussian mixture model
may correspond to the purely data based intuition of most people here, but it
does not necessarily bring the most similar observations together, which, for some
applications, may be inappropriate even if the Gaussian mixture model is true
(more examples in which Gaussian mixture components are different from the
cluster intuition of most people can be found in Lindsay and Ray, 2005 and Hennig,
2010).

One alternative to fitting a fully flexible Gaussian mixture is to assume a model
in which all within-component covariance matrices are assumed to be diagonal,
i.e., the (continuous) variables are assumed to be locally independent. This gives
more sensible clusters for the dataset of Figure 2 (see right side) at least for
social stratification, because clusters could no longer be characterised by features
of dependence (“income increases with status” for component no. 1, comprising
low income/low status as well as high income/high status) even though we know
that this model is wrong for the simulated dataset. Assuming local independence
in this sense decomposes dependence between variables into clusters. It still does
not guarantee that observations are similar within clusters, because variances may
differ between components.

Gaussian mixtures are very versatile in approximating almost any density, so that
it is in fact almost irrelevant whether data have an obvious “Gaussian mixture
shape” in order to apply clustering based on the Gaussian mixture model. The
role of the model assumption in cluster analysis is not the connection of the model
to the “truth” (apart from rare applications in which the models can be directly
justified), but about formalising and exploring what kind of cluster shape the
method implies. Model assumptions are helpful for making this explicit. It could
be objected that clustering is often (although not in social stratification) done in
oder to find “true” underlying populations (Everitt et al., 2011), but even such
populations can only be properly defined based on substantial interpretation and
cannot be easily identified with straightforward statistical models.

Supposedly “model-free” approaches to clustering imply certain cluster shapes
as well, which are often less obvious. Therefore model assumptions, despite of
not being “true”, are helpful because they are informative about the method’s
characteristics. In most applications, both model-based and supposedly model-
free methods can be applied, so that their characteristics need to be understood
and compared to the requirements of the application. For social stratification this
will be done in Section 8.
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Figure 3: Subset of income and savings data from US Survey of Consumer Finances
2007, untransformed (left), with both variables log(x+50)-transformed (middle,
with 4-medoids clustering), and with both variables log(x+1)-transformed.

In most applications including social stratification the researcher may not be able
to justify all the required decisions in detail, and there is feedback between the
desired cluster concept and the data, which, e.g., may confront the researcher with
the fact that prior expectations about existing separation between clusters were
unrealistic. Furthermore, it is hardly possible to anticipate the implications of all
required tuning decisions for the given data. Therefore it is not enough to specify
a cluster concept and to select a method. Clustering results need to be validated
further, as illustrated in Section 9.

An important task related to the philoosophy presented here is the translation of
the desired “interpretative meaning” of the clustering into data analytic charac-
teristics of the clustering method. Such thinking is unfamiliar to most researchers,
and even statisticians are rarely explicit about it. Therefore, nonstandard reason-
ing needs to be applied that cannot be backed up by literature, and significant
subjective input is required.

In conclusion, the researchers should not hope that the data will give them the
“true” clustering if only they choose the optimal methodology, because the choice
of methodology defines implicitly what kinds of clusters will be found. Researchers
need to define first how their idea of clusters can be formalised in a data analytic
way. Apart from the choice of a clustering method, further thought is required
for the definition of “dissimilarity” (Section 6), and the definition of a suitable
number of clusters (Section 7).

6 Dissimilarity definition

To apply dissimilarity based methods and to measure whether a clustering method
groups similar observations together, a formal definition of “dissimilarity” is needed.
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For similar reasons as before, this is a highly nontrivial task that depends on
decisions of the researcher, because the measure should reflect what is taken as
“similar” in a given application (Hennig and Hausdorf, 2006).

The crucial task for mixed type data is how to aggregate and how to weight the dif-
ferent variables against each other. Variable-wise dissimilarities can be aggregated
in a Euclidean, Gower/Manhattan- or Mahalanobis-style (further possibilities exist
but are not discussed here).

The Euclidean distance between two objects x;,x; on p continuous variables x; =

(xil, e ,CCZ'p) is

P

p
dE(Xi,Xj) = Z(wu — 1']'1)2 = Zdl(xil7le)27
=1

=1

where d; is the absolute value of the difference on variable . The Gower dis-
tance (Gower, 1971) aggregates mixed type variables in the same way as the
Manhattan/Li-distance aggregates continuous variables:

p
da(xi,%5) = > di(xq, ).
=1

Variable weights w; can easily be incorporated in both aggregation schemes by
multiplying the d; (equivalent to multiplying the variables) by wj.

The major difference between dg and dg is that dg, by using squares, gives the
variables with larger d; more weight, i.e., two observations are treated as less
similar if there is a very large dissimilarity one one variable and small dissimilarities
on the others than if there is about the same medium-sized dissimilarity on all
variables. Connecting this to social stratification may be controversial. In terms
of interpretation it is not desirable to have extreme differences in income, savings
and education within the same social class, which favours dg. All other variables in
the dataset analysed here are nominal or ordinal and yield much lower maximum
within-variable effective distances if treated as explained below.

A further advantage of dr for datasets with many observations is that many com-
putations for Euclidean distances (such as clara and the CH index) do not need
the handling of a full dissimilarity matrix. Therefore Euclidean aggregation is
preferred here.

An alternative would be the Mahalanobis distance
dar (x5, %)% = (% — x;)787 (% — x;)

based on some covariance matrix estimator S. The effect of using dj; is that if vari-
ables are strongly correlated and are mainly scattered along a certain “lower di-
mensional direction” in data space, dissimilarities along these directions are down-
weighted and dissimilarities orthogonal to them are up-weighted. A key question
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about the potential use of dj; is whether in a situation where several variables are
correlated, the information in these variables (as far as it is consistent with the
direction of correlation) should be down-weighted. This seems sensible if the cor-
relation implies, in terms of interpretation, that much of the information in these
variables is redundant, as, i.e., in genetic setups involving many genes of no indi-
vidual interest. However, in social stratification variables are included in a study
because they all have individual interpretative value. In such a situation, if they
are statistically correlated, the fact that they share statistical information does not
lower their importance for clustering, so that they should not be down-weighted
by using djs. In general this implies that in situations where the information in
variables is “interpretatively independent”, affine equivariance as enforced by djs
is not desirable, because it gives information purely statistical weight, as opposed
to interpretative weight, which is increased if several substantially interesting vari-
ables point in the same direction (this also favours “local independence” in LCC
compared to fully flexible covariance matrices).

The definition of dg can be extended to mixed type variables in a similar way in
which Gower extended dg. Ordinal variables can be used with standard scores.
Alternative scores can be used if available. There are various ways to assign
scores, e.g., using quantiles of an assumed underlying Gaussian distribution, as-
signing average ranks, or based on other available variables using techniques such
as monotonic regression. The effective distance between the categories of the ordi-
nal variable should reflect their “interpretative distance”, and the crucial question
is whether such a data dependent scheme achieves this. “Estimating” scores from
the other variables is not sensible here, because the information in those variables is
used for the clustering directly already. Using Gaussian quantiles or average ranks
makes the effective distances dependent on the distribution. Gaussian quantiles
will normally make differences between central categories small, average ranks will
assign the largest between-neighbours distances between strongly populated cate-
gories. We do not see any reason why this reflects “interpretative distance” better
than using standard scores in the given application. Particularly, both schemes
fit the effective distribution to a certain homogeneous shape (the Gaussian, or,
using average ranks, the uniform distribution), which runs counter to the idea
that potential information regarding clustering could be present in their marginal
distribution.

The different values of a nominal variable should not carry numerical information.
Therefore nominal variables should be replaced by binary indicator variables for
all their values (let m; denote the number of categories of variable j; technically
only (m; —1) binary variables would be needed, but this would lead to asymmetric
treatment of the categories).

The variables then need to be weighted (or, equivalently, standardised) in order
to make them comparable for aggregation. There are two aspects of this, the sta-
tistical aspect (the variables need to have comparable distributions of values) and
the substantial aspect (subject matter knowledge may suggest that some variables
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are more or less important for clustering). The rest of this section focuses on the
statistical aspect, but further weighting is discussed in Section 9.1.

Before weighting, it is important to consider transformations of the continuous
variables. The main rationale for transformation in the philosophy adopted here
is that distances on the transformed variable should reflect the “interpretative
distance” between cases.

For example, for the variables giving income and savings amount on the left side
of Figure 3, log-transformations were applied. This was not mainly done because
the resulting distributional pattern looks more healthy (particularly taming the
outliers dominating the untransformed variables, see Figure 3), but rather be-
cause in terms of social stratification it makes sense to allow proportionally higher
variation within high-income and/or high-savings clusters; the “interpretative dif-
ference” (which is our main rationale for the choice of a transformation) between
incomes is rather governed by ratios than by absolute differences. The difference
between two people with yearly incomes of $2m and $4m, say, should in terms
of social strata be treated about equally than the difference between $20,000 and
$40,000.

Because there are zeroes in the data, the transformation log(x + ¢) is suitable.
The choice of ¢ is meaningful, because it governs the effective distance between
zero and small nonzero savings/income. We chose ¢ = 50 here, which makes the
effective distance between 0 and 100 equal to that between 100 and 400 (for ¢ = 1,
this number would be about 10,000) while leaving effective distances between high
values virtually unchanged. In the middle of Figure 3 it can be seen that there is
no clear gap anymore between zero savings and low savings, and that observations
with zero and low savings can end up in the same cluster. From a purely data-
intuitive point of view, the large zero savings group is certainly a significant pattern
in the data, but in terms of sociological interpretation, there is no strong reason
to isolate them in an own cluster unless this is supported by other variables.

For ¢ =1 (right panel of Figure 3), clusterings are too strongly dominated by the
“zero savings” group. The precise choice of 50 is subjective and cannot be moti-
vated precisely, but clusterings with ¢ = 10 and ¢ = 200 had less desirable features.
50 still leaves a clear gap between people with zero and nonzero income, but the
interpretative difference between zero and nonzero income is larger than regarding
savings, particularly because the smallest nonzero income was considerable larger
than low nonzero savings amounts.

There are various ways that standardisation can make the variation of continuous
variables comparable, which comprise

e range standardisation (for example to [0, 1]),
e standardisation to unit variance,

e standardisation to unit interquartile range.
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The main issue here is how the methods deal with extreme observations. Range
standardisation is that this is governed by the two most extreme observations, and
in presence of outliers this can mean that pairwise differences on such a variable
between a vast majority of observations could be approximately zero and only
the outliers are considerably far away from the rest. Using a robust statistic
such as the interquartile range on the other hand means that if there are extreme
outliers on a certain variable, the distances between these outliers and the rest
of the observations on this variable can still be very large and outliers on certain
variables may dominate distances on other variables.

In the present paper standardisation to unit variance is adopted, which is a com-
promise between the two approaches discussed before. The gap between no income
and low but nonzero income should neither dominate the contribution of the in-
come variable too much, nor should it have an overwhelming influence on the
cluster membership compared with the other variables. Another reason is that in
a situation with mixed type variables, categorical variables have to be standard-
ised so that the dissimilarities between their levels are properly comparable to the
dissimilarities between observations on continuous variables. This can be better
calibrated based on variances than based on quantiles. Furthermore, it makes
interpretative sense that the most extreme dissimilarities in income and savings
are allowed to dominate dissimilarities between categories (which would not be
possible using range standardisation).

Nominal variables are considered next. Standardising continuous variables to unit
variance implies E(X; — X2)2 = 2 for ii.d. X, Xs. For an originally nominal
variable with I categories there are I dummy variables. Let Y;;, i = 1,...,1,
be the value of observation j on dummy variable i. Dummy variables Y; can be
standardised by setting 21'1:1 E(Y;1 —Yi)? = qE(X, — X32)? = 2q with some factor
q. The rationale for this is that in the Euclidean distance dg, 7, (Y;1 — Yip)? is
aggregated with (X7 —X3)2. It may seem natural to set ¢ = 1, so that the expected
contribution from the nominal variable equals, on average, the contribution from
continuous variables with unit variance. However, if the resulting dissimilarity is
used for clustering, there is a problem with ¢ = 1, namely that, because of the fact
that the distance between two identical categories is zero, it makes the difference
between two different levels of the nominal variable larger than F(X; — X3)?, and
therefore it introduces wide “gaps” (i.e., subsets between which there are large
distances), which could force a cluster analysis method into identifying clusters
with levels of the categorical variable. Therefore we recommend ¢ = %, though
larger values can be chosen if it is deemed, in the given application, that the
nominal variables should carry higher weight (which is not the case here).

q = % implies that, for an originally binary variable for which the probability
of both categories is about % the effective distance between the two categories is
about equal to E(X; — X3)? = 2 (and correspondingly lower for variables with
more than two categories).



7 THE NUMBER OF CLUSTERS 16

There is another consideration regarding the standardisation of the Y;-variables so

that
I

S E(Yi - Yi)? = 2. (6.1)

i=1
The expected value depends on the category probabilities. As a default, for stan-
dardisation these can be taken to be % for each category. An obvious alternative is
to estimate them from the data. This would increase the effective distance between
categories with higher differences between the category probabilities. In the given
setup with clear interpretative meanings of the categories we prefer not to let the
effective dissimilarities between them depend on their empirical frequencies.

For ordinal variables Y with standard coding and I categories, we suggest

1

!
E(Y: - Y2)? = 2q, q:m

(6.2)
as rationale for standardisation, which for binary variables (I = 2) is equivalent to
(6.1), and ¢ — 1 for I — oo means that with more levels the expected contribu-
tion converges toward that of a continuous variable (this implies that in terms of
dissimilarity, it makes almost no difference whether in Section 9.1 the education
variable with discrete values between 0 and 17 is treated as ordinal or continuous).
The same considerations as above apply to the computation of the expected value.

To summarise, we define the dissimilarity by
e Fuclidean aggregation of variables,
e suitable transformation of continuous variables,

e standardisation of continuous variables to unit variance,

e using I dummy variables for each nominal variable, standardised according
to (6.1) with ¢ = 1,

e using standard coding for each ordinal variable, standardised according to

(6.2), and

e additional weighting of variables according to substantial requirements.

7 The number of clusters

Finding an appropriate number of clusters k is a notoriously difficult issue in cluster
analysis. In most of the literature the issue is treated as if it were clear that there
is a “true” number of clusters that can be estimated. Following the resoning in
Section 5, we do not agree. Finding k is rather a problem of an appropriate subject
matter-dependent definition of the required number of clusters than an estimation
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problem. Whereas choosing a cluster analysis method for given k requires rather
qualitative judgements about cluster shapes of interest, choosing a method to find
the best k given clusterings for given k requires rather quantitative judgements.
Decisions involved are whether clusters are required to be separated by gaps and
how clear a gap needs to be, whether gaps within a cluster can be tolerated,
whether and how large dissimilarities can be tolerated within a cluster, how small
a subset of the data is allowed to be in order to be regarded as a stand-alone cluster,
whether and to what extent it is important that a clustering remains stable under
small changes of the data, what would constitute a borderline situation for a data
subset whether or not it should be split up into two clusters, and whether k should
be in a certain range in order to be useful.

This suggests that the problem cannot be boiled down to the choice among several
apparently “objective” criteria. It essentially requires user-tuning. There is no
purely data-dependent way to decide from which distance downwards the two
populations in Figure 1 should be interpreted as a single cluster instead of two.

In the LCC model (3.1), finding the true k is usually interpreted as a statistical
estimation problem. Often the BIC, which penalises the log-likelihood for every k
with %log(n) times the number of free parameters in the model is applied. It can
be expected that the BIC estimates k consistently if the model really holds (proven
for a simpler setup by Keribin 2000). However, the problem is in fact ill-posed.
If the model does not hold precisely, the consistency result does not work as a
justification of the BIC, because the true situation may be best approximated by
very many mixture components if there are only enough observations, which is not
of interpretative value. How useful the BIC is for deciding about the number of
“interpretative clusters” depends on to what extent Gaussian mixture components
(not required to be separated) used to approximate a dataset match the cluster
concept of the researcher. “Penalised log-likelihood” as a general concept weighting
the quality of fit against the complexity of the model makes sense, but giving
the precise BIC penalty interpretative meaning is difficult (Biernacki, Celeux and
Govaert, 2000, e.g., propose a criterion that penalises complexity in a stronger
way; one may use Bayesian prior distributions for this aim, or try to generalise
the methods for merging Gaussian mixture components in Hennig, 2010, to mixed
type data).

The dissimilarity-based criteria introduced in Section 4 are attempts to formalise
a “good number of clusters” directly. Several such criteria are proposed in the lit-
erature, and no clear justification exists which one is best. One reason for choosing
ASW, CH and PH was that their definitions allow a more or less straightforward
data analytic interpretation.

ASW and CH attempt to balance a small within-cluster heterogeneity (which in-
creases with k) and a large between-cluster heterogeneity (which increases with k
as well) in a supposedly optimal way. In the definition of ASW, the dissimilari-
ties of observations from other observations of the same cluster are compared with
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dissimilarities from observations of the nearest other cluster, which emphasises sep-
aration between a cluster and their neighbouring clusters. In the definition of CH,
the proportion of squared within-cluster dissimilarities is compared to all between-
cluster dissimilarities, which emphasises within-cluster homogeneity more, and is
through the use of squared dissimilarities more prohibitive against large within-
cluster dissimilarities. PH emphasises good approximation of the dissimilarity
structure by the clustering in the sense that whether observations are in differ-
ent clusters should strongly be correlated with large dissimilarity. Because the
Pearson correlation is based on squares, this again penalises large within-cluster
dissimilarities strongly. Such data-analytic interpretations can be used to assess
the methods based on certain requirements of the application (see Section 8), al-
though it is rarely possible to connect the precise form of the index to the subject
matter.

In real datasets, the situation is often not clear cut, and the criteria may yield
vastly different solutions. For example, for the dataset shown in the middle of
Figure 3, LCC/BIC yields 13 clusters to give a reasonable Gaussian mixture ap-
proximation, k-medoids with ASW yields 4 (shown) and with CH 16 clusters.
ASW emphasises gaps between neighbouring clusters, and such gaps hardly exist.
CH penalises large within-cluster distances stronger and therefore ends up with
many small clusters; it yields fewer clusters than ASW in some higher dimensional
situations where gaps exist but the majority of within-cluster distances cannot be
made small by any reasonably small number of clusters. All these indices cannot
be used to assess k = 1 and degenerate for k — n, and should therefore be in-
terpreted with care for very small and very large k, and regarding comparisons
between index values for very different values of k.

The indices therefore do not make objective decisions, but rather serve as helpful
indications. Due to better comparability for similar values of k, local optima are
of interest as well as global ones, and looking at several criteria can be helpful
to identify a solution that is good in several respects, although it should still be
decided how well the indices can be related to the clustering aim.

In some situations in which formal and graphical analyses suggest that it is illusory
to get a unique well justified value of k, one could fix the number of clusters at
some value roughly seen to be useful. Usually the literature implies that fixing k
means that its “true” value is known for some reason. This is hardly ever the case
in practice, but estimating k in practice requires user tuning anyway, and therefore
in ambivalent situations it may well be tuned directly.

There are approaches for clustering that define the number of clusters implicitly
and do not require criteria to compare solutions for different k. Often these attempt
to find density modes, e.g. Ester et al. (1996). Such approaches, however, cannot
remove the requirement of user tuning, but only shift the decision problem to
tuning parameters such as bandwidths.
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8 Interpretative comparison of clustering methods

In this section, the previous considerations are applied to discussing the clustering
methods regarding their suitability for social stratification. An obvious difficulty
with this is that the requirements of social stratification are not clear enough to be
directly “translated” into the formal framework in which the methods are defined.
E.g., it is not possible to specify upper bounds for within-cluster dissimilarities.

It is controversial in the literature whether a stratification should rather have many
small groups or a few larger ones. The main contention is whether the stratification
structure is composed of a few big-classes or many micro-classes (Grusky, 2005;
Weeden and Grusky, 2005; Weeden et al., 2007). For the reasons given in Section
7, this cannot be objectively settled by data. In the present study we concentrate
on rather rough descriptions of society with numbers of clusters k up to 20 and
particularly (with the aim of comparing the clusterings to the seven occupation
categories) between 5 and 10. One reason is that for increasing k& numerical issues
such as local optima become more problematic for all clustering methods. Very
small clusters are not of much interest, because they rather refer to particularities
than to the general structure of society. It is helpful if a clustering method can
integrate outlying observations into the nearest larger clusters. It is not a big
problem that neither ASW nor CH nor PH can handle & = 1, but we will introduce
a parametric bootstrap scheme to see whether the dataset is significantly clustered
at all.

For all conceivable interpretations of social stratification it is important to find
clusters with relatively small within-cluster dissimilarities. This means particularly
that LCC is only suitable if it groups similar observations together. For most uses
of social stratification (e.g., use as an explanatory variable in further studies, or for
informing social policy) it is necessary to have descriptions of the strata that are
meaningful outside the dataset that was used for deriving them. For this reason
an attractive feature of local independence in LCC is that the resulting strata can
be interpreted in terms of the marginal distributions of the individual variables.
Taking also the considerations in Section 5 regarding Figure 2 into account, we
assume covariance matrices to be diagonal and we do not apply existing methods
that relax the local independence assumption (which defines a cluster shape rather
than assuming that this is the objectively true one, cp. p. 4 of Bartholomew and
Knott, 1999). This makes clustering scale invariant, so that the standardisation
discussion of Section 6 is irrelevant for LCC.

An important difference between LCC and k-medoids (and also k-means) is that
LCC allows strongly different within-cluster variances for different variables, whereas
for k-medoids distances are treated in the same way regardless of their direction.
This means that the variable weight in k-medoids is mainly governed by dissimi-
larity design, whereas in LCC clusters may be very concentrated in one variable
and very heterogeneous in one or more others. Regarding socioeconomic stratifi-
cation, advantages can be seen in both approaches. The LCC results will be more
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informative about the clustering tendency of the individual variables regardless of
standardisation and weighting. On the other hand, the data analytic contribution
of the variables may not match the interpretative importance, and LCC clusters
may be too heterogeneous. It seems therefore suitable to compute an LCC clus-
tering and to use criteria such as the ASW allow to check whether it does a good
job regarding dissimilarity.

It would be possible to restrict covariance matrices even more in LCC, particularly
to be equal and spherical, but this looks less attractive than using k-medoids or
k-means, which implicitly have similar restrictions but can generalise them to the
nominal amnd ordinal variables.

LCC as presented here assumes a cluster-wise Gaussian distribution for the con-
tinuous variables. This implies that the method looks for data subsets in which
deviations from a dense core are treated symmetrically, and strong deviations are
penalised heavily. Variables need to be transformed in such a way that distances
can be interpreted symmetrically, which is done as in Section 6. Other distribu-
tional shapes (particularly with heavier tails) could be of interest but software
incorporating this with mixed type data is not available to our knowledge.

In (3.2) it is implicitly assumed that ordinality works by either increasing or
decreasing monotonically the mixture component-specific contribution to 75,;(y)
through f,;, which is somewhat restrictive. Without discussing this issue in de-
tail, we acknowledge that there are several alternative approaches for modelling
the effect of ordinality (see, e.g., Agresti, 2002), which incorporate different re-
strictions such as a certain stochastic order of mixture components (Agresti and
Lang, 1993). The latter is difficult to justify in a multidimensional setting in which
components may differ in a different way for different variables. The assumption of
a cluster-wise underlying Gaussian distribution for the ordinal variables (Drasgow,
1986) may be worthwhile to explore. A reviewer noted that (3.2) could be tested
against an unrestricted model (at least for homogeneous data), but using an un-
restricted model would run counter to the presented philosophy, because it would
prevent the ordinal meaning of the categories from influencing the clustering.

The methods introduced in Section 4 are more directly defined in order to make
within-cluster dissimilarities small. There are many alternative dissimilarity based
clustering methods in the literature (see, e.g., Kaufman and Rouseeuw, 1990, Gor-
don, 1999), for example the classical hierarchical ones, but most of these are unfea-
sible for too large datasets. Furthermore, there is no particular reason to impose a
full hierarchy for social stratification. Similar data have been analysed by multiple
correspondence analysis (e.g., Chapter 6 of Le Roux and Rouanet, 2010). This,
however, requires continuous variables to be categorised and seems more suitable
with a larger number of categorical variables.

Compared to k-means clustering, k-medoids looks more attractive for mixed type
data because the medoids, as opposed to mean vectors, are required to be mem-
bers of the dataset, so no means are computed for nominal and ordinal categories
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n

Figure 4: Artificial dataset with 9-medoids (left side) and 8-means clustering (right
side), number of clusters chosen optimally according to the CH-criterion for both
methods.

(although this would not necessarily be detrimental for clustering). By using d
instead of d?, it is also somewhat more flexible in terms of cluster shapes (al-
lowing within-cluster dissimilarities to vary more between clusters and variables;
although still distances in all “directions” are treated in the same way) and less
affected by outliers within clusters (see Kaufman and Rouseeuw, 1990). The differ-
ence is illustrated in Figure 4. The k-medoids and k-means clustering (both with
number of clusters optimised by the CH-criterion between 2 and 9) are similar (as
often), but cluster 8 in the k-means solution seems to include too many points
from the diagonal mixture component, causing a big gap within the cluster. The
corresponding k-medoids cluster 4 only contains one of these points. This happens
because the k-medoids criterion can tolerate larger within-cluster dissimilarities in
cluster 5 (corresponding to cluster 7 in the k-means solution) without influencing
the medoid too much, but the lower left point from the diagonal component influ-
ences the mean heavily. This favours k-medoids because in social stratification a
small number of moderately outlying observations should be integrated in larger
clusters without affecting the medoid too much.

Regarding the number of clusters, the main aim is not to approximate the dis-
similarity structure by the clustering, and therefore PH is not of direct interest.
ASW can be preferred to CH for similar reasons as those given in the k-medoids
vs. k-means discussion. We still use all three criteria in Section 9 in order to
investigate whether certain numbers of clusters stick out in various respects, and
we do not only consider the global, but also local optima.
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9 Data Analysis of US Consumer Finances data

9.1 Dataset, preprocessing and method tuning

In this section, we apply the methods to data from the 2007 US Survey of Con-
sumer Finances (SCF). The survey was sponsored by the Board of Governors of
the Federal Reserve System in cooperation with the Statistics of Income Division
of the Income Revenue Service in the US, with the data collected by the Na-
tional Opinion Research Center at the University of Chicago. The SCF employs
a national area-probability sample that selects households with equal probability
through a multistage selection procedure and provides good coverage of widely
spread characteristics. Although the area-probability sampling procedure is effi-
cient for generating a nationally-representative sample, it has the two shortcomings
of a potentially insufficient number of observations for certain types of financial
behaviour and of nonrandom nonresponse. To deal with these potential problems,
the SCF also employs a list sample that is developed from statistical records de-
rived from tax returns, thereby guaranteeing the national representativeness of
the survey. See Kennickell (2000) for further details about the methodology of the
survey. The original dataset available to us has 20,090 observations (individuals)
and does not contain missing values. In this paper, we selected the 17,430 male
observations for which education and occupation data was available. There are
obvious differences between males and females and in order to carry out gender
comparisons, which are not the topic of this paper, it seems to be reasonable to
analyse male and female data separately.

We used the following eight variables (see Section 2 for justifications):

Isam log(xz+50) of total amount of savings as of the average of last month (treated
as continuous),

linc log(z + 50) of total income of 2006 (treated as continuous),

educ years of education between 0 and 17; this is treated as ordinal (level 17
means “graduate school and above”),

cacc number of checking accounts that one has; this is ordinal with 6 levels (corre-
sponding to no/1/2/3/(4 or 5)/(6 or more) accounts; this is because precise
differences between large number do not seem to matter here),

sacc number of savings accounts, coded as above,

hous housing, nominal with 9 levels: “neither owns nor rents”, “inapplicable”,
“owns or is buying/land contract”, “pays rent”, “condo”, “co-op”, “town-
house association”, “retirement lifetime tenancy” and “own only part”,

life whether or not one has life insurance (binary),
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occ occupation class, nominal with 7 levels (from 0 to 6): “not working for pay”,
“managerials and professionals”, “white collar workers and technicians”,
“lower-level managerials and various professions”, “service workers and op-
erators”, “manual workers and operators”, “farm and animal workers”. The
classification of occupations follows the United States Census Bureau 2006
4-digit occupation code. The detailed occupational categories were collapsed
into the seven larger groups, a common practice, for the public version of
the 2007 SCF.

The housing levels are very unequally distributed. “Owns” (72.6%) and “pays
rent” (17.9%) are by far the strongest categories. The other categories can be seen
as in some sense lying between the former two in terms of interpretation. In order
to stress the importance of “owns” and “pays rent” for dissimilarity clustering, we
weighted the two dummy variables belonging to these categories up by a factor
of 2, subsequently re-weighting all dummy variables in order to keep (6.1) valid.
This increases the effective distance between categories 3 and 4 compared to all
other distances.

The ordinal variables cacc and sacc were downweighted by a factor of 0.5 because
the diversification aspect would be overrepresented with two fully weighted vari-
ables, and part of the information of these variables is shared with lsam and linc,
particularly about the large number of 7,343 individuals without savings (there
are only 5 “zero income” cases in the data). The life insurance indicator was
downweighted by factor 0.5, too, because we see this as a comparably marginal
indicator of the socioeconomic status.

As explained in Section 3, LCC depends on prior distributions. Given the large
number of observations and a certain amount of discreteness in the income and
savings variables, we decided to increase the “error variance prior parameter” from
the default value 1 to 5. Vermunt and Magidson (2005b) interpret this parameter
as follows: “The number can be interpreted as the number of pseudo-cases added
to the data, each pseudo-case having a squared error equal to the total variance of
the indicator (dependent variable) concerned.”. The increase led to fewer visibly
spurious local optima of the penalised likelihood; we tried to other prior default
parameters further without improvement. Problems with spurious solutions could
be handled by discretising the continuous variables and treating them as ordinal,
but this would remove information in the continuous marginal distribution, which
we considered as worthwhile.

LCC and k-medoids were applied to this dataset with k ranging from 2 to 20. We
used samples=100, sampsize=200 in R-function clara, which is slower but more
stable than the default value. The LCC solution was computed by LatentGOLD.
We computed the ASW, CH and PH criterion for all k-medoids and LCC solu-
tions, and the BIC for all LCC solutions. ASW and PH require the computation
of the whole dissimilarity matrix. In order to prevent this, we computed them
from randomly partitioning the dataset into 15 subsets, computing them on every
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Criterion

Method | k| ASW | CH PH
k-medoids | 2 | 0.275 | 8216 | 0.443
k-medoids | 6 | 0.211 | 5479 | 0.452
k-medoids | 8 | 0.211 | 4999 | 0.453
LCC | 2] 0.212 | 5568 | 0.406
LCC | 8] 0.136 | 3138 | 0.387

LCC | 20 | 0.047 | 1538 | 0.330

Table 1: Dissimilarity based criteria for some k-medoids and LCC clusterings.

subset, and averaging the results. This was much more stable than clara’s internal
computation of the ASW based on the optimal subset.

9.2 Clustering results with all variables

First we discuss the results involving all eight variables. The global optimum
values of the criteria were assumed at the border of the range of k. ASW and CH
were optimal for k£ = 2 for both k-medoids and LCC. The BIC was optimal for
LCC for k = 20, potentially improving further above that value. Only PH was
optimal for k = 3 for k-medoids.

The 2-medoids solution is fairly well interpretable, collecting 7,739 (44.4%) obser-
vations with rather low savings, income, education and corresponding categories
of the other variables in one cluster. In terms of the distance-based indicators it is
much better than the LCC solution with 2 clusters. This holds for all k-medoids
solutions compared to LCC with the same k. Selected results can be seen in Table
1.

All three criteria ASW, CH and PH produce local optima, for £k = 6 and & = 8 for k-
medoids. For LCC the solutions with k = 6 and k = 8 are locally optimal according
to ASW and PH, whereas CH decreases monotonically with increasing k and the
BIC improves monotonically. Despite a generally decreasing trend of the ASW,
the value for 8-medoids is slightly better than that for 6-medoids. The number of
clusters 8 generally enables a fairly easy interpretation with enough differentiation,
and we use the 8-medoid solution therefore as the preferred solution, with more
evidence in its favour presented below.

Generally the dissimilarity-based criteria favour k-medoids over LCC but it is still
interesting to look at an LCC solution particularly regarding unweighted variable
impact. For this aim we chose the solution with & = 8 because this produces a
local optimum of the ASW, and corresponds with the chosen k-medoids solution.
The BIC-"optimal” solution k& = 20 is too bad regarding the ASW to consider it.

One major difference between k-medoids and LCC for general k is that k-medoids
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Figure 5: Relative frequency distributions by cluster with mean income values
labeled (k-medoids solutions on the left and LCC solutions on the right).

produces more uniform cluster sizes. For k = 8, cluster proportions vary between
0.05 and 0.23, whereas those for LCC are between 0.01 and 0.24 (for some larger
k, LCC even produces empty classes). Although social strata do not need to be of
uniform size, too small classes are probably not of much interest.

9.3 Interpretation of clustering results

For interpreting the clustering results, we focus on the k-medoids and the LCC
solutions when k£ = 8 by studying the conditional distributions for key indicator
variables. We begin by lining up the eight clusters from both the k-medoids and
the LCC estimations by the cluster-specific mean income values as presented in
Figure 5. The rationale for this operation is simple: income is the most obvious
reward for individual in different socioeconomic classes.

Comparing the two clustering methods, the LCC method produced two larger
higher-class clusters with relatively lower mean income while the k-medoids gener-
ated a greater buldge in the middle-class clusters, with much smaller-sized upper
classes that earned a much higher average income. Among the k-medoids gener-
ated classes, there appears to be a greater amount of similarity between clusters
1 and 2, between clusters 3, 4, 5, and 6, and between clusters 7 and 8. The mid-
dle class composed of clusters 3 to 6 comprises 61% of the cases. The k-medoids
solution seems to reflect the real-world situation better.

Now we examine three other indicator variables of socioeoconomic stratification.
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Figure 6: Relative frequency distributions of clusters by occupation (top row),
number of savings accounts (middle row), and level of education (bottom row)
(k-medoids solutions on the left and LCC solutions on the right).
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Figure 6 presents relative frequency distributions of estimated clusters using both
methods according to occupation, number of savings account, and level of educa-
tion. The fill patterns in the figure follow Figure 5. That is, the lowest class is
plotted with the densiest horizontal lines, the lines get sparser and the angle is
raised counterclockwise by steps for higher classes, and the highest class is plotted
with the sparsest vertical lines.

The largest occupation group (occupation group 1) is that of manegerials and
professionals, dominated by the top three clusters produced by either clustering
method. For the LCC solution, the top two classes have greater sizes because
of their overall larger sizes (cf. Figure 5). The next largest group (occupation
group 0), or not working for pay, is more or less equally represented by all the
clusters from the k-medoids solution and six of the clusters from the LCC solution.
Occupation group 2 consisting of white-collar workers and technicians is dominated
by the second and third clusters from the top according to the k-medoids method
but the domination is less clear according to the LCC method. Among service
workers, repairers, and operators (occupation group 4), the largest cluster is 5
(using either method).

The role of the number of savings accounts is a bit less clear. According to the
k-medoids solution, people who held a greater number of savings accounts are lo-
cated in the highest two clusters but one. According to the LCC solution, people
who held no savings account are only from clusters 3 and 7, a rather odd pattern.
The patterns of conditional distributions are intuitively appealing for education.
University graduates and people with graduate education populate the top three
clusters (judged by either estimation method). People with an associate or tech-
nical degree concentrate in clusters 3 to 6), and people with a high-school diploma
only concentrate in clusters 3 to 5, according to the k-medoids solution. The
distribution patterns according to the LCC solution are a bit less clearcut, with
more people making into the top two clusters (7 and 8). The findings by examin-
ing cluster-specific conditional distributions of income, occupation, and education
collectively point to a socioeconomic stratification system with eight classes with
good differentiation, notably from the k-medoids solution.

9.4 A parametric bootstrap test for clustering

A major research question is whether one can state that the clusterings carry some
meaning beyond a decomposition of the dependence between variables.

In order to address this question, we carried out a parametric bootstrap “test”
(because of its data dependent nature we do not attempt to interpret the outcome
in terms of formal p-values). The null model was designed as follows:

e For data generation (though not for data analysis), the nominal variables
were treated as ordinal with categories ordered according to the average
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Figure 7: Average silhouette width for US consumer finances data, k-medoids, k
between 2 and 10 (solid line), and 100 parametric bootstrap samples for a null
model preserving the dependence structure.
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correlation of their dummy variables with the continuous and ordinal vari-
ables (this backed up the treatment of the “owns” and “pays rent” housing
categories as the two extremes implied by the weighting above).

e A correlation matrix was computed using polychoric correlations between
ordinal variables (Drasgow, 1986; the continuous variables were categorised
into ten categories of approximately equal sizes for computing their corre-
lations with the ordinal variables) and the Pearson correlation between the
continuous variables.

e Data were generated according to a multivariate Gaussian distribution with
the given correlation matrix.

e Ordinal categories were assigned, for the ordinal variables, using appropriate
quantiles of the corresponding marginal distributions in order to reproduce
the original discrete marginal distributions of these variables.

The resulting distribution was interpreted as “homogeneous”, but reproducing the
discrete marginal distributions and the dependence structure between the vari-
ables.

Hundred datasets of size 17,430 were drawn from this null model, and were clus-
tered with k-medoids for k& between 2 and 10 (ASW-values for the real dataset
were bad above k = 10) in the same way as the real dataset. The corresponding
ASW-values can be seen in Figure 7, along with those for the original data set.

Surprisingly, whereas the supposedly optimal £k = 2 does not look significantly
better than what happens under the null model, the results for larger &k clearly do.
This particularly supports the solution with k = 8, because under the null model
the expected ASW goes down between 6 and 8.

Running such a test with LatentGOLD is much more difficult, and we only ran
20 bootstrapped datasets with k& = 8, producing a range of ASW-values between
0.056 and 0.079, which are much smaller as well than the value of 0.136 from the
original dataset.

These results indicate that the found clusterings for k£ = 8 reveal more socioeco-
nomic structure than can be explained from the marginal distributions and the
dependence structure of the data alone.

9.5 Impact of variables

Variable impact was evaluated in order to check to what extent clusterings were
dominated by certain (continuous or nominal) variables. In order to do this, the
clustering methods were applied to all datasets with one variable at a time left
out, and the adjusted Rand index (ARI; Hubert and Arabie, 1985) was computed
between the resulting partition and the one obtained on the full dataset. The
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Variable impact (Rand)
Method | lsam linc | educ | cacc | sacc | hous life occ
8-medoids | 0.446 | 0.552 | 0.408 | 0.896 | 0.787 | 0.799 | 0.930 | 0.834
LCC/8 | 0.302 | 0.460 | 0.720 | 0.920 | 0.711 | 0.759 | 0.769 | 0.650

Table 2: ARI between clustering on all variables (full dataset) and clustering with
a variable omitted. Values near one mean that the variable has almost no impact.

index compares two partitions of the same set of objects. A value of 1 indicates
identical partitions, 0 is the expected value if partitions are independent. Values
close to 1 here mean that omitting a variable does not change the clustering much,
and therefore that the variable has a low impact on the clustering.

Table 2 shows that the biggest difference between LCC and 8-medoids in this
respect is the impact of education, which is the most influential variable for 8-
medoids but not particularly strongly involved for LCC. LCC is generally strongly
dominated by the two continuous variables.

Among the categorical variables, occ has the strongest influence on LCC. The
LCC results also show that the “message from the data” corresponds nicely to the
decision to downweight cacc, sacc and life for dissimilarity definition, because they
have a low impact despite not being downweighted in LCC.

Another feature of the 8-medoids result is that the clustering is almost unaffected
by occupation. The impact of housing is low for both methods.

9.6 Comparing clustering and occupation groups

The practice of using occupational categories complied by the US Census Bureau
or the Department of Labor as in the given dataset and similar to the ones in
landmark work such as Hollingshead (1957) and Blau and Duncan (1967) has
been very influential for studying social stratification.

In order to see whether the occupation groups correspond to clusters on the other
variables (which would back up stratification based on occupation), the same pro-
cedure as before (without the parametric bootstrap) was applied to a dataset in
which the occ-variable was left out.

For k-medoids again a local optimum of the dissimilarity was achieved k = 8. We
again used the LCC solution with k = 8 for comparisons.

The ARI between 8-medoids and the occupation grouping was 0.091, and between
LCC and the occupation grouping it was 0.058. Both of these values are very
low and close to the value 0 to be expected for totally unrelated clusterings, and
indicate that the occupation grouping has almost nothing to do with the clusterings
on the other variables.
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9.7 Cluster validation

Whereas in some literature the term “cluster validation” is used almost synony-
mously for estimating the number of clusters by optimising some validation indices,
here it refers to an exploration of the quality of the achieved clusterings in the sense
of how they relate to the researcher’s requirements.

A large amount of techniques can be used for this, including some methodology
presented in the previous sections (particularly testing for homogeneity and the
computation of various dissimilarity based indices). Because of space limitations,
we only mention here that various other techniques have been applied in order to
check interpretatively relevant aspects of the clusterings, including visualisation
and comparison with further clusterings resulting from alternative methods or
changing some tuning decisions (variable weighting, transformations, algorithmic
parameters).

The ARI between LCC/8 and 8-medoids for the dataset with all variables is 0.456,
which implies a moderate amount of similarity between these clusterings. The
value for 6-medoids and 8-medoids is 0.922, which means that these are about as
similar as possible, given the different k.

Using educ as an ordinal variable is problematic in LCC because the high number
of 18 categories enforces a high number of parameters. The impact of educ changed
a lot when we used it as continuous, but in this case its discrete nature enforced
many unstable local optima of the penalised likelihood.

Applying the bootstrap stability assessment from Hennig (2007) to the 8-medoids
solution confirmed that four out of 8 clusters are very stable and the four others
fairly stable, although with k treated as fixed.

10 Conclusion

We think that the application of automatic methods hoping that “the data will
enforce its true structure” is deceptive. Many application-based decisions have
to be made for clustering, particularly regarding weighting, transformation and
standardisation of the variables. We hope that the present work can also in-
spire researchers applying cluster analysis in other fields to connect their choice
of methodology more consciously to their cluster concept and their desired inter-
pretation. The data analytic reasoning required for some of these decisions will
often be fairly different from the typical way of thinking in the areas to which the
clustering is to be applied, and therefore some work is required to connect them.
Not all decisions can be made independently of the data. Even in situations where
cluster analysis is only applied as an exploratory tool, such thinking is necessary
in order to understand the meaning of whatever is found.
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In the US Survey of Consumer Finances 2007 dataset, we found a well interpretable
clustering and we could establish that it contains more structural information than
just the dependence structure between the data, and in this sense it is a meaningful
clustering. However, selecting one clustering as “best” requires subjective decisions
and different clusterings could be justified by similar arguments.

More research is required concerning some of the involved decisions, a better sys-
tematic characterisation of the behaviour of the methods, and a more comprehen-
sive treatment of ordinal variables.
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