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1. INTRODUCTION

Most statistical problems are defined in terms of loss functions in the sense
that loss functions define what a “good” estimator or a “good” prediction is.
This paper discusses some aspects of the choice of a loss function. The main
message of the paper is that the task of choosing a loss function is about the
translation of an informal aim or interest that a researcher may have in the given
application into the formal language of mathematics. The choice of a loss function
cannot be formalized as a solution of a mathematical decision problem in itself,
because such a decision problem would require the specification of another loss
function. Therefore, the choice of a loss function requires informal decisions,
which necessarily have to be subjective, or at least contain subjective elements.
This seems to be acknowledged somewhat implicitly in the decision theoretic
literature, but we are not aware of any sources where this is discussed in detail.

Several different uses of loss functions can be distinguished.

(a)  In prediction problems, a loss function depending on predicted and observed
value defines the quality of a prediction.

(b)  In estimation problems, a loss function depending on the true parameter
and the estimated value defines the quality of estimation. As opposed to
prediction problems, this assumes a statistical model to hold, which defines
the parameter to be estimated. The true parameter value in an estimation
problem is generally unobservable, while in a prediction problem the “truth”
is observable in the future.

(¢)  Definition of estimators: many estimators (such as least squares or M-
estimators) are defined as optimizers of certain loss functions which then
depend on the data and the estimated value. Note that this is essentially
different from (a) and (b) in the sense that the least squares estimator is
not necessarily the estimator minimizing the mean squared estimation error
or the squared prediction error.

(d)  There are several further uses of loss functions, which won’t be treated in the
present paper, for instance defining optimal testing procedures, Bayesian
risk etc.

While general loss functions have been treated in the literature!, versions of the
squared loss function are used in a vast majority of applications of prediction and
estimation problems (note that UMVU estimation is a restricted optimization of
a squared loss function). Main reasons for this seem to be the simplicity of the
mathematics of squared loss and the self-confirming nature of the frequent use
of certain “standard” methods in science. However, if prediction methods are

!See, for instance, Lehmann and Casella ([6]), who mainly use squared loss, but discuss
alternatives in several chapters.
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compared using nonparametric resampling techniques such as cross-validation
and bootstrap, there is no computational reason to stick to the squared loss, and
other loss functions can be used.

In Section 2, the subject-matter dependent design of a loss function in a
business application using robust regression is discussed to give an illustrating
example of the “translation problem” mentioned above and to motivate some of
the discussion in the following sections.

In Section 3, the implications of the different statistical uses of loss functions
(a), (b) and (c) above are explored in more detail. The question whether the
negative loglikelihood can be considered as the “true” objective loss function in
estimation is discussed.

In Section 4, some philosophical aspects are treated. In particular, the con-
cepts of subjectivity and objectivity, emphasizing the role of subjective decisions
in the choice of loss functions, and the standardizing role of communication in
the scientific community are discussed. Finally, a brief conclusion is given.

2.  LOCATIONS OF RESTAURANTS: A CASE STUDY

The case study presented in this section is about a prediction problem
in a business application. Because the original study is confidential, the story
presented here is made up, and the original data are not shown. The values and
rankings in Tables 1 and 2, however, are authentic.

A restaurant chain wanted to predict the turnover for new branches, de-
pending on the following six independent variables:

e number of people living in a (suitably defined) neighborhood,

e number of people working or shopping at daytime in the neighborhood,
e number of branches of competitors in the neighborhood,

e  size of the branch,

e a wealth indicator of the neighborhood,

° distance to the next branch of the same chain.

The results are to be used to support decisions such as where to open new
branches, and what amount of rents or building prices can be accepted for par-
ticular locations. and which rents or building prices to accept in which location.
Data from 154 already existing branches on all the variables were available. In
our study we confined ourselves to finding a good linear regression type prediction
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rule, partly because the company wanted to have a simple formula, and partly
because an alternative (regression trees) had already been explored in a former
project.

The data are neither apparently nonlinear, nor heteroscedastic in any clear
systematic way. However, there are obvious outliers. We decided to choose the
best out of several more or less robust linear regression estimators using leave-
one-out cross-validation (LOO-CV). In the real study, choice of transformations
of variables and variable selection have also been considered, but this doesn’t add
to the discussion of interest here.

The estimators we took into account were

e the least squares (LS)-estimator,

e the least median of squares (LMS)-estimator as suggested by Rousseeuw

(18]);

e  Huber’s M-estimator for linear regression with tuning constant k = 1.345
to produce 95% efficiency for normal samples, see Huber ([5]),

e an M-estimator for linear regression using the “bisquared” objective func-
tion with tuning constant k& = 4.685 to produce 95% efficiency for normal
samples, see Western ([11]),

o the MM-estimator suggested by Yohai ([12]) tuned to 95% efficiency for
normal samples.

In principle, it is reasonable to include M-/MM-estimators tuned to smaller ef-
ficiency as well, which will then potentially downweight some further outliers.
However, we compared several tunings of the MM-estimator in one particular
situation, from which we concluded that not too much gain is to be expected
from smaller tunings than 95% efficiency (larger efficiencies can be better, but
our results on this are quite unstable).

All estimators were used as implemented in R (www.R-project.org), but
the implementations we used for this project have been replaced by new ones in
the meantime (in packages “MASS” and “robustbase”).

The estimators have been compared according to the estimated expected
prediction error

1 n
2.1 - L iaA—i7
2.) DR

where n is the number of observations, y1, ..., y, are the observed turnovers, and
7—; is the predicted value of the turnover for y; from applying the linear regression
method to the data omitting the i observation. L is a loss function, of which
the design will be discussed in the following.
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Note that (2.1) already implies some decisions. Firstly, L is defined here
to depend on y; and y_; only, but not directly on the values of the independent
variables of the i*" observation. In general, this restriction is not required, but
it is justified in the present setup by the fact that the company didn’t specify
any particular dependence of their tolerance of prediction errors on the values of
the independent variables, and there is no obvious subject-matter reason in the
present study for such a dependence to be needed. This is a first illustration of
our major principle to translate the informal interests and aims of those who use
the results in the formal mathematical language.

Secondly, it is part of the design of the loss function not just to choose
L, but also to decide about how the values of L(y;,7—;) should be aggregated.
Their mean is used in (2.1), but instead, their maximum, their median, another
quantile or a trimmed mean could be chosen as well. Note that there is some
interaction between the choice of L and the choice of how the values of L are
to be aggregated. For example, under the assumption that we would like to do
something robust against outliers, the choice of a bounded L-function bounds the
influence of extreme prediction errors in itself and allows therefore the aggregation
of the L-values in a less robust manner such as taking their mean. For the present
study, we confine ourselves to the mean, of which the interpretation is that the
prediction error of every single observation is judged as equally important to us,
and we will deal with the influence of extreme observations via the choice of L.

As mentioned before, the “standard” loss function for this kind of problem
is defined by La(y,9) = (y — 9)?, but because we use LOO-CV, there is no
mathematical reason to use L = Lo.

One of the decisions to make is whether L should be symmetric. This means
that a negative prediction error is judged as causing the same loss as a positive
error of the same absolute value. This is difficult to judge in the present situation.
It could be argued that it is not as bad for the company to underestimate the
turnover at a particular location than to overestimate it, because the money spent
by the company on a branch with overestimated turnover may be lost.

However, because the prediction should guide the decision whether a branch
should be opened in the first place, how much rent should be paid and also
how the branch will be initially equipped, underestimation of the turnover may
have serious consequences as well, as offers for good locations may be turned
down or under-equipped. Though the effects of over- and underestimation can
be considered to be asymmetric in the present setup, we decided to stick to
symmetric loss functions, meaning that the loss of paid money is treated as equally
bad as the loss of money which is not earned because of a missed opportunity.

A main feature of Lo is its convexity, which means that the differences
between high prediction errors are assessed as more important than differences
between small prediction errors. As an example, consider two prediction rules
that only differ with respect to their cross-validated predictions of two data points,
y1 and yo. Suppose that for rule 1, y; — g_1 = 10,000, yo — j_o = —10, and
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Lo Ly

1. M-Huber 1. MM

2. LS 2. M-Huber
3. MM 3. M-Bisquare
4. M-Bisquare | 4. LS

5. LMS 5. LMS

Table 1: Ranking of regression methods; the higher the rank, the better
the result in terms of (2.1), using L = Lo and L = Ly, evaluated
on the restaurant data.

for rule 2, y1 — -1 = 9,990, y2 — J—2 = —20 (the units of y don’t have a
particular meaning here because we have to use artificial values anyway, but you
may imagine them to mean £ 1,000 a year). Lo favours rule 2 in this situation.
But is this adequate?

Going back to the discussion above, if the values could be interpreted as
earned (or lost) money, the Li-loss (L1(y,bary) = |y — y|) seemed to be more
adequate, because it assesses both rules as equally good, based on the fact that
they both cause the same direct or indirect financial loss of 10,010 units. For the
restaurant case, switching from Lo to Li-loss makes a big difference in terms of
the quality ranking of the methods, as can be seen in Table 1.

However, the situation is more complex. Firstly, the data made available
to us are about turnover and not about profit (a reason for this may be that
for the accurate prediction of profits factors carry a higher weight that rather
have to do with management decisions than with the location of the branch).
Usually, profits are less sensitive against differences between two large values of
turnovers than against the same absolute differences between two smaller values
of turnovers. Therefore, more tolerance is allowed in the prediction of larger
y;-values.

Secondly, the data give turnovers over a long period (three years, say),
and after a new branch has been opened, if it turns out after some months that
the turnover has been hugely wrongly predicted, the management has several
possibilities of reaction, ranging from hiring or firing staff over special offers and
campaigns attracting more customers to closing the branch.

Therefore, if predictions are hugely wrong, it matters that they are hugely
wrong, but it doesn’t matter too much how wrong they exactly are. This means
that, at least for large absolute errors, the loss function should be concave if not
constant. Actually we chose a function which is constant for large absolute errors,
because we could give the lowest absolute error above which the loss function is
constant a simple interpretation: above this error value, predictions are treated
as “essentially useless” and it doesn’t matter how wrong they precisely are. This
interpretation could be communicated to the company, and the company was
then able to specify this limiting value. The design of a concave but strictly
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Figure 1: Bounded functions of the relative prediction error r, the lower
part being squared, L; and square root.

increasing function would have involved much more complicated communication.

The company initially specified the critical value for “usefulness” as 10% of
the true turnover, i.e., they were concerned about relative rather than absolute
error, which motivated the following loss function:

{ () S )

Ly, 9) =4 * 7

c = 0.1. Below the cutoff value ¢, we have used a squared function of the relative
error. T'wo intuitive alternatives would be to choose the Li-norm of the relative
error below ¢ or a concave function, possibly the square root, see Figure 1. Of
course, an infinite number of other convex or concave functions could be chosen,
but for pragmatic reasons it is necessary to discuss just a small number of possible
choices, between which the differences can be given a clear interpretation.

The interpretation of L; here is again that all differences between rela-
tive errors are treated as equally important, be they between relatively large or
relatively small errors. The concave function considers differences between small
errors as more important. To optimize this function, it would be advantageous to
predict some (maybe very few) observations very well, while the precise relative
error values for all observations causing a bit larger prediction don’t matter too
much. Optimizing the convex square function, on the other hand, means to try
as much as possible observations to achieve a relative prediction error below c,
while differences between small errors don’t have a large influence. Because the
company is interested in useful information about many branches, rather than to
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Ranking # observations ||| Ranking # observations
c=0.1 @;—3)2 <012 ||e=02 @;—5”2 <0.22
1. M-Huber 42 1. MM 85
2. M-Bisquare 49 2. M-Bisquare 86
3. LS 38 3. M-Huber 83
4. MM 49 4. LS 81
5. LMS 39 5. LMS 75

Table 2: Ranking of regression methods in terms of (2.1), using L = L,
with ¢ = 0.1 and ¢ = 0.2. The number of observations of which
the prediction has not been classified as “essentially useless” is
also given.

predict few branches very precisely, we chose the squared function below c.

Unfortunately, when we carried out the comparison, it turned out that
the company had been quite optimistic about the possible quality of prediction.
Table 2 (left side) shows the ranking of the estimators, but also the number of
observations of which the relative prediction error has been smaller than ¢, i.e.,
for which the prediction has not been classified as “essentially useless”. With
n = 154, this is less than a third of the observations for all methods. Confronted
with this, the company decided to allow relative prediction errors up to 20% to be
called “useful”, which at least made it possible to obtain reasonable predictions
for more than half of the observations. The company accepted this result (which
can be seen on the right side of Table 2) though we believe that accepting even
larger relative errors for more branches as “useful” would be reasonable, given the
precision of the data at hand. One could also think about using a squared function
of the relative error below ¢ = 0.2, constant loss above ¢ = 0.4 and something
concave in between, which, however, would have been difficult to negotiate with
the company. The question whether it would be advantageous to use an estimator
that directly minimizes Y L(y,7), given a loss function L, instead of comparing
other estimators in terms of L is treated in Section 3.1.

The considered loss functions lead to quite different rankings of methods.
Figure 2 gives an illustration how the choice of the loss function affects the op-
timality of the estimator. It shows artificially generated heterogeneous data,
coming from four different groups, all generated by normal errors along some
regression line. The groups are indicated by four different symbols: circles (150
points), pluses (30 points), crosses (30 points) and triangles (3 points). The plot
has a rough similarity with some of the scatterplots from the original restau-
rants data. If the aim is to fit some points very well, and the loss function is
chosen accordingly, the most robust “low efficiency MM-estimator” in Figure 2
is the method of choice, which does the best job for the majority of the data.
A squared loss function would emphasize to make the prediction errors for the
outlying points (triangles) as small as possible, which would presumably favour
the LS-estimator here (this is not always the case, see Section 3). However, if
the aim is to yield a good relative prediction error for more data than fitted well
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Figure 2: Artificial heterogeneous data with fits of three different regres-
sion estimators, giving full weight to all data (LS), only the
majority group (circles; low efficiency MM) and about 80% of
the data (high efficiency MM).

by the robust estimator, the less robust, but more efficient MM-estimator (or an
estimator with breakdown point of, say, 75%) leads to a fit that does a reason-
able job for circles, crosses, and some of the pluses. The decision about the best
approach here is depending on the application. An insurance company may be
interested particularly in large outliers and will choose a different loss function
from a company which considers large prediction errors as “essentially useless”.
But even such a company may not be satisfied by getting only a tight majority
of the points about right.

3. STATISTICAL ASPECTS

Though Section 2 was about prediction, methods have been compared that
were originally introduced as parameter estimators for certain models, and that
are defined via optimizing some objective (loss) functions. Therefore the ap-
plications (a), (b) and (c) of loss functions mentioned in the introduction were
involved. Here are some remarks about differences and relations between these
uses.
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Figure 3: Artificial data with fits of LS and LMS estimator.

3.1. Prediction loss vs. objective functions defining estimators

First of all, the estimator defined by minimizing ) L(y, ¢) is not always the
best predictor in terms of Y L(y, ;). Consider the situation in Figure 3, given
that L = Lo, the squared loss function. Compare the LS-estimator with a robust
estimator giving zero weight to the outlier at (1.5, —2), the LMS-estimator, say,
using LOO-CV. Whenever a non-outlier is deleted, the LMS-estimator computed
from the remaining points will give an almost perfect fit, while the LS-estimator
will be strongly influenced by the outlier. This means that the LMS estimator
will be much better in terms of La(y,y—;). If the outlier is left out, LMS- and
LS-estimator will get about the same line, which gives a bad prediction for the
outlier. Summing the loss values up, the LMS-estimator gives a much smaller
estimated Lo-prediction error. This is not mainly due to the use of LOO-CV,
but will happen with any resampling scheme which is based on the prediction of
a subsample of points by use of the remaining points. The situation changes (for
LOO-CV) when further outliers are added at about (—1.5,2). In this case, the
LS-estimator is better in terms of the estimated Lo-prediction error, because this
is dominated by the outliers, and if one outlier is left out, the further outliers
at about the same place enable LS to do a better job on these than the robust
estimator. The situation is again different when outliers are added at other
locations in a way that none of the outliers provides useful information to predict
the others. In this situation, it depends strongly on where exactly the outliers
are whether LOO-CV prefers LS or LMS. Here, the assessment of the prediction
error itself is non-robust and quite sensitive to small changes in the data.
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From a theoretical point of view, apart from the particular use of LOO-CV
to estimate the prediction error, LS is clearly better than LMS in terms of Lo-
prediction loss, in a “normal model plus outliers” situation, if the outliers make
it possible to find a suitable compromise between fitting them and the majority,
while it is bad for LS if the outliers are scattered all over the place and one outlier
doesn’t give useful information about the prediction of the others (as for example
in a linear model with Cauchy random term). Whether the Lo-loss is reasonable
or the LMS-fit should be preferred because it predicts the “good” majority of the
data better even in cases where the outliers can be used to predict each other
depends on subject-matter decisions.

Asymptotically, using empirical process theory, it is often possible to show
that the estimator defined by minimizing » | L(y, ¢) is consistent for # minimizing
EL(y,0) (in such situations, optimal prediction optimizing L and estimation of
are equivalent). Therefore, for a given loss function, it makes at least some sense
to use the estimator defined by the same objective function. However, this is
often not optimal, not even asymptotically, as will be shown in the next section.

3.2. Prediction and maximum likelihood-estimation

Suppose that the data have been generated by some parametric model.
Then there are two different approaches to prediction:

1.  find a good prediction method directly, or

2.  estimate the true model first, as well as possible, solve the prediction prob-
lem theoretically on the model and then plug in the estimated parameter
into the theoretical prediction rule.

As an example, consider i.i.d. samples from an exponential(\)-distribution, and
consider prediction optimizing Li-loss. The sample median suggests itself as a
prediction rule, minimizing Y L1 (y — ). The theoretical median (and therefore
the asymptotically optimal prediction rule) of the exponential(A)-distribution is
log 2/), and this can be estimated by maximum likelihood as log 2/X,,, X,, being
the arithmetic mean. We have simulated 10,000 samples with n = 20 observations
from an exponential(1)-distribution. The MSE of the sample median has been
0.566 and the MSE of the ML-median has been 0.559. This doesn’t seem to
be a big difference, but using the paired Mann-Whitney test (not assuming a
particular loss function), the advantage of the ML-median is highly significant
with p < 107, and the ML-median was better than the sample median in 6,098
out of 10,000 simulations.

Therefore, in this situation, it is advantageous to estimate the underlying
model first, and to derive predictions from the estomator. There is an asymptotic
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justification for this, called the “convolution theorem” (see, e.g., Bickel et al, [1],
p. 24). A corrolary of it says that under several assumptions

(3.1) lim inf By L(v/n(T, — q(6))) > EgL(My — q(6)),

where ¢(f) is the parameter to be estimated (which may be the asymptotically
optimal prediction rule), T, is an estimator and M,, is the ML-estimator. This
holds for every loss function L which is a function of the difference between
estimated and true parameter satisfying

(3.2) L(x) = L(—xz), {z: L(z) < ¢} convex Ve > 0.

(3.2) is somewhat restrictive, but not strongly so. For example, it includes all
loss functions discussed in Section 2 (applied to the estimation problem of the
optimal prediction rule instead of direct prediction, however).

This fact may provoke two misinterpretations:

1. estimation is essentially equivalent to prediction (at least asymptotically -
though the exponential example shows that the implications may already
hold for small n), and

2. the negative loglikelihood can be seen as the “true” loss function belong-
ing to a particular model. In this sense the choice of the loss function
would rather be guided by knowledge about the underlying truth than by
subjective subject-matter dependent decisions as illustrated in Section 2.

Our view is different.

1.  The main assumption behind the convolution theorem is that we know
the true parametric model, which is obviously not true in practice. While
the ML-median performed better in our simulation, prediction by log2/X,,
can be quite bad in terms of Li-loss if the true distribution is not the
exponential. The sample median can be expected to perform well over a
wide range of distributions (which can be backed up by asymptotic theory,
see above), and other prediction rules can turn out to be even better in
some situations using LOO-CV and the like, for which we don’t need any
parametric assumption.

The basic difference between prediction and estimation is that the truth is
observable in prediction problems, while it is not in estimation problems.
In reality, it can not even be assumed that any probability model involving
an i.i.d. component holds. In such a case, estimation problems are not well
defined, while prediction problems are, and there are prediction methods
that are not based on any such model. Such methods can be assessed
by resampling methods as well (though LOO-CV admittedly makes the
implicit assumption that the data are exchangeable).

Apart from this, there are parametric situations, in which the assumptions
of the convolution theorem are not satisfied and optimal estimation and
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optimal prediction are even asymptotically different. For example, in many
model selection problems, the BIC estimates the order of a model consis-
tently, as opposed to the AIC (Nishii [7]). But often, the AIC can be proved
to be asymptotically better for prediction, because for this task underesti-
mation of the model order matters more than overestimation (Shibata [9],
10]).

2. The idea that the negative loglikelihood can be seen as the “true” loss func-
tion belonging to a particular model (with which we have been confronted
in private communication) is a confusion of the different applications of loss
functions. The negative loglikelihood defines the ML estimator, which is,
according to the convolution theorem, asymptotically optimal with respect
to several loss functions specifying an estimation problem. These loss func-
tions are assumed to be symmetric. In some applications asymmetric loss
functions may be justified, for which different estimators may be optimal
(for example shrinked or inflated ML-estimators; this would be the case in
Section 2 if the company had a rather conservative attitude, were less keen
on risking money by opening new branches and would rather miss oppor-
tunities as long as they are not obviously excellent). This may particularly
hold under asymmetric distributions, for which not even the negative log-
likelihood itself is symmetric. (The idea of basing the loss function on the
underlying distribution, however, could make some sense, see Section 3.4.)

In the above mentioned simulation with the exponential distribution, LOO-
CV with the Li-loss function decided in 6,617 out of 10,000 cases that the
ML-median is a better predictor than the sample median. This shows that
in a situation where the negative loglikelihood is a good loss function to
define a predictor, LOO-CV based on the loss function in which we are
really interested is able to tell us quite reliably that ML is better than the
predictor based on direct optimization of this loss function (which is the
sample median for L1). Note further that the negative loglikelihood doesn’t
tell us in which parameter of the true underlying distribution we should be
interested. For example, in the simulation, the L;-loss determines that we
are interested in the median.

3.3. Various interpretations of loss functions

According to our main hypothesis, the choice of a loss function is a trans-
lation problem. An informal judgment of a situation has to be translated into
a mathematical formula. To do this, it is essential to keep in mind how loss
functions are to be interpreted. This depends essentially of the use of the loss
function, referring to (a), (b) and (c) in the introduction.

(a) In prediction problems, the loss function is about how we measure the
quality of a predicted value, having in mind that a true value exists and will
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be observable in the future. As can be seen from the restaurant example,
this is not necessarily true, because if a prediction turns out to be very bad
early, the company will react, which prevents the “true value” under the
prediction model from being observed (it may further happen that the very
fact that the company selects locations based on a new prediction method
changes the underlying distribution). However, the idea of an observable
true value to be predicted, enables a very direct interpretation of the loss
function in terms of observable quantities.

The situation is a bit different in estimation problems, where the loss func-
tion is a function of an estimator and an underlying, essentially unobserv-
able quantity. The quantification of loss is more abstract in such a situation.
For example, the argument used in Section 2 to justify the boundedness of
the loss function was that if the prediction is so wrong that it is essentially
useless, it doesn’t matter anymore how wrong it exactly is. Now imagine
the estimation of a treatment effect in medicine. It may be that after some
study to estimate the treatment effect, the treatment is applied regularly to
patients with a particular disease. Even though, in terms of the prediction
of the effect of the treatment on one particular patient, it may hold that it
doesn’t matter how wrong a grossly wrong prediction exactly is, the situa-
tion for the estimation of the overall effect may be much different. Under-
or overestimation of the general treatment effect matters to quite a lot of
patients, and it may be of vital importance to keep the estimation error as
small as possible in case of a not very good estimation, while small esti-
mation errors could easily be tolerated. In such a case, something like the
Lo-loss could be adequate for estimation, while a concave loss is preferred
for pointwise prediction. It could be argued that, at least in some situa-
tions, the estimation loss is nothing else than an accumulated prediction
loss. This idea may justify the choice of the mean (which is sensitive to large
values) to summarize more robust pointwise prediction losses, as in (2.1).
Note that the convolution theorem compares expected values of losses, and
the expectation as a functional is in itself connected to the Lo-loss. Of
course, all of this depends strongly on the subject matter.

There is also a direct interpretation that can be given to the use of loss
functions to define methods. This is about measuring the quality of data
summary by the method. For example, the Lo-loss function defining the
least squares estimator defines how the locations of the already observed
data points are summarized by the regression line. Because Lo is convex,
it is emphasized that points far away from a bulk of the data are fitted
relatively well, to the price that most points are not fitted as precisely as
would be possible. Again, a decision has to be made whether this is desired.

As a practical example, consider a clustering problem where a company
wants to assign k storerooms in order to deliver goods to n shops so that
the total delivery distance is minimized. This is an Lj-optimization prob-
lem (leading to k-medoids) where neither prediction nor estimation are
involved. Estimation, prediction and robustness theory could be derived
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for the resulting clustering method, but they are irrelevant for the problem
at hand.

3.4. Data dependent choice of loss functions

In the restaurant example, the loss function has been adjusted because the
company realized after having seen the results based on the initial specification
of ¢ that a more “tolerant” specification would be more useful.

Other choices of the loss function dependent on the data or the underlying
model (about which the strongest information usually comes from the data) are
imaginable, e.g., asymmetric loss for skew distributions and weighting schemes
depending on random variations where they are heteroscedastic.

In terms of statistical theory, the consequences of data dependent changes
of loss functions can expected to be at least as serious as data dependent choices
of models and methods, which may lead to biased confidence intervals, incoherent
Bayesian methodology and the like. Furthermore, the consequences of changing
the loss function dependent on the data cannot be analyzed by the same method-
ology as the consequences of the data dependent choice of models, because the
latter analysis always assumes a true model to hold, but there is no single true
loss function. It may be argued, though, that the company representatives have
a “true subjective” loss function in mind, which they failed to communicate ini-
tially.

However, as with all subjective decisions, we have to acknowledge that
people change their point of view and their assessment of situations when new
information comes in, and they do this often in ways which can’t be formally pre-
dicted in the very beginning (unforeseen prior-data conflicts in Bayesian analysis
are an analogous problem).

Here, we just emphasize that data dependent choice of the loss function
may lead to some problems which are not fully understood at the moment. In
situations such as the restaurant example, we are willing to accept these problems
if the impression exists that the results from the initial choice of the loss func-
tion are clearly unsatisfactory, but loss functions should not be changed without
urgency.

4. PHILOSOPHICAL ASPECTS

The term “subjective” has been used several times in the present paper. In
science, there are usually some reservations against subjective decisions, because
of the widespread view that objectivity is a main aim of science.
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We use “subjectivity” here in a quite broad sense, meaning any kind of
decision which can’t be made by the application of a formal rule of which the
uniqueness can be justified by rational arguments. “Subjective decisions” in this
sense should take into account subject-matter knowledge, and can be agreed upon
by groups of experts after thorough discussion, so that they could be called “inter-
subjective” in many situations and are certainly well-founded and not “arbitrary”.
However, even in such situations different groups of experts may legitimately ar-
rive at different decisions. This is similar to the impact of subjective decisions
on the choice of subjective Bayesian prior probabilities.

For example, even if there are strong arguments in a particular situation
that the loss function should be convex, it is almost always impossible to find
decisive arguments why it should be exactly equal to Lo. In the restaurant
example it could be argued that the loss function should be differentiable (because
the sharp switch at ¢ is quite artificial) or that it should not be exactly constant
above c. But there isn’t any clear information suggesting how exactly it should
behave around c.

Note that the dependent variable in the restaurant example is an amount
of money, which, in principle, can be seen as a clear example of a high quality
ratio scale measurement. But even this feature doesn’t make the measurement of
loss in any way trivial or objective, as has been discussed in Section 2. The fact
that it is a non-scientific business application does also not suffice as a reason for
the impact of subjective decisions in this example. The argument that in case of
very wrong predictions it may turn out that the prediction is wrong early enough
so that it is still possible to react in order to keep the effective loss as small as
possible may apply as well in several scientific setups, e.g., in medical, technical
and ecological applications. In such a situation there is generally no way to predict
exactly what the loss of grossly wrong prediction will be. If it is not possible to
predict a given situation reliably, it is even less possible to predict accurately the
outcome of possible reactions in case that the initial prediction turns out to be
grossly wrong. Furthermore, there are generally no objective rules about how to
balance underestimation and overestimation in situations which are not clearly
symmetric. Therefore, the need for subjective decisions about the choice of loss
functions is general and applies to “objective” science as well.

As emphasized before, a loss function cannot be found as a solution of a
formal optimization problem, unless another loss function is invented to define
this problem. There is no objectively best loss function, because the loss function
defines what “good” means.

The quest for objectivity in science together with a certain misconception
of it has some undesirable consequences. Experience shows that it is much easier
to get scientific work published which makes use of standard measurements such
as the Lo-loss, even in situations in which it is only very weakly (if at all) justified,
than to come up with a rather idiosyncratic but sensible loss function involving
obviously subjective decisions about functional shapes and tuning constants. It
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is almost certain that referees will ask for objective justifications or at least sen-
sitivity analyses in the latter case. We are not generally against such sensitivity
analyses, but if they are demanded in a situation where authors come up with
an already well thought over choice of a loss function, it would be much more
urgent to carry out such analyses if “standard” choices have been made without
much reflection.

It seems that many scientists see “general agreement” as a main source of
objectivity, and therefore they have no doubts about it in case that somebody
does “what everybody else does” without justification, while obviously personal
decisions, even if discussed properly, are taken as a reason for suspicion. This is
clearly counterproductive.

It is important to acknowledge that there is some reason for this general
attitude. By changing the loss function, it may actually be possible to arrive at
very different results, including results previously desired by the researcher. This
is made more difficult by insisting on the use of widespread standard measures
that have proven useful under a range of different situations.

We see this as a legitimate, but in no way decisive argument. Science is
essentially about reaching stable rational agreement. Certainly, agreement based
on the unreflected choice of standard methods cannot be expected to be stable,
and it may be controversial at best whether it can be seen as rational. On the
other hand, more subjective decisions will not enable agreement as long as they
are not backed up by clear comprehensible arguments. Therefore, such arguments
have to be given. If for some decisions, there are no strong arguments, it makes
sense to stick to standard choices. Therefore, if there are strong arguments that
a loss function should be convex, but there is no further clear information how
exactly it should look like, the standard choice Lo should be chosen on grounds of
general acceptance. But even if Ls is chosen in such a situation, convexity should
still be justified and it makes even sense to admit that, apart from convexity, Lo
has been chosen purely for the above reason. This is as well a subjective, but
rational decision in the sense given in the beginning of this section.

A more sophisticated but often impractical approach would start from a
list of characteristics (axioms) that the loss function in a particular application
should fullfill, and then investigate the range of results obtained by the whole
class of such loss functions.

The perhaps most important aspect of scientific agreement is the possibility
to communicate in an unambiguous way, which is mainly ensured by mathemat-
ical formalism. Therefore, the subjective design of more or less idiosyncratic loss
functions, including their detailed discussion, contributes to the clarity of the
viewpoint of the researcher. Her subjective decisions become transparent and are
accessible to rational discussion. Making the subjective impact clear in this way
actually helps scientific discussion much more than to do what everybody else
does without much discussion.
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We don’t know whether and to what extent our attitude to science is al-
ready present in the philosophical literature, but it seems to be quite close to
what Ernest ([2]) wrote in his chapter about “the social construction of objective
knowledge”. Some more elaboration can be found in Hennig ([3]).

5. CONCLUSION

We hope that the present paper encourages researchers to choose or design
loss functions which reflect closely their expert’s view of the situation in which
the loss function is needed. Instead of being “less objective”, this would be rather
quite helpful for scientific discussion.

There are other problems in data analysis where similar principles can be
applied. One example is the design of dissimilarity measures, see Hennig and

Hausdorf ([4]).
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