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Abstract. The robustness of ML estimators for mixture models with fixed and
estimated number of components s is investigated by the definition and computa-
tion of a breakdown point for mixture model parameters and by considering some
artificial examples. The ML estimator of the Normal mixture model is compared
with the approach of adding a “noise component” (Fraley and Raftery (1998)) and
by mixtures of ¢-distributions (Peel and McLachlan (2000)). It turns out that the
estimation of the number of mixture components is crucial for breakdown robust-
ness. To attain robustness for fixed s, the addition of an improper noise component
is proposed. A guideline to choose a lower scale bound is given.

1 Introduction

Maximum likelihood (ML)-estimation based on mixtures of Normal distri-
butions (NMML) is a flexible and widely used technique for cluster analysis
(see, e.g., Fraley and Raftery (1998)).

Observations zy, ..., z, are modeled as i.i.d. according to the density
° 1,(z—a
fﬂ(x) = Zlﬂ-jfaj,lfj (x),where fa,a(x) = ;f ( pu ) ) (1)
J:
where n = (s,a1,...,a5,01,...,0s,71,-..,7s) is the parameter vector, the

number of components s € IN may be known or unknown, (a;,0;) pairwise
distinct, a;j € IR, 0; > 0, m; > 0, j = 1,...,s and Zj’:1 m; = 1. For
the Normal mixture model, f = ¢ is the density of the standard Normal
distribution. Often mixtures of multivariate Normals are used, but for the
sake of simplicity, I restrict considerations to the case of one-dimensional
data in this paper.

As many other ML-techniques based on the Normal distribution, NMML
is not robust against gross outliers, at least if the number of components s
is treated as fixed: The estimators of the parameters ay,...,as are weighted
means of the observations where the weights for each observation sum up to
one (see Redner and Walker (1984)), which means that at least one of these
parameters can get arbitrarily large if a single extreme point is added to a
dataset.
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There are some ideas to overcome the robustness problems of Normal
mixture. The software MCLUST (Fraley and Raftery 1998) allows the addition
of a mixture component accounting for “noise”, modeled as a uniform distri-
bution on the convex hull (the range in one dimension, respectively) of the
data, i.e., the data is modeled as generated by

1('77 € [xmina xmaz])

fe(x) =Z7fjfaj,oj($) + 7o ; (2)

Tmaz — Tmin

for given Tmins Tmaz € -lRa where C = (8,(11, sy Q55015 ..,05,T05 Ty - - 77‘-3)5
Ty---y s > 0, 2;20 m; = 1 and 1(...) is the indicator function. The corre-
sponding ML procedure will be denoted by NMN in the following.

The software EMMIX (Peel and McLachlan (2000)) can be used to fit a
mixture of ¢-distributions instead of Normals by ML (¢, MML), i.e., f = f,
being the density of the ¢-distribution with v degrees of freedom in (1).

Note that the presented theory will hold if f is any continuous density f
that is symmetrical about its only mode 0 and that is > 0 on IR.

There are some alternatives for robust estimation of mixture components,
see McLachlan and Peel (2000, p. 222 ff.) and the references given therein.

While a clear gain of stability can be demonstrated for these methods
in various examples (see e.g. Banfield and Raftery (1993), McLachlan and
Peel (2000, p. 231 ff.)), there is a lack of theoretical justification of their
robustness.

In Section 2, I give a formal definition of a breakdown point for estimators
of mixture parameters. The breakdown point goes back to Hampel (1971) and
measures the smallest amount of contamination that can spoil an estimator
completely.

In Section 3.1, some results about the parameter breakdown of the mix-
ture based clustering techniques are given. The number of components s is
assumed to be known here. It is shown that for all techniques introduced
above r outliers can make r < s mixture components break down.

To attain a better breakdown behavior, I suggest the maximization of a
kind of “improper likelihood” in Section 3.2 where “noise” is modeled by an
improper uniform distribution on the real line.

In Section 3.3, the case of an estimated number of mixture components
s is treated. I consider s as estimated by the maximization of the Bayesian
information criterion BIC(s) (Schwarz (1978)):

BIC(s) = 2Ly, 5(nn,s) — klogn, (3)

where L, , denotes the log-likelihood function for n points and s mixture
components under one of the models (1) or (2) and 7, s is the corresponding
ML estimator. k denotes the number of free parameters, i.e., k = 3s—1 for (1)
and k = 3s for (2). For alternative methods to estimate s, I refer to Chapter
6 of McLachlan and Peel (2000).
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With estimated s, all treated methods are able to isolate gross outliers as
new mixture components on their own and are therefore very stable against
extreme outliers. Breakdown can happen only because additional points in-
side the area of the estimated mixture components of the original data can
lead to the estimation of a smaller number of components.

An important problem in ML estimation for mixture models is the con-
vergence the log-likelihood function to oo if one of the O'JQ- converges to 0.
In order to get well defined estimators, the log-likelihood function has to be
maximized under a restriction on the scale parameters. The simplest possible
restriction is min;j o; > o9 > 0, which is used to obtain the results given
below. The choice of o is discussed in Section 4.

Some examples are given in Section 5. They illustrate that the stability
of the methods depends on the scale restriction and the internal stability of
the dataset.

The full theory and all proofs are given in Hennig (2002).

2 Breakdown point definitions

The classical meaning of breakdown for finite samples is that an estimator
can be driven as far away from its original value as possible by addition of
arbitrarily unfortunate points, usually by gross outliers. Donoho and Hu-
ber (1983) distinguish this “addition breakdown point” from breakdown by
replacement of points. I consider the former definition here.

Breakdown means that estimators that can take values on the whole range
of IRP, can leave every compact set. If the value range of a parameter is
bounded, breakdown means that addition of points can take the parameter
arbitrarily close to the bound, e.g., a proportion parameter to 0.

A breakdown of an estimator of mixture (or cluster) parameters can be
understood in two ways: A situation where at least one of the mixture com-
ponents explodes is defined as breakdown in Garcia-Escudero and Gordaliza
(1999). In contrast to that, Gallegos (2003) defines breakdown in cluster anal-
ysis as a situation where all clusters explode simultaneously. The definition
given here is flexible enough to account for all these situations.

Definition 1. Let (E,)n,cn be a sequence of estimators of 1 in model (1),
of ¢ in model (2), respectively, on IR" for fixed s € IN. Let r < s, x, =
(z1,...,Tn) be a dataset, where

Vi = argmax Ly s(n,xn) : 7; >0, j=1,...,s. (4)
n

The r-components breakdown point of F, is defined as
B, (Ep,x,) = ming{niﬂ 3 <<
V' D = [Tmin, 1] X C, Tmin >0, C C IR x IR™ compact

B Xntg = (mla'--amn—i-g); 'f’ = En+g(xn+g) : (ﬁjad]’;a’j) ¢D7 j:jla"-ajr}-
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The proportions 7; are defined not to break down if they are bounded away
from 0, which implies that they are bounded away from 1 if s > 1.

In the situation for unknown s, I restrict considerations to the case of
1-components breakdown. Breakdown means that neither of the s mixture
components estimated for x,, vanishes, nor that any of their scale and location
parameters explodes to co under addition of points. Further, breakdown of
the proportions 7; to 0 is no longer of interest for estimated s according to
the BIC, because if some 7; is small enough, s will simply be estimated as
being smaller.

Definition 2. Let (E,)ncn be a sequence of estimators of 7 in model (1) or
of ¢ in model (2) on IR", where s € IN is unknown and estimated as well. Let
X, = (21,...,%,) be a dataset. Let s be the estimated number of components
of E,(x,). The breakdown point of E,, is defined as

Bn(Ep,xn) = ming {4 : VC C IR® x (R*)* compact

I Xntg = (T15- -+, Tntg)s N = Entg(Xntg)
pairwise distinct ji,...,Jj, do not exist, such that (aj,,...,a;,,0;,,...,65,) € C}.

This implies especially that breakdown occurs whenever § < s, § being the
estimated s for xp,4.
An alternative breakdown definition is given by Kharin (1996).

3 Breakdown results

3.1 Breakdown point for fixed s

Let r < s. The contribution of r added points z,41,-..,Zn4r to the log-
likelihood is, for model (1), 77, ., log (22:1 Tj faj,0; (a:,)) It converges to
—oo if the distances among these r points and between them and the original
n points converge to 0o, and more than s —r mixture components remain in a
compact set about the originally estimated mixture. On the other hand, the
log-likelihood is bounded from below, if the r additional points are fitted by
r mixture components. This means that r additional points make r mixture
components break down. The argument holds as well for NMN because the
noise density also converges to 0.

Theorem 1. Let x, € IR", s > 1. Let 0, s be an ML estimator for model
(1) or (2). Forr=1,...,s —1,

()

r
Br,n(nn,saxn) < n+ r

For r = s, this remains true for the NMML and NMN, while ¢, MML has a
better s-components breakdown point of > VLH, see Hennig (2002).
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3.2 An alternative for fixed s

An alternative can be constructed as a modification of NMN. The problem
of NMN is that the noise component could be affected by outliers as well, as
was shown in the previous section. This can be prevented when the density
constant for the noise component is chosen as fixed beforehand, which leads
to ML estimation for a mixture where some improper density component is
added to catch the noise (NMI). That is, an estimator &, s is defined as the
maximizer of

Ln,s(ga Xn) = ZIOg Zﬂjfaj,oj (xz) + '/TOb ) (6)
i=1 j=1

where b > 0. This requires the choice of b. If the objective is cluster analysis
and there is a maximum scale 0,,,,, above which a mixture component is
no longer accepted as a cluster (compare Section 4), b could be chosen as
the density value at the 0.025-quantile of fo . .., so that 95% of the points
generated from such a distribution have a larger density value for it than
for the noise component. For this estimator the breakdown point depends
on the stability of the dataset x,. Breakdown can only occur if additional
observations allow that the non-outliers can be fitted with advantage by fewer
than s components, and this means that a relatively good solution for r < s
components must exist already for x,,. This is formalized in (7). Let L, , =
Ly, s(én,s,%5)- I consider only the breakdown of a single mixture component

Bl,n(fn,s; xn)-

Theorem 2. Let x, € IR". Let aj,0;,7; denote the parameters of &, s and

fmaz = f(0)/o0 > b. If

r<s

max Lo, < Y 10g | Y fuy.o; (2:) + (mo + %)b
i=1 j=1

n
n+g

+glOg(’lT0 + %)b'f’ (n+g) log _.qIngmaz; (7)
then

9
B n n,8 n .
) > ®)

The meaning of (7) is illustrated in Section 5.

3.3 Breakdown point for unknown s

The treatment of s as unknown is favorable for robustness against outliers,
because outliers can be fitted by additional mixture components. Generally,
for large enough outliers the addition of a new mixture component for each
outlier yields a better log-likelihood than any essential change of the original
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mixture components. That is, gross outliers are almost harmless except that
they let the estimated number of components grow.

Breakdown can occur, however, because added points, usually not outly-
ing, but inside the range of the original data, may lead to a preference of a
solution with r < s clusters. (9) of Theorem 3 gives a necessary condition for
the impossibility of breakdown and may serve as a formalization of the “sta-
bility” of an s-components solution for a data set in terms of the differences
between the optimal log-likelihoods for s and fewer components.

Theorem 3. Let 7, = (8,0n,s) be a mazimizer of the BIC under (1) or (2).
If

1
m<in Lys—Lp, — 5(59 +3s — 3r + 2n)log(n + g) + nlogn| >0, (9)
r<s

then

9

B, (Tn,Xp) > nte

(10)

The meaning of (9) is illustrated in Section 5.

4 Choice of the scale restrictions

In most applications, sufficient prior information to specify the scale restric-
tion constant oo is not available. A common strategy to avoid a sensible
specification of these constants in practice is to compute local maximizers of
the log-likelihood from initial values which avoid very small values for the
sigmas. This, however, avoids the isolation of single points as clusters, which
is crucial for good breakdown behavior for estimated s.

Consider s as unknown. A sensible choice of the restriction constant
should fulfill two objectives:

1. The constant should be so large that a data subset that looks like a
homogeneous cluster is estimated as one component and no single point
of it forms a “one-point-component” with a very small scale.

2. The constant should be so small that a gross outlier generates a new
component instead of being merged with an otherwise homogeneous data
subset.

a-outliers (with a > 0 but very small) are defined by Davies and Gather
(1993) with respect to an underlying model as points from a region of low
density, chosen so that the probability of the occurrence of an outlier is
< . For a standard Normal distribution, for example the points outside
[671(%), 7' (1 — §)] are the a-outliers, where &, ,> denotes the cdf of the
Normal distribution with parameters a,o?. For a,, = 1 — (1 — p)'/", the
probability of the occurrence of at least one aj,-outlier among n i.i.d. points

from N(0,1) is equal to p.



Robustness for ML estimators of mixtures 7

The strategy is as follows: Choose p = 0.05, say, and consider the choice
of oo for the NMML with unknown s. The following definition is used to
generate reproducible benchmark datasets:

Definition 3. &, !, (%H), Y (737) is called a (a,0”)-Normal stan-

dard dataset (NSD) with n points.

Assume for the moment that at least n — 1 points come from a N(0,1)
distribution. (Denote ¢o = o in this particular setup.) ¢g should be chosen
so that it is advantageous to isolate an aj,-outlier as its own cluster, but
not a non-outlier. This, of course, depends on the non-outlying data. As
“calibration benchmark”, form a dataset with n points by adding an a,-
outlier to a (0,1)-NSD with n — 1 points. Choose ¢g so that BIC(1) =BIC(2)
(this can easily be seen to be uniquely possible). For ¢g small enough, the 2-
components solution will consist of one component matching approximately
the ML-estimator for the NSD and one component fitting only the outlier.
Resulting values are given in Table 4.

The interpretation is as follows: Based on o9 = ¢, a dataset consisting
of an (n — 1)-point NSD and an a,-non-outlier will be estimated as homoge-
neous, while there will be more then one cluster if the nth point is an outlier.
The same holds for an n — 1-point (a, 02)-NSD and o¢ = cpo. I suggest the
use of 09 = CoOmaz, Where o2,,, is the largest variance such that a data
subset with this variance can be considered as “cluster” with respect to the
given application. This may not look like an advantage, because the need to
specify a lower bound oq is only replaced by the need to specify an upper
bound ¢,,,,,- But the upper bound has a clear interpretation which does not
refer to an unknown underlying truth. At least if the mixture model is used as
a tool for cluster analysis, points of a cluster should belong together in some
sense, and with respect to a particular application, it can usually be said that
points above a certain variation can no longer be considered as “belonging
together”.

A dataset to analyze will usually not have the form “NSD plus outlier”,
of course. The clusters in the data will usually be smaller than n — 1 points,
and they will have a variance smaller than o2 Assume now that there is

mazx-”
a homogeneous data subset of ny < n points with variance 0? < 02,,,. The
question arises if an ay,-outlier, non-outlier, respectively, will be isolated
from the cluster in the presence of other clusters elsewhere. o¢ is calculated
on the base of the BIC penalty for 1 vs. 2 clusters with n points. That is, the
difference in penalty is 31logn. Table 4 also gives the cg-values computed with
an NSD of size ny = n/2 — 1 plus a,,/-outlier and of size n; =n/5— 1 plus
ay/s-outlier, but again with penalty difference 3logn to show which restric-
tion constant would be needed to isolate at least a,/»-outliers, a,, 5-outliers,
respectively, from the homogeneous subset of size n; under the assumption
that the parameters for the rest of the data remain unaffected. The values
coincide satisfactorily with the values computed for n, so that these values
look reasonable as well for small homogeneous subsets.
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With a variance smaller than ¢,,,,, an a-outlier with a > «,, is needed
to be isolated from a cluster with a variance smaller than ¢,,4;, i-e., the
broad tendency is that components with larger variances are preferred over
one-point-components.

n 20 50 100 200 1000
co|2.10e-2 4.99e-3 1.66e-3 5.51e-4 4.34e-5

nm=n/2-1 9 24 49 99 499
co|2.15e-2 5.25e-3 1.76e-3 5.87e-4 4.57e-b
ny=n/5—-1 3 9 19 39 199

co|2.25e-2 5.44e-3 1.88e-3 6.35e-4 4.93e-5

Table 1. Minimum scale restriction factor ¢ for Normal mixtures. Note that log co
is almost exactly linear in logn, so that further values can easily be obtained by
interpolation.

Although the argumentation is only valid for NMML with estimated s, I
tentatively suggest to apply the resulting values also for the other methods,
because the derivation of analogous strategies for them rises certain difficul-
ties.

5 Examples

Consider a dataset of 50 points, namely a (0,1)-NSD with 25 points combined
with a (5,1)-NSD with 25 points. Let oqs = 5 = 09 = 0.025, b = 0.0117 for
NMI. For NMML, ¢, MML with » > 1, NMN and NMI, always components
corresponding almost exactly to the two NSDs are optimal under s = 2 fixed.
How large must an additional outlier be chosen so that the 50 original points
fall into only one cluster and the second mixture component fits only the
outlier? For NMML, breakdown begins with an additional point at about 15.2
(13.3; values in parentheses are for og = 0.001 to demonstrate the dependence
of the robustness on og). For t3MML, the outlier must lie at about 800
(350), t1MML needs the outlier at about 3.8¢6 (8¢5), and NMN breaks down
with an additional point at 3.5¢7 (1.5e6). The lower breakdown bound (8) of
NMI evaluates to 5% The original components are joined by three outliers at
9.8 (while NMN can be broken down by fewer outliers, it would need three
outliers to be placed not until 70 to join the origninal components). If the
(5,1)-NSD is replaced by a (50,1)-NSD, the lower breakdown bound of NMI
is 57—7 and experimentally 11 outliers at 100, say, are needed for breakdown.
Turning back to the combination of the (0,1)-NSD and the (5,1)-NSD, for
oo = 0.001, the lower breakdown bound reduces to 5%, and two outliers at
9.8 suffice to join the original components.

Note that NMN is “practically” robust in the sense that it can cope with
more than one large outlier, as long as they are below 3.5e7 and scattered
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enough. For example, if 7 points 1e3, 5e3, 1e4, 5ed, 1e5, 5ed, 1e6 are added to
the original 50 points, all 7 outliers are classified as noise (0o = 0.025; the
same holds for NMI). To a certain extent this also applies to {1 MML. The
seven additional outliers given above lead to breakdown, while outliers at
(100, 200, 500, 1000, 2000, 5000, 10000) do still not join the original compo-
nents.

With estimated s, (10) gives a lower breakdown bound of 2 for NMML
and NMN and % for t; MML at the original 50 points (s = 2 is estimated
correctly by all methods). These bounds are rather conservative. Empirically,
13 points equally spaced between 1.8 and 3.2 lead to breakdown by § = 1 for
NMML and NMN. ¢; MML is a bit more stable: the mentioned 13 additional
“inliers” lead to the estimation of § = 3. Extreme outliers always get their
own new mixture components. It is interesting that the breakdown point can
be driven above % by enlarging the separation between the components. For a
(0,0.001)-NSD of 25 points and a (100000,0.001)-NSD of 25 points, NMML’s
lower breakdown bound is %. Empirically a breakdown point larger than
0.9 can be reached by much less separation.

Consider as a last example a (0,1)-NSD of 45 points combined with a
(5,1)-NSD of 5 points. For fixed s = 2, NMN needs an outlier at 2e6 to join
the original two components corresponding to the NSD. t; MML interprets
the (5,1)-NSD as extreme points belonging to the (0,1)-NSD and isolates
outliers down to 7.5 as one-point-components. While this setup may seem
to be less stable than the constellation with two clusters of 25 points each,
NMML joins an outlier up to 40 with the (5,1)-NSD and NMI breaks down
with at least 3 outliers at 11 (compared to 9.8 above) at a lower breakdown
bound of .

For estimated s, NMML needs 12 points between the components to join
them (at a lower breakdown bound of ), while NMN and ¢; MML estimate
the original 50 points as only one regular component, while the (5,1)-NSD
is estimated as noise, belonging to the only component, respectively, so that
there is no second mixture component which could break down.

Note that the results of this section have been computed by using the EM-
algorithm (see, e.g., McLachlan and Peel (2000)) several times with initial
configurations chosen by use of prior information about the generation of
the data. Not all of the likelihood maxima will be reproduced by default
applications of available software.

6 Conclusion

A finite-sample-addition breakdown point for estimators of the parameters of
mixture models has been defined for a known and unknown number of mix-
ture components. It has been shown that the ability to estimate the number
of mixture components is crucial to attain a satisfactory breakdown point for
ML estimators. For fixed s, a better breakdown behaviour can be attained
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by adding an improper uniform density to the likelihood. Note that the ro-
bustness behaviour for fixed s is relevant in practice, because even if the
number of components is estimated, there is usually an upper bound on s for
computational reasons. For example, for a dataset of 1000 points, one will
often estimate s under the restriction s < 10, say, while there may be much
more than 10 outliers. Therefore, NMI, NMN, or ¢t; MML are recommended
in spite of the breakdown robustness of the simple NMML under estimated
s. However, NMI, NMN and ¢, MML may not recognize mixture components
supported by too few points.

Breakdown and robustness in mixture models and cluster analysis do not
only depend on the method, but also on the internal stability of the clustering
of the dataset.
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