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Abstract

A smoothing principle for M-estimators is proposed. The smoothing depends
on the sample size so that the resulting smoothed M-estimator coincides with
the initial M-estimator when n→ ∞. The smoothing principle is motivated
by an analysis of the requirements in the proof of the Cramér-Rao bound.
The principle can be applied to every M-estimator. A simulation study is car-
ried out where smoothed Huber, ML-, and Bisquare M-estimators are com-
pared with their non-smoothed counterparts and with Pitman estimators on
data generated from several distributions with and without estimated scale.
This leads to encouraging results for the smoothed estimators, and partic-
ularly the smoothed Huber estimator, as they improve upon the initial M-
estimators particularly in the tail areas of the distributions of the estimators.
The results are backed up by small sample asymptotics.

Keywords: Pitman estimator, ML-estimator, median, MAD, breakdown
point, small sample asymptotics, Cauchy distribution, Huber’s least
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1. Introduction

The parametric estimation of the location of a one-dimensional symmet-
ric distribution is among the easiest and most comprehensively worked on
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problems in statistics. It is a benchmark to illustrate and investigate new
ideas in estimation which may generalize to more complicated situations in
order to gain a better understanding about estimation problems in general.
Here we focus on small to moderate sample sizes. Small samples are relevant
in many applications (Lischer, 1996; Rousseeuw and Verboven, 2002), partic-
ularly if, in the context of modelling of complex technical experiments, a few
measurements of the same situation are to be summarized to make fitting of
a more sophisticated model easier. Other examples include medical studies
with budget restrictions or limited numbers of patients.

The present paper is about an idea introduced by Hampel (1996), which
he called “Huber without corners” (in Hampel (1996) only the definition is
given). The idea of that paper was to smooth the corners of the ψ-function
defining the well-known Huber M-estimator (Huber, 1964). The smoothing
depends on the distribution of the initial estimator for n observations, so that
the ψ-function is much smoother than that of the initial estimator for small
n, but asymptotically equivalent. In Hampel (1996) the initial estimator is
the Huber M-estimator, but the principle can be applied to any M-estimator.
It can even be applied to ψ-functions that are already smooth, and it can
still lead to improvements.

The aim of this paper is to introduce and motivate the smoothing prin-
ciple, and to investigate the finite sample properties of some smoothed M-
estimators (including the smoothed Huber-estimator) in comparison to their
initial M-estimators, but also to ML- and Pitman estimators (Pitman, 1939),
which have the minimal variance among all equivariant estimators.

We carried out an extensive simulation study in which smoothed M-
estimators (including the smoothed Huber M-estimator and a smoothed me-
dian) were compared to the ML- and Pitman estimators for small samples
from the normal, the Huber least favourable, the double exponential and the
Cauchy distribution with known scale. Other simulated setups concern a
more realistic situation with unknown scale, in which the MAD is used as a
preliminary estimator of scale. ML-, smoothed ML- and Pitman-estimators
for the distributions given above are compared with a smoothed Huber M-
estimator and a smoothed Bisquare M-estimator (e.g., Maronna et al., 2006)
and their initial (non-smoothed) M-estimators. The Bisquare was included
as a popular example of an M-estimator with redescending ψ-function. It
was of interest to see how the Huber- and Bisquare M-estimator and their
smoothed versions perform without assuming knowledge of the underlying
distribution. We did not only compare the MSEs, but we also examined
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the shapes of the distribution of squared errors (s.e.). This leads to some
surprising insights that cannot be explained by asymptotic theory.

Smoothed M-estimators are defined in Section 2. A motivation why the
smoothing principle may lead to an improvement for small samples is given
in Section 3. Finite sample breakdown points of the smoothed M-estimators
compared with the original and other M-estimators are briefly discussed in
Section 4. The simulation study is described in Section 6 and the results
are given and discussed in Section 7. The smoothing principle leads to good
results. Particularly the smoothed Huber estimator exhibits excellent small
sample properties in a reasonable range of situations. The results are sup-
plemented and confirmed in Section 8 by computations of tail probabilities
of the estimator’s distributions based on small sample asymptotics (Hampel,
1973; Field and Ronchetti, 1990) as explained in Section 5. A conclusion is
given in Section 9.

2. Smoothing the Huber and other M-estimators

Consider an i.i.d. sample of n observations from a distribution Pµ,σ with
unimodal symmetric density

fµ,σ(x) =
1

σ
f

(

x− µ

σ

)

.

To simplify the setup even more, we first assume σ to be known and we set
σ = 1.

An M-estimator for the location parameter µ is defined as a solution t of

n
∑

i=1

ρ

(

xi − t

σ

)

= min
t

or

n
∑

i=1

ψ

(

xi − t

σ

)

= 0, (1)

where ψ = ρ′. The maximum likelihood (ML)-estimator is defined by ρf =
− log f or ψf = −f ′/f . For a given positive constant k, the Huber estimator
is defined by the following function ψ in (1):

ψk(x) =







k : x > k
x : −k ≤ x ≤ k
−k : x < −k

.
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It is the ML-estimator for the location parameter of Huber’s least favourable
distribution with density

fk(x) =







(1 − ǫ)ϕ(k) exp(−k(x− k)) : x > k
(1 − ǫ)ϕ(x) : |x| ≤ k

(1 − ǫ)ϕ(k) exp(k(x+ k)) : x < −k
,

where ǫ and k are linked by 2ϕ(k)
k

− 2Φ(−k) = ǫ
1−ǫ

, and ϕ and Φ denote the
pdf and cdf of the standard normal distribution. Huber (1964) showed that
the above distribution has smallest Fisher information among the symmetric
distributions of the form (1− ǫ)ϕ(x) + ǫh(x), h being a symmetrical density,
and that the Huber estimator has minimax asymptotic variance for this class
of distributions. In our simulations we used k = 0.862, which corresponds to
ǫ = 0.2.

The smoothed Huber estimator introduced by Hampel (1996) is a smoothed
version of the Huber estimator, where the degree of smoothness depends on
the sample size so that the new estimator keeps the asymptotic optimality
properties of the Huber estimator whereas performing better on small sample
sizes. We formulate the principle for a general ψ-function of an M-estimator.
Its smoothed version is defined by the score function

ψ̃(x) =

∫

ψ(x+ u)dQn(u), (2)

where Qn may be chosen as the distribution of the initial M-estimator for
n i.i.d. observations from an assumed underlying distribution. The nat-
ural choice for an ML-estimator would be the corresponding distribution
under which it is asymptotically optimal. The exact distribution of the ML-
estimator under this distribution is usually difficult to obtain. Therefore, as
a default choice, we approximate it by the normal distribution with expecta-
tion 0 and variance V/n, where V is the asymptotic variance. This principle
can generally be used for M-estimators, for which it is needed to specify a dis-
tribution under which the estimator’s asymptotic variance is computed. Note
that, strictly speaking, the term “smoothed” is often not justified because
the principle can also be applied to ψ-functions that are already smooth.

The ψ-function of the smoothed Huber estimator defined by ψ = ψk and
Qn obtained from the asymptotic normality of the Huber estimator under
Huber’s least favourable distribution can be easily written in closed form as

ψ̃k(x) = kΦ

(

x− k

σn

)

− k

(

1 − Φ

(

x+ k

σn

))
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+x

(

Φ

(

x+ k

σn

)

− Φ

(

x− k

σn

))

+ σn

(

ϕ

(

x+ k

σn

)

− ϕ

(

x− k

σn

))

,

where σn =
√

V/n, which equals
√

2.046/n for ǫ = 0.2. Since Qn tends to
a Dirac measure at 0 for n → ∞, the smoothed Huber is asymptotically
equivalent to the Huber estimator.

3. Motivation of the smoothing principle

We give a motivation that leaves some theoretical gaps and is therefore
heuristic. Most of this section focuses on ML-estimators.

Let Tn be a consistent and unbiased estimator for µ, X = (X1, . . . , Xn)
′ be

an IRn-valued random variable, x = (x1, . . . , xn)
′ ∈ IRn, fµ(x) =

∏n

i=1 fµ,1(xi),

ψf (x) = −f ′(x)
f(x)

(the score function of the ML-estimator under f), and

ψf,n(µ,x) = − ∂

∂µ
log fµ(x) =

n
∑

i=1

ψf(xi − µ).

Schwarz’s inequality yields

Varµ(Tn) ≥
Covµ(Tn, ψf,n(µ,X))2

Varµ(ψf,n(µ,X))
.

Assuming that all necessary derivatives exist and behave regularly and under
the conditions of the Cramér-Rao inequality, the covariance is 1 indepen-
dently of Tn. Therefore, Varµ(Tn) can be minimized if Tn can be chosen so
that Corrµ(Tn, ψf,n(µ,X)) is maximized.

For an M-estimator Tn with symmetric score function ψ we obtain by a
standard Taylor expansion about µ

Tn = µ−
1
n

∑n

i=1 ψ(xi − µ)
1
n

∑n

i=1 ψ
′(xi − ξ)

, (3)

where ξ lies between Tn and µ. In particular, ψ = ψf defines the ML-
estimator. When n → ∞, 1

n

∑n

i=1 ψ
′

f (xi − ξ) converges to E[ψ′

f (X1)] > 0,
where by equivariance the expectation can be taken under µ = 0. There-
fore, the variations in

∣

∣

1
n

∑n

i=1 ψ
′

f (xi − ξ)
∣

∣ become negligible compared to the

variations in
∣

∣

1
n

∑n

i=1 ψf (xi − µ)
∣

∣, which converges to 0. Thus, Tn is asymp-
totically a linear function in ψf,n(µ,X) and the ML-estimator reaches the
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Cramér-Rao bound. For general (non-ML) M-estimators it follows in the
same way that Tn is asymptotically a linear function in

∑n

i=1 ψ(xi−µ) under
regularity conditions ensuring consistency, though this only yields minimum
asymptotic variance among those estimators for which

Covµ(Tn,

n
∑

i=1

ψ(xi − µ)) = const.

This argument requires Tn − µ ≈ 0 and therefore works only asymptoti-
cally. For fixed (small) n, the expansion (3) is not very useful when Tn is at
some distance from µ. In the spirit of small sample asymptotics (Hampel,
1973; Field and Ronchetti, 1990) we may recenter the expansion at u ≈ Tn−µ
not close to 0 and obtain:

Tn = u+ µ−
1
n

∑n

i=1 ψ(xi − u− µ)
1
n

∑n

i=1 ψ
′(xi − ν)

, (4)

where now ν lies between Tn and u + µ, so Tn may be far away from µ.
If we choose ψ(x) = ψf (x + u) in this situation and consider again the
denominator to be more or less constant compared to the absolute value of
the numerator (which is reasonable taking into account that Tn ≈ u+ µ is a
location estimator for the xi), we have again that Tn is approximately linear
in ψf,n(µ,X). In this way, ψf (x+u) can be interpreted as an approximatively
optimal ψ-function for an M-estimator Tn, given Tn−µ is in a neighborhood
of u.

Knowing u would imply knowing Tn− µ, which is impossible. Therefore,
the corresponding score function ψf(x + u) is not available. However, if the
distribution of Tn−µ were available, we could average with respect to this dis-
tribution by taking the expectation and we could choose ψ̃(x) = Eψf (x+U).
This leads to the smoothing principle (2) for ML-estimators (for general
M-estimators, the argument requires Covµ(Tn,

∑n

i=1 ψ(xi − µ)) =const, see
above). The argument can be interpreted as leading to a fixed point it-
eration, because Qn(u) should ideally be the distribution of the estimator
T̃n corresponding to its score function ψ̃. The resulting T̃n will be asymp-
totically equivalent to the ML-estimator. Hence, if we derive Qn from an
asymptotic normal approximation, there is no difference between Qn for the
ML-estimator and for the smoothed ML-estimator.

Note, however, that this argument is incomplete because it is not entirely
clear why the good correlation properties of some T ∗

n defined by ψf (x+u) with
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ψf,n(µ,X) for Tn−µ in a neighborhood of u imply a large overall correlation
between T̃n defined by Eψf (x+U) and ψf,n(µ,X). This claim is not proved,
but it seems to be confirmed by our simulation results.

Apart from the motivation of the precise form of ψ̃, it can be seen as
an aim in itself to smooth the ψ-function of a general “not smooth enough”
M-estimator depending on n keeping its asymptotic properties. For exam-
ple, as opposed to the median, the smoothed median has a finite local-shift
sensitivity (Hampel et al., 1986, p. 88), and also this will improve the change-
of-variance sensitivity of the estimator (Hampel et al., 1986, p.130).

4. Finite sample breakdown points

The finite sample breakdown point of an estimator measures the minimum
proportion of points that have to be added (or changed; there are different
definitions of the finite sample breakdown point, see Donoho and Huber
(1983)) to a dataset so that an estimator can be driven infinitely far away
from its value for the original dataset.

There are well known results for M-estimators of location under some
conditions on ψ. For bounded, monotone and symmetric ψ-functions, the
finite sample breakdown point is 1

n
⌊n−1

2
⌋ (Huber, 1981). For redescending M-

estimators, the situation is more complicated and depends on the dataset. If
a preliminary scale estimator such as the MAD is introduced, the breakdown
point cannot be larger than that of the scale estimator (note that in case of
implosion of the scale estimator to zero, plugging it in for σ in (1) does not
yield a well defined estimator), but for bounded, monotone and symmetric ψ-
functions, and MAD scale it is still 1

n
⌊n−1

2
⌋. For redescending M-estimators it

can be the same but this depends on the dataset, see Chen and Tyler (2004).
The smoothing principle only affects the ψ-function, and only in such a

way that the conditions for the results cited above still hold for the smoothed
estimators if they hold for the initial ones. Therefore, the smoothing principle
does not introduce additional problems with the finite sample breakdown
point.

5. Accurate small sample approximations of tail areas

Small sample asymptotic techniques provide very accurate approxima-
tions of densities and tail probabilities down to very small sample sizes. In
Section 8 we will use these approximations to supplement the Monte Carlo
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simulations to evaluate the performance of several estimators including the
smoothed Huber M-estimator under several distributions F of the observa-
tions. A measure of quality will be the tail probability F̄n(t) = PF [Tn > t] of
the estimators for different values of t and different sample sizes n.

Let fn(t) be the density of an M-estimator of location Tn defined by (1).
By expanding the logarithmic derivative f ′

n(t)/fn(t) locally around each point
t separately, Field and Hampel (1982) derived a very accurate approximation
for this quantity and, by integration, for the density fn(t). To obtain tail
probabilities F̄n(t) =

∫

∞

t
fn(s)ds for the estimator Tn, we would need a

numerical integration. However, it turns out that this can be approximated
analytically to get the following tail area approximation:

F̄n(t) = PF [Tn > t]

≈ 1 − Φ
(

√

2n logC(t)
)

+
C(t)−n√

2πn

(

1

σ(t)α(t)
− 1
√

2 logC(t)

)

,(5)

where t > µ and

C(t) =

(
∫

eα(t)ψ(x−t)dF (x)

)

−1

α(t) solves

∫

ψ(x− t) eα(t)ψ(x−t)dF (x) = 0

σ2(t) = C(t)

∫

ψ2(x− t) eα(t)ψ(x−t)dF (x);

see Lugannani and Rice (1980) in the case of the arithmetic mean (ψ(x) = x),
and Daniels (1983) and Field and Ronchetti (1990) for M-estimators.

6. Simulation design

We simulated data with n = 3, 4, 5, 8, 20 from four distributions: the
normal distribution, Huber’s least favourable distribution with k = 0.862
(“Huber distribution” in the following), the double exponential distribution
(in some literature referred to as Laplace distribution), for which the me-
dian is the ML estimator, and the Cauchy distribution. We run 100, 000
simulations for each setup.
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6.1. Simulations with scale assumed to be known

The simulations with the scale assumed to be known are mainly of the-
oretical interest in order to show how the smoothed estimators compare to
their initial non-smoothed M-estimators, the mean, the median and the op-
timal estimators for the simulated distributions.

The following estimators were computed: mean, median, ML-estimator,
smoothed ML-estimator (with Qn chosen as the asymptotic normal approx-
imation, see Section 2) and the Pitman estimator. For the Huber, Cauchy
and double exponential distribution, the ML, Pitman and smoothed ML-
estimator were computed with respect to the correct underlying distribution
(including the variance ofQn). The Huber- and smoothed Huber M-estimator
(with the same underlying variance of Qn) were computed for all setups.
Under the normal distribution, we also included the ML and smoothed ML-
estimators with respect to the three other distributions.

For every setup and every estimator, we consider the following statistics
of the distribution of the squared errors: mean (which is almost equal to the
variance of all estimators because of the unbiasedness and the large number
of simulation runs), median, first and third quartile, 0.9-, 0.95- and 0.99-
quantiles. We computed other measures than just the MSE because it is
doubtful that the latter is the most reasonable quantity to compare estima-
tors. Indeed, especially in situations where more than half of the data may
be outlying with respect to the correct parameter (Cauchy, small n), it is
more relevant to know that an estimator has very often a small or moderate
squared error (measured by the 0.9- or 0.99-quantile, say) than how bad it
is exactly in the situations where it is determined by 50% or more outliers
(which may dominate the MSE of the estimator). It also turns out that the
estimators differ considerably with respect to the shape of their squared er-
ror distribution, so different estimators are optimal with respect to different
criteria.

We estimated the standard deviation for all these measures. The results
of two estimators were judged as “clearly” different if the intervals obtained
by adding or subtracting twice the estimated standard deviation did not
intersect. Note, however, that this rule does not lead to a proper significance
test, because in the study all estimators were computed for the same samples,
and therefore the results for the various estimators were dependent.

We also carried out paired t- and Wilcoxon-tests in some situations be-
tween results of pairs of estimators (results not shown; we were particularly
interested in comparing estimators with rather similar results) and found
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that 100,000 simulations are enough to make almost all differences between
estimators highly significant, even between those that look almost equal.

6.2. Simulations with unknown scale

Most M-estimators for location (though not the mean and the median)
depend on the scale σ (see Section 2). In reality, this is not known. One
method to deal with this is to estimate a highly robust scale estimator first
(the median absolute deviation from the median MAD is the most popular
choice) and plug the estimated value of σ into (1).

We carried out four simulations in which, for the Pitman estimator and
those M-estimators that depend on the scale, this principle was applied with
the MAD multiplied by 1.4826 scaled for consistency for σ at the normal
distribution.

We restricted ourselves to a single value of n for each distribution, namely
n = 4 for the normal distribution, n = 5 for the Huber distribution, n = 8 for
the Cauchy distribution and n = 20 for the double exponential distribution.

Apart from the mean and median, the Pitman-, ML- and smoothed
ML-estimator for the simulated distribution, we included the Huber- and
smoothed Huber estimator with tuning constant and variance of Qn derived
from the Huber distribution with k = 0.862 and the Bisquare M-estimator
(Maronna et al., 2006) with redescending ψ-function, tuned to 95% efficiency
under the normal distribution, and a “smoothed Bisquare”, i.e., the smooth-
ing principle applied to the Bisquare M-estimator (with the variance of Qn

derived from its asymptotics under the normal distribution) for all distribu-
tions. Note that the same tuning for the latter four estimators was applied
for all distributions, so that these are here used in a universal fashion that
does not require the knowledge of the distribution.

6.3. Computational aspects

The necessary numerical integrations were carried out by means of the
function integrate of the statistics freeware R with default settings. Note
that the Pitman estimators based on numerical integration are compared
with exact Pitman estimators under the Cauchy distribution in Cohen Freue
(2007), and are very similar.

The standard deviation for the q-quantiles of the squared error distribu-
tion was estimated by means of the formula q∗(1−q)/(100, 000∗ĥ(vq)), where
vq denotes the q-quantile and h denotes the density of the distribution of the
q-quantile. The latter was estimated by a kernel density estimator computed
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Figure 1: Quantiles and MSE for n = 20 (left) and efficiencies of the MSEs (right) for the
normal distribution with known scale.

with the R-function density using the default settings. M-estimators, ex-
cept for the mean and the median, were iterated by the algorithm of the
function huber of the MASS package of R (Newton algorithm). The median
was used as starting value for all estimators. This led to good results except
in some cases for the Cauchy estimators. Thus, for the ML and smoothed
ML-estimator for the Cauchy distribution, we started first from the median,
then from the two neighboring order statistics, then from two further neigh-
boring order statistics and so on, until an iteration result was found with a
larger value of the log-likelihood function than that of the median. In each
step, we started from two order statistics and the better result was chosen
to guarantee the symmetry of the distribution of the estimator.

7. Simulation results

7.1. Presentation of the results

The simulation results are presented graphically. There are two types of
plots, namely quantile plots and efficiency plots. A quantile plot shows all
the quantiles and the mean of the s.e. distributions of all estimators for a
single setup defined by n and the underlying distribution. An efficiency plot
shows the relative efficiencies compared to the best estimator with respect
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Figure 2: Efficiencies of the median squared errors (left) and of 0.99-quantiles of the
squared errors (right) for the normal distribution with known scale.

to a single statistic (three statistics are used: MSE, median s.e. and 0.99-
quantile of the s.e. distribution) for a single underlying distribution for all n.
The relative efficiencies were computed for all statistics as it is usually done
for the MSE. The second type of plot shows whether the estimators differ
“clearly” as defined in Section 6: a full circle indicates that the interval of the
statistic ± twice the estimated standard deviation of the simulated value is
disjunct from the corresponding intervals of all other estimators (same n). A
triangle with the peak pointing up indicates that the interval intersects with
the interval of an estimator with a higher efficiency value. A triangle with the
peak pointing down indicates that the interval intersects with the interval of
an estimator with a lower efficiency value. A diamond indicates that both
types of intersection occur. Efficiency plots include only the estimators that
were simulated for all n.

In the quantile plots, “M” indicates the ML-estimator corresponding to
the simulated distribution, unless indicated explicitly (e.g., “MHub” is the
ML estimator for Huber’s distribution). “S” stands for “smoothed ML”, “P”
for the Pitman estimator (e.g., “PCau” for the Cauchy and “PDE” for the
double exponential distribution; note, however, that median and smoothed
median are denoted by “Med” and “SMed”).

For the Cauchy distribution, the mean is not included in any plot because
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Figure 3: Quantiles and MSE for n = 8 (left) and efficiencies of the MSEs (right) for
Huber’s least favourable (k = 0.862) distribution with known scale.

it is so much worse than the other estimators that its inclusion would have
resulted in an unfavourable plot range. The number of observations n and
the squared errors are plotted on a logarithmic scale.

To save some space, only one out of the five quantile plots is shown for
every distribution for the simulations with known scale. They were chosen
so that all typical features can be seen (which often differ between even and
odd n, as can be seen from the efficiency plot), namely n = 20 for the normal
distribution, n = 8 for Huber’s distribution, n = 3 for the double exponential
and n = 5 for the Cauchy distribution.

7.2. Results with scale assumed to be known

• For the normal distribution (Figures 1, 2), the ML-estimators corre-
sponding to the three non-normal distributions are with respect to all
statistics and for all n clearly worse than their smoothed counterparts.
The smoothed Huber estimator is almost as good as the mean, reach-
ing an efficiency of about 99% for all statistics with n = 3 and n = 5,
where the next best estimators are about 90% efficient. As in many
other setups, there seems to be a strong effect of the sample size be-
ing odd or even, and for n = 8, the efficiency of the smoothed Huber
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Figure 4: Efficiencies of the median squared errors (left) and of the 0.99-quantiles of the
squared errors (right) for Huber’s least favourable (k = 0.862) distribution with known
scale.

(all statistics) is only about 93%. However, it is still the second best
estimator.

• For the three non-normal distributions, the shape of the s.e. distribu-
tion for the ML-estimator differs from that of the Pitman estimator and
also from that of the smoothed ML-estimator (which can be seen as a
compromise of the former two; Figures 3, 4, 5, 6, 7, 8). Whereas the Pit-
man estimator is optimal with respect to the MSE, the ML-estimator
is better with respect to the lower quantiles (0.25 and median, though
often not clearly). This corresponds nicely to the discussion in Section
3: the ML estimator correlates very well with ψf,n(µ,X) and this is
what a good estimator should do if it is close to µ. In the tails of the
distribution, it becomes worse, and this is the area where the Pitman
estimator performs better. The smoothed ML-estimator is defined as
a direct compromise between “good linearity” in ψf,n(µ,X) in the cen-
ter and the tail areas, and this yields worse lower quantiles and better
higher quantiles compared to the ML-estimator, as desired.

There are even some quantiles, for which the smoothed ML-estimator
is better than both the Pitman and the ML-estimator. This happens
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Figure 5: Quantiles and MSE for n = 3 (left) and efficiencies of the MSEs (right) for the
double exponential distribution with known scale.

for the Huber distribution with the 0.75-quantile (n ≤ 8, left panel of
Figure 3), the 0.9-quantile (n ≤ 8) and the 0.95-quantile (n = 4), for
the double exponential distribution with the 0.75-quantile (all n, left
panel of Figure 5) and the 0.9-quantile (n = 4, 8), and for the Cauchy
distribution with the 0.75-quantile (n ≤ 8) and the 0.9-quantile (all n,
left panel of Figure 7), though differences are not very clear in most
cases.

The smoothed ML-estimator is always better than the ML-estimator
with respect to the MSE. The differences are sometimes significant, and
the efficiency gain is up to 10% (double exponential distribution, n =
3, 5, right side of Figure 5). For the Huber distribution, the smoothed
ML-estimator is almost indistinguishable from the Pitman estimator
(right panel of Figures 3), whereas the ML-estimator is up to 4% worse.
For the Cauchy distribution, the difference between smoothed ML and
ML is again up to 4% (n = 8, right panel of Figure 7), but usually
small.

• The results with respect to the 0.99-quantile are similar, except that the
differences between the estimators are a bit larger and the smoothed
ML-estimator is almost 10% better than the ML for the Cauchy distri-

15



0.
6

0.
7

0.
8

0.
9

1.
0

n

E
ffi

ci
en

cy
 −

 m
ed

ia
n 

s.
e.

3 4 5 8 20

Mean
Median
Sm Median
Pit Double Exp
ML Huber
Sm ML Huber

0.
70

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

n
E

ffi
ci

en
cy

 −
 9

9%
 q

ua
nt

ile
 s

.e
.

3 4 5 8 20

Mean
Median
Sm Median
Pit Double Exp
ML Huber
Sm ML Huber

Figure 6: Efficiencies of the median squared errors (left) and of the 0.99-quantiles of the
squared errors (right) for the double exponential distribution with known scale.

bution for n = 8 (right panel of Figure 8).

• The comparison between the Huber and the smoothed Huber estima-
tor for the double exponential and Cauchy distribution is more am-
biguous. The smoothed Huber estimator performs worse with respect
to the median s.e. (left panels of Figures 6, 8). With respect to the
MSE and the 0.99-quantile, both estimators perform very similarly for
the Cauchy distribution (right panels of Figures 7, 8). For the double
exponential distribution, the behaviour depends strongly on n, with
the Huber estimator being optimal among all estimators with respect
to the 0.99-quantile and n = 20, and better than the smoothed Hu-
ber estimator with respect to the MSE for n = 4, 8, 20, whereas the
smoothed Huber estimator is superior with respect to the 0.99-quantile
for most n, where it even dominates the median, smoothed median and
the Pitman estimator (right panels of Figures 5, 6).

• For the Cauchy distribution, n = 3, the Pitman estimator has by far the
largest MSE (apart from the mean; right panel of Figure 7). However,
the result can be explained by a few simulated data configurations
with two very large outliers. This behavior highlights that comparing
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Figure 7: Quantiles and MSE for n = 5 (left) and efficiencies of the MSEs (right) for the
Cauchy distribution with known scale.

estimators by the MSE suffers in principle from the same robustness
problems that affect the mean as an estimator of location. However,
measuring the quality of estimators is somewhat different from the
estimation problem itself, because an adequate quality measure should
not ignore or downweight the tails of the s.e. distribution in the same
way. A good estimator should be reliable for 90% or more datasets, and
therefore it is reasonable for a quality measure to have a breakdown
point smaller than 10% (but not 0). In fact, the MSE results for the
Cauchy distribution motivated us to include the quantiles of the s.e.
distribution in the simulations, and at least for small n, the 0.90-, 0.95-
and 0.99-quantile seem to be much more reasonable as quality measures
than the MSE.

• For similar reasons, the mean outperforms the median for the double
exponential and Huber distribution, n = 3, with respect to the 0.99-
quantile and, for the Huber distribution, with respect to the MSE (right
panels of Figures 3, 4, 5). If two of three observations are far away in
the same direction from the true location, the mean weights the single
good observation by 1

3
, which is better than choosing one of the outliers

as the median does.
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Figure 8: Efficiencies of the median squared errors (left) and of the 0.99-quantiles of the
squared errors (right) for the Cauchy distribution with known scale.

• The effect of the sample size parity (even or odd) is surprisingly large
and differs between the setups. In most situations, the median, ML and
smoothed ML-estimators are better for even n (Figures 1, 2, 3, 4, 5,
6). For the Cauchy distribution, the opposite seems to be true (Figures
7, 8), and for the normal distribution (Figures 1, 2), some smoothed
ML-estimators are worse for even n, where especially the median is
relatively good.

7.3. Results with scale assumed to be unknown

The simulations with estimation of σ by the MAD (Figures 9, 10) confirm
the good properties of the smoothing principle. For the normal distribution,
the smoothed Huber estimator clearly remains the second best estimator
(about 95% efficient with respect to the MSE, compared to, e.g., 84% of the
Huber estimator). For the Cauchy and double exponential distribution, the
smoothed ML-estimators are better than the Pitman estimator even for the
MSE and for all quantiles. The Pitman estimator seems to be more sensitive
against a misspecification of the distribution of the scale. The smoothed
Huber estimator outperforms the median and the Huber estimator at least
with respect to the MSE and the higher quantiles clearly (and sometimes
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Figure 9: Quantiles and MSE for the normal distribution, n = 4 (left) and Huber’s least
favourable (k = 0.862) distribution, n = 5 (right) with scale estimated by the MAD.

with respect to all quantiles) and is usually almost as good as the Pitman
estimator.

The Bisquare M-estimator and its “smoothed” version deliver always very
similar results, but paired Wilcoxon tests reveal that the smoothed Bisquare
is always significantly better. Both, however, are clearly outperformed by
the smoothed Huber estimator.

8. Small sample asymptotics results

Formula (5) can be used to back up the simulation results, which it gen-
erally did in the cases in which it was applied. The only remarkable feature
of the simulation results that is not appropriately reflected in (5) is the dif-
ference between even and odd n for some setups.

On the other hand, (5) is more informative about the behaviour in the
extreme tail areas, which cannot be simulated accurately, and it can add
credibility to some of the non-significant results of the simulation.

Again, selected results are presented in a graphical way. All plots refer
to n = 5 (for other values of n, very similar patterns are obtained). The
graphs compare the tail probabilities P (Tn > t) for ML and smoothed ML-
estimators under Huber’s least favourable, the double exponential and the
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Figure 10: Quantiles and MSE for the double exponential distribution, n = 20 (left) and
the Cauchy distribution, n = 8 (right) with scale estimated by the MAD.

Cauchy distribution (Figures 11, 12). Furthermore, the Huber estimator and
the smoothed Huber estimator are compared under the normal, the double
exponential and the Cauchy distribution (Figures 13, 14). On the right side
of the Figures 11 and 13, relative differences, divided by the tail probability
for the non-smoothed (Huber) estimator, are shown. The corresponding plots
for the double exponential and Cauchy distribution are similar in the sense
that they also show that the relative advantage of the smoothed estimators
increases monotonically with t in the region where the smoothed estimators
are better (i.e., for t large enough that the difference in tail probabilities is
larger than 0). There are some small peculiarities in these plots and not all
tail probabilities for t ≈ 0 are displayed. This is due to numerical instabilities
of either the involved numerical integration or some ratios close to 0/0.

The consistent pattern of all of these results is that the smoothed es-
timators are better than the non-smoothed ones in the tail areas, i.e., the
probabilities that the smoothed estimators are very far away from the true
values are lower. In terms of the relative difference, the advantage increases
with t (Table 1 gives the maximum relative difference for t ≤ 5).

Another way to look at the results is to consider the values P (|Tn| > t0) =
2P (Tn > t0) for t0 so that P (Tn > t0) is equal for the smoothed and the non-
smoothed estimator. This is a standardized way to measure the “size” of the
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Figure 11: Left: difference in tail probabilities, approximated by (5), between the
Huber and the smoothed Huber estimator under Huber’s least favourable distribution
(k = 0.862, n = 5; values larger than 0 mean that the smoothed Huber estimator is
better). Right: relative difference (difference divided by the tail probability of the Huber
estimator).

tail area for which the smoothed estimator is better. The results are given
in Table 1. Note that most of these values are smaller than 0.5, but this
doesn’t mean that the non-smoothed estimators are better, because in most
applications it is more important that estimators are not very bad (i.e., in
the far tail), whereas small deviations are tolerable.

9. Conclusion

The simulation and small sample asymptotic results show that the idea of
smoothing M-estimators can be worthwhile. Given that the higher quantiles
and the MSE are judged as more adequate quality measures than the lower
quantiles, the smoothed M-estimators performed better than their initial
counterparts in all setups (the difference in efficiency being 10% and smaller,
though).

The smoothed Huber estimator behaved very well not only under Huber’s
least favourable distribution, but also under the normal distribution, where
it dominated the non-smoothed Huber estimator uniformly, and it was not
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Figure 12: Left: difference in tail probabilities, approximated by (5), between the ML
(median) and the smoothed ML estimator under the double exponential distribution (n =
5; values larger than 0 mean that the smoothed estimator is better). Right: same under
the Cauchy distribution (using and smoothing the Cauchy ML estimator).

much worse than the Huber estimator under the heavier tailed distributions.
In the extreme tails of the error distribution, the smoothed Huber estimator
was always better. However, this advantage is quite small under the Cauchy
distribution. In the setups where the scale was unknown and estimated by
the MAD, the smoothed Huber estimator was always better than the Huber
estimator, and not much worse than the Pitman estimator for the specific
simulated distribution. The latter was, with MAD scale, outperformed by the
smoothed ML-estimator, but this estimator, as well as the Pitman estima-
tor, of course require to assume the knowledge of the underlying parametric
model.

Since the Huber estimator is widely used as a standard estimator and
all its robustness properties (most of them of asymptotic nature) hold also
for the smoothed Huber estimator, it would be a reasonable suggestion to
replace the Huber estimator by the smoothed Huber, which is similarly easy
to compute because of its explicit ψ-function (involving Φ). Note that we do
not claim that the use of the MAD as scale estimator is generally optimal.
However, there are very many approaches to the robust estimation of location
with unknown scale and there is no uniformly optimal method, and the MAD
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Figure 13: Left: difference in tail probabilities, approximated by (5), between the Huber
and the smoothed Huber estimator (k = 0.862) under the normal distribution. Right:
relative difference (difference divided by the tail probability of the Huber estimator).

is the most popular choice because of its simplicity and the good robustness
properties of location M-estimation with preliminary robust estimation of
scale (Andrews et al., 1972; Huber, 1981; Hampel et al., 1986; Maronna et al.,
2006). In order to improve small sample properties, smoother scale estimators
may be helpful, perhaps even applying the same smoothing principle, but this
can be expected to depend on the underlying distribution and is a topic for
future research. Comparing this with Pitman estimators for location with
unknown scale as derived e.g. in Bell Krystinik and Morgenthaler (1991)
could also be of interest.

By showing that for small samples the ML-estimator is still good in the
lower quantiles of the error distribution, but that the behaviour for higher
quantiles is different, the simulation results further confirmed the heuristic
(and incomplete) motivation given in Section 3. This may add something
to the intuitive understanding of the central limit theorem and its relevance
for small samples. It would be interesting to explore further the potential
of the proposed smoothing principle for more complicated setups such as
(generalised) linear regression or multivariate location.

There is a lot of literature concerning small sample behaviour of location
estimators. The Pitman estimator for the Cauchy distribution has recently
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Figure 14: Left: difference in tail probabilities, approximated by (5), between the Huber
and the smoothed Huber estimator (k = 0.862) under the double exponential distribution.
Right: same under the Cauchy distribution.

been investigated for small samples by Cohen Freue (2007). Ventura (1998)
gives an approximation of the Pitman estimator (though it does not perform
very well in the simulation study of Cohen Freue (2007)). Ionides (2005)
and Seo and Lindsay (2010) define estimators by maximising a smoothed
version of the likelihood. This idea goes back to Daniels (1960). Sugiura
and Naing (1989) discuss improvements of the median for the double expo-
nential distribution. Barndorff-Nielsen (1983, 1986) give approximations to
the conditional density of the ML-estimator and an adjustment of the signed
log-likelihood ratio respectively to get higher order accuracy of asymptotic
approximations. Comparing these developments with the smoothing princi-
ple discussed in the present paper (which we believe is more straightforward
and versatile) may be interesting, but is outside the scope of the present
study.

An R-package “smoothmest” computing the smoothed M-estimators dis-
cussed in the present paper is in preparation.
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Distribution Estimators max. rel. difference P (|Tn| > t0)
Huber’s l.f. Huber/sm.Huber 0.47 0.31
double exp. Median/sm.Median 0.72 0.72
Cauchy Cau.ML/sm.Cau.ML 0.34 0.32
normal Huber/sm.Huber 1.00 1.00
double exp. Huber/sm.Huber 0.53 0.097
Cauchy Huber/sm.Huber 0.075 0.055

Table 1: Maximum relative difference P (Tn>t)−P (T̃n>t)
P (Tn>t) for the non-smoothed estimator Tn

compared to the smoothed estimator T̃n and P (|Tn| > t0) for t0 so that P (|Tn| > t0) =
P (|T̃n| > t0), i.e., probability of the area in which the smoothed estimator is better.
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