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Abstract. The concepts of a dissolution point (which is an adaptation of the break-
down point concept to cluster analysis) and isolation robustness are introduced for
general clustering methods, generating possibly overlapping clusterings. Robustness
theorems for fixed point clusters (Hennig (2002, 2003, 2005)) are shown.

1 Introduction

Stability and robustness are important issues in cluster analysis. The addi-
tion of single outliers to the dataset can change the outcome of several cluster
analysis methods completely. In Hennig (2007), a general theory for robust-
ness and stability in cluster analysis has been introduced and discussed in
depth. Several examples for lacking robustness in cluster analysis have been
given, and the robustness of a wealth of cluster analysis methods including
single and complete linkage, k-means, trimmed k-means and normal mixtures
with fixed and estimated number of clusters has been investigated.

The present paper applies the theory given there to fixed point clusters
(FPC; Hennig (2002, 2003, 2005), Hennig and Christlieb (2002)).

In Section 2, the two robustness concepts dissolution point and isolation
robustness are introduced. In Section 3, after fixed point clustering has been
introduced, results about the dissolution point and isolation robustness of
fixed point clusters are given, which are proven in Section 4.

2 Robustness concepts

2.1 The dissolution point and a dissimilarity measure between

clusters

In Hennig (2007), a definition of a breakdown point for a general clustering
method has been proposed, of which the definition is based on the assign-
ments of the points to clusters and not on parameters to be estimated. The
breakdown point is a classical robustness concept, which measures the mini-
mal amount of contamination of the dataset that suffices to drive an estima-
tor arbitrarily far away from its initial value. There are various breakdown
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point definitions in the literature. The present paper makes use of the prin-
ciple of the sample addition breakdown point (Donoho and Huber (1983)),
in which contamination is defined by adding points to the dataset. The con-
cept introduced here deviates somewhat from the traditional meaning of the
term “breakdown point”, since it attributes “breakdown” to situations, which
are not always the worst possible ones. Therefore, the proposed robustness
measure is called “dissolution point” in the present paper, even though it is
thought to measure a “breakdown” in the sense that the addition of points
changes the cluster solution so strongly that the pattern of the original data
can be considered as “dissolved”.

A sequence of mappings E = (En)n∈IN is called a general clustering
method (GCM), if En maps a set of entities xn = {x1, . . . , xn} (this is how xn

is always defined throughout the paper) to a collection of subsets {C1, . . . , Ck}
of xn. Note that it is assumed that entities with different indexes can be dis-
tinguished. This means that the elements of xn are interpreted as data points
and that |xn| = n even if, for example, for i 6= j, xi = xj . k is not assumed to
be fixed, and, as opposed to Hennig (2007), clusters are allowed to overlap.

If E is a GCM and xn+g is generated by adding g points to xn, En+g(xn+g)
induces a clustering on xn, which is denoted by E∗

n(xn+g). Its clusters are de-
noted by C∗

1 , . . . , C∗
k∗ (these clusters have the form Ci∩xn, Ci ∈ En+g(xn+g),

but the notation doesn’t necessarily imply Ci ∩ xn = C∗
i ∀i). If E is a parti-

tioning method, E∗
n(xn+g) is a partition as well. k∗ may be smaller than k

even if E produces k clusters for all n.

It is essential to observe that different clusters of the same clustering on
the same data may have a different stability. Thus, it makes sense to define
stability with respect to the individual clusters. This requires a measure for
the similarity between a cluster of E∗

n(xn+g) and a cluster of En(xn), i.e.,
between two subsets C and D of some finite set. For the definition of the
dissolution point, the Jaccard similarity between sets is proposed:

γ(C, D) =
|C ∩ D|
|C ∪ D| .

A similarity between C and a clustering Ên(xn) is defined by

γ∗(C, Ên(xn)) = min
D∈Ên(xn)

γ(C, D).

Definition 1. Let E = (En)n∈IN be a GCM. The dissolution point of a
cluster C ∈ En(xn) is defined as

∆(E,xn, C) = min
g

{

g

|C| + g
: ∃xn+g = (x1, . . . , xn+g) : γ∗(C, E∗

n(xn+g)) ≤
1

2

}

.

The choice of the cutoff value 1
2 is motivated in Hennig (2006).
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2.2 Isolation robustness

Results on dissolution points are informative about the methods, but they
do not necessarily allow a direct comparison of different methods, because
they usually need method-specific assumptions. The concept of isolation ro-
bustness is thought to enable such a comparison. The rough idea is that it
can be seen as a minimum robustness requirement of cluster analysis that an
extremely well isolated cluster remains stable under the addition of points.
The isolation i(C) of a cluster C is defined as the minimum distance of a
point of the cluster to a point not belonging to the cluster, which means that
a distance structure on the data is needed.

The definition of isolation robustness in Hennig (2007) applies to parti-
tioning methods only. Fixed point clustering is not a partitioning method, and
therefore a new definition, which I call “of type II”, is presented here. Let Mm

be the space of distance matrices between m objects permissible by the dis-
tance structure underlying the GCM. Call a cluster C ∈ En(x) “fulfilling the
isolation condition for a function vm” (vm is assumed to map Mm×IN 7→ IR)
if |C| = m, MC is its within-cluster distance matrix, i(C) > vm(MC , g), and
an additional homogeneity condition is fulfilled, which may depend on the
GCM.

Definition 2. A GCM E = (En)n∈IN is called isolation robust of type II,
if there exists a sequence of functions vm, m ∈ IN, such that
for n ≥ m for any dataset xn, for given g ∈ IN , for any cluster C ∈ En(x)
fulfilling the isolation condition for vm, and for any dataset xn+g, where g

points are added to xn, there exists D ∈ E∗
n(xn+g) : D ⊆ C, γ(C, D) > 1

2 .

The reason that the isolation condition requires a further unspecified homo-
geneity condition is that extreme isolation of clusters should prevent by no
means that a cluster is split up into several smaller clusters by the addition
of points. This is not considered by the isolation robustness concept, and
therefore a further condition on C has to ensure that this does not happen.

3 Fixed point clusters

3.1 Definition of fixed point clusters

FPC analysis has been introduced as a method for overlapping clustering
for clusterwise linear regression (Hennig (2002, 2003)) and normal-shaped
clusters of p-dimensional data (Hennig (2005), Hennig and Christlieb (2002)),
which should be robust against outliers.

The basic idea of FPC analysis is that a cluster can be formalized as a
data subset, which is homogeneous in the sense that it does not contain any
outlier, and which is well separated from the rest of the data meaning that
all other points are outliers with respect to the cluster. That is, the FPC
concept is a local cluster concept: It does not assume a cluster structure or
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some parametric model for the whole dataset. It is based only on a debfinition
of outliers with respect to the cluster candidate itself.

In order to define FPCs, a definition of an outlier with respect to a data
subset is needed. The definition should be based only on a parametric model
for the non-outliers (reference model), but not for the outliers. That is, if the
Gaussian family is taken as reference model, the whole dataset is treated as
if it came from a contamination mixture

(1 − ǫ)Np(a,Σ) + ǫP ∗, 0 ≤ ǫ < 1, (1)

where p is the number of variables, Np(a,Σ) denotes the p-dimensional Gaus-
sian distribution with mean vector a and covariance matrix Σ, and P ∗ is as-
sumed to generate points well separated from the core area of Np(a,Σ). The
principle to define the outliers is taken from Becker and Gather (1999). They
define α-outliers as points that lie in a region with low density such that the
probability of the so-called outlier region is α under the reference distribu-
tion. α has to be small in order to match the impression of outlyingness. For
the Np(a,Σ)-distribution, the α-outlier region is

{x : (x − a)tΣ−1(x − a) > χ2
p;1−α},

χ2
p;1−α denoting the 1 − α-quantile of the χ2-distribution with p degrees of

freedom.
Note that it is not assumed that the whole dataset can be partitioned

into clusters of this kind, and therefore this does not necessarily introduce a
parametric model for the whole dataset.

In a concrete situation, a and Σ are not known, and they have to be
estimated. This is done for Mahalanobis FPCs by the sample mean and the
maximum likelihood covariance matrix. (Note that these estimators are non-
robust, but they are reasonable if they are only applied to the non-outliers.)

A dataset xn consists of p-dimensional points. Data subsets are repre-
sented by an indicator vector w ∈ {0, 1}n. Let xn(w) be the set with only the
points xi, for which wi = 1, and n(w) =

∑n

i=1 wi. Let m(w) = 1
n(w)

∑

wi=1 xi

the mean vector and S(w) = 1
n(w)

∑

wi=1(xi − m(w))(xi − m(w))′ the ML

covariance matrix estimator for the points indicated by w.
The set of outliers from xn with respect to a data subset xn(w) is

{x : (x − m(w))′S(w)−1(x − m(w)) > χ2
p;1−α}.

That is, a point is defined as an outlier w.r.t xn(w), if its Mahalanobis dis-
tance to the estimated parameters of xn(w) is large.

An FPC is defined as a data subset which is exactly the set of non-outliers
w.r.t. itself:

Definition 3. A data subset xn(w) of xn is called Mahalanobis fixed

point cluster of level α, if for i = 1, . . . , n :

w =
(

1
[

(xi − m(w))′S(w)−1(xi − m(w)) ≤ χ2
p;1−α

])

i=1,...,n
. (2)
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If S(w)−1 does not exist, the Moore-Penrose inverse is taken instead on the
supporting hyperplane of the corresponding degenerated normal distribution,
and wi = 0 for all other points (the degrees of freedom of the χ2-distribution
may be adapted in this case).

For combinatorial reasons it is impossible to check (2) for all w. But FPCs
can be found by a fixed point algorithm defined by

wk+1 =
(

1
[

(xi − m(wk))′S(wk)−1(xi − m(wk)) ≤ χ2
p;1−α

])

i=1,...,n
. (3)

This algorithm is shown to converge toward an FPC in a finite number of steps
if χ2

p;1−α > p (which is always fulfilled for α < 0.25, i.e., for all reasonable
choices of α) in Hennig and Christlieb (2002).

The problem here is the choice of reasonable starting configurations w0.
While, according to this definition, there are many very small FPCs, which
are not very meaningful (e.g., all sets of p or fewer points are FPCs), an FPC
analysis aims at finding all substantial FPCs, where “substantial” means
all FPCs corresponding to well separated, not too small data subsets which
give rise to an adequate description of the data by a model of the form
(1). For clusterwise regression, this problem is discussed in depth in Hennig
(2002) along with an implementation, which is included in the add-on package
“fpc” for the statistical software system R. In the same package, there is also
an implementation of Mahalanobis FPCs. There, the following method to
generate initial subsets is applied:

For every point of the dataset, one initial configuration is chosen, so that
there are n runs of the algorithm (3). For every point, the p nearest points in
terms of the Mahalanobis distance w.r.t. S(1, . . . , 1) are added, so that there
are p+1 points. Because such configurations often lead to too small clusters,
the initial configuration is enlarged to contain nstart points. To obtain the p+
2nd to the nstartth point, the covariance matrix of the current configuration
is computed (new for every added point) and the nearest point in terms of
the new Mahalanobis distance is added.

nstart = 20 + 4p is chosen as the default size of initial configurations
in package “fpc”. This is reasonable for fairly large datasets, but should be
smaller for small datasets. Experience shows that the effective minimum size
of FPCs that can be found by this method is not much smaller than nstart.
The default choice for α is 0.99; α = 0.95 produces in most cases more FPCs,
but these are often too small, compare Example 1.

Note that Mahalanobis FPCs are invariant under linear transformations.

3.2 Robustness results for fixed point clusters

To derive a lower bound for the dissolution point of a fixed point cluster, the
case p = 1 is considered for the sake of simplicity. This is a special case of
both Mahalanobis and clusterwise linear regression FPCs (intercept only).
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En(xn) is taken as the collection of all data subsets fulfilling (2). En(xn)
is not necessarily a partition, because FPCs may overlap and not all points
necessarily belong to any FPC.

FPCs are robust against gross outliers in the sense that

an FPC x(w)is invariant against any change, especially addition of points,

outside its domain {(x − m(w))′S(w)−1(x − m(w)) ≤ c}, c = χ2
p;1−α, (4)

because such changes simply do not affect its definition. However, FPCs can
be affected by points added inside their domain, which is, for p = 1,

D(w) = [m(w) − s(w)
√

c, m(w) + s(w)
√

c], s(w) =
√

S(w).

The aim of the following theory is to characterize a situation in which an
FPC is stable under addition of points. The key condition is the separateness
of the FPC, i.e., the number of points in its surrounding (which is bounded
by k2 in (7)) and the number of points belonging to it but close to its border
(which is bounded by k1 in (6)). The derived conditions for robustness (in
the sense of a lower bound on the dissolution point) are somewhat stronger
than presumably needed, but the theory reflects that that the key ingredient
for stability of an FPC is to have few points close to the border (inside and
outside).

In the following, xn(w) denotes a Mahalanobis FPC in xn.

Let Sgk(w) be the set containing the vectors (m+g, s
2
+g, m−k, s2

−k) with
the following property:

Property A(g, k,xn(w)): Interpret xn(w) as an FPC on itself as complete
dataset, i.e., on yñ = xn(w) = yñ(1, . . . , 1) (ñ = n(w)).
(m+g, s

2
+g, m−k, s2

−k) has the Property A(g, k,xn(w)) if there exist points
yñ+1, . . . , yñ+g such that, if the algorithm (3) is run on the dataset yñ+g =
yñ∪{yñ+1, . . . , yñ+g} and started from the initial dataset yñ, it converges
to a new FPC yñ+g(w

∗) such that m+g and s2
+g are the values of the mean

and variance of the points {yñ+1, . . . , yñ+g}∩yñ+g(w
∗), and m−k and s2

−k

are the values of the mean and variance of the points lost in the algorithm,
i.e., yñ \yñ+g(w

∗) (implying |yñ \yñ+g(w
∗)| ≤ k). Mean and variance of

0 points are taken to be 0. Note that always (0, 0, 0, 0) ∈ Sgk(w), because
of (4) and the added points can be chosen outside the domain of yñ.

In the proof of Theorem 1 it will be shown that an upper bound of the
domain of yñ+g(w

∗) in the situation of Property A(g, k,xn(w)) (assuming
m(w) = 0, s(w) = 1) is

xmax(g, k, m+g, s
2
+g, m−k, s2

−k) =

ngm+g−km−k

n1
+

√

c
(

n(w)+ngs2
+g−ks2

−k

n1
+

c1m2
+g+c2m2

−k
+c3m+gm−k

n2
1

)

, (5)
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where ng = |{w∗
j = 1 : j ∈ {n+1, . . . , n+g}}| is the number of points added

during the algorithm,

n1 = n(w) + ng − k, c1 = (n(w) − k)ng, c2 = −(n(w) + ng)k, c3 = 2kng.

Further define for g, k ≥ 0

xmaxmax(g, k) = max
(m+g,s2

+g
,m−k,s2

−k
)∈Sgk(w)

xmax(g, k, m+g, s
2
+g, m−k, s2

−k),

xmaxmin(g, k) = min
(m+g,s2

+g
,m−k,s2

−k
)∈Sgk(w)

xmax(g, k, m+g, s
2
+g, m−k, s2

−k).

Note that xmaxmin(g, k) ≤ √
c ≤ xmaxmax(g, k), because (0, 0, 0, 0) ∈ Sgk(w).

xmaxmax(g, k) is nondecreasing in g, because points can always be added far
away that they do not affect the FPC, and therefore a maximum for smaller
g can always be attained for larger g. By analogy, xmaxmin(g, k) is non-
increasing.

Theorem 1. Let xn(w) be an FPC in xn. Let xn+g = {x1, . . . , xn+g}. If

∃k1, k2 with

k1 ≤ |xn ∩
([m(w) − s(w)xmaxmax(g + k1, k2), m(w) − s(w)

√
c] ∪

[m(w) + s(w)
√

c, m(w) + s(w)xmaxmax(g + k1, k2)])|, (6)

k2 ≤ |xn ∩
([m(w) − s(w)

√
c, m(w) − s(w)xmaxmin(g + k1, k2)] ∪

[m(w) + s(w)xmaxmin(g + k1, k2), m(w) + s(w)
√

c])|, (7)

then

γ∗(x(w), E∗
n(xn+g)) ≥

n(w) − k2

n(w) + k1
. (8)

If
n(w)−k2

n(w)+k1
> 1

2 , then ∆(xn(w),xn) > g

n(w)+g
.

The proof is given in Section 4. k1 is the maximum number of points in xn

outside the FPC xn(w) that can be added during the algorithm, k2 is the
maximum number of points inside the FPC xn(w) that can be lost during
the algorithm due to changes caused by the g new points.

Theorem 1 shows the structure of the conditions needed for stability, but
in the given form it is not obvious how strong these conditions are (and even
not if they are possible to fulfill) for a concrete dataset. It is difficult to
evaluate xmaxmax(g + k1, k2) and xmaxmin(g + k1, k2) and the conditions (6)
and (7), where k1 and k2 also appear on the right hand sides. The following
Lemma will give somewhat conservative bounds for xmaxmax(g + k1, k2) and
xmaxmin(g + k1, k2) which can be evaluated more easily and will be applied
in Example 1. The conditions (6) and (7) can then be checked for any given
g, k1 and k2.
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Lemma 1. For g ≥ 0, 0 ≤ k < n(w):

xmaxmax(g, k) ≤ x∗
maxmax(g, k, m∗

+g), (9)

xmaxmin(g, k) ≥ x∗
maxmin(g, k, m∗

−k), (10)

where for 0 ≤ k < n(w)

x∗
maxmax(0, k, m+g) =

√
c, for g > 0 :

x∗
maxmax(g, k, m+g) =

gm+g + k
√

c

n1
+

√

c

(

n(w) + g(amax(g)2 − m2
+g)

n1
+

c1m
2
+g

n2
1

)

,

x∗
maxmin(g, k, m−k) =

−gm∗
+g − km−k

n1
+

√

c

(

n(w) − k(c − m2
−k)

n1
+

c2m
2
−k − c3m−km∗

+g

n2
1

)

,

amax(g) = x∗
maxmax(g − 1, k, m∗

+(g−1)),

m∗
+g =

1

g

g
∑

i=1

amax(i),

m∗
−k = argmin

m−k∈[0,
√

c]

x∗
maxmin(g, k, m−k),

The proof is given in Section 4. For the minimization needed to obtain m∗
−k,

the zeros of the derivative of x∗
maxmin(g, k, m−k) are the zeros of tm2

−k +
um−k + v where

t = k3 +
c2

n2
1

− n1ck
2 + 2k2c(n(w) + g) − k2(n(w) + g)2c

n1
,

u = −
2kgm∗

+g

n1
+ 2k2gcm∗

+g −
2k2(n(w) + g)gcm∗

+g

n1
,

v = k2n(w) − k3c +
(n(w) − k)g(m∗

+g)
2

n1
−

k2g2c(m∗
+g)

2

n1
. (11)

Theorem 2. FPC analysis is isolation robust of type II under the following

condition on an FPC C = xn(w) with i(C) > vm(MC , g):

∃k2 :
|C| − k2

|C| >
1

2
,

k2 ≤ |T (C) ∩ ([−s(w)
√

c,−s(w)xmaxmin(g, k2)] ∪
[s(w)xmaxmin(g, k2), s(w)

√
c])|, (12)

where T (C) = xn(w) − m(w) is C transformed to mean 0.



Robustness of fixed point clusters 9

−2 0 2 4 6

Fig. 1. Example dataset

Example 1. The dataset shown in Figure 1 consists of two datasets of the
form Φ−1

a,σ2(
1

n+1 ), . . . , Φ−1
a,σ2(

n
n+1 ) with n = 25, (a, σ2) = (0, 1), (5, 1), re-

spectively. For α = 0.99, the computation scheme outlined in Section 3.1
finds two FPCs, namely the two separated initial datasets, for nstart down
to 4. Let xn(w) be the 25 points generated with (a, σ2) = (0, 1), m(w) =
0, s(w)2 = 0.788, D(w) = [−2.287, 2.287]. The largest point is 1.769, the
second largest one is 1.426, the smallest point in the data not belonging to
x(w) is 3.231, the second smallest one is 3.574. If g = 1 point is added,
s(w)x∗

maxmax(1, 0, m∗
+1) = 2.600, s(w)x∗

maxmin(1, 0, m∗
−0) = 2.154. Thus, (6)

and (7) hold for k1 = k2 = 0. The same holds for g = 2: s(w)x∗
maxmax(2, 0, m∗

+2) =
3.000,
s(w)x∗

maxmin(2, 0, m∗
−0) = 2.019. For g = 3: s(w)x∗

maxmax(3, 0, m∗
+3) = 3.528,

s(w)x∗
maxmin(3, 0, m∗

−0) = 1.879. This means that (6) does not hold for
k1 = 0, because the smallest point belonging to (a, σ2) = (5, 1) would be
included into the corresponding FPC. g = 3 and k1 = 1 in Theorem 1
correspond to g = 4 in Lemma 1. For g = 4: s(w)x∗

maxmax(4, 0, m∗
+4) =

4.250, s(w)x∗
maxmin(4, 0, m∗

−0) = 1.729. This means that for g = 3, neither
k1 = 1, nor k2 = 0 works, and in fact an iteration of (3) with added points
2.286, 2.597, 2.929 leads to dissolution, namely to an FPC containing all 50
points of the dataset. Thus, ∆(En,xn,xn(w)) = 3

28 .

For α = 0.95, there is also an FPC xn(w0.95) corresponding to (a, σ2) =
(0, 1), but it only includes 23 points, the two most extreme points on the
left and on the right are left out. According to the theory, this FPC is
not dissolved by being joined with the points corresponding to (a, σ2) =
(5, 1), but by implosion. For g = 1, s(w0.95)x

∗
maxmax(1, 0, m∗

+1) = 1.643,
s(w0.95)x

∗
maxmin(1, 0, m∗

−0) = 1.405. This means that the points −1.426, 1.426
can be lost. s(w0.95)x

∗
maxmax(1, 2, m∗

+1) = 1.855, s(w0.95)x
∗
maxmin(1, 2, m∗

−2) =
0.988, which indicates that k2 is still too small for (7) to hold. Nothing
better can be shown than ∆(En,0.05,xn,xn(w0.05)) ≥ 1

24 . However, here
the conservativity of the dissolution bound matters (the worst case of the
mean and the variance of the two left out points used in the computation of
x∗

maxmin(1, 2, m∗
−2) cannot be reached at the same time in this example) and

dissolution by addition of one (or even two) points seems to be impossible.
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4 Proofs

Proof of Theorem 1: Because of the invariance of FPCs and the equivari-
ance of their domain under linear transformations, assume w.l.o.g. m(w) =
0, s(w) = 1.

First it is shown that xmax(g, k, m+g, s
2
+g, m−k, s2

−k) as defined in (5) is
the upper bound of the domain of yñ+g(w

∗) in the situation of Property
A(g, k,xn(w)), i.e.,

xmax(g, k, m+g, s
2
+g, m−k, s2

−k) = m(w∗) +
√

cs(w∗). (13)

Assume, w.l.o.g., that the k points to be lost during the algorithm are y1, . . . , yk

and the ng added points are yñ+1, . . . , yñ+ng
, thus yñ+g(w

∗) = {yk+1, . . . , yñ+ng
},

|yñ+g(w
∗)| = n1. Now, by straightforward arithmetic:

m(w∗) =
n(w)m(w) + ngm+g − km−k

n1
=

ngm+g − km−k

n1
,

s(w∗)2 =
1

n1





ñ
∑

i=1

(yi − m(w∗))2 +
∑

w∗

i
=1,wi=0

(yi − m(w∗))2 −
k
∑

i=1

(yi − m(w∗))2





=
1

n1

(

ñ
∑

i=1

(

yi −
ngm+g − km−k

n1

)2

+
∑

w∗

i
=1,wi=0

(

yi − m+g +
(n(w) − k)m+g + km−k

n1

)2

−
k
∑

i=1

(

yi − m−k +
(n(w) + ng)m−k − ngm+g

n1

)2
)

=
n(w)s(w)2 + ngs

2
+g − ks2

−k

n1

+
1

n3
1

[(n(w)n2
g + ng(n(w) − k)2 − kn2

g)m
2
+g

+(n(w)k2 + ngk
2 − (n(w) + ng)

2k)m2
−k

+(2kng(n(w) − k) − 2n(w)kng + 2kng(n(w) + ng))m+gm−k]

This proves (13).
It remains to prove (8), then the bound on ∆ follows directly from Defi-

nition 1. From (13), get that in the situation of Property A(g, k,xn(w)), the
algorithm (3), which is known to converge, will always generate FPCs in the
new dataset yñ+g with a domain [x−, x+], where

x− ∈ [−xmaxmax(g, k),−xmaxmin(g, k)], x+ ∈ [xmaxmin(g, k), xmaxmax(g, k)],
(14)
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if started from xn(w). Note that, because of (4), the situation that xn(w) ⊂
xn is FPC, g points are added to xn, k1 further points of xn \ xn(w) are
included in the FPC and k2 points from xn(w) are excluded during the algo-
rithm (3) is equivalent to the situation of property A(g + k1, k2). Compared
to x(w), if g points are added to the dataset and no more than k1 points lie in
[−xmaxmax(g +k1, k2),−

√
c]∪ [

√
c, xmaxmax(g +k1, k2)], no more than g +k1

points can be added to the original FPC xn(w). Only the points of xn(w) in
[−√

c,−xmaxmin(g+k1, k2)]∪[xmaxmin(g+k1, k2),
√

c] can be lost. Under (7),
these are no more than k2 points, and under (6), no more than k1 points of xn

can be added. The resulting FPC xn+g(w
∗) has in common with the original

one at least n(w) − k2 points, and |xn(w) ∪ (xn ∩ xn+g(w∗))| ≤ n(w) + k1,
which proves (8).

The following proposition is needed to show Lemma 1:

Proposition 1. Assume k < n(w). Let y = {xn+1, . . . , xn+g}. In the sit-

uation of Property A(g, k,xn(w)), m+g ≤ m∗
+g and max(y ∩ xn+g(w

∗)) ≤
amax(g).

Proof by induction over g.
g = 1: xn+1 ≤ √

c is necessary because otherwise the original FPC would not
change under (3).
g > 1: suppose that the proposition holds for all h < g, but not for g. There
are two potential violations of the proposition, namely m+g > m∗

+g and
max(y∩xn+g(w

∗)) > amax(g). The latter is not possible, because in previous
iterations of (3), only h < g points of y could have been included, and because
the proposition holds for h, no point larger than x∗

maxmax(g − 1, k, m∗
+(g−1))

can be reached by (3). Thus, m+g > m∗
+g. Let w.l.o.g. xn+1 ≤ . . . ≤ xn+g.

There must be h < g so that xn+h > amax(h). But then the same argument
as above excludes that xn+h can be reached by (3). Thus, m+g ≤ m∗

+g, which
proves the proposition.

Proof of Lemma 1: Proof of (9): Observe that xmax(g, k, m+g, s
2
+g, m−k, s2

−k)
is enlarged by setting s2

−k = 0, ng = g and by maximizing s2
+g. s2

+g ≤
amax(g)2 − m2

+g because of Proposition 1. Because xmaxmax(g, k) ≥ √
c, if

xmax(g, k, m+g, s
2
+g, m−k, s2

−k) is maximized in a concrete situation, the points
to be left out of xn(w) must be the smallest points of xn(w). Thus, −√

c ≤
m−k ≤ m(w) = 0.

Further, c2 ≤ 0, c3 ≥ 0. To enlarge xmax(g, k, m+g, s
2
+g, m−k, s2

−k), re-
place the term −km−k in (5) by k

√
c, c2m

2
−k by 0 and c3m+gm−k by 0

(if m+g < 0 then m−k = 0, because in that case m+g would enlarge the
domain of the FPC in both directions and xn+g(w

∗) ⊇ xn(w)). By this, ob-
tain x∗

maxmax(g, k, m+g), which is maximized by the maximum possible m+g,
namely m∗

+g according to Proposition 1.

Proof of (10): To reduce xmax(g, k, m+g, s
2
+g, m−k, s2

−k), set s2
+g = 0 and
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observe s2
−k ≤ (c − m2

−k). The minimizing m−k can be assumed to be posi-
tive (if it would be negative, −m−k would yield an even smaller
xmax(g, k, m+g, s

2
+g, m−k, s2

−k)). c1 ≥ 0, and therefore ngm+g can be replaced
by −gm∗

+g, c1m
2
+g can be replaced by 0, and c3m−km+g can be replaced by

−c3m−km∗
+g. This yields (10).

Proof of Theorem 2: Note first that for one-dimensional data, T (C) can be
reconstructed from the distance matrix MC . If i(C) > s(w)xmaxmax(g, k2),
there are no points in the transformed dataset xn − m(w) that lie in

([−s(w)xmaxmax(g, k2),−s(w)
√

c] ∪ [s(w)
√

c, s(w)xmaxmax(g, k2)]),

and it follows from Theorem 1 that

∃D ∈ E∗
n(xn+g) : D ⊆ C, γ(C, D) ≥ |C| − k2

|C| >
1

2
.

vm(MC , g) = s(w)xmaxmax(g, k2) is finite by Lemma 1 and depends on C

and xn only through s(w) and k2, which can be determined from MC .
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