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Abstract The problem of merging Gaussian mixture components is discussed in
situations where a Gaussian mixture is fitted but the mixture components are not
separated enough from each other to interpret them as “clusters”. The problem of
merging Gaussian mixtures is not statistically identifiable, therefore merging algo-
rithms have to be based on subjective cluster concepts. Cluster concepts based on
unimodality and misclassification probabilities (“patterns”) are distinguished. Several
different hierarchical merging methods are proposed for different cluster concepts,
based on the ridgeline analysis of modality of Gaussian mixtures, the dip test, the
Bhattacharyya dissimilarity, a direct estimator of misclassification and the strength of
predicting pairwise cluster memberships. The methods are compared by a simulation
study and application to two real datasets. A new visualisation method of the separation
of Gaussian mixture components, the ordered posterior plot, is also introduced.

Keywords Model-based cluster analysis · Multilayer mixture · Unimodality ·
Prediction strength · Ridgeline · Dip test

Mathematics Subject Classification (2000) 62H30

1 Introduction

The Gaussian mixture model is often used for cluster analysis (for an overview and
references see Fraley and Raftery 2002; McLachlan and Peel 2000). This approach is
based on the assumption that R

p-valued observations x1, . . . , xn are i.i.d. according
to the density
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f (x) =
s∑

j=1

π jϕa j ,� j (x), (1)

where π j > 0 ∀ j,
∑s

j=1 π j = 1, ϕa,� is the density of the p-dimensional Gaussian
distribution N (a, �) with mean vector a and covariance matrix �. Given a fixed s,
the parameters can be estimated by Maximum Likelihood using the EM algorithm.
The data points can then be classified to the mixture components by maximizing the
estimated a posteriori probability that xi was generated by mixture component j ,

P̂(γi = j |xi = x) =
π̂ jϕâ j ,�̂ j

(x)
∑s

l=1 π̂lϕâl ,�̂l
(x)

, (2)

where γi is defined by the two-step version of the mixture model where

P(γi = j) = π j , xi |(γi = j) ∼ ϕa j ,� j , i = 1, . . . , n, i.i.d. (3)

A standard method (though not the only one) to estimate the number of components
s is the Bayesian Information Criterion (BIC, Schwarz 1978), see Fraley and Raftery
(2002) for details.

In order to restrict the number of parameters, various constraints on the � j can be
chosen. The BIC can be used to select an optimal model for the covariance matrices
(Fraley and Raftery 2003). Note that some of these models, including the unconstrained
one, have an issue with a potentially unbounded likelihood function if an eigenvalue
of a covariance matrix is allowed to converge to zero. These issues are ignored here,
because the introduced methodology can be applied to the outcome of the EM algo-
rithm, which is a (hopefully) suitable finite local optimum of the likelihood under
any covariance matrix model. For the present paper, the Gaussian mixture model has
been fitted using the default options of the add-on package MCLUST version 3 (see
Fraley and Raftery, Technical Report no. 504, Department of Statistics, University of
Washington 2006) of the statistical software R (www.R-project.org). This is denoted
by EM/BIC in case that the number of components was estimated by the BIC, and
EM/s in case that it was fixed as s.

In cluster analysis usually every mixture component is interpreted as a cluster,
and pointwise maximization of (2) defines the clustering. The idea is that a mixture
formalizes that the underlying distribution is heterogeneous with several different pop-
ulations, each of which is modelled by a homogeneous Gaussian distribution. Keeping
in mind that there is no unique definition of a “true cluster”, and not necessarily assum-
ing that the Gaussian mixture model assumption holds precisely, it could be said that
this method employs the Gaussian distribution as the prototype shape of clusters to
look for.

From a practical point of view, perhaps the most important problem with this
approach is that for most applications Gaussian distributions are too restricted to
formalize the cluster shapes one is interested in. For example, mixtures of two (or
more) Gaussian distributions can be unimodal, and in such distributions there is no
gap (and in this sense no separation) between the different Gaussian subpopulations.
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Fig. 1 Fisher’s discriminant coordinates for crabs data based on MCLUST clustering. In the left plot, the
true classes are shown. A and B denote male and C and D female crabs; the two subspecies are A/C and
B/D. The numbers in the right plot denote the MCLUST clusters

In many applications where the number of clusters is not known, the EM algorithm
together with the BIC yields a larger optimal number of mixture components than
what seems to be a reasonable number of clusters when looking at the data.

An example for this is the crabs dataset (Campbell and Mahon 1974) available in the
R-package MASS (www.R-project.org). The dataset consists of five morphological
measurements (frontal lobe size, rear width, carapace length, carapace width, body
depth; all in mm) on 200 crabs, 50 each of two color forms (subspecies) and both
sexes, of the species Leptograpsus variegatus collected at Fremantle, W. Australia.
Therefore, four classes are pre-defined in this dataset and the original intention behind
collecting it was not clustering, but it makes sense to use a dataset with known true
classes for illustration. Note that this information alone does not automatically mean
that the correct number of clusters is four because the true classes themselves may be
heterogeneous so that there may be more clusters to find, and on the other hand some
true classes may not be distinguishable or at least not separable properly, so that it
may also be possible to argue that there are fewer than four “true clusters”. However,
from the given information at least the straightforward expectation is that there should
be four clusters.

EM/BIC estimates s = 9 clusters with equal covariance matrices for these data (note
that nine is the default maximum for s in MCLUST, but increasing this to 20 still yields
s = 9). Figure 1 shows the best two Fisher’s discriminant coordinates derived from the
nine clusters. Taking into account these (and some not shown) graphical diagnostics,
it seems hardly reasonable to postulate as many as nine clusters in this dataset.

This does not mean that the MCLUST result is wrong in any sense and that there is
any evidence for a Gaussian mixture with fewer than nine components. Nine Gaussian
components are needed to fit these data according to the BIC, even with some distance
to the second best solution. In terms of fitting the underlying density, this solution is
much better than fitting the data with four Gaussian components. It only illustrates that
it can be misleading to identify the number of Gaussian components with the number
of clusters.
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The present paper is about methods to decide whether and which Gaussian mix-
ture components should be merged in order to interpret their union as cluster. At least
some of the methods introduced later produce four clusters by merging the components
1/3/5, 2/9 and 4/6/8 while component 7 remains a cluster on its own. This is the best
possible solution to the merging problem in terms of minimizing the misclassification
rate for the four true classes, given the estimated nine-component Gaussian mixture.

The merging problem has drawn some attention recently in the literature. Tantrum
et al. (2003) suggested some graphical diagnostics and proposed a hierarchical method
to merge Gaussian components based on the dip test for unimodality (Hartigan and
Hartigan 1985).

The hierarchical principle for merging Gaussian components works as follows:

1. Start with all components of the initially estimated Gaussian mixture as current
clusters.

2. Find the pair of current clusters most promising to merge.
3. Apply a stopping criterion to decide whether to merge them to form a new current

cluster, or to use the current clustering as the final one.
4. If merged, go to 2.

Two criteria are needed, namely in step 2 a rule to find the pair of clusters best to
merge and the stopping rule in step 3. Tantrum, Murua and Stuetzle use the minimum
difference in log-likelihood (assuming that a single Gaussian component is used to fit
the merged mixture) in step 2 and a significant rejection of unimodality by the dip test
as the stopping rule in step 3.

All of the methods suggested in the present paper use the hierarchical principle as
well, because all of the criteria proposed later can either only with a heavy computa-
tional burden, or not at all, be applied to sets of more than two current clusters at a
time.

Li (2004) suggested two non-hierarchical methods to fit what she calls a “multi-
layer mixture” (mixture of Gaussian mixtures). One of the methods is to apply k-means
clustering to the s component means, the other one is based on the classification max-
imum likelihood. For these methods, the number of clusters k has to be fixed, though
the number s of Gaussian components can be estimated. Fixing k, however, means that
these methods cannot solve the problem of deciding whether two or more Gaussian
components should be merged or not, and what the final number of clusters should be,
which is of interest in the present paper.

Other papers hint at the merging problem without treating it explicitly. Biernacki
et al. (2000) argue that the number of Gaussian components estimated by the BIC
may not be the optimal number for clustering, which is smaller in many situations. To
take this into account, they proposed ICL, a different criterion to estimate the number
of mixture components. Related ideas are more directly applied to the merging prob-
lem in a recent Technical Report by Baudry et al. (2008). Ray and Lindsay (2005)
investigate the topology of Gaussian mixtures with a view on modality, mentioning in
their discussion that their results could be used for deciding whether Gaussian compo-
nents may be merged. The related idea of modelling classes in discriminant analysis
by a mixture of more than one Gaussians has been around in the literature for a bit
longer (Hastie and Tibshirani 1996). Ueda et al. (2000) use a component merging and
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splitting algorithm on Gaussian mixtures to find a better local maximum of the mixture
likelihood for fixed s.

In Sect. 2 of the present paper, the nature of the merging problem is discussed and
the need for a decision about the cluster concept of interest is emphasized. In Sect. 3,
two methods based on modality diagnostics are introduced, one based on the paper
of Ray and Lindsay (2005), the other one, which is a modification of the suggestion
of Tantrum et al. (2003), based on the dip test. In Sect. 4, three methods based on
misclassification probabilities (modelling a cluster concept different from unimodal-
ity) are introduced. The first one is based on the Bhattacharyya distance (Fukunaga
1990), the second one on directly estimating misclassification probabilities, and the
third one on the prediction strength approach to estimate the number of clusters of a
general clustering method (Tibshirani and Walther 2005). In Sect. 5 a new graphical
diagnostic is introduced. The different methods are compared by a simulation study
in Sect. 6, illustrating that the choice of method should depend on the desired cluster
concept. Another simulation sheds some light on the choice of the involved tuning
constants. The crabs data are revisited in Sect. 7 along with the Wisconsin cancer data,
another real data example. A concluding discussion is given in Sect. 8.

2 The nature of the problem

The merging problem looks as follows. Given a Gaussian mixture with s components
as below, find k ≤ s and mixtures f ∗

1 , . . . , f ∗
k of components of the original mixture

so that each original Gaussian component appears in exactly one out of f ∗
1 , . . . , f ∗

k ,
and

f (x) =
s∑

i=1

πiϕai ,�i (x) =
k∑

j=1

π∗
j f ∗

j (x), (4)

where π∗
j is the sum of the πi of the Gaussian components assigned to f ∗

j . For datasets,
clustering can be done by maximizing estimated posterior probabilities

P̂(γ ∗
i = j |xi = x) = π̂∗

j f̂ ∗
j (x)

∑s
i=1 π̂∗

i f̂ ∗
i (x)

, (5)

by analogy to (2) with γ ∗
1 , . . . , γ ∗

n defined by analogy to (3). Estimators π̂∗
j can be

obtained straightforward by summing up the π̂m of the Gaussian member components
of the mixture of mixtures j .

From (4), however, f ∗
1 , . . . , f ∗

k are not identifiable. Imagine s = 3 and k ≤ 3. In
terms of the density and therefore the likelihood, it does not make a difference whether
f ∗
1 is a mixture of the first two Gaussian components and f ∗

2 equals the third one, or
f ∗
1 mixes the first and the third Gaussian component and f ∗

2 equals the second one,
or any other admissible combination.

From a purely frequentist perspective, modelling f as the underlying data gener-
ating distribution and the (πi , ai , �i ), i = 1, . . . , s, as fixed parameters, there is no
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Fig. 2 Four one-dimensional Gaussian mixtures

statistical way to distinguish “true” cluster mixtures f ∗
1 , . . . , f ∗

k from any others. It
rather has to be decided by the statistician under which conditions different Gaussian
mixture components should be regarded as a common cluster. This cannot be estimated
from the data, but needs to take into account the (usually subject-matter dependent)
cluster concept of interest. It is well known that there is no objective unique defini-
tion of what a “true cluster” is, so there is necessarily a subjective component in this
decision.

The situations in Fig. 2 illustrate that essentially different cluster concepts may be
of interest. Particularly the role of unimodality may be controversial. Some research-
ers may find it intuitive to identify a cluster with a set of points surrounding a density
mode, and in most situations the unimodal mixture at the top left of Fig. 2 may be
regarded as generating a single cluster (except if there are strong reasons to believe that
“true clusters” should at least be approximately Gaussian, be mixtures unimodal or
not, i.e., not demanding any “separation” between clusters). However, in some appli-
cations the unimodal mixtures at the bottom of Fig. 2 may not be regarded as a single
cluster, because the modes in these examples are surrounded by dense “patterns” of
the data that seem to be separated from what goes on in the tails, which is caused by
other Gaussian components. But it is not clear that these mixtures in any case should
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Fig. 3 Data from two unimodal mixtures of two uniform distributions

not be merged into a single cluster, because there is no separating “gap” between them,
which may be required to speak of “clusters”. Another illustration of the ambiguity is
given in Fig. 3. Both examples in that figure are generated by unimodal mixtures of
uniforms, and in both cases it is not straightforward to decide whether there are one
or two clusters. My experience is that most statisticians tend to see two clusters in
the right plot (this could also be interpreted as one dense cluster and some systematic
non-clustered noise) but just one in the left one. Note, however, that one-dimensional
projections of the data onto the line between the cluster means are bimodal in both
cases.

On the other hand, multimodal mixtures may also be accepted as single clusters if
the modes are not properly separated as in the upper right plot in Fig. 2. Note that the
true density gap between the two apparently not very strongly separated clusters on
the left side of Fig. 6 is much stronger than the one on the upper right side of Fig. 2.
Note also that ML-estimation of Gaussian mixtures applied to data generated from
uniform distributions such as the mixture components in Fig. 3 tends to come up with
multimodal Gaussian mixtures. I even presume that under some suitable conditions
the best Gaussian mixture approximation with any given finite s to a single uniform
distribution in - not only - Kullback-Leibler sense is not unimodal.

Therefore, in order to define a suitable method for merging normals, the statistician
has to decide

– whether only gaps in the density are accepted as separation between different clus-
ters (“modality based cluster concept”) or whether a dense data subset around a
mode should be separated from clearly less dense data subsets even if the latter
cannot be assigned to another mode (“pattern based cluster concept”),

– how strong the separation between different clusters should at least be (regardless
of which of the two concepts is chosen, though the meaning of “separation” differs
between them to some extent),

– what the role of the number of points in a cluster is, i.e., how strongly “clus-
ter-shaped” small data subsets should be in order to constitute a cluster on their
own.
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The present paper offers a range of methods to deal with various decisions in these
respects.

Obviously, the decisions have to depend on the requirements of the practical situa-
tion. For example, in a medical setup, a group of patients that could be seen as a cluster
of interest may be characterized by a large variance of a measurement without necessar-
ily differing too much from another more homogeneous cluster (“measurements in the
normal healthy range”) on average, so that the pattern based cluster concept is needed
to separate them. Another example for such a situation are quasars in astronomy. On
the other hand, for example in biology it may be of interest to find communities such
as species or subspecies that are separated by genetic or morphological gaps. Such
applications rather need the modality based cluster concept.

The cluster concept in Tantrum et al. (2003) paper is obviously modality based.
Li (2004) does not discuss the underlying cluster concept of her paper, but applying
k-means to cluster means cannot separate scale mixtures.

Further considerations regarding the cluster concept of interest concern the question
whether large within-cluster distances or small between-cluster distances should be
allowed and whether the possible shapes of clusters should be restricted. In the present
paper, however, large within-cluster or small between-cluster distances will always be
allowed and there is no explicit restriction of cluster shapes. It may be argued that
if different cluster concepts in these respects are of interest, Gaussian mixtures (with
flexible covariance matrices) may not be a suitable basis anyway and other clustering
methods (e.g., complete linkage or mixtures of other families of distributions) should
be used.

An important concern about merging Gaussian mixture components is whether clus-
tering should be based on a Gaussian mixture in the first place if clusters of interest are
not necessarily Gaussian. An argument in favour of fitting and merging Gaussian mix-
tures is that the Gaussian mixture model with estimated k is a very versatile method to
approximate any density (see Fraley and Raftery 2002). While this holds for mixtures
of other parametric families as well, using a Gaussian prototype for “homogeneity”
often at least makes sense in order to not separate data points that are estimated as
belonging to the same Gaussian component, even though several Gaussian compo-
nents may be merged. Furthermore, most clustering methods that are not based on
mixture distributions have difficulties to find patterns with different covariance struc-
tures that are not separated by gaps such as in scale mixtures. Gaussian mixtures with a
flexible enough covariance matrix model are best for this task among the most popular
clustering methods.

An important reason for the problem that often more Gaussian mixture compo-
nents are estimated than there are “true clusters” in the data is that the true clusters
could actually be non-Gaussian (though homogeneous in some sense). In these cases,
a mixture with more than one Gaussian component is needed to approximate homo-
geneous non-Gaussian distributions such as the uniform or Gamma. This implies that
in applications where such distributions should be identified with a cluster, it may be
needed to merge several Gaussian component to interpret them as a single cluster.

However, a true Gaussian mixture with a large enough number of components can-
not be distinguished by the data from a homogeneous non-Gaussian distribution that
it approximates properly, and therefore the issue that a mixture of several estimated
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Gaussian components may be interpreted as a single cluster does not only arise because
the Gaussian mixture assumption is questionable. The flexibility of Gaussian mixtures
actually means that the question whether the Gaussian mixture assumption is really
fulfilled is beyond observability and therefore meaningless, but in the context of clus-
ter analysis it is meaningful to decide whether a (sub)mixture of Gaussians as a whole
is homogeneous or not.

A referee noted that when fitting mixtures of t-distributions (as discussed in Sect. 7
of McLachlan and Peel 2000) often only a single component suffices for fitting subsets
of the data for which a Gaussian scale mixture with two or more components would be
needed. This means that identifying clusters with t-mixture components corresponds
to a different cluster concept than identifying clusters with Gaussian mixture compo-
nents, and some unimodal clusters that need to be fitted by more than one Gaussian
component occur naturally as single t-components (on the other hand, if the interest
is in a pattern based cluster concept, it may be desired to keep scale mixtures sep-
arated). However, mixtures of two or more t-distributions can be unimodal as well,
so if clusters are associated with modes, merging would still be needed for mixture
components of t-distributions.

3 Methods based on modality

3.1 The ridgeline unimodal method

Under a strong version of the modality based cluster concept, the “strong modality
merging problem” is to find a partition of the mixture components so that all resulting
clusters are unimodal but any further merging would result in a cluster that is no longer
unimodal. This requires an analysis of the modality of Gaussian mixtures. The most
advanced paper on this topic, to my knowledge, is Ray and Lindsay (2005). They
showed that for any mixture f of s Gaussian distributions on R

p there is an (s − 1)-
dimensional manifold of R

p so that all extremal points of f lie on this manifold.
For s = 2, this manifold is defined by the so-called “ridgeline”,

x∗(α) = [(1 − α)�−1
1 + α�−1

2 ]−1[(1 − α)�−1
1 a1 + α�−1

2 a2], (6)

and all density extrema (and therefore all modes, which may be more than 2 in some
situations) can be found for α ∈ [0, 1].

Unfortunately, for s > 2, Ray and Lindsay’s result does not yield a straightforward
method to find all nor even the number of modes. Therefore, their results can in gen-
eral only be used to solve the strong modality merging problem approximately. The
ridgeline unimodal method is defined by the hierarchical principle as follows.

1. Start with all components of the initially estimated Gaussian mixture as current
clusters.

2. Using the mean vectors and covariance matrices of the current clusters (initially
the Gaussian components), for any pair of two current clusters use the 2-compo-
nent Gaussian mixture derived from these parameters on the ridgeline (6) to check
whether it is unimodal.
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Fig. 4 Bimodal Gaussian
mixture in which the mixtures of
both the left and the right
component with the middle one
are unimodal
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3. If none of these is unimodal, use the current clustering as the final one.
4. Otherwise,

(a) merge all of the pairs leading to unimodal mixtures and consisting of current
clusters only involved in a single unimodal mixture,

(b) if there are cliques of more than two current clusters so that every pair of
them leads to a unimodal mixture not involving any other current cluster,
merge them all,

(c) in situations where a current cluster is involved in different unimodal mix-
tures with other current clusters of which further pairwise mixtures are not
unimodal, merge only the unimodal pair with the closest mean vectors (see
Fig. 4 for an illustration that it is not sensible to merge all current clusters
involved in intersecting unimodal pairs in such a case),

(d) go to step 2.

Approximation enters in two ways. First, instead of checking unimodality of mixtures
of more than two current clusters at a time, clusters are merged hierarchically. Second,
current clusters consisting of a mixture of two or more Gaussians are treated as sin-
gle Gaussians in step 2, by plugging their mean vectors and covariance matrices into
Ray and Lindsay’s theory for pairs of Gaussian components. This may in some rare
situations lead to assessments of unimodality that are wrong if applied to the resulting
Gaussian mixture of more than two components.

In order to apply this principle to data, means and covariance matrices are replaced
by their ML-estimators for Gaussian mixture components. For mixtures of two or more
Gaussians appearing as current clusters in the hierarchy, mean vectors and covariance
matrices can be computed using the weights of points in the current cluster computed
by summing up the weights (2) for all involved mixture components (dividing by the
sum of all involved weights corresponding to ML for weighted Gaussian data).

3.2 The ridgeline ratio method

Even if the cluster concept is modality based, in some situations the statistician may
want to allow clusters that deviate from unimodality as long as the gap between the
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modes is not strong enough to interpret them as belonging to two separated clusters.
One reason for this is that clusters may be required to be strongly separated. Another
reason is that, as a result of too small sample size or particular instances of non-nor-
mality, data from unimodal underlying distributions may be approximated by EM/BIC
by a multimodal Gaussian mixture. As the simulations in Sect. 6.2 reveal, the latter is
by no means exceptional.

A straightforward method to deal with this is to replace the demand of unimodality
in the previous session by a cutoff value r∗ for the ratio r between the minimum of
the mixture density f along the ridgeline (6) and the second largest mode in case that
there is more than one (note that because the ridgeline is defined only for α ∈ [0, 1],
the density minimum does not become arbitrarily small).

The reason for choosing the second largest mode is that if two Gaussian components
are mixed, to measure the “gap” between the two, the minimum has to be compared
with the smaller of the modes corresponding to the two mixture components, but not
taking into account even smaller modes in those special cases in which there are more
than two modes; see Ray and Lindsay (2005) for examples of such situations. Here is
the resulting ridgeline ratio algorithm:

1. Choose a tuning constant r∗ < 1.
2. Start with all components of the initially estimated Gaussian mixture as current

clusters.
3. Using the mean vectors and covariance matrices of the current clusters, for any

pair of current clusters use the 2-component Gaussian mixture derived from these
parameters on the ridgeline (6) to compute r .

4. If r < r∗ for all pairs of current clusters, use the current clustering as the final
one.

5. Otherwise, merge the pair of current clusters with maximum r (in case of ties,
proceed by analogy to the ridgeline unimodal method) and go to step 3.

The cutoff value r∗ formalizes the degree of separation between clusters. If in a
practical situation clusters are required to be strongly separated, r∗ has to be chosen
by subject-matter considerations and subjective decisions. If, on the other hand, the
ridgeline ratio method is rather preferred to the ridgeline unimodal method because
the statistician wants to keep the probability low of splitting up data by chance that
are generated by unimodal underlying distributions, the choice of r∗ could be guided
by simulating data from borderline unimodal distributions, see Sect. 6.1.

3.3 The dip test method

As explained in the introduction, Tantrum et al. (2003) defined a hierarchical merging
algorithm for the modality based cluster concept, the stopping rule of which is a suffi-
ciently small p-value of the Hartigan and Hartigan (1985) dip test for unimodality. To
use a significance test for unimodality is intuitively appealing if the statistician wants
to merge components if the resulting mixture cannot be statistically distinguished from
a unimodal distribution. However, Tantrum, Murua and Stuetzle’s use of the minimum
difference in log-likelihood (assuming that a single Gaussian component is used to fit
the merged mixture) to find the pair of current clusters to be tested for unimodality
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seems to be somewhat inconsistent, because it is not directly related to the modality
based cluster concept. Furthermore, the Gaussian log-likelihood can only be expected
to be a useful measurement of the goodness of fit of a merged mixture if the mixture
is sufficiently close to a single Gaussian which cannot be expected to hold in many
situations in which it is desired to merge components, such as for example shown in
the left panel of Fig. 3.

Therefore, as a modification of Tantrum, Murua and Stuetzle’s method, I suggest
to replace the log-likelihood difference by the ridgeline ratio r defined in Sect. 3.2.
Here is the proposed dip test method in more detail:

1. Choose a tuning constant p∗ < 1.
2. Start with all components of the initially estimated Gaussian mixture as current

clusters.
3. Using the mean vectors and covariance matrices of the current clusters, use the

2-component Gaussian mixture derived from these parameters on the ridgeline
(6) to compute r for any pair of current clusters.

4. Consider the data subset x∗ of points classified to the union of the pair of current
clusters maximizing r by maximizing (5).

5. Let x∗1 be the projection of x∗ onto the discriminant coordinate based on the pooled
covariance matrix of the two involved current clusters, separating the two current
cluster means (this is necessary because the dip test operates on one-dimensional
data).

6. If the p-value of the dip test applied to x∗1 is ≤ p∗, use the current clustering as
the final one.

7. Otherwise merge this pair of current clusters and go to step 3.

The dip statistic is defined as the Kolmogorow distance between the empirical distri-
bution and the closest unimodal distribution. Hartigan and Hartigan (1985) suggested
to compute p-values from a uniform distribution. These can be obtained from the
R-package DIPTEST. Tantrum, Murua and Stuetzle obtained their p-values differently
from simulations from the closest unimodal distribution (which I call “simulation ver-
sion of the dip test”). I recommend Hartigan and Hartigan’s original proposal because
it is computationally much more demanding to carry out data dependent simulations
every time. I found results from the “simulation version” often to be unstable in sim-
ulated situations from Sect. 6.2, though it may perform better in situations where the
method based on Hartigan and Hartigan’s original suggestion merges too strongly.

Two issues with the dip test method remain with the present proposal as well as with
Tantrum, Murua and Stuetzle’s original one. The first one is that there are multiple
tests and they are chosen in a data dependent way (determined by the initial result
of EM/BIC), so that the resulting p-values violate the assumptions of a standard sta-
tistical hypothesis test. This means that their usual interpretation is invalid. It would
only be valid under the assumption that only the data belonging to the sub-mixture
tested for unimodality in the current step were observed. Keeping the violation of this
assumption in mind, the p-values should still be a suitable (ordinal) measurement of
the strength of evidence against unimodality for sub-mixtures, so that the multiple
testing issue can be tolerated in the framework of the merging problem, though it is
not straightforward to choose a suitable value for p∗.
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The second one is that linear one-dimensional projections of unimodal data may
be multimodal. To see this, consider again a unimodal two-dimensional uniform dis-
tribution like the one generating the data in the left panel of Fig. 3. Imagine the data
as partitioned into two clusters, one consisting of all the points with xi2 > 4, the
other one with all other points. The distribution of the projection of the data onto the
line connecting the two mean vectors is bimodal; there is no unimodal way to reflect
the L-shape of the data when projecting onto a single dimension. Therefore the dip
test method is based on a cluster concept based on unimodality of one-dimensional
projections. It is up to the statistician to decide whether this is acceptable in a practical
situation.

An alternative to the use of the ridgeline ratio for the decision which pair of current
clusters is to be tested for merging is to carry out the dip test for every pair of current
clusters and to merge the pair with the highest p-value first. I favour the ridgeline ratio
because I do not think that it is meaningful to say that of two high p-values such as
0.9 and 0.7, the larger one indicates a clearly stronger support of unimodality.

4 Methods based on misclassification probabilities

The methods introduced in this section formalize versions of the pattern based cluster
concept as opposed to the modality based one. Misclassification probabilities provide
an intuitive possibility to formalize separation between different clusters in a different
way than density gaps. For example the two components of the scale mixture on the
lower right side of Fig. 2 are not separated in the sense that there are no gaps between
them, but nevertheless the misclassification probability between them is low. Obvi-
ously, the misclassification probability would be low as well in case of a strong density
gap between components, so that in many clear cut situations both concepts arrive at
the same clustering.

4.1 The Bhattacharyya distance method

The Bhattacharyya distance is a general distance between two distributions related to
the overall Bayes misclassification probability for the 2-class problem with arbitrary
class probabilities. This is bounded from above by exp(−d), where d is the Bhat-
tacharyya distance (Matusita 1971). For two Gaussian distributions with mean vectors
and covariance matrices a j , � j , j = 1, 2, the Bhattacharyya distance is (Fukunaga
1990)

d = (a1 − a2)
t �̄−1(a1 − a2)

8
+ 1

2
log

(
| 1

2 (�1 + �2)|√|�1||�2|

)
. (7)

For data, the parameters can of course be replaced by their estimators.
The Bhattacharyya distance between two mixtures of Gaussians cannot be com-

puted in a straightforward way. Therefore, for hierarchical merging, I again suggest to
represent mixtures of Gaussians by their overall mean vector and covariance matrix
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and in this sense to treat them as single Gaussians. The Bhattacharyya distance
method looks as follows:

1. Choose a tuning constant d∗ < 1.
2. Start with all components of the initially estimated Gaussian mixture as current

clusters.
3. Compute the (in case of mixtures with more than one component approximately)

estimated Bhattacharyya distances d between all pairs of current clusters from
their mean vectors and covariance matrices.

4. If exp(−d) < d∗ for all pairs of current clusters, use the current clustering as the
final one.

5. Otherwise, merge the pair of current clusters with maximum d and go to step 3.

Here d∗ formalizes the degree of separation between clusters. By analogy to r∗ above,
d∗ could be chosen by subject matter considerations or by simulations from borderline
distributions, see Sect. 6.1.

Note that exp(−d) can overestimate the misclassification probability quite severely
(over-estimation tends to be stronger for location mixtures with equal covariance matri-
ces than for scale mixtures with equal means), but d can be interpreted as a useful
dissimilarity measurement between Gaussian distributions in its own right, linked to
the Mahalanobis distance and Fisher’s discriminant function in case of equal covari-
ance matrices, see Fukunaga (1990).

Equation (7) does not take into account the component probabilities. This differs
from all the other methods proposed in the present paper as well as from the theoreti-
cal misclassification probabilities between the two involved distributions. This means
that the cluster concept implied by the Bhattacharyya distance method separates data
subsets with different enough mean vectors and/or covariance matrices even if one of
them contains much fewer points than the other one. A mixture component with very
few points may remain unmerged under this approach even if another, larger, mix-
ture component (with quite different mean vector and/or covariance matrix, though)
generated relatively many points close to the domain of the former component.

4.2 Directly estimated misclassification probabilities

Instead of estimating the Bhattacharyya distance, misclassification probabilities pi j =
P(γ̃ ∗

1 = i |γ ∗
1 = j) = P(γ̃ ∗

1 =i, γ ∗
1 = j)

π∗
j

between components of a mixture distribution

can also be estimated directly from the results of the EM algorithm. Here γ ∗
1 denotes

the mixture component number that generated the first data point (or any other point
according to the i.i.d. assumption, as long as only probabilities are of interest), and γ̃ ∗

1
is the mixture component to which the point is classified by maximizing the population
version of (5), i.e., by the Bayes rule with true parameters. 1(•) denotes the indicator
function.

π∗
j can be estimated by π̂∗

j . Note that

P̂(γ̃ ∗
1 = i, γ ∗

1 = j) = 1

n

n∑

h=1

P̂(γ ∗
h = j |xh)1(γ̂ ∗

h = i) (8)
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is a consistent estimator of P(γ̃ ∗
1 = i, γ ∗

1 = j), where γ̂ ∗
h denotes the data based

classification of data point xh , estimating γ̃ ∗
h , by maximizing (5), which also defines

P̂(γ ∗
h = j |xh).

Therefore,

p̂i j = P̂(γ̃ ∗
1 = i, γ ∗

1 = j)

π̂∗
j

is a consistent estimator of pi j . This works regardless of whether the mixture compo-
nents are Gaussian distributions or mixtures of Gaussians. Therefore it is not needed to
represent mixtures by their mean vectors and covariance matrices in order to compute
p̂i j . The method of directly estimated misclassification probabilities (DEMP method)
below therefore does not treat mixtures of Gaussians as single Gaussians in any
way.

1. Choose a tuning constant q∗ < 1.
2. Start with all components of the initially estimated Gaussian mixture as current

clusters.
3. Compute q = max( p̂i j , p̂ j i ) for all pairs of current clusters.
4. If q < q∗ for all pairs of current clusters, use the current clustering as the final

one.
5. Otherwise, merge the pair of current clusters with maximum q and go to step 3.

It is more reasonable to work with max( p̂i j , p̂ j i ) than with the estimated overall mis-
classification probability π̂∗

j p̂i j + π̂∗
i p̂ j i , because it makes sense to merge if just one

of the two misclassification probabilities is large; the other one may only be small
because one of the current clusters is much larger than the other one and therefore
misclassifications from the former one into the latter one may be unlikely regardless
of the separation between them. The situation is somewhat different from the related
discussion in Sect. 4.1, where in case of two current clusters of very different size
(ignored by the Bhattacharyya distance) it is at least required that their estimated
parameters are similar enough in order to merge them.

While asymptotically correct, for finite samples p̂i j is a somewhat optimistic esti-
mator of pi j because it equates γ̂ ∗

h with γ̃ ∗
h , implying that P̂(γ ∗

h = j |xh) has to be
small enough to allow (5) to be maximized by the “correct” mixture component i , and
assuming further that EM/BIC did not get the initial Gaussian mixture too wrong. The
effect of this bias can be quite severe, and therefore, unless the dataset is very large
and clusters are not expected to be small, q∗ should be chosen smaller than the true
misclassification probability the researcher is willing to accept between “separated
clusters”. Of course, simulating from a borderline distribution is again possible to
obtain a suggestion for q∗.

Note that it would be cumbersome to compute the theoretical misclassification
probabilities between Gaussian mixtures, and therefore to estimate them by plugging
in estimated parameters.
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4.3 The prediction strength method

The prediction strength approach by Tibshirani and Walther (2005) to estimating the
number of clusters is based on a different concept of misclassification. Instead of
assessing the classification of the data points to the clusters, it assesses how well it can
be predicted whether pairs of points belong to the same cluster. Furthermore, instead
of estimating the misclassification passively, by recomputing the clustering on subs-
amples, the approach does not only take into account the separation of the estimated
clusters, but also the stability of the clustering solution.

The two-fold version of their original method, suggested for estimating the number
of clusters k based on any chosen clustering method for fixed k, works as follows:

1. Choose a tuning constant c∗ < 1 (Tibshirani and Walther 2005, suggest c∗ = 0.8
or 0.9; the simulations presented later in this paper rather hint at c∗ = 0.75 for the
way the method is used here). For a suitable range of values of k, repeat m times:

2. Split the dataset in two halves. Cluster both parts.
3. Use the clustering C1 of the first half of the data to predict the cluster memberships

(of clusters in C1) of the points of the second half of the data by assigning every
point of the second half to the cluster in C1 with the closest mean vector.

4. For every cluster in the clustering C2 of the second half of the data, compute
the proportion of correctly predicted co-memberships of pairs of points by the
membership predictions of C1. Record the minimum over clusters c̃ of these pro-
portions.

5. Repeat steps 3 and 4 exchanging the roles of the two halves.
6. Let c be the average of the 2m recorded values of c̃. Use the largest k with c ≥ c∗

as the estimated number of clusters.

For the merging problem, a special version of the prediction strength method is
required. The original method is based on a clustering algorithm for fixed k. This
can be obtained for the merging problem by carrying out the DEMP method from
Sect. 4.2, but instead of using q < q∗ as a stopping rule, clusters are merged until the
number of k clusters is reached. Any other hierarchical method could be used as well,
but the cluster concept of the DEMP method seems to be most compatible to the idea
of prediction strength.

Furthermore, assigning points to the closest mean in step 3 of the original pre-
diction strength method is not suitable for the pattern based cluster concept allowing
scale mixtures, and therefore the classification should rather be done by maximizing
(5). This leads to the following prediction strength method for the merging prob-
lem (assuming that ŝ is the number of Gaussian mixture components estimated by
EM/BIC):

1. Choose a tuning constant c∗ < 1. For k = 2, . . . , ŝ, repeat m times:
2. Split the dataset in two halves.
3. Cluster both halves as follows:

(a) Apply EM/ŝ (fixing the number of Gaussian components).
(b) Apply the DEMP method to the solution, stopping at k clusters.
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4. Use the clustering C1 of the first half of the data to predict the cluster memberships
(of clusters in C1) of the points of the second half of the data by maximizing (5)
for every point of the second half with respect to the mixture components in C1.

5. For every cluster in the clustering C2 of the second half of the data, compute
the proportion of correctly predicted co-memberships of pairs of points by the
membership predictions of C1. Record the minimum over clusters c̃ of these pro-
portions.

6. Repeat steps 3 and 4 exchanging the roles of the two halves.
7. Let c be the average of the 2m recorded values of c̃. Use the largest k with c ≥ c∗

as the estimated number of clusters.

The main problem with the prediction strength method is that clustering half of the
data may be significantly less stable than clustering the whole dataset, so that c may
be rather pessimistic. c∗ could be chosen following Tibshirani and Walther’s recom-
mendation or by simulations from borderline distributions, see Sect. 6.1.

For some simulations (Sect. 6.1, Simple Uniform and Exponential setup in
Sect. 6.2), m = 25 was chosen for computational reasons, otherwise m = 50. In
real applications m = 100 or higher can be used; higher m improves the stability of
the outcome.

5 Ordered posterior plots

There are several graphical tools to diagnose whether different mixture components
as for example estimated by MCLUST are well enough separated in order to interpret
them as clusters. Fisher’s discriminant coordinates have already been used in Fig. 1.
A problem with Fisher’s discriminant coordinates is that it visualizes all differences
between components means together in a single plot, which is usually not simulta-
neously optimal for each component and may therefore hide the separation of some
components. The methods introduced in Hennig (2005) solve this problem by visual-
izing the separation of a single cluster at a time by finding suitable linear projections.
An example is given on the bottom right of Fig. 5, illustrating that component 7 in
the crabs data set (the only one that should not be merged with any other component
in order to achieve the clustering with the minimal misclassification probability) is
actually separated from the others, apart from a few observations that can be seen as
somewhat outlying with respect to the component center.

Further graphical diagnostics for the merging problem were introduced by Tantrum
et al. (2003). They showed component-wise rootograms of the estimated posterior
probabilities and trees to visualize the merging process. It could also be helpful to
visualize the “uncertainties” given out by the summary method in MCLUST.

A new diagnostic plot is proposed here. The ordered posterior plot is another pos-
sibility to visualize separation and overlap between components as indicated by the
estimated posterior probabilities (2). This plot is again defined for each mixture com-
ponent separately. For a given mixture component j , the points in the dataset are
ordered according to their estimated posterior probability of having been generated
by component j , i.e., the point with the highest P̂(γi = j |xi ) gets rank 1 assigned
and is therefore the most central point with respect to this component, and so on.
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Fig. 5 Top and bottom left: ordered posterior plots for mixture components 3, 5 and 7 in the crab data.
Bottom right: asymmetric neighborhood based coordinates plot for component 7, see Hennig (2005)

These ranks are plotted along the x-axis. It would be possible to use all points in the
dataset, but those with a very small posterior probability for component no. j are quite
uninformative, so only those observations with P̂(γi = j |xi ) > 0.01, say, are used
(which therefore have the smallest ranks).

On the y-axis, P̂(γi = j |xi ) is plotted using a bold line (in a particular color if this
is desired). The posterior probabilities for the other components are plotted as well,
but thinner, so that it can be seen how strongly component j is separated from the
others in terms of the posterior probabilities. With colors it is possible furthermore to
indicate which line belongs to which other component so that it can be seen which
component is “most overlapping” to j (for illustration, in Fig. 5 different shades of
grey have been used, which is not as good as colors). Three examples, for components
3, 5 and 7 in the crabs dataset, are shown in Fig. 5. From looking at all nine plots (not
shown) it becomes clear that component no. 7 (together with 9) is the most and no.
3 the least well separated. No. 3 overlaps strongly with two other components (could
be better seen with color). No. 5 is an example for a component that only noticeably
overlaps with one other component. More examples are given in Fig. 7 in Sect. 7.2.
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6 Simulations

6.1 Cutoff values

A possible approach to determine suitable cutoff values for the methods suggested
above is to simulate data from “borderline distributions” that should “just” be regarded
as a single cluster and to find out at what cutoff value a normal mixture fitted to data
from these distributions would be merged into a single cluster in 95% of the cases,
say. The results given in Table 1 have been obtained by simulating from the following
two models, each defined for p = 1, 2, 5, 10 and three different values of n for each
p, see Table 1:

1. The first variable is a borderline unimodal Gaussian mixture (any larger mean differ-
ence would lead to bimodality with these variances) 0.5∗N (0, 1)+ 0.5∗N (2, 1),

Table 1 Cutoff values required so that in 95% of simulation runs all estimated mixture components would
be merged

Distribution p n ridgerat dip bhat DEMP predstr

Unimodal Gaussian 1 50 0.413 0.187 0.201 0.043 0.830
mixture 1 200 0.821 0.262 0.390 0.102 0.829

1 500 0.940 0.360 0.490 0.124 0.868

2 50 0.333 0.143 0.112 0.016 0.771

2 200 0.926 0.270 0.450 0.119 0.798

2 500 0.981 0.383 0.530 0.139 0.853

5 100 0.890 0.154 0.395 0.107 0.729

5 400 0.990 0.410 0.531 0.139 0.814

5 1,000 0.998 0.326 0.559 0.149 0.860

10 200 0.963 0.112 0.478 0.126 0.714

10 400 0.990 0.235 0.529 0.138 0.773

10 1,000 0.999 0.290 0.560 0.147 0.824

Uniform 1 50 0.123 0.000 0.070 0.000 0.859

1 200 0.270 0.000 0.151 0.009 0.811

1 500 0.303 0.000 0.113 0.016 0.771

2 50 0.125 0.000 0.031 0.000 0.679

2 200 0.293 0.000 0.124 0.023 0.664

2 500 0.349 0.000 0.167 0.047 0.650

5 100 0.142 0.000 0.012 0.000 0.827

5 400 0.381 0.000 0.112 0.039 0.682

5 1,000 0.437 0.000 0.205 0.066 0.637

10 200 0.227 0.000 0.009 0.000 0.903

10 400 0.375 0.000 0.040 0.013 0.791

10 1,000 0.445 0.000 0.100 0.048 0.632

Methods: ridgeline ratio (ridgerat), dip test (dip), Bhattacharyya (bhat), DEMP, prediction strength (predstr).
“0.000” means “< 0.0005”
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as shown in the upper left of Fig. 2. If p > 1, the further variables are generated
independently by homogeneous standard Gaussian distributions.

2. Uniform distribution on [0, 1]p.

In order to save computing time, the number of components in MCLUST was fixed
to be 2 for the normal mixture model and 6 for the uniform model (this is the median
of the estimated cluster numbers for the uniform setup in Sect. 6.2). 200 simulation
runs have been used for each combination of model, p and n except for the compu-
tationally more demanding prediction strength approach, for which 100 simulation
runs have been used in each case with m = 25. For every simulation run and every
method, merging was carried out until only one cluster remained, and the minimum
value of the stopping criterion occurring during the merging process was recorded. In
Table 1, the 5%-quantiles of these values over the simulation runs are given, except for
the prediction strength method, where the (analogous) 95%-quantile of the maximum
strength values is given. For the Bhattacharyya method, simulation results are given
in terms of the upper bound exp(−d) on the misclassification probability instead of
the Bhattacharyya distance d.

From Table 1 it can be seen that the Gaussian mixture leads to quite different values
from the uniform. The Gaussian mixture is much “easier” to merge. This is not too
surprising, because for a Gaussian mixture fulfilling the model assumptions perfectly,
the EM/2 fit can be expected to be much better than piecing together the uniform out
of six Gaussians (note that for large n even the 5%-quantile of ridgeline ratio comes
very close to 1 for the Gaussian mixture and a unimodal ridgeline is estimated in
a vast majority of simulation runs). Furthermore, only two components have to be
merged. The only exception is that the prediction strength method merges the uniform
more easily (as opposed to all other methods, for the prediction strength method a
smaller value in the table indicates that merging is easier). The reason is that, because
model assumptions are fulfilled for the Gaussian mixture, EM/2 yields more stable
solutions than EM/6 for the uniform. It is particularly striking that when merging the
uniform, the dip test method at least at some stage of the merging process almost
always produces a very small p-value below 0.001.

Considering the Gaussian mixture with a theoretical misclassification probabil-
ity of Q = 0.159, it can be seen that this is overestimated strongly by exp(−d) of
Bhattacharyya but underestimated by DEMP. Note that the value 0.159 for this model
is independent of p, while for finite n the classification problem is obviously more
difficult for larger p including “noise” variables. This is properly reflected in the fact
that the Bhattacharyya bound increases on average with p (for n = 50 there is more
variation in the simulated values for larger p, so that the 5%-quantile for p = 1 is
larger than for larger p), which gives it some justification apart from bounding the
misclassification probability.

The values in the table (probably rather the more pessimistic ones from the uniform
model) only make sense as cutoff values if the major aim is to have some confidence
that estimated components for data from such borderline distributions will be merged
in most cases. n in the table may be chosen as the number of points ñ in the dataset
to be analyzed, but if the statistician wants to safeguard against merging smaller data
subsets generated from unimodal underlying components modelling only part of the
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data, alternatively a cutoff value could be determined by looking up the table for ñ/k∗
with some suitable k∗ > 1.

For many if not most applications, however, it is rather of interest to estimate the
number of clusters, accepting that some unimodal distributions may be split up in more
than 5% of the cases, than to “always merge if in doubt”. In such a situation the index
values of the different methods may be interpreted directly in terms of their definition,
and the researcher may want to have cutoff values independent of n and perhaps even of
p. In such situations, the tabulated values at least can help with “translating” the cutoff
values of the different methods in order to make the methods comparable. Analysing
the ratios of these values, in the following sections the following cutoff values are used
for ridgeline ratio, dip test, Bhattacharyya, DEMP and prediction strength, which may
at least serve as a guideline at which ratios they can be interpreted as “merging about
equally strongly” (note that some more experiments with the simulated setups were
also taken into account fixing these, so that they can be interpreted to some extent as
“default recommendations”):

r∗ = 0.2, p∗ = 0.05, d∗ = 0.1, q∗ = 0.025, c∗ = 0.75. (9)

For determining the dip test cutoff value p∗ the results for the uniform model have
been ignored because they would not lead to a value that could be reasonably inter-
preted. It is a general weakness of the dip test method that it cannot be prevented that
there is significant multimodality for some sub-mixtures occurring in the fit of some
unimodal distributions.

Table 1 also shows that not all methods behave in the same way with respect to
changes in n and p. The ridgeline ratio method requires clusters to be much closer
to estimated unimodality for larger p. If the “visible” separation between clusters is
required to be fixed regardless of n and p, then it may make sense to increase the cutoff
value for the ridgeline ratio with increasing p (though not necessarily with increasing
n, because the increase of the entries in Table 1 with increasing n are mainly due to
more variation in the estimated ridgeline ratio for smaller n). The DEMP estimate
of the misclassification probability becomes less optimistic with increasing n and p.
Keeping its cutoff value fixed over n means that for larger n clusters with the same
misclassification probability may be merged slightly more easily, which may make
some sense in some applications because gaps between clusters can be expected to be
“filled” with more points. The behaviour of Bhattacharyya over p differs surprisingly
strongly between the Gaussian mixture and the uniform setup, which is mainly due to
higher variability in the uniform setup for larger p. The prediction strength approach
needs larger cutoff values for smaller p. It is interesting that larger cutoff values are
required for larger n for the unimodal Gaussian mixture, but for smaller n for the
uniform distribution. This is probably due to the fact that even asymptotically there
is no unique optimal approximation for a uniform distribution by a fixed number of
Gaussians, whereas the partition of the unimodal Gaussian mixture is asymptotically
stable.

If it is desired to change the values above but to keep their ratios fixed, keep in mind
that c∗ is derived from an upper quantile of maximum values, so 1 − c∗, not c∗ itself,
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is comparable to the other values (though even the ratio of 1 − c∗ and the other cutoff
values varies quite a bit in Table 1).

6.2 Some benchmark situations

Some benchmark situations were defined in order to compare the performance of the
methods with cutoff values given in (9) and particularly in order to show how the
performance depends on the data and the cluster concept.

Situations were designed to be challenging but simple, so that it is transparent how
to interpret the results, that they could discriminate between the methods, and that one
may imagine such situations to occur at least in subsets of real datasets.

The results given here only concern the number of clusters before and after merging,
because in most situations it was clear and consistent throughout the simulations which
clusters were found as long as the number was among the “correct ones” (in some
situations more than one cluster number could be regarded as “correct” depending on
the cluster concept).

For every setup there were 200 simulation runs. Every merging method was run
on the MCLUST output for the simulated data. With some exceptions (see below),
EM/BIC was used, with selection of the covariance matrix model by the BIC.

Here are the setups:

Simple uniform. 1,000 points (p = 2) were generated from a uniform distribution on
[0, 1]2. In this setup there should be one cluster pretty much regardless of the clus-
ter concept. Results are given in Table 2. EM/BIC was applied with fully flexible
covariance matrices (i.e., the covariance matrix model was not chosen by BIC to
limit the computing time). It can be seen that the ridgeline unimodal method does
not reduce the number of clusters from EM/BIC at all. Generally, this method very
rarely merges any components. The ridgeline ratio, DEMP and predictive strength
method always merge all components here and the Bhattacharyya method does this
in the vast majority of cases. The dip test method does not achieve this in a reliable
way. Note that the simulation version of the dip test was tried out as well (results
not shown). Here it only merged all components in 17 out of 200 cases.

Table 2 Numbers of clusters (n.o.c.) found by the merging methods for the simple uniform setup

Number of clusters 1 2 3 4 5 6 7 8 9

EM/BIC 0 0 0 8 79 72 25 12 4

ridgeuni 0 0 0 8 79 72 25 12 4

ridgerat 200 0 0 0 0 0 0 0 0

dip 111 18 17 26 16 9 2 1 0

bhat 195 5 0 0 0 0 0 0 0

DEMP 200 0 0 0 0 0 0 0 0

predstr 200 0 0 0 0 0 0 0 0

Desired n.o.c. is 1. Additionally to Table 1, the ridgeline unimodal method (ridgeuni) has been used
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Table 3 Numbers of clusters
found by the merging methods
for the double rectangle uniform
setup

Desired n.o.c. is 1

Number of clusters 1 2 3 4 5 6

EM/BIC 0 6 73 88 27 6

ridgeuni 0 6 75 86 27 6

ridgerat 163 37 0 0 0 0

dip 137 26 27 10 0 0

bhat 139 58 3 0 0 0

DEMP 169 30 1 0 0 0

predstr 196 4 0 0 0 0

Table 4 Numbers of clusters
found by the merging methods
for the uniform mixture setup

Desired n.o.c. is 1 or 2,
depending on the cluster concept

Number of clusters 1 2 3 4 5 6

EM/BIC 0 13 90 83 11 3

ridgeuni 0 13 90 84 10 3

ridgerat 102 97 1 0 0 0

dip 132 41 23 4 0 0

bhat 3 196 1 0 0 0

DEMP 2 196 2 0 0 0

predstr 8 152 40 0 0 0

Double rectangle uniform. 213 points (p = 2) were generated from a uniform distri-
bution on the union of the rectangles [−8, 8]×[0, 4] and [6, 8]×[4, 7] as shown on
the left side of Fig. 3. In this setup most people would see a single cluster as well;
the situation is unimodal (though there are bimodal one-dimensional projections).
Results are given in Table 3. Apart from the typically unsatisfactory performance of
ridgeline unimodal, the dip test and Bhattacharyya method have some difficulties to
come up with a single cluster consistently. The ridgeline ratio and DEMP method
do fairly well,and the prediction strength delivers by far the best performance.

Uniform mixture. 200 points (p = 2) were generated from a uniform distribution on
the rectangles [−8, 8] × [0, 4] and 130 points were generated from a uniform dis-
tribution on [6, 8] × [4, 7] (note that the “mixture setups” in this simulation study
were not really mixtures because the numbers of points in the “mixture compo-
nents” were fixed). This is shown on the right side of Fig. 3. Results are given in
Table 4. In this setup different “true” numbers of clusters can be seen. The distri-
bution is unimodal, so from a modality based point of view there should be a single
cluster, but from a pattern based perspective there should be two of them. Conse-
quently, ridgeline ratio and the dip test method rather favour a single cluster (this is
somewhat instable, which is appropriate because it is in fact a borderline situation)
while Bhattacharyya, the DEMP and the prediction strength method clearly point
to two clusters, though the latter too often comes up with three clusters.

Weakly separated Gaussian mixture. 300 points (p = 5) were generated from a
5-dimensional N (0, I5)-distribution and 50 points from a N ((3.2, 0, 0, 0, 0)t , D)-
distribution, where D is a diagonal matrix with diagonal (0.1, 1, 1, 1, 1), i.e., all
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Fig. 6 Data generated from the simulation setups weakly separated Gaussian mixture, scale mixture and
Gaussian mixture with noise

Table 5 Numbers of clusters
found by the merging methods
for the weakly separated
Gaussian mixture setup

Desired n.o.c. is 2

Number of clusters 1 2

EM/2 0 200

ridgeuni 3 197

ridgerat 26 174

dip 195 5

bhat 8 192

DEMP 51 149

predstr 0 200

information separating clusters is in the first dimension. Some data generated from
this setup (first two dimensions only) can be seen on the left side of Fig. 6. EM/2
with the covariance matrix model fixed to be fully flexible was used for this setup,
because EM/BIC often estimated ŝ = 1 or ŝ = 2 with a wrong covariance matrix
model affecting the estimated separation between components, which is counter-
productive for measuring the quality of component merging methods. Results are
given in Table 5.
The distribution is clearly bimodal, so for most applications (except if clusters
are required to be more strongly separated) one would not want to merge the two
components. However, the setup is somewhat difficult because the separation is
not very strong and there is only clustering information in a single dimension.
The true ridgeline ratio for this distribution is 0.145, for the Bhattacharyya dis-
tance exp(−d) = 0.074 and the true Bayesian misclassifcation probability is 0.015
(p12 ≈ p21). All these values are not very far away from the cutoff values (9).
Ridgeline unimodal surprisingly merged components in three cases, whereas pre-
diction strength never merged the components. Bhattacharyya did reasonably well,
followed by ridgeline ratio. DEMP and ended up with two clusters in a clear major-
ity of cases (which is at least better than what EM/BIC achieved without merging;
not shown) while the dip test merged the components in almost all cases; obviously
its p-value derived from a uniform null model is much too conservative here. Note
that all methods can be expected to perform better in setups with more clearly
separated clusters.
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Table 6 Numbers of clusters
found by the merging methods
for the Gaussian scale mixture
setup

Desired n.o.c. is 1, 2 or 3,
depending on the cluster concept

Number of clusters 1 2 3 4 5

EM/BIC 0 0 173 26 1

ridgeuni 199 1 0 0 0

ridgerat 200 0 0 0 0

dip 198 2 0 0 0

bhat 3 196 1 0 0

DEMP 195 5 0 0 0

predstr 0 44 156 0 0

Gaussian scale mixture. Data were generated from three Gaussian components (p =
3) all with the same mean vector 0. In the third dimension, the components were
all N (0, 1)-distributed, independent of the first two dimensions. In the first two
dimensions, the covariance matrix was cI2 with c = 0.01 for the first component
(150 points), c = 1 for the second component (150 points) and c = 20 for the third
component (50 points). A dataset (first two dimensions) is shown in the middle of
Fig. 6. Results are given in Table 6. For these data it depends on the cluster concept
how many clusters there are. With a modality based cluster concept, this should be
a single cluster. With a pattern based cluster concept it depends on the separation
required between clusters whether there are two or three clusters (or even a single
one, if strong separation is required).
Consequently, ridgeline unimodal, ridgeline ratio and the dip test method favour
a single cluster in a quite stable manner, as well as somewhat surprisingly the
DEMP method. Bhattacharyya went for the two-cluster solution here (the second
and third component were not separated enough; different tuning constants would
be required to find three clusters). They were very stable as well. The prediction
strength method came up with three clusters in 156 simulation runs and is therefore
most sensible for finding these patterns that are not separated in terms of location.

Gaussian mixture with noise. For this setup p = 4, but again all the clustering infor-
mation is in the first two dimensions, with independent standard Gaussians for all
data in dimensions 3 and 4. In dimensions 1 and 2, 120 points were generated
from N ((0, 0)t , D) with D a diagonal matrix with diagonal (0.7, 3.5). 70 points
were generated from N ((4, 0)t , 0.7I2). 20 points were generated from a uniform
distribution on [−4, 8] × [−6, 6]. The uniform noise was designed in order to
blur the distinction between the two Gaussian components, see the right side of
Fig. 6. The Gaussian mixture here was fitted with an additional uniform component
(using the facility of the mclustBIC function in the MCLUST package, Fraley and
Raftery 2002), which was ignored in the merging process, in order to limit the
influence of outliers. Results are given in Table 7. Two clusters (not including the
noise component) should be found, unless the noise is regarded as additional cluster
(which in most applications probably would not be sensible at least as long as the
number of “noise points” is small).
All methods found two clusters in the vast majority of simulation runs. The ridge-
line methods are a bit less stable than the others with DEMP being the “winner”
here (though not by a significant margin).
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Table 7 Numbers of clusters
found by the merging methods
for the Gaussian mixture with
noise setup

Desired n.o.c. is 2

Number of clusters 1 2 3 4

EM/BIC 0 169 30 1

ridgeuni 0 171 29 0

ridgerat 28 172 0 0

dip 13 185 2 0

bhat 14 186 0 0

DEMP 11 189 0 0

predstr 0 182 18 0

Table 8 Numbers of clusters
found by the merging methods
for the exponential setup

Desired n.o.c. is 1

Number of clusters 1 2 3 4 5 6

EM/BIC 0 2 47 111 30 10

ridgeuni 6 25 60 80 24 5

ridgerat 195 5 0 0 0 0

dip 164 23 7 5 1 0

bhat 184 15 1 0 0 0

DEMP 188 11 1 0 0 0

predstr 185 15 0 0 0 0

Exponential. 200 points (p = 2) were generated from two independent Exponen-
tial(1)-distributions on order to produce a homogeneous but skew setup. Results
are given in Table 8. It would be difficult to argue in favour of any number of clus-
ters different from 1.
Again, all methods (except of ridgeline unimodal) do the correct job in the vast
majority of cases. This time the ridgeline ratio performed best (using pairwise tests
for equal proportions, the ridgeline ratio with 195 successes is not significantly bet-
ter than DEMP with 188, but it is significantly better than the prediction strength
with 185, p = 0.038) and the dip test was a little less stable than the others.

Overall, the results confirm that it depends on the cluster concept which method should
be chosen. However, the results indicate that the dip test method and, more clearly, the
ridgeline unimodal method, are not to be recommended (except perhaps in some spe-
cial situations in which what they do is precisely what is desired), particularly because
of their inability to merge some non-Gaussian but unimodal populations reliably.

All other methods emerged as “winners” at least somewhere and no clear ranking
can be given. So the ridgeline ratio method can be recommended for the modality
based cluster concept whereas Bhattacharyya, prediction strength and DEMP are bet-
ter for the pattern based cluster concept, though DEMP did not work as required for
this concept in the Gaussian Scale Mixture. The prediction strength showed a gener-
ally good performance, but needs by far the most computational effort and depends
on random numbers for subsetting.

A general result is that the merging methods (except of ridgeline unimodal, which
was included rather for illustrative purposes) almost consistently deliver more stable
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numbers of clusters (in terms of the number of simulation runs in their mode, whatever
it is) than EM/BIC. Of course this is partly caused by the fact that the merging methods
can only produce smaller or equal, but never larger numbers of clusters than EM/BIC.
Nevertheless, It looks as if at least in situations where the Gaussian mixture model
assumptions are violated (all setups except of Weakly Separated Gaussian Mixture
and Gaussian Scale Mixture), the merging methods produce more reliable results.

7 Real data examples

7.1 Crabs data

The crabs dataset has already been introduced in the Introduction. Using the tuning
constants in (9), three methods find the four cluster-solution closest to the true group-
ing, namely Bhattacharyya, ridgeline ratio and DEMP (the latter merging the fifth
cluster at the borderline value of q = 0.0251). Ridgeline unimodal only merges two
of the nine components

The dip test method reduces the number of components to seven clusters, merging
cluster 1 with 3 and 6 with 8, compare Fig. 1. Note that these results do not change even
when reducing the tuning constant to 0.01. As has been mentioned before, it cannot
be taken for granted that a solution with more clusters than known “true classes” is
wrong and it may point to some unknown subspecies structure, for example, though
applying the methods from Hennig (2005) does not reveal strong separation between
the remaining seven clusters.

The prediction strength method merges all components into a single cluster here.
The prediction strength for two clusters is 0.650, quite some distance from the cutoff
0.75, and for three clusters 0.444. This may be considered to be practically not use-
ful as a clustering, though it illustrates correctly that any clustering on these data is
somewhat uncertain.

In terms of the cluster concept, it is a bit difficult to decide what would be required
for these data. One would normally expect species and subspecies to be separated by
gaps, pointing toward the modality cluster concept and the ridgeline ratio, but rather
not the ridgeline unimodal or dip test method, because smaller groups of individuals
could potentially exist causing several weakly separated modes within species. For
sexes within the same species, on the other hand, it could not really be argued before
knowing the data that they should be separated by gaps, even though this apparently
happened in the given dataset.

7.2 Wisconsin cancer data

The Wisconsin cancer dataset is taken from the UCI Machine Learning Repository
http://archive.ics.uci.edu/ml/. It was analysed first by Street et al. (1993). Data are
given about 569 patients, and there are the two “true” classes of benign (357 cases)
and malignant (212 cases) tumors. There are ten quantitative features in the dataset, the
documentation of which can be obtained from the UCI website (actually the features
have been recorded for every cell nucleus in an image and three different statistics
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Fig. 7 Wisconsin cancer data. Left: asymmetric weighted coordinates (Hennig 2005) for benign patients
(bold, numbers indicating EM/BIC components but separation between 2 and 3 is not clear from the given
plot). Middle: ordered posterior plot for component 1 indicating some weak overlap with component 3.
Right: ordered posterior plot for component 3 overlapping more strongly with both components 1 and 2

of these are in the original dataset so that the number of variables is 30, but only
the first ten variables—the feature means—were used here). After transformation to
square roots (which improves the classification accuracy of the EM/BIC solution a
lot), EM/BIC fits three mixture components to the quantitative variables (ignoring the
classification information).

Component 1 is strongly (178:13) dominated by malignant cases, while components
2 and 3 consist mostly of benign cases (93:7 and 251:27).

The relevant cluster concept in such data is often pattern based (not assuming too
much prior knowledge what kind of classes and how many there are in the dataset
but looking for “something malignant”), because there are many datasets in medicine
in which patients affected by serious conditions deviate from the others basically by
some more extreme measurements in more than one direction. So it may be that classes
do not differ too strongly in terms of means or modes, but rather in terms of variance.
(Note that pattern based methods can find mean/mode differences as well, if enough
separated.)

This is confirmed by the results. Using the tuning constants in (9), Bhattacharyya
and prediction strength method come up with the optimal possible two cluster-solu-
tion, merging components 2 and 3. The DEMP method, however, merges all three
components. In the last step, the two remaining clusters (which are the same as above)
are merged with q = 0.032, just above the cutoff value 0.025. The Bhattacharyya
criterion to merge the last two clusters is 0.081, somewhat close to the cutoff. 0.809 is
the value of the prediction strength at which they are merged, which is clearly above
the cutoff 0.75 recommended here, but a borderline case according to the original
recommendations of Tibshirani and Walther (2005).

The modality based methods, ridgeline ratio and dip test, merged all components,
pointing indeed to something like a covariance mixture without clearly separated
modes. This can be confirmed by the left side of Fig. 7, showing the more homoge-
neous group of benign cases against the higher variation among the malignant cases.
Ordered posterior plots for components no. 1 and 3 are also given; component 3 is
obviously not well separated from any of the other two components, while compo-
nent 1 looks somewhat more “cluster-like”. Note that the information showed in the
ordered posterior plots corresponds to the information used by the DEMP method.
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Several other discriminant plots (not shown) have been produced to explore the
separation between the three clusters of the EM/BIC solution, and they indicate that
from the point of view of cluster analysis at least no evidence can be found to interpret
component 2 and 3 as “separated clusters” (with component 1 the situation is some-
what more borderline at least with a pattern based cluster concept), so that merging
makes sense.

8 Discussion

While it should be obvious that the merging problem is very relevant in practice, its
solution may be regarded as somewhat arbitrary, due to the lack of identifiability.
Instead of advertising a single method that may be “optimal” in some sense, several
different methods have been proposed in the present paper, and the decision between
them is always dependent on subjective decisions about the aim of clustering. The
same can be said about the choice of a cutoff-value, which is needed for all of these
methods. This should not be considered as a weakness of the methods, but rather as
an inevitable feature of the merging problem (and more generally of cluster analysis,
though this is often ignored particularly in papers advertising methods in a “one size
fits it all”-style).

However, some differences in quality between the methods are perceivable. Qual-
ity can for example be measured in terms of stability in simulated setups with known
truth and (depending on the cluster concept) known “desirable solutions”. Based on
the given results, the ridgeline unimodal and the dip test method seem to be prob-
lematic (note that the former approach is the only one that does not require a cutoff
value). Even in truly unimodal setups, EM/BIC tends to produce mixture components
that do not suggest unimodality, and therefore even under a modality based cluster
concept the ridgeline ratio method with weaker conditions on merging seems to be
preferable. In terms of interpretation the dip test is somewhat appealing and may be
used in situations where it is acceptable to leave components showing any indication
of multimodality along a single dimension unmerged (perhaps with an even larger
cutoff value than 0.05 or using the simulation version to do a bit better in setups like
the one in Table 5).

All the other methods performed strongly in some setups (again relative to the
underlying cluster concept), were acceptable in most others, and were generally much
more stable than EM/BIC.

Despite its good performance in the simulations and real data examples, a disad-
vantage with the Bhattacharyya method is that the direct interpretation of its tuning
constant seems to be most difficult. Though it is linked to the misclassification prob-
ability by bounding it from above, in most cases this bound is much too high.

An interesting feature of the prediction strength method is that in the simulation
studies it produced more clusters, on average, than DEMP, Bhattacharyya and ridgeline
ratio. However, in the crabs dataset, which is probably less “nice” and less structured
than simulated datasets, it was the strongest merger.

There are further conceivable versions of the hierarchical principle. Instead of the
dip test, other homogeneity test statistics could be considered such as the gap statistic
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(Tibshirani et al. 2001), which, however, implicitly assumes at least approximately
equal spherical within-cluster covariance matrices. It has been tried in some of the
simulation setups above and did not perform very well. Using p-values of a suit-
able test against a homogeneity alternative as a stopping rule generally formalizes the
idea that clusters should be merged if their union does not deviate significantly from
homogeneity (however defined), though this is affected by the problem of multiple
data dependent testing. More alternative suggestions have recently been presented on
conferences and are in preparation for publication by Baudry, Raftery, Celeux, Lo,
and Gottardo, and Dean and Nugent.

Dissimilarity measures other than the Bhattacharyya distance could be used as well,
based on the researcher’s judgment how the idea of merging “similar” clusters should
be formalized in a given situation. Standard distance measures between distributions
such as the Kuiper metric (Davies 1995; most more well known candidates are highly
problematic to compute in the situations of interest of the present paper) could be
considered as well as measures more specifically designed for clustering with normal
mixtures, see for example Qiu and Joe (2006) and further references given therein.

Sometimes a uniform component is added to the mixture in order to catch outliers
and data points not belonging to any cluster (Banfield and Raftery 1993; Fraley and
Raftery 2002; Hennig and Coretto 2008). In such a case the methods introduced before
can be applied to the Gaussian components only, ignoring the extent to which the data
points are assigned to the uniform measured by the “posterior weight” computed by
analogy to (2), as done in the Gaussian Mixture With Noise setup in the simulation
study. This approach prevents small clusters of outliers and is therefore itself a kind
of “merging” method.

Sometimes, particularly in situations with large p, sufficiently large n and flexible
covariance matrix models, there is an issue with spurious components occasionally
found by EM/BIC, i.e., components with very few (i.e., ≤ 1.2p, say) points that lie
closely together or on a lower dimensional hyperplane by chance, leading to estimated
covariance matrix eigenvalues close to zero. These are difficult to merge because a
covariance matrix cannot be reliably estimated with so few points, so at least the
Bhattacharyya, ridgeline ratio and DEMP method can be expected to have problems
merging them with anything. Even the dip test may reject unimodality significantly
if such a component is involved, because of the data dependent choice of the dimen-
sion along which unimodality is tested, and the predictive strength method, while
detecting their instability, does not merge them sooner than the underlying DEMP
method. A straightforward solution for this could be to dissolve these components
before starting the analysis by updating (2) (and the corresponding component param-
eters) for all other components ignoring the spurious ones. Some points (with too
large Mahalanobis distance to any other component, say) may be declared as out-
liers. Note that generally the merging methods are not more affected by this than
EM/BIC.

It is interesting to think about the asymptotic implications of the proposed methods,
or, in other words, what they deliver when applied to theoretical distributions instead
of datasets. For pairs of Gaussian distributions, there are properly defined ridgelines,
Bhattacharyya dissimilarities and misclassification probabilities as estimated by the
DEMP method (note that the upper bound on misclassification probabilities derived
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from Bhattacharyya dissimilarities is even asymptotically different from the misclassi-
fication probabilities). The dip test should eventually indicate whether a mixture of
two involved Gaussians is unimodal along the discriminate coordinate separating their
means. The prediction strength, however, will converge to 1 for n → ∞ for any num-
ber of clusters if the involved clustering method is consistent for its own canonical
parameters (which can be expected for EM/BIC if applied to a true Gaussian mixture,
though there are some difficulties with proving it, see for example Redner and Walker
1984; Keribin 2000), because in such a case a clustering based on infinitely strong
information will be stable. Therefore, there is a stronger case for letting the cutoff
value depend on n for this method than for the others.

The considerations concerning pairs of Gaussians, however, do not tell the whole
story. The indexes are applied to pairs of estimated Gaussians in situations where
the underlying distribution is not a Gaussian mixture. The pairwise computations are
embedded in a hierarchical scheme in which some of the methods reduce the informa-
tion of an already merged mixture to its mean and covariance matrix. This is obviously
much more difficult to analyse. For example it can be suspected that even for n → ∞
merging of components estimated for uniform or other non-Gaussian unimodally dis-
tributed data requires merging of a non-unimodal mixture of estimated components at
some time during the merging process. The prediction strength may still converge to
1 if a Gaussian mixture approximation for an underlying non-Gaussian distribution is
consistent, but this is not always the case; for example, I presume that fitting a uniform
distribution by a mixture of Gaussians is even asymptotically ambiguous.

A way around the identifiability problem explained in Sect. 2 would be a Bayesian
approach that models the (πi , ai , �i ), i = 1, . . . , s, as random variables generated
by k true clusters generated by hyperparameters. However, such an approach would
require a model assumption about cluster generating parameter distributions. This
means that the statistician would have to define first which patterns of Gaussian dis-
tributions should be considered as belonging to the same cluster. This is essentially
the same kind of decision that is required by the frequentist as well, so that, while the
identifiability problem could be technically resolved in the Bayesian way, the under-
lying issue of the need of deciding about a cluster concept of interest does not go
away. Though it may be interesting to think about such a Bayesian approach, it is not
considered in the present paper.

Giving a single practical recommendation is difficult, keeping in mind the varying
performance qualities in the simulation study. The performances depend on the under-
lying cluster concept, so this has to be decided as a starting point in a practical situation.
If the modality based cluster concept is of interest, the ridgeline ratio method can be
recommended. For the pattern based cluster concept, the prediction strength method
looks promising, though in some situations (and probably particularly with larger n)
Gaussian mixture fits can be quite stable, and will therefore not be merged by the
prediction strength method, even if the “patterns” fitted by them are not very distinc-
tive. On the other hand, the prediction strength may merge too strongly in applications
in which stability is not the most important concern. The Bhattacharyya method is
a computationally cheap alternative, as well as the DEMP method, though the latter
tends to merge scale mixtures. Choosing tuning constants more flexibly (dependent on
n and p as well as the data structure) may be worthwhile as well. A tool for stability
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assessment of merged components is suggested in Hennig (2010). All methods intro-
duced here will soon be incorporated in the R-package “fpc”.
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