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Abstract

Existence and consistency of the Maximum Likelihood estimator of the parameters

of heterogeneous mixtures of Gaussian and uniform distributions with known number

of components are shown under constraints to prevent the likelihood from degenera-

tion and to ensure identifiability. The EM-algorithm is discussed, and for the special

case with a single uniform component a practical scheme to find a good local optimum

is proposed. The method is compared theoretically and empirically to estimation of

a Gaussian mixture with “noise component” as introduced by Banfield and Raftery

(1993) to find out whether it is a worthwhile alternative particularly in situations with

outliers and points not belonging to the Gaussian components.

Keywords: model-based clustering, robustness, identifiability, EM-algorithm, Hath-

away constraints, noise component

1 Introduction

The original motivation behind this paper was to investigate theoretically an idea of Ban-

field and Raftery (1993), Fraley and Raftery (1998) for robust estimation of the parameters

of a Gaussian mixture distribution and model-based clustering. In the context of maxi-

mum likelihood (ML) parameter estimation via the EM-algorithm, they suggested to add

a uniform mixture component over the convex hull of the data to a mixture of Gaus-

sians in order to catch outliers and points not belonging to any Gaussian cluster. In the

present paper, for simplicity reasons, we discuss the one-dimensional setup only, so the

“convex hull” is just the range of the data. They called the uniform component the “noise

component”. We will call their approach “R-method” (for “range”) in the following.

At first sight it may seem as if the R-method yielded an ML-estimator of a mixture

model with s− 1 Gaussian and a single uniform mixture component, but this is not true.
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Neither does the method define an estimator that is consistent for the parameters of such

a model, as is explained in Section 3, Remark 3. Our aim is not, however, to criticise the

R-method, which is rather intended to deal with robustness problems than to provide a

reliable estimator for a general Gaussian-uniform mixture.

In the present paper we investigate “proper” ML-estimation in a mixture model with

Gaussian and uniform components. We introduce the model and confirm its identifia-

bility in Section 2. In Section 3 we show existence and consistency under a condition

preventing the likelihood from degeneration, which is a generalisation of the one given by

Hathaway (1985) for Gaussian mixtures. Note that because of the discontinuity of the

likelihood function due to the uniform density, existing general results cannot be applied

in a straightforward way. In these theoretical sections, we treat a general situation with q

uniform and s − q Gaussian mixture components.

In practice, we are interested in whether such a method provides a useful alternative to

the R-method for robust Gaussian clustering, and, as Banfield and Raftery, we concentrate

on a situation with a single uniform component, so q = 1, when discussing the EM-

algorithm and a computationally feasible implementation of the method in Section 4. In

Section 5.1 we give a brief overview on a comparative simulation study carried out by

Coretto (2008) and apply the ML-estimator and the R-method to a small real dataset.

Section 6 presents some concluding discussion.

Situations where estimation with a larger number of uniform components q is appro-

priate may be rare in practice and an algorithm for this is more difficult to implement, so

we leave this to future research, as well as the multivariate setup and the estimation of

the number of mixture components.

2 Identifiability of Gaussian/uniform mixtures

2.1 Model and basic notation

In this section we introduce the notation and the model under study. Let 0 < s < ∞
be the number of mixture components, and let q be the number of uniform components

0 < q < s. Let X be a real valued random variable distributed according to the following

distribution function:

G(x; η) =

q
∑

k=1

πkU(x; θk) +
s
∑

l=q+1

πlΦ(x; θl), (1)

where η = (π, θ), π = (π1, π2, . . . , πs), 0 < πj < 1,
∑s

j=1 πj = 1. For k = 1, 2, . . . , q.

For l = q + 1, q + 2, . . . , s, let θ = (θ1, θ2, . . . , θs), where θk = (ak, bk), ak and bk take
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values on the real line, and −∞ < ak < bk < +∞ (let Θ1 be the set of such pairs). For

l = q+1, q+2, . . . , s, let θl = (µl, σl) ∈ Θ2 = R×(0,∞). Furthermore, the parameter space

is denoted by Γ = (0, 1)s ×Θq
1×Θs−q

2 . U(•; θk) is the cdf of a uniform(ak, bk)-distribution,

Φ(•, θl) is the cdf of a Gaussian(µl, σ
2
l )-distribution. We often rewrite the model in (1) as

G(x, η) =

s
∑

j=1

πjFzj
(x; θj) (2)

where zj = {1, 2} for j = 1, 2, . . . , s, zj = 1 ⇒ Fzj
= U , zj = 2 ⇒ Fzj

= Φ. Moreover

g(x; η) will denote the density of G(x; η). Later we will continue to denote the components

of the vector η as πk, ak, bk or µk, σk, and when we use notation such as η′, the components

will be called correspondingly, for example, π′
k, a

′
k, b

′
k or µ′

k, σ
′
k.

2.2 Identifiability

Identifiability is a necessary condition for the possibility to estimate the parameters of

a mixture model consistently. It makes sure that no two essentially different mixture

parameter vectors parameterize the same distribution.

Let F = {F (•; θ) : θ ∈ Θ} be a family of distribution functions indexed by a pa-

rameter from some parameter space Θ. Let G ∈ G be a distribution on Θ. H(x,G) =
∫

F (x; θ)dG(θ) defines an F -mixture distribution. In the present paper we are dealing

with finite mixtures, i.e., G being the set of distributions on Θ with finite support. Con-

sequently, we write G(θ) for the mixture proportion corresponding to F (•; θ). Following

Teicher (1961), the mixture model generated by the family F with mixing distribution in

G is said to be identifiable if for G1, G2 ∈ G : H(•, G1) = H(•, G2) ⇔ G1 = G2.

Because we consider heterogeneous mixtures here, the parameter set Θ has to include

an indication of whether F is a uniform or Gaussian distribution. We therefore define

Θ = {(z, a, b) ∈ {1, 2} × R
2 : z = 1 ⇒ a < b, z = 2 ⇒ b ∈ (0,∞)},

z = 1 ⇒ F (•, (z, a, b)) = U(•, a, b), z = 2 ⇒ F (•, (z, a, b)) = Φ(•, a, b).

Furthermore, in order to make sure that the uniform mixture components can be identified,

a further constraint is needed. Let G be the set of distributions G on Θ with finite support

so that

∀θ1 = (z, a1, b1), θ2 = (z, a2, b2) ∈ Θ with z = 1, G(θ1) > 0, G(θ2) > 0 :

either b1 < a2 or b2 < a1. (3)
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It can easily be seen by, for example, obtaining a single uniform(0, 1)-distribution as a

mixture of any pair of uniforms on (0, y) and (y, 1) with suitable proportions, that mixtures

of uniform distributions are not identifiable without such a constraint.

Theorem 1. The class F with parameter set Θ and mixing distributions in G as defined

above is identifiable.

Proof. (Idea.) Considering H(•, G), the parameters θ = (z, a, b) for which G(θ) > 0 and

z = 1, i.e., those belonging to the uniform components, have to be the points at which H

is not differentiable, and because of (3), successive pairs of neighboring points define the

components. The probabilities G(θ) for these components can be found by comparing the

upper and lower limit of the derivative of H at these points. Define GU to be the measure

that only assigns mass GU (θ) = G(θ) to θ = (z, a, b) with z = 1, but 0 to the rest of Θ

(GU (θ) are already identified). Let HU(x,GU ) =
∫

F (x; θ)dGU (θ), HG = H−HU

1−GU (Θ) . HG

is a Gaussian mixture. Gaussian mixtures are identifiable by Theorem 3 in Yakowitz and

Spragins (1968), and this identifies G(θ) for θ = (2, a, b). �

The proof still holds for the more general case of mixtures of uniforms with any iden-

tifiable family of distributions with absolutely continuous cdf.

Note that identifiability of the mixing distribution G includes identification of the

number of uniform and Gaussian mixture components, but it only identifies the mixture

parameter vector up to permutations of the mixture components, i.e., “label switching”.

In this sense, the present situation is not fully identifiable.

3 Maximum likelihood estimation

In this section we will study the ML-estimation of the distribution in (1) when s and q are

fixed and known. We will show that under some constraints on the parameter space the

ML-estimator exists. Furthermore we will show that this estimate is strongly consistent.

3.1 Existence

Day (1969) studied finite mixtures of normal distributions. He highlighted several issues

including the problem of the unboundedness of the likelihood function. Let us assume

that for a given sample Xn = {X1,X2, . . . ,Xn} is an i.i.d sequence of random variables

distributed according to a finite mixture of m Gaussian distributions. The log-likelihood

function associated with a realization xn = {x1, x2, . . . , xn} of Xn is given by

Ln(ξ) =

n
∑

i=1

log p(xi; ξ)
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where p(x; ξ) is the density of a finite mixture of m Gaussian densities. Here ξ =

(π1, . . . , πm, µ1, σ1, . . . , µm, σm), with πj being the proportion of the jth component, and

µj and σj being the mean and standard deviation of the jth component respectively; j =

1, 2, . . . ,m. If we fix µj = xj and take σj arbitrarily close to 0, then Ln(ξ) −→ +∞. This

means that a global maximum fails to exist. As noted by Tanaka and Takemura (2006),

this problem also affects a wider class of mixtures. Particularly, it affects uniform(a, b)-

mixtures as well if we fix a = xj and let b → a.

The constraints σj ≥ c > 0, for all j = 1, 2, . . . ,m, are frequently used (e.g., DeSarbo

and Cron (1988)) to overcome this problem. However the choice of the constant c is

critical. If c is chosen large enough that for some j the true σj < c, the ML-estimator

is obviously not consistent. Tanaka and Takemura (2006) considered constraints of the

type σj ≥ cn, cn = c0 exp(−nd), j = 1, 2, . . . ,m. As n → ∞, cn → 0. Under this type of

constraints the authors showed that a sequence of ML-estimates is strongly consistent. A

drawback of these restrictions is that ML-estimators are no longer scale equivariant.

Dennis (1981) proposed to constraint the parameter space imposing that mini,j σi/σk ≥
c for a constant c ∈ (0, 1], i, j = 1, 2, . . . , s. Hathaway (1985) showed that these con-

straints lead to a well posed (though somewhat difficult) optimization program and that

the corresponding sequence of ML-estimates is strongly consistent and it is obviously scale

equivariant.

Let now Xn = {X1,X2, . . . ,Xn} be a sequence of i.i.d random variables with distribu-

tion function G(x; η) according to model (1). Let xn = {x1, x2, . . . , xn} be a realization of

Xn with associated log-likelihood function

Ln(η) =
n
∑

i=1

log g(xi; η). (4)

We denote vj = σj for j = q + 1, . . . , s and vj = (bj − aj)/
√

12 for j = 1, 2, . . . , q (the

standard deviation of the jth uniform component). For c ∈ (0, 1], we define the constrained

parameter set

Γc =

{

η ∈ Γ : min
t,r

vt

vr
≥ c > 0

}

. (5)

Remark 1. This constraint implies that if one of the scale parameters converges to zero,

all the others converge to zero at the same rate. Define vmin = min{vj ; j = 1, . . . , s}
and vmax = max{vj ; j = 1, . . . , s}. The constraint above implies vmin ≥ cvmax. This

implies that the parameters of the kth uniform components have to be such that bj −aj ≥√
12cvmax. Define, for later use, σmax = max{vj ; j = q + 1, . . . , s}, rmax =

√
12cσmax.
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We define the constrained ML-estimator as

η̂n = arg maxη∈Γc
Ln(η) (6)

The existence of η̂n is not immediate. Γc is not compact, and moreover Ln(η) is not

continuous on Γ and Γc.

The following lemmas and remarks are used in order to show that Ln(η) achieves its

maximum on Γc.

Remark 2. Let η ∈ Γc be such that the parameters of the jth uniform component

fixed to be aj = xp < bj = xt, for some j ∈ {1, . . . , q} and p 6= t = 1, . . . , n. Let

N−
ε (xp) ≡ [xp − ε, xp) and N+

ξ (xt) ≡ (xt, xt + ξ], where ε and ξ are positive real numbers

fixed so that Nε(xp) and Nξ(xt) do not contain any data point other than xp and xt

respectively. If η′ ∈ Γc coincides with η except that a′j ∈ Nε(xp) and b′j ∈ Nξ(xt), it

follows that Ln(η′) < Ln(η). In fact, in order to maximize the log-likelihood function with

respect to the parameters of the jth uniform component, we need to choose the parameters

so that the length of the support of the jth uniform density is minimized for any given

number of data points contained in it.

Lemma 1. If xn contains at least s+1 distinct points, then supη∈Γc
Ln(η) = supη∈Γ̄c

Ln(η),

where Γ̄c is a compact set contained in Γc.

Proof. Denote mn = min{xi, i = 1, . . . , n} and Mn = max{xi, i = 1, . . . , n}.
Part A. Take η′ ∈ Γc with µ′

j ≤ mn for some j = q + 1, . . . , s. Consider the vector η′′ ∈ Γc

that is equal to η′ except that µ′′
j = mn. This implies that Ln(η′) ≤ Ln(η′′). By analogy,

µ′
j > Mn can be ruled out.

Part B. Consider η′ ∈ Γc with a′k ≤ mn − rmax (the case b′k ≥ Mn + rmax can be treated

by analogy) for some k = 1, . . . , q. Assume that b′k ≥ mn and that a′l > mn for all other

k 6= l = 1, . . . , q (otherwise the contribution of these components to the likelihood were 0

and they could be re-arranged without changing the likelihood so that a′l ≥ mn−qrmax ∀l =

1, . . . , q). Be η′′ ∈ Γc equal to η′ except that a′′k = mn − rmax. By the arguments given in

Remark 2 it follows that Ln(η′′) ≥ Ln(η′).

Part C. Recall Remark 1, Consider a sequence {ηt}t≥1 such that vt
j ↓ 0 for all j = 1, . . . , s

while all the other parameters are fixed (w.l.o.g. fix at
k and let bt

k → at
k for k = 1, . . . , q).

For each t ≥ 1, fix, w.l.o.g., at
j = xj for all j = 1, . . . , q and µt

j = xj for all j = q + 1, . . . , s

(the contribution to the likelihood of any component for which this would not hold would

converge to 0). By assumption the vector xn contains at least s + 1 points. Assume that
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xn contains just s + 1 points (the case n > s + 1 goes along the same lines). Then,

Ls+1(η
t) = log

(

g(xs+1; η
t)

s
∏

i=1

g(xi; η
t)

)

. (7)

It is possible to write

∏s
i=1 g(xi; η

t) =
∑sn

h=1 π̄(γh)ḡ(xn; γh, ηt), (8)

where ḡ(xn; γ, η) =
∏n

r=1 fzr(xr; θjr), π̄(γ) =
∏n

r=1 πjr ,

for γ = (j1, j2, . . . , jn), (j1, j2, . . . , jn) with jr ∈ {1, 2, . . . , s} for all r = 1, 2, . . . , n, and

γ1, . . . , γsn are all possible vectors γ. Consider

ḡ(xn; γ, ηt) = fzjs+1
(xs+1; η

t)

s
∏

i=1

fzji
(xi; η

t).

If zjs+1 = 1 (uniform component), fzjs+1
(xs+1; η

t) and therefore ḡ(xn; γ, ηt) are eventually

0. If zjs+1 = 2 (Gaussian component), with σ = σjs+1 ↓ 0, there is a constant d > 0 so

that
∏s

i=1 fzji
(xi; η

t) ≤ d
σs , and therefore, because the Gaussian density converges faster

to zero than every power of σ,

fzjs+1
(xs+1; η

t)

s
∏

i=1

fzji
(xi; η

t) ≤ d

σs
ϕ(xs+1, µjs+1, σ) ↓ 0.

Therefore, Ls+1(η
t) −→ −∞.

Part D. If one of the scale parameter gets arbitrarily large, vj becomes arbitrarily large

for all j = 1, . . . , s, and both the uniform and Gaussian densities in (8) converge to zero,

so Ln(ηt) −→ −∞.

By A–D, supη∈Γc
Ln(η) = supη∈Γ̄c

Ln(η); where Γ̄c = [0, 1]s × Θ̄1 × Θ̄2, with

Θ̄1 = {θk ∈ Θ1 : mn − r̄max ≤ ak < bk ≤ Mn + r̄max, k = 1, . . . q} , (9)

and

Θ̄2 = {θj ∈ Θ2 : mn ≤ µj ≤ Mn, σ ≤ σj ≤ σ, j = q + 1, . . . , s} , (10)

for some choice of the constants σ, and σ such that 0 < σ < σ < ∞, r̄max =
√

12cσ. The

sets Θ̄1 and Θ̄2 are now compact as well as the set Γ̄c. �

Lemma 2. Let xn contain at least s + 1 distinct points, and let η∗ ∈ Γ̄c be a local

maximum for Ln(η). Then η∗ is such that for all k = 1, 2, . . . , q, (a∗k, b
∗
k) either coincides
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with a pair of distinct points in xn, or (a∗k, b
∗
k) is such that b∗k − a∗k =

√
12cv∗max, where

v∗max = max{v∗j , j = 1, . . . , s}, and the interval [a∗k, b
∗
k] contains at least one data point.

Proof. Let η∗(ak, bk) ∈ Γc denote the parameter vector with all components equal to those

of η∗ except the parameters of the kth uniform component, which are set to be ak, bk. For

a data point y, N−
ε (y) = [y − ε, y) and N+

ε (y) = (y, y + ε], where ε > 0 is such that

N−
ε (y) and N+

ε (y) do not contain any data point. Let {x̃(1), x̃(2), . . . , x̃(m)}, m ≤ n, be

the ordered set of all distinct points of xn. Let us consider a pair of distinct data points,

x̃(d) and x̃(e), with d, e ∈ {1, . . . , n}, d < e, and x̃(e) − x̃(d) ≥
√

12cvmax. There are three

cases: (i) the interval (x̃(d), x̃(e)) contains at least a pair of distinct data points; (ii) the

interval (x̃(d), x̃(e)) does not contain any data point; (iii) the interval (x̃(d), x̃(e)) contains

just one data point.

Case (i). Assume that the interval (x̃(d), x̃(e)) contains more than one distinct data points.

Consider the points x̃(d+1) and x̃(e−1), with d + 1 < e − 1. There are two further cases:

(i.a) x̃(e−1) − x̃(d+1) ≥
√

12cv∗max; or (i.b) x̃(e−1) − x̃(d+1) <
√

12cv∗max.

Case (i.a). First assume that x̃(e−1) − x̃(d+1) ≥
√

12cv∗max. By Remark 2 conclude that

for any possible ε, ξ > 0 and any ak ∈ N−
ε (x̃(d)) and bk ∈ N+

ξ (x̃(e)), Ln(η∗(ak, bk)) <

Ln(η∗(x̃(d), x̃(e))). Applying the same argument as above, for any possible ε, ξ > 0

and any ak ∈ N−
ε (x̃(d+1)) and bk ∈ N+

ξ (x̃(e−1)): Ln(η∗(ak, bk)) < Ln(η∗(x̃(d+1), x̃(e−1))).

This means that either η∗(x̃(d+1), x̃(e−1)) or η∗(x̃(d), x̃(e)) are candidates for a local max-

imum. Case (i.b). Now assume x̃(e−1) − x̃(d+1) <
√

12cv∗max. As before, for any possible

ε, ξ > 0 and any ak ∈ N−
ε (x̃(d)) and bk ∈ N+

ξ (x̃(e)), it follows that Ln(η∗(ak, bk)) <

Ln(η∗(x̃(d), x̃(e))). Now, (ak, bk) = ((x̃(d+1), x̃(e−1))) 6∈ Γc since the constraint does not

hold. Let us take any (a′k, b
′
k) such that b′k−a′k =

√
12cv∗max and a′k ≤ x̃(d+1) < x̃(e−1) ≤ b′k.

The corresponding parameter η′ now lies on the boundary of Γc. By the same argument

as before, for any possible ε, ξ > 0 and any ak ∈ N−
ε (a′k) and bk ∈ N+

ξ (b′k), it follows

that Ln(η∗(ak, bk)) < Ln(η∗(a′k, b
′
k)). This means that either η∗(x̃(d), x̃(e)) or η∗(a′k, b

′
k) are

candidates for a local maximum.

Case (ii). We assume that the interval (x̃(d), x̃(e)) does not contain any data point. We

can apply the same argument as before and show that η∗(x̃(d), x̃(e)) is a local maximum.

Case (iii). Assume that (x̃(d), x̃(e)) contains just a single data point (or several iden-

tical ones). By applying the same argument as in part (i.b), we conclude that either

η∗(x̃(d), x̃(e)) and η∗(a′k, b
′
k) are candidates for a local maximum; where a′k and b′k are such

that b′k − a′k =
√

12cvmax and x̃(d) ≤ a′k and b′k ≤ x̃(e).

Parts (i.a)–(iii) complete the proof, noting that in all cases the η∗ has been updated by

narrowing the supports of a uniform component, which implies that the constraint (3)

remains fulfilled for all updates if it holds for η∗. �
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Theorem 2. Ln(η) achieves its maximum over Γc.

Proof. Let η∗ be a local maximum and v∗max = max{v∗1 , v∗2 , . . . , v
∗
s}. Lemma 1 implies

that v∗max is contained in a closed and bounded real interval. For all possible values

of v∗max, all possible values of the uniform parameters for which the corresponding η is a

candidate for a local maximum can be obtained from Lemma 2, which leads to only finitely

many possible values for Ln(η). Let L̄n(η̄) be the log-likelihood function when all uniform

parameters are fixed in order to get a local or global maximum. Consider the vector of

parameters η̄ = (π1, . . . , πs, θq+1, . . . , θs) for any fixed uniform parameters from Lemma 2.

The parameter η̄ lies in ∈ [0, 1]s × Θ̄2 from (10). L̄n(η̄) is continuous on the compact set

[0, 1]s × Θ̄2, and hence has a maximum. Applying this argument for all possible values of

v∗max we can find all possible local maxima of Ln(η) on Γc, and hence among these we get

the global maximum. �

Note that there is an ambiguity leading to non-uniqueness of the (local and therefore

also global) maxima, because if ak − bk =
√

12cvmax and either ak or bk do not coincide

with a data point, any choice of ak so that the same data points remain inside of [ak, bk]

leads to the same likelihood value.

3.2 Asymptotic analysis

The technique usually used to show consistency and asymptotic normality for ML-estimators

assumes differentiability of the likelihood function besides other regularity conditions

about continuity and integrability of derivatives of the likelihood function up to the third

order. Here there are several problems: (i) model (1) implies a likelihood function with

infinitely many discontinuity points; (ii) in order to achieve a global maximum for the

log-likelihood we need to restrict the parameter space to a set Γc which is not compact;

(iii) the distribution we want to estimate is identifiable only up to label switching.

Wald (1949) studied a general class of estimators of which ML is a particular case,

and he showed strong consistency under general conditions not involving derivatives of

the likelihood function. However, in Wald’s approach it is assumed that the parameter

space is compact and that the model is fully identifiable, which it is not in our case be-

cause of component label switching. Redner (1981) extended the results in Wald (1949).

First he defined consistency for sequences of estimates of parameters of non-identifiable

distributions, and then he showed the consistency of sequences of ML-estimators for such

distributions. However, Redner’s theory deals with compact parameter spaces. Kiefer and

Wolfowitz (1956) studied the class of estimators introduced by Wald (1949) in the case

when the parameter space is not compact. On the other hand the authors assume full
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identifiability of the model as in Wald (1949).

Hathaway (1985) studied the strong consistency of the maximum likelihood sequence

for finite mixtures of Gaussian distributions on a constrained set of the same kind as (5).

The author used the theory of Kiefer and Wolfowitz (1956) with an approach similar to

that employed by Redner (1981). Here we will adopt a similar approach.

Let η0 ∈ Γc denote the true parameter, i.e. G(x, η0) is the distribution which generated

the sample Xn. As in Kiefer and Wolfowitz (1956) we define a metric δ on Γ:

δ(η, η∗) =
3s
∑

j=1

∣

∣arctan ηj − arctan ηj
∗
∣

∣

for all η, η∗ ∈ Γ with ηj being the jth component of the vector η. We complete the set Γc

with all limits of its Cauchy sequences. That is, Γ̄c is the set Γc along with the limits of

its Cauchy sequences in the sense of δ. As in Hathaway (1985) we will show that sufficient

conditions given by Kiefer and Wolfowitz (1956) hold.

Let Y = (X1,X2, . . . ,Xm) be a vector of m random variables i.i.d. according to

G(x; η). Let gm(y; η) the joint density of the components of Y .

Lemma 3. We assume that
{

ηt
}

t≥1
is a sequence in Γ̄c and η∗ ∈ Γ̄c. For every sequence

ηt −→ η∗, gm(y; ηt) −→ gm(y; η∗) holds; except perhaps on a set E ⊂ R
m which may

depend on η∗ and of which the Lebesgue measure is zero.

Proof. We only have to take care of the discontinuities introduced by the uniform com-

ponents. Let us take a sequence
{

ηt
}

t≥1
converging to η∗ in Γ̄c. If y ∈ R

m, y =

(x1, x2, . . . , xm) is such that xi 6= a∗k and xi 6= b∗k for all i = 1, 2, . . . ,m and k = 1, 2, . . . , q,

it is easy to see that the statement holds because 1[at
k
,bt

k
](xi) −→ 1[a∗

k
,b∗

k
](xi) for all k, i.

This is not the case for all points y′ ∈ E where for some k and i there is some a∗k = x′
i

and/or b∗k = x′
i. Thus the statement above holds, in fact the set E depends on the limit

point η∗ and has zero Lebesgue measure. �

The joint density of m observations gm(y; η) is itself a mixture of sm components, see

(8). The notation introduced there will be used in the following lemmas.

The following lemmas will be useful to show that Kiefer-Wolfowitz sufficient conditions

for the consistency of the ML-estimator are satisfied for the joint density of m observations,

with m > s. Eη′f denotes the expectation of the function f under the distribution G with

the parameter η′.
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Lemma 4. For any m > s, Eη0 log gm(y; η0) > −∞.

Proof. Let us choose h∗ such that γh∗ = {j∗, j∗, . . . , j∗}, j∗ ∈ {q + 1, . . . , s}. Note that

Eη0 log ϕ(x;µ0
j∗ , σ

0
j∗) > −∞. The following chain of inequalities completes the proof:

Eη0 log gm(y; η0) = Eη0 log

(

sm
∑

h=1

π̄(γh)g(y; γh, η0)

)

≥ Eη0 log(π(γh∗)ḡ(y; γh∗ , η0)) ≥

log π(γh∗) + Eη0 log ḡ(y; γh∗ , η0) ≥ log π(γh∗) + Eη0

m
∑

r=1

log ϕ(xr;µ
0
j∗ , σ

0
j∗) ≥

log π(γh∗) +
m
∑

r=1

Eη0 log ϕ(xr;µ
0
j∗ , σ

0
j∗) > −∞

�

Lemma 5. Let X and Y be two random variables independently distributed according to

G, and let Eη0 denote the expectation under G, then

Eη0 sup
(µ,σ)∈R×R+

log

(

1

σt
ϕ(x;µ, σ)ϕ(y;µ, σ)

)

< +∞, (11)

for any finite t ≥ 1.

Proof. Observe

B(µ, σ) = log

(

1

σt
ϕ(x;µ, σ)ϕ(y;µ, σ)

)

= log

(

1

2πσt+2
exp{− 1

2σ2
[(x − µ)2 + (y − µ)2]}

)

for some t ≥ 1. The maximum of B(µ, σ) exists on R × R+; this can be verified along

the same line of the arguments given in proof of Lemma 1 (parts A, C). The maximum is

achieved at

µ∗ =
x + y

2
, and σ∗ =

|x − y|
√

2(t + 2)
, therefore

B(µ∗, σ∗) = log
2(t + 2)

t+2
2 exp{−(t + 2)/2}
|x − y|t+2

= log
T

|x − y|t+2

for 0 < T < +∞, where the constant T depends on t, and

Eη0 sup
(µ,σ)∈R×R+

log
1

σt
ϕ(x;µ, σ)ϕ(y;µ, σ) = Eη0B(µ∗, σ∗), (12)

Eη0B(µ∗, σ∗) = log T − (t + 2)

∫ +∞

−∞

∫ +∞

−∞
log |x − y|g(x; η0)g(y; η0)dxdy < +∞.

11



�

Lemma 6.

For any m > s : Eη0 sup
η∈Γ̄c

log gm(y; η) < +∞.

Proof. The statement holds if, for all possible indexes γ,

Eη0 sup
η∈Γ̄c

log ḡ(y; γ, η) < +∞. (13)

In order to show (13), a convenient parameterization of the uniform components in G in

terms of their means and standard deviations is introduced. For all k = 1, 2, . . . , q fix

µk = (ak + bk)/2, σk = (bk − ak)/
√

12. With this, u(x; θk) = u(x;µk, σk) with

u(x;µk, σk) =
1√

12σk

1[µk−
√

3σk ;µk+
√

3σk].

Assume m = s+1. For each index γ all the factors of ḡ(y; γ, η) are bounded over Γ̄c unless

σzr approaches 0 and µzr = xr for some r = 1, 2, . . . , s + 1 and zr ∈ {1, 2}. Let ḡm(y; γ, η)

be such that the means of s− 1 of its components are equal to s− 1 of the components of

y. Hence for some indexes h, t ∈ {1, 2, . . . , s + 1} and z ∈ {1, 2, . . . , s + 1}

sup
η∈Γ̄c

log ḡ(y; γ, η) ≤ sup
η∈Γ̄c

log

(

Q
1

σs−1
z

fph
(xh;µz, σz)fpt(xt;µz, σz)

)

, (14)

where Q is a finite constant.

Consider the above inequality in three possible cases: (i) zh = zt = 2; (ii) zh = zt = 1;

(iii) zh = 1 and zt = 2.

Case (i). If zh = zt = 2, then fzh
= fzt = ϕ, applying the operator Eη0 on both the left

and right-hand side of (14), by Lemma 5 the condition (13) holds, proving the statement.

Case (ii). If zh = zt = 1, then fzh
= fzt = u. Introduce the function

∆1(xt, xh;µz, σz) = log
Q1

σs+1
z

1[µz−
√

3σz ;µz+
√

3σz ](xh)1[µz−
√

3σz ;µz+
√

3σz ](xt),

with Q1 a finite constant. Note that ∆1(xt, xh;µz, σz) < T < +∞ for some T and any

choice of µz and σz at any xh and xt, whence

Eη0 sup
η∈Γ̄c

∆1(xt, xh;µz, σz) < T < +∞.

This means that the condition (13) holds proving the statement.
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Case (iii), zh = 1 and zt = 2, so fph
= u and fpt = ϕ. Introduce

∆2(xt, xh;µz, σz) = log
Q2

σs+1
z

1[µz−
√

3σz ;µz+
√

3σz ](xh)ϕ(xt;µz, σz),

where Q2 is some constant, leading to

∆2(xt, xh;µz, σz) =

{

log
(

Q2

σs+1
z

ϕ(xt−µz

σz
)
)

, if xt, xh ∈ [µz −
√

3σz;µz +
√

3σz; ];

−∞, otherwise.

Observe for some T ′: ∆2(xt, xh;µz, σz) ≤ T ′ < +∞ for any choice of (µz, σz) at any xh

and xt except when xt = xh. When xt = xh, it is possible to take µz = xt = xh and σz ↓ 0

making ∆2(µz, σz) approaching to +∞. Note that the set of points where xh = xt has

zero Lebesgue measure in R
2. Hence

Eη0 sup
η∈Γ̄c

∆2(xt, xh;µz, σz) =

∫ +∞

−∞

∫ +∞

−∞
sup
µz ,σz

∆2(xt, xh;µz, σz)g(xt; η
0)g(xh; η0)dxhdxt ≤ T ′ < +∞,

which implies (13), proving the statement. The proof is completed by noting that any

m > s + 1 would not change the cases (i)–(iii). �

The approach used by Redner (1981) and Hathaway (1985) to overcome the difficulty

of component label switching is to work with a properly defined quotient topological space

of the parameter set. Define the set

C(η′) =

{

η ∈ Γc :

∫ x

−∞
g(t; η)dt =

∫ x

−∞
g(t; η′)dt ∀x ∈ R

}

.

Let Γ̃c be the quotient topological space obtained from Γc by identifying C(η′) to a point

η̃′ = η′. As in Redner (1981) it is possible to show strong consistency of the sequence of

ML-estimates on the quotient space Γ̃c. Let, for ǫ > 0,

Nε(η
′) =

{

η ∈ Γc : ∀η⋆ ∈ C(η′) δ(η, η⋆) ≤ ε
}

.

Theorem 3. For any ε > 0 there exists h(ε) ∈ (0, 1) such that

Pr

{

lim
n→∞

sup
η∈Γc\Nε(η0)

∏n
i=1 g(xi; η)

∏n
i=1 g(xi; η0)

< h(ε)n

}

= 1 (15)
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Proof. Equation (15) follows from the result (2.12) in Kiefer and Wolfowitz (1956) (see

also comments in Section 6 in Kiefer and Wolfowitz (1956) and the paper by Perlman

(1972)), the assumptions of which can be verified using Lemmas 3, 4 and 6 and basic

properties of the Gaussian and uniform distributions. �

The result above implies convergence of the ML-estimator on the quotient space. The

sequence of estimators defined in (6) is strongly consistent for η̃0, i.e. ˆ̃ηn
as−→ η̃0. By

Theorem 1 this means that whenever n is infinitely large the sequence of estimates ˆ̃ηn

converges almost surely to a point η̃0 which coincides with η0 up to permutation of the

pairs (π0
j , θ

0
j ) via permutation of the indexes j = 1, 2, . . . , s.

While we have shown that the sequence of ML-estimates converges with probability one

to the true parameter on the quotient space, we do not provide any asymptotic normality

result. Asymptotic normality cannot be expected to hold, because it does not even hold

for estimation of the parameters of a homogeneous single uniform distribution, where the

ML-estimator can only underestimate but never overestimate the width of the support.

Remark 3. The R-method consists, for a given dataset xn = {x1, x2, . . . , xn}, of setting

q = 1 and defining an estimator η̂ by fixing â1 = min xn, b̂1 = maxxn. The remaining

parameters (proportions for the uniform and s − q Gaussian components and Gaussian

parameters) are then estimated by maximizing the likelihood.

While the range of the data is the ML-estimator for a model with a single uniform

distribution only, the R-method does not necessarily yield an ML-estimator for model (1)

with q = 1, s − q ≥ 1, though it may be equal to the ML-estimator for some datasets (an

example where the ML-estimator is different is given in Section 6). As opposed to the

homogeneous uniform model, the ML-estimator of the uniform support [a1, b1] does not

need to contain all data points, because points outside the support can still be fitted by

the Gaussians.

Asymptotically it can be seen that the R-method cannot be ML, because it is not even

consistent. Whatever the true value of a1, b1, the support of the Gaussian distributions

is the whole real line, and therefore â1 → −∞, b̂1 → ∞, which means that the noise

component density vanishes asymptotically.

4 Computation via the EM algorithm

4.1 Behaviour of the EM-algorithm

We use the notation from (2) here. Be fzj
the density of Fzj

. The EM algorithm is

intended to seek a maximum for the log-likelihood function ln(η) =
∑n

i=1 log g(xi; η) over
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the constrained set Γc. Our practical implementation and the simulations in Section 5.1

will deal with the case q = 1 only, but in the beginning of the present section we still allow

general q.

Let the index t = 1, 2, . . . be the iteration index of the algorithm, and let us introduce

the following notations:

w
(t)
i,j =

π
(t)
j fzj

(xi; θ
(t)
j )

g(xi; η(t))
;

Q(η, η(t)) =
s
∑

j=1

n
∑

i=1

w
(t)
i,j log πj +

s
∑

j=1

n
∑

i=1

w
(t)
i,j log fzj

(xi; θj).

The quantity w
(t)
i,j can be interpreted as the estimated posterior probability at the iteration

t that the observation xi has been drawn from the jth mixture component. The EM-

algorithm works as follows:

1. fix η(0) ∈ Γc;

2. For all t = 1, 2, ..., up to convergence do the following:

(a) E–step: determine Q(η, η(t));

(b) M–step: choose η(t+1) = arg maxη∈Γc
Q(η, η(t)).

The definition (5) of Γc makes it difficult to find the arg max in the M-step. For simplicity,

in the following, we ignore the constraint in (5) when discussing the EM-algorithm. The

constraint can still be fulfilled by, in every iteration,

• computing the arg maxη∈Γ in the M–step,

• checking whether v
(t+1)
min ≥ cv

(t+1)
max is fulfilled,

• if not, setting v
(t+1)
j = cv

(t+1)
max for all components j ∈ {1, . . . , s} with v

(t+1)
j < cv

(t+1)
max

(this is straightforward for Gaussian components; for the uniform components we

suggest to hold the interval midpoint fixed and to increase the width to rmax; in case

of q > 1 some adjustment may be needed if this violates (3), which is very unlikely

in practice unless q is chosen much too large for the given dataset),

• checking whether after this adjustment the likelihood of iteration t + 1 is still in-

creased.

• If this is the case, the algorithm can continue, otherwise it is stopped at iteration t.

In the following, we call the combination of the EM-algorithm and the procedure to enforce

the scale constraints EMC-algorithm. Note that the ECM-algorithm in case of a violation
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of the constraint does not guarantee that a local optimum of the likelihood is found.

However, this is difficult to achieve anyway. For pure Gaussian mixtures, the constrained

algorithm proposed by Hathaway (1986) uses some modified constraints and its use of

Lagrange multipliers does not easily generalize to the presence of uniform components. In

a multivariate Gaussian mixture setup Ingrassia (2004) applies similar adjustments to the

one proposed here in case of a violation of the constraints.

Ignoring the constraint now, the M-step at iteration t is to compute

π
(t+1)
j = n−1

n
∑

i=1

w
(t)
i,j , j = 1, 2, . . . , s, (16)

θ
(t+1)
j = arg max

θj

n
∑

i=1

w
(t)
i,j log fzj

(xi; θj) j = 1, 2, . . . , s. (17)

Wu (1983) established the theory of convergence of the EM algorithm under the as-

sumption that the function Q computed in the E–step is continuous and differentiable at

any iteration in all its arguments. Theorem 4.1 in Redner and Walker (1984) offers a sum-

mary of the results in Wu (1983). Because ϕ is continuous with respect to θj the M-step is

well defined for all j = q +1, . . . , s. However the discontinuities introduced by the uniform

components create some inconvenience. Given the sample xn we define two functions: for

a constant h ∈ R, mn(h) = min {xi ∈ xn : xi ≥ h} and Mn(h) = max {xi ∈ xn : xi ≤ h},
and we show that for j ∈ {1, . . . , q}, the EM algorithm always makes aj and bj coincide

with two data points (or even a single one) in the first iteration and then does not change

them anymore. (Note that we here allow a
(t)
j = b

(t)
j with degenerating likelihood; if this

happens in practice, the EMC-algorithm enforces the scale constraints.)

Theorem 4. For j = 1, 2, . . . , q let θ
(0)
j with −∞ < a

(0)
j < b

(0)
j < +∞ be the initial values

for the uniform parameters. Suppose that the interval [a
(0)
j , b

(0)
j ] contains at least one data

point. Let n be fixed and finite. Then at any iteration t = 1, 2, . . . an EM solution is such

that a
(t)
j = mn(a

(0)
j ) ≤ b

(t)
j = Mn(b

(0)
j ) for all j = 1, 2, . . . , q.

Proof. In iteration t+1 the computation of the uniform parameters is done by solving the

M-step for the uniform component, which is

(a
(t+1)
j , b

(t+1)
j ) = arg max(a,b)∈Θ1

n
∑

i=1

w
(t)
i,1qi(aj , bj),

w
(t)
i,j = π

(t)
j

1
[a

(t)
j

,b
(t)
j

]
(xi)

(b
(t)
j − a

(t)
j )

1

g(xi; η(t))
;
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qi(aj , bj) = log
1[aj ,bj ](xi)

bj − aj
.

Consider any j ∈ {1, 2, . . . , q}. Consider the first iteration, i.e. t = 1. Any a
(t)
j < a

(0)
j

and b
(t)
j > b

(0)
j cannot result from the M-step above. In fact, for all i such that xi /∈

R\[a(0)
j , b

(0)
j ] we have w

(0)
i,j = 0, while for all i such that xi ∈ [a

(0)
j , b

(0)
j ] it results that (b

(1)
j −

a
(1)
j )−1 < (b

(0)
j −a

(0)
j )−1. The latter implies that for every i = 1, 2, . . . , n w

(0)
i,j qi(a

(1)
j , b

(1)
j ) <

w
(0)
i,j qi(a

(0)
j , b

(0)
j ). Therefore the solution for the M-step has to be searched in [a

(0)
j , b

(0)
j ].

For all i such that xi ∈ [a
(0)
j , b

(0)
j ], w

(0)
i,j > 0. If xi /∈ [a

(1)
j , b

(1)
j ] it follows that qi(a

(1)
j , b

(1)
j ) =

−∞. Hence, the optimal solution is thus to take the smallest interval containing all

xi ∈ [a
(0)
j , b

(0)
j ], therefore a

(1)
j = mn(a

(0)
j ) and b

(1)
j = Mn(b

(0)
j ). If we assume that a

(0)
j

and b
(0)
j are two data points, then it is easy to see that a

(1)
j = a

(0)
j and b

(1)
j = b

(0)
j . Now

since mn(a
(0)
j ) and Mn(b

(0)
j ) are two data points, taking t = 2 and applying the same

argument would lead us to conclude that a
(t)
j = mn(a

(0)
j ) and b

(t)
j = Mn(b

(0)
j ) at any

iteration t = 1, 2, . . .. Note that because intervals are only made smaller, (3) is fulfilled

finally if it is fulfilled initially. �

Following Theorem 4.1 in Redner and Walker (1984), the EM-algorithm increases the

likelihood in every single step. This holds for the EMC-algorithm as well, by definition,

and by Theorem 2 the maximum of the log-likelihood function exists on Γc. Therefore

the EMC-algorithm converges (though in the unlikely case that it is stopped prematurely

because the likelihood is decreased by enforcing the scale constraints, it may not converge

to a local optimum).

Assuming q = 1 from now on, from Theorem 4 it follows that if [a
(0)
1 , b

(0)
1 ] is chosen to

be the range of the dataset as in the R-method, they are not changed throughout the EM-

algorithm. This means that the R-method is a proper local likelihood maximum yielded

by the EM-algorithm. However, it is often not the global maximum and not consistent,

as shown in Remark 3.

Theorem 4 suggests that, while the EM-algorithm generally only produces a local

maximum of the likelihood, for a heterogeneous mixture with uniform component this is

a particularly severe problem, because every pair of data points (and even every single

data point as long as the scale constraints are ignored) corresponds to a local maximum

of the likelihood. In this sense, the EM-algorithm as well as the EMC-algorithm are

not informative about the uniform component. In order to get information about it, we

have to compare solutions from several runs of the EMC-algorithm started with various

initializations of the uniform component.
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4.2 Initialization

A way to implement the EM-algorithm to obtain a more satisfactory local maximum

(or even, with luck, the global optimum) is to initialize the algorithm with the uniform

component starting at every pair of data points and to eventually choose the overall

likelihood maximum among the solutions. This means that the M-step only updates the

proportions and Gaussian parameters, but not the ranges of the uniform.

There is also a possibility that in order to maximize the (scale constrained) likeli-

hood, the uniform component eventually only fits a single outlier, and therefore it may be

reasonable to try out further initializations with uniform supports [xi ± rmax

2 ].

This, however, can be computationally infeasible. For example, with n = 100 we would

run the EM for a Gaussian mixture 5050 times (4950 pairs of data points and 100 points).

In practice we need a selection rule to reduce the number of necessary algorithm runs.

Here is our proposal how to do this:

1. Define a grid of q equi-spaced points on the range of the data. For each point in the

defined grid choose the nearest data point. This yields data points x((1)) ≤ . . . ≤
x((q)). As initializations for the uniforms take the q(q−1)

2 pairs of points from the grid

and additionally [x((i)) ± rmax

2 ], i = 1, . . . q. The points are not necessarily pairwise

distinct, and repeated initializations may be skipped. Instead of a grid of equidistant

points, it would be possible as well to use order statistics of equidistant orders, but if

the uniform component is interpreted as “catching outliers and points not belonging

to any Gaussian cluster”, it makes sense to represent scarce regions of the dataset

properly in the set of selected points.

Note that in order to know rmax, the initialization of the Gaussian components has

to be known.

2. The initial value of the proportion of the uniform component is fixed at 0.05. This is

because we are interested in situations where the uniform distribution is interpreted

as “outliers or noise” is a situation where we want to assign most of the observations

to Gaussian “clusters”. In some applications it may make sense to change this but

of course this proportion can be increased during the algorithm anyway.

The proportions of the other components are initialized at equal value 0.95/(s − 1).

The means and variances of the Gaussian components are initialized by trimming

the 10% of observations in both the tails of the data and then applying the k-means

algorithm with s−1 components with randomly chosen initial values. This is related

to the trimmed-k-means method (Cuesta-Albertos et al. (1997)). In general, good

initialization of the EM-algorithm for a Gaussian mixture alone is a complicated
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issue, and alternatives to our approach exist, see for example Karlis and Xekalaki

(2003).

3. Run the EMC-algorithm for every initialization of the uniform component (if time

allows, it is possible to do this more than once, trying out different random ini-

tializations of the Gaussians) until it stops or until the likelihood is improved in

an iteration by less than 10−6, say. Eventually report the solution with the largest

likelihood.

A possible choice of q is q = 20. The choice of c in (5) will depend on the application,

but 0.1 or 0.01 could make sense to give the occurring scales some flexibility but avoid

spurious solutions. Recently, Yao (2010) discussed an automatic choice of c for Gaussian

mixtures.

5 Empirical experience

5.1 Simulations

Coretto (2008) carried out an extensive Monte Carlo simulation study, comparing the ML-

estimator proposed here with q = 1 and the uniform component initialized from a grid of

starting points as explained above (“G-method”) with some other estimators on several

different mixture models.

We summarize here the findings for mixture models with Gaussian components and

a single uniform one or additional outliers concerning the comparison of the G- and the

R-method, measured by misclassification rates on sample sizes n = 50, 200, 500. A publi-

cation of the results in more detail is in press (Coretto and Hennig (2010)).

Generally, the G-method did not do well for n = 50, but for larger n it was either about

as good as the R-method or, with a more concentrated uniform component (either on one

side of the Gaussian components or between them; such situations occur in practice, see

Section 5.2)), better. In a setup with the uniform component spread further than the

range that would be expected from the Gaussian distributions alone, which is the ideal

situation for the R-method, corresponding to its implicit model assumption, the G-method

did about equally well for n = 500. On the other hand, the R-method did a bit better

when applied to a pure Gaussian mixture, i.e., it was attempted to fit a uniform component

even though none existed in the true model.
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5.2 Real dataset

As a small real data example, in Figure 1 the percentages of the Republican candidate

in the 50 states of the United States in the 1968 elections are shown. A feature of this

data set is that one can see points that apparently do not belong to any Gaussian shaped

cluster on the left side of two such clusters. This is more convincingly fitted by a uniform

component that does not span the whole range of the dataset, namely the outcome of the

G-method, and the Gaussian components can be expected to be fitted more accurately

without the implicit assumption of the R-method that there is some uniform “noise” in the

regions of the clusters as well. Of course, the discontinuity between Gaussian clusters and

uniform component in the fitted density may be seen as a disadvantage, but in terms of

interpretation it is useful to have an informative interval to indicate where the observations

not belonging to Gaussian clusters are.

6 Conclusion

We investigated ML-estimation in a mixture model with q uniform components and s− q

Gaussian components. Identifiability, existence and consistency were shown and the EM-

algorithm was theoretically discussed for general q. We suggested a practical implementa-

tion for q = 1 and compared it to the noise component approach (R-method) by Banfield

and Raftery (1993) theoretically and by a simulation study with the main focus of using

the uniform component to model “points that do not belong to any cluster” in the presence

of clear Gaussian clusters.

From the results, we cannot claim that the R-method should be replaced in all appli-

cations by the G-method, though the latter is at least theoretically more appealing and

has benefits in some situations. On the other hand, the G-method apparently (from the

simulations) overestimates the impact of the uniform component for small n and is com-

putationally less simple (though this may be acceptable in many applications). The main

disadvantage compared to the R-method is that a possible generalisation to more than

one-dimensional data will be at least computationally cumbersome, because there is no

easy statement anymore that makes sure that we only need pairs of points (in most cases)

to find the ML-solution, while the R-package mclust (Fraley and Raftery (2006)) includes

a useful implementation of the R-method for higher dimensions. Another issue not treated

in the present paper is the estimation of the number of mixture components, but criteria

such as the AIC and BIC are theoretically at least as appealing for the G-method as for

the R-method, for which the BIC is recommended (Fraley and Raftery (2002)).

There are alternatives for robust clustering with Gaussian cluster shapes, see for ex-
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ample Garćıa-Escudero et al. (2008), Coretto and Hennig (2010). Actually, as Hennig

(2004) showed, the R-method is theoretically not breakdown robust, though in practice

very extreme outliers are needed to spoil it. The G-method with proper EMC-algorithm

can be expected to fit the uniform component around a single extreme outlier, rescuing

the Gaussian clusters, but for two outliers with the distance between them converging

to infinity, the same arguments as given in Hennig (2004) will again lead to breakdown.

However, the G-method can be expected at its best if there are some points not belonging

to any Gaussian cluster on only one side of some Gaussian clusters.

In a multivariate setup, fitting mixtures of Gaussian and uniform distributions be-

comes much more complicated. There is more than one method to generalize uniform

distributions on intervals. For example, hyperrectangles or ellipsoids could be chosen.

Hyperrectangles are not rotation invariant, but probably computationally easier, and the

considerations of Section 4 could apply in some generalized form. However, the computa-

tional burden of finding good approximations to the maximum likelihood estimators for

the parameters of the uniform distributions will be much worse in any case (for hyper-

rectangles, a multivariate grid has to be chosen). Constraints could be enforced along the

lines of Ingrassia (2004), but some more decisions have to be made regarding models for

the Gaussian covariance matrices (Fraley and Raftery (1998)). In terms of the theory, the

more complex parameter space means that some more subtleties have to be negotiated,

but we expect that this is possible in principle.
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Figure 1: Votes (percentage) for the Republican candidate in the 50 states of the U.S.,
1968, with estimated density with q = 1 uniform component and s − q = 2 Gaussian
components, estimated by the R-method (left side) and the ML-estimator (right side).
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