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Summary. The problem of merging Gaussian mixture components is discussed in
situations where a Gaussian mixture is fitted but the mixture components are not
separated enough from each other to interpret them as “clusters”. Two methods are
introduced, corresponding to two different “cluster concepts” (separation by gaps
and “data patterns”). A visualisation of the modality of a density of a mixture of
two Gaussians is proposed and the stability of the unmerged Gaussian mixture is
compared to that of clusterings obtained by merging components.
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1 Introduction

The Gaussian mixture model is often used for cluster analysis [1]. IRp-valued
observations x1, . . . ,xn are modelled as i.i.d. with density

f(x) =

s∑

j=1

πjϕaj ,Σj
(x), (1)

where πj > 0 ∀j,
∑s

j=1 πj = 1, ϕa,Σ is the density of the p-dimensional
Gaussian distribution N (a, Σ) with mean vector a and covariance matrix
Σ. Given a fixed s, the parameters can be estimated by Maximum Likelihood
using the EM algorithm. The data points can then be classified to the mixture
components by maximizing the estimated a posteriori probability that xi was
generated by mixture component j,

P̂ (γi = j|xi = x) =
π̂jϕ

âj ,Σ̂j
(x))

∑s

l=1 π̂lϕ
âl,Σ̂l

(x)
, (2)

where γi is defined by the two-step version of the mixture model where

P (γi = j) = πj , xi|(γi = j) ∼ ϕaj ,Σj
, i = 1, . . . , n, i.i.d. (3)
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Estimators are denoted by “hats”. A standard method to estimate the number
of components s is the Bayesian Information Criterion (BIC). This can also be
used to estimate suitable constraints on the covariance matrices [1]. For the
present paper, the Gaussian mixture model has been fitted using the default
options of the add-on package MCLUST version 3 [2] of the statistical software
R (www.R-project.org).

In cluster analysis usually every mixture component is interpreted as a
cluster, and pointwise maximization of (2) defines the clustering. However, this
is often not justified. Some mixtures of more than one Gaussian distribution
are unimodal, and in reality, model assumptions are never precisely fulfilled
and Gaussian mixtures are a very flexible tool to fit all kinds of densities. But
this means that a population that can be interpreted as “homogeneous” could
be fitted by a mixture of more than one Gaussian mixture component.
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Fig. 1. Data from unimodal mixture of uniforms with 3-cluster solution by
MCLUST

Figure 1 shows an artificial dataset generated from a mixture of two uni-
form distributions. MCLUST estimates s = 3 for this dataset. Note that the
“correct” number of clusters is not well defined and one may see two “true”
clusters here if “distiguishable patterns” are interpreted to be clusters or one
“true” cluster if clusters are associated with density modes or are required to
be separated by gaps. However, three is difficult to justify as the number of
clusters here.

In the present paper, two methods are introduced that can be used to
decide whether and which Gaussian mixture components should be merged. A
method based on detecting density gaps is introduced in Section 2. A method
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based on estimating misclassification probabilities is introduced in Section 3.
Detailed background for both methods along with some alternatives is given
in [5], so they are only explained very briefly here. The following two tools
are introduced exclusively in the present paper: the idea of Section 2 can be
used to define “ridgeline plots” that show how strongly mixture components
are separated, and in Section 4 the clusterwise stability assessment method
introduced in [4] is proposed to compare the stability of the MCLUST and
the merged clustering solution.

A real dataset from musicology is analysed in Section 5 and Section 6
concludes the paper.

Further methods for merging Gaussian mixture components are given in
[8] and [6]. Both of them are discussed in [5].

2 The Ridgeline Method

In [7] it is shown that for any mixture f of s Gaussian distributions on IRp

there is an s− 1-dimensional manifold of IRp so that all extremal points of f

lie on this manifold.
For s = 2, this manifold is defined by the so-called “ridgeline”,

x
∗(α) = [(1 − α)Σ−1

1 + αΣ−1
2 ]−1[(1 − α)Σ−1

1 a1 + αΣ−1
2 a2], (4)

and all density extrema (and therefore all modes, which may be more than
2 in some situations) can be found for α ∈ [0, 1]. The following algorithm
(“ridgeline method”) can be used to merge mixture components:

1. Choose a tuning constant r∗ < 1.
2. Start with all components of the initially estimated Gaussian mixture as

current clusters.
3. Using the mean vectors and covariance matrices of the current clusters,

for any pair of current clusters compute, from (4), r =
min0≤α≤1 f(x∗(α))

m2(f(x∗(α))) ,

where m2 denotes the second largest mode; let r = 1 if there is only one
mode.

4. If r < r∗ for all pairs of current clusters, use the current clustering as the
final one.

5. Otherwise, merge the pair of current clusters with maximum r and go to
step 3.

Following [5], r∗ = 0.2 is used here. Note that it is not advisable to demand
precise unimodality (r∗ = 1), because the probability is high that MCLUST
estimates multimodal mixtures even in unimodal situations. For example, for
the (unimodal) dataset in Figure 1, the first two components are merged at
r = 0.58 and their union is merged with the third one at r = 0.21.

The separation of the estimated Gaussian mixture components can be
visualised by plotting the ridgeline density f(x∗(α)) vs. α. The results for the
dataset in Figure 1 are shown in Figure 2.
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Fig. 2. Ridgeline plot for the three Gaussian components estimated by MCLUST
for the data in Figure 1.

3 A Method Based on Misclassification Probabilities

Misclassification probabilities pij = P (γ̃∗
1 = i|γ∗

1 = j) =
P (γ̃∗

1
=i, γ∗

1
=j)

π∗
j

be-

tween components of a mixture distribution can be estimated directly from
the results of the EM algorithm. γ∗

k here denotes the membership indicator
of observation k in a Gaussian mixture model, but where a cluster may be
identified with a single mixture component (in which case γ∗

k = γk in (3)) or
a mixture of several Gaussian components. π∗

k denote the corresponding prior
probabilities.

Here γ∗
1 denotes the cluster number that generated the first data point (or

any other point according to the i.i.d. assumption, as long as only probabil-
ities are of interest), and γ̃∗

1 is the mixture component to which the point is
classified by the Bayes rule with true parameters.

π̂∗
k can be obtained straightforward by summing up the π̂m of the member

components of cluster k. Note that

P̂ (γ̃∗
1 = i, γ∗

1 = j) =
1

n

n∑

h=1

P̂ (γ∗
h = j|xh)1(γ̂∗

h = i) (5)

is a consistent estimator of P (γ̃∗
1 = i, γ∗

1 = j), where γ̂∗
h denotes the data based

classification of data point xh, estimating γ̃∗
h, which also defines P̂ (γ∗

h = j|xh).
1(•) denotes the indicator function.

Therefore,

p̂ij =
P̂ (γ̃∗

1 = i, γ∗
1 = j)

π̂∗
j

is a consistent estimator of pij . This works regardless of whether the mixture
components are Gaussian distributions or mixtures of Gaussians. Here is the
method of directly estimated misclassification probabilities (DEMP):

1. Choose a tuning constant q∗ < 1.
2. Start with all components of the initially estimated Gaussian mixture as

current clusters.
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3. Compute q = max(p̂ij , p̂ji) for all pairs of current clusters.
4. If q < q∗ for all pairs of current clusters, use the current clustering as the

final one.
5. Otherwise, merge the pair of current clusters with maximum q and go to

step 3.

q∗ = 0.025 is used here [5].
For the data in Figure 1, DEMP merges components 1 and 2 at q = 0.078.

For the cluster of these two and component 3, q = 0.01, so with q∗ = 0.025,
two clusters are found, namely mixture components 1/2 together and 3. This
makes sense if clusters refer to “patterns” in the data but are not required to
be separated by gaps.

4 Bootstrap Stability Assessment

In [4], the following idea has been introduced for checking the stability of a
cluster:

• Draw B nonparametric bootstrap samples from the dataset (when using
with MCLUST, discard the copies of points drawn more than once, so that
the bootstrap sample is actually smaller than the original dataset; further
schemes to generate datasets are discussed in [4], but they don’t deliver
very different results for the datasets treated here).

• Cluster the bootstrapped datasets by the same method that was used for
the original dataset.

• For every cluster in the original dataset, find the most similar one in every
bootstrapped dataset. Similarity is measured according to the Jaccard

similarity between sets C, D : j(C, D) = |C∩D|
|C∪D| .

• For every cluster i, compare the mean Jaccard similarity j̄i to the most
similar cluster from each of the B bootstrap samples.

The Jaccard similarity is between 0 and 1. It makes sense to consider clus-
ters with j̄i < 0.5 as “dissolved” [4] and a meaningful stable cluster should
have j̄i � 0.5, better above 0.7 or 0.8 (though not every stable cluster is
meaningful).

In the given situation it is interesting to apply the idea to the MCLUST
clusterings and compare them to the stability achieved by the clusters yielded
by the merging methods, i.e., to consider “do MCLUST first and apply ridge-
line or DEMP method to the solution” as a clustering method in its own
right.

For the dataset in Figure 1 and the MCLUST solution, j̄1 = 0.48, j̄2 =
0.52, j̄3 = 0.96, so the first two clusters are obviously unstable. The ridgeline
method yields j̄123 = 0.87 for the only remaining cluster, which means that in
some situations it ends up with more than one cluster (for merging methods,
the lower index of j̄ refers to the original Gaussian components belonging to
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the merged cluster). DEMP yields j̄12 = 0.94, j̄3 = 0.98, which confirms that
this is a very stable solution.

5 Real Data Example: Clustering Melody Contours
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Fig. 3. Variables a4 and a0 of melody data with clusters found by MCLUST (right
side: magnified version of the central area; what looks like a “line” along a4≈ 0 is
component 1).

The dataset analysed here consists of approximations of the contours of
989 melody phrases taken from commercial pop songs by polynomials of de-
gree 5, as discussed in [3]. The dataset was provided by D. Müllensiefen. Due
to a lower intrinsic dimensionality of the dataset, only four coefficients (a4, a3,
a1 and a0, indicating the degrees of the terms of the polynomials) were used
as variables, and most of the information distinguishing the seven clusters
obtained by MCLUST can be seen in the scatterplot of a4 and a0, see Figure
3. Apart from a strong concentration around the value 0 of the first vari-
able (which is represented by two components, no. 1 and 4, in the MCLUST
solution, see right side of Figure 3), no clear patterns can be seen.

The stability values for the MCLUST solution are: j̄1 = 0.75, j̄2 =
0.33, j̄3 = 0.42, j̄4 = 0.42, j̄5 = 0.27, j̄6 = 0.24, j̄7 = 0.44, so only the first
component is reasonably stable. This in itself is very useful for interpreting
the clustering, even before having done any component merging.

Some ridgeline plots are given in Figure 4. Note that the gap between
components 2 and 5 on the lower left side is by far the deepest for any pair
of components in this dataset, which indicates that the 2-d plots in Figure
3 do not miss any strong separation between any two clusters in 4-d space
(particularly taking into account that even in mixtures without clear gaps,
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Fig. 4. Selected ridgeline plots for melody data.

gaps are expected to occur in ridgeline ratio plots between “non-neighbouring”
components, see Figure 2). Some pairs of components do not yield unimodal
mixtures, but one of the modes is usually very weak, as for example for the
two component pairs on the right side of Figure 4 (it is hardly visible that
the mixture of components 2 and 4 is bimodal but the density goes up a tiny
little bit approaching α = 1). About half of the pairs of components yield
unimodal mixtures such as on the upper left side of Figure 4.

The ridgeline method merges all clusters, justified by the fact that there
are no clear gaps. This is very stable (j̄1234567 = 1). However, demanding
estimated unimodality by using r∗ = 1 in Section 2 merges all components
except of component 2 with stability j̄2 = 0.12, indicating again that r∗ = 1
is not a good idea. DEMP yields three clusters by leaving components 1
and 4 unmerged and merging all the others. These clusters are obviously
not separated by gaps, but correspond to visible patterns in Figure 3. The
stabilities are j̄1 = 0.74, j̄4 = 0.47, j̄23567 = 0.91. This indicates that it makes
sense to distinguish component 1 from the union of components 2, 3, 5, 6, 7 as
a stable pattern. Component 4, which lies “between” the other two clusters,
cannot be so clearly distinguished from them. This corresponds nicely with
the visual impression from Figure 3. In terms of the melodic phrases, there are
no groups of phrases that can really be separated from the others by “gaps”,
but there is a core pattern of phrases (component 1 and to some extent 4) that
can be interpreted as having in common a value of about zero for the fourth



8 Christian Hennig

degree coefficient (a4) of the contour approximating polynomial, which means
that no steep increase/decrease (or decrease/increase) combinations occur in
the melody contour.

6 Conclusion

The problem of merging Gaussian mixture components cannot be uniquely
solved. Solutions always depend on what kind of clusters the researcher is
looking for. For example, clusters can be defined by gaps (rather correspond-
ing to the ridgeline method) or by “patterns” (rather corresponding to the
DEMP method). Visualisation of the separation of mixture components and
assessment of the stability of clusters can help with the decision whether
some of the original mixture components should be merged, and with how the
results are to be interpreted. Further methods for merging and visualisation,
details, examples and comparisons (including some situations in which DEMP
merges stronger than the ridgeline method as opposed to the two examples
here) are given in [5].
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