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Abstract

“The game of red and blue” is an example given by Gillies (2000) to
illustrate the superiority of his propensity interpretation of probability
over the subjective interpretation of de Finetti. It is shown in the present
paper that the falsifiability of probability models by means of statistical
tests, which is crucial for Gillies’ interpretation, is subject to serious dif-
ficulties, one of which is the goodness-of-fit paradox: The confirmation
by a statistical (goodness-of-fit) test refutes the validity of a probability
model. This suggests that the existence of objective probabilities is an
irreducibly metaphysical assumption, i.e., it is neither testable nor falsi-
fiable by observations. On the other hand, the example is indeed a valid
illustration of a shortcoming of the subjective interpretation. If subjec-
tivists start with a priori-probability assignments assuming exchangeabil-
ity of events, it is shown that incoherent behavior becomes rational under
certain circumstances. Instead of rejecting the two discussed interpreta-
tions of probability, I argue that probability modeling inevitably requires
the acceptance of untestable assumptions about reality. The value of the
models is their power to structure our thoughts and our perceptions of
the uncertain, and not their correspondence with any objective reality.
Note: This version appears exclusively as a research report of the Depart-
ment of Statistical Science. A revised version of the part on propensities
and the goodness-of-fit paradox (with an extended discussion of Gillies’
propensity interpretation) is accepted for publication in Philosophia Math-
ematica (Hennig, 2007; a preliminary version is available on my web-
page http://www.homepages.ucl.ac.uk/~ucakche/), but it doesn’t con-
tain the discussion of subjective Bayes and most of the general Chapter 6
of the present report.
Keywords: Hypothesis tests, constructivism, interpretations of proba-
bility, Bayes, coherence, rationality, constructivism
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1 Introduction

Probability models model random phenomena, i.e., situations with uncertain
outcomes. In the present paper I argue in favor of the following theses:

• Statements about objective probabilities are not testable and falsifiable.
Two reasons are that the statement that a probability model holds implies
the statement that unexpected outcomes, which would lead us to reject
the model, are possible with positive probability, and that probability
models are applied to whole observed sequences of events, e.g., to define
independence between events, and there is only one observation of the
whole sequence.

• The propensity concept of objective probability has an irreducible meta-
physical core1. “Objective” probabilistic modeling involves subjective de-
cisions about the acceptance of untestable assumptions.

• The subjectivist interpretation of probability does not solve this dilemma.
The relation of its assumption that probability assignments should be co-
herent to actual personal beliefs is unclear and coherence is not necessarily
rational.

• The propensity as well as the subjectivist concept (and presumably all
other interpretations of probability, though this is not discussed in depth
in this paper) do not only model but also affect and change perceived
reality.

• The adoption of an interpretation of probability is a decision to adopt a
certain structure for the perception of random phenomena. Any attempt
to tie a probability model too closely to the idea of a true underlying reality
has to fail because of the basic problem of formal modeling: the relation
of a formal model to the modeled non-formal reality cannot be formally
modeled and tested. This does not only apply to objective probabilities,
but also to the relation of subjective probabilities to the true personal
beliefs which are attempted to be modeled.

In Section 2, the basic elements of Gillies’ propensity interpretation of probabil-
ity and de Finetti’s subjectivist interpretation are briefly reported. In Section
3, “the game of red and blue” will be revisited to motivate the above position.
“The game of red and blue” is an example given by Gillies (2000, 77-83) to
illustrate the superiority of his propensity interpretation of probability to the
subjective interpretation of de Finetti. The example goes back at least to Feller
(1950, 67-95) and was used by Popper (1957a) to argue against the possibility
of inductive logic.

1Among the objective probability concepts not discussed in detail in the present paper,
this holds as well for von Mises (1928) frequentism as argued, among others, by de Finetti
(1970), but not for classical probability definitions based on relative frequencies in purely
finite settings.
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Part of the discussion of the game of red and blue is the goodness-of-fit para-
dox, which implies that hypothesis tests in itself violate the probability model
they are meant to confirm and therefore cannot check such a model. In Sec-
tion 4 I discuss whether proper interpretations of hypothesis tests are possible
nevertheless. In Section 5 the subjectivist interpretation of probability is dis-
cussed in the light of the game of red and blue. I argue that the subjectivist
as well as the propensity interpretation leads to inevitable problems as long as
they are considered as referring to something that exists objectively so that this
existence can be checked by observations (I understand many subjectivists in a
way that they claim that this holds for the personal degree of belief modeled by
subjectivist probability). However, in Section 6 I sketch a version of “probabilis-
tic pluralism”, motivated by constructivist philosophy, which accepts different
interpretations as models for our perception of random phenomena, provided
the general limitations of formal modeling are kept in mind. This means that
formal models are not to be interpreted as (even approximatively) matching ob-
jective reality, including “objective” requirements of a rational learning process
of subjects. Instead, they should be taken as tools that structure (and thus
change) our observations and therefore take part in the construction of what we
call “reality.”

2 Propensities and subjective probabilities

Gillies’ version of the propensity interpretation can be sketched as follows:

• A probability value p assigned to an outcome of a set of reproducible
experimental conditions means that the experiment has the tendency
(“propensity”) to bring forth the outcome with approximately the relative
frequency p under independent replication. Thus, this is a “long run”-
interpretation as opposed to propensities applicable to singular cases as
advocated by Popper (1990; note that this is different from Popper’s ear-
lier works), for which empirical testability is out of question. Probability
models for dependent sequences are interpreted in terms of independent
repeatability of the whole sequence.

• Propensities are not operationally defined, but characterized by Kolmogorow’s
axioms, which are motivated by (but not deduced from) the properties of
relative frequencies.

• The validity of a probability assignment can be falsified by statistical
hypothesis tests.

There are various versions of propensity interpretations, the first of which is
due to Popper (1957b). They all have in common that probabilities are in-
terpreted as objective tendencies to generate the respective relative frequencies
without using a limit of relative frequencies to define probabilities operationally,
as frequentists do (e.g., von Mises 1928).
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Here is a sketch of de Finetti’s (1970) subjectivist interpretation of proba-
bility, which goes back to the early thirties.

• A probability value p assigned to an outcome A of a future experiment2

E by a subject S measures the degree of belief of S that A will be the
result of E.

• More precisely, p is the supremum amount of money3, which S thinks to
be advantageous to pay in order to obtain an amount of 1 if E yields A
and nothing in case of Ac.

• Subjective probabilities can be measured operationally with the following
procedure: If S specifies her probabilities p1, p2, . . . for a set of outcomes
A1, A2, . . ., an opponent O is allowed to choose stakes c1, c2, . . . so that for
each outcome Aj , S has to pay an amount of pjcj to O, and O pays back
cj only if Aj happens. The stakes cj may be positive or negative.

• The axioms of probability4 follow from the demand of the coherence of
S’s probability assignments. This means that S has to choose p1, p2, . . . in
order to prevent O from making a “Dutch book”, i.e., choosing c1, c2, . . .
in such a way that S loses money against O whatever the outcome of E
is.

• “Learning from experience” is operationalized by allowing conditional
bets, i.e., bets on some outcomes A, which are only evaluated if it is
clear that another outcome B happened. Coherence then enforces Bayes’
theorem on conditional probabilities, and “learning” means that the for-
mer conditional probabilities become the new unconditional ones after B
is observed.

• Learning from experience is in most cases formalized in experiments that
yield sequences of realizations of random variablesX1, X2, . . . which are as-
sumed to be exchangeable. This means that S assigns the same probability
to all permutations of intersections of outcomes of the form {Xj ∈ Ak},
where j and k come from a finite subset of the natural numbers. By
de Finetti’s representation theorem (de Finetti 1937), exchangeability is
equivalent to assuming that the X1, X2, . . . are independently and iden-
tically distributed according to a distribution Pθ conditionally on some
(unobservable) parameter θ, which obeys some prior distribution π(θ).
This means that the learning process can be fully described by the up-
dating process of the distribution of θ according to new observations en-
forced by Bayes’ theorem. De Finetti shows further that the posterior

2An experiment in the subjectivist sense can be anything where the possible outcomes can
be defined in advance. Especially, E may consist of a whole sequence of random experiments.

3I assume the linearity of the utility of money here as an idealization, which may be
accepted at least if the total amount of money involved is relatively small. This issue is
controversial and is discussed in almost all books on the foundations of probability.

4See Gillies (2000, 65 f.) for a discussion of the uncountable additivity, which is not
accepted by de Finetti.
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distributions of θ obtained by the same sequence of outcomes (length con-
verging to infinity) under different prior distributions converge toward a
distribution which concentrates all its mass on eventually arbitrarily small
intervals about a single limiting parameter θ0. This provides a link to the
propensity interpretation, which assumes the objective existence of such a
parameter for independent sequences of repetitions of an experiment. For
0-1-sequences, this is simply the probability of “1” in a single go.

There are a lot of other interpretations of probability, for example the logical
interpretation (e.g., Keynes 1921, Jeffreys 1931), and the frequentist interpre-
tation (e.g., von Mises 1928). Some interpretations require different systems
of mathematical axioms, e.g., epistemological and aleatory versions of impre-
cise probabilities (e.g., Walley 1991, Hampel 2001). The reader is referred to
Fine (1973), Gillies (2000) and to the cited original literature for a discussion
of these interpretations. Gillies (2000, Chapters 3-6) gives arguments why he
prefers the subjectivist interpretation over the logical one and the propensity
interpretation over the frequentist one, with which I agree. Note that recent ad-
vocates of “objective Bayes” statistics in the tradition of Jeffreys (e.g., Bernardo
and Smith 1994) recognize the elicitation of subjective prior distributions from
well informed experts as a philosophical ideal. They consider objective rules
for initial probabilities as a reference standard, where elicitation is not possible
or intersubjective agreement is important. Therefore they are philosophically
closer to the subjectivist than to the logical interpretation.

3 The game of red and blue and the goodness-

of-fit paradox

Here is how Gillies (2000, 78 f.) describes the “game of red and blue”:
“At each go of the game there is a number s which is determined by previous

results. A fair coin is tossed. If the result is heads, we change s to s′ = s + 1,
and if the result is tails, we change s to s′ = s − 1. If s′ ≥ 0, the result of the
go is said to be blue, whereas if s′ < 0, the result of the go is said to be red. So,
although the game is based on coin tossing, the results are a sequence of red and
blue instead of a sequence of heads and tails. Moreover, although the sequence of
heads and tails is independent, the sequence of red and blue is highly dependent.
We would expect much longer runs which are all blue than runs in coin tossing
which are all heads.”

Note that a subjectivist could object that a “fair coin” is a construction
that already assumes an objective interpretation of probability. However, let us
assume that most subjectivists would agree with our probability assignments
if they were allowed to test and inspect the sequence generating device inten-
sively. If the initial value of s being −1 or 0 is decided by a coin toss, red and
blue are exactly symmetrical. Gillies argument against de Finetti’s subjectivist
interpretation goes as follows:

“Two probabilists - an objectivist (Ms A) and a subjectivist (Mr B) - are
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asked to analyze a sequence of events, each member of which can have one of
two values. Unknown to them, this sequence is in fact generated by the game of
red and blue. . . . Consider first the objectivist. Knowing that the sequence has a
random character, she will begin by making the simplest and most familiar con-
jecture that the events are independent. However, being a good Popperian, she
will test this conjecture rigorously with a series of statistical tests for indepen-
dence. It will not be long before she has rejected her initial conjecture; and she
will then start exploring other hypotheses involving various kinds of dependence
among the events. If she is a talented scientist, she may soon hit on the red
and blue mechanism and be able to confirm that it is correct by another series
of statistical tests.

Let us now consider the subjectivist Mr B. Corresponding to Ms A’s initial
conjecture of independence, he will naturally begin with an assumption of ex-
changeability. Let us also assume that he gives. . . ” equal probability 1/(n+ 1)
to all possible numbers of blue results in a sequence of n goes (Gillies uses a
different notation here). This assumption is made only for ease of computa-
tions, the argument given below also applies to any other exchangeable model
(prior distribution). “Suppose that we have a run of 700 blues followed by 2
reds. Mr B would calculate the probability of getting blue on the next go . . . as
701/704 ≈ 0.996. . . .Knowing the mechanism of the game, we can calculate the
true probability of blue in the next go, which is . . . zero.” (It can easily be seen
that s at the start of go 703 must be −2.) Gillies then further cites Feller (1950)
showing that even in sessions as large as 31.5 millions of goes it happens with
probability of about 0.7 that the most frequently occurring color appears 73 per
cent of the times or more, in which case Mr B will estimate the subjectivist
limit parameter θ0 as at least 0.73 (here it is assumed that θ is prespecified as
the parameter giving the probability of the color that turns out to occur most
frequently). “Yet, in the real underlying game, the two colors are exactly sym-
metrical. We see that Mr B’s calculations using exchangeability will give results
at complete variance with the true situation.

Moreover he would probably soon notice that there were too many long runs
of one color or the other for his assumption of exchangeability to be plausible.
He might therefore think it desirable to change his assumption of exchangeability
into some other assumption. Unfortunately, however, he would not be allowed
to do so according to de Finetti . . . ”, because assuming exchangeability a priori
means that with respect to all further Bayesian calculations only the number of
observations being red or blue, but not their order, can be taken into account.
Once assumed, exchangeability cannot be subsequently rejected. Otherwise, the
coherence of probability assignments would be violated, as will be demonstrated
in Section 5. As Gillies puts it, “unless we know that the events are objectively
independent, we have no guarantee that the use of exchangeability will lead to
reasonable results.” This is the opposite of de Finetti’s opinion that the assump-
tion of objective independence can be made superfluous by subjective analysis
using exchangeability.

An obvious objection to Gillies’ criticism is the possibility to include devia-
tions from exchangeability in a subjectivist Bayesian model. Mr B could put a
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prior probability of 0.9, say, on the exchangeability model and a probability of
0.1 on certain models specifying positive dependence between goes, which may
fit the game of red and blue more or less adequately. Such an averaging over
different models is in fact sometimes done in Bayesian statistics, though it is
computationally complicated (e.g., see Hoeting, Madigan, Raftery and Volin-
ski 1999)5. If, after such prior modeling, the result of an observed sequence
of experiments strongly indicates dependence, the posterior probability for ex-
changeability will be very small, and the subjectivist’s conclusions will be much
more realistic than the results under exchangeability given above. Gillies replies
that “what leads to so much complication is that on this approach it is necessary
to consider all the possibilities in the very beginning of the investigation.” Since
there is a very large number of possible kinds of dependencies, this is practically
impossible. Further, Gillies reminds the reader that exchangeability, Bayesian
conditioning and coherence lie at the heart of the Bayesian concept of “learning
from experience”. The modeling of complicated dependence structures may be
justified from a pure subjectivist viewpoint, but it comes at the price of the loss
of the attractive feature that different subjects with different prior models can
be proved to arrive at consensus if the length of the random sequence converges
to infinity. In Section 5 the discussion of the subjectivist approach to the game
of red and blue will be continued.

Here is a criticism of the part of Gillies argument that concerns Ms A, the
objectivist. Gillies seems to take for granted that the independence assumption
or a certain model for dependence can be reliably rejected or confirmed by “a
series of statistical tests”. But doing subsequent statistical analyses after having
applied a statistical test for assessing the model assumptions gives rise to serious
problems, of which the “goodness-of-fit paradox” is the most striking one. The
paradox can be stated as follows. Assume that the real distribution underlying
a statistical experiment (which may be a sequence of repeated subexperiments)
is Q. Assume further that a statistician carries out a statistical test ψ of level
α > 0 to confirm her null hypothesis that the real distribution is P , in order
to base further statistical inference on the then confirmed assumption of P (P
may or may not be equal to Q)6. Such tests to check an underlying model
are called “goodness-of-fit tests” in the statistical literature, therefore the name
“goodness-of-fit paradox”. Let {ψ = 1} be the event that ψ rejects the null
hypothesis. Because ψ is an level-α test, P{ψ = 1} = α > 0. Because P is
used as a model assumption for the subsequent statistical analyses only if it is
not rejected by ψ, the distribution R of the data for these statistical analyses
is the true distribution Q conditional on the non-rejection of P , i.e., on ψ = 0.
Thus, R{ψ = 1} = 0 6= α, and therefore R 6= P . This proves that, if statistical
analysis based on the model assumption P are to be carried out only if P has
been confirmed by a goodness-of-fit test, the effective distribution of the data

5I have, however, not succeeded to find a simple model for deviations from exchangeability
in the Bayesian literature so that a high probability, but smaller than 1, is assigned to an
exchangeability model.

6Note that in almost all practically relevant settings, a hypothesis test with α = 0 is useless
because the probability to reject the null hypothesis is then 0 even if the alternative holds.



3 THE GAME OF RED AND BLUE AND THE GOODNESS-OF-FIT PARADOX8

for which P is assumed (which is the distribution over a long run of data sets for
which P is accepted) cannot be P , whether P = Q, i.e., P is the true underlying
distribution of the untested data, or not. In other words: if we do not carry out
a goodness-of-fit test, we cannot check in a falsificationist manner whether P
holds. If we carry out such a test and confirm P , we can disprove that P is the
distribution of a long run of observed data sets.

A crucial point in this argument is that P is a probability model for a whole
data set, not only for a single go. “Independence” as used by Gillies is defined
in terms of the probability calculus and applies to the whole sequence of goes.
But this means that there is only one observation to check P , namely the whole
data set. Consequently, there is no long run (be it long but finite or infinite) to
which a propensity interpretation of the independence model could refer.

How does the goodness-of-fit paradox look like in the game of red and blue?
An adequate independence test is the runs test (Lehmann 1986, p. 176), which
uses as its test statistic the number of runs of experiments yielding the same
outcome. For example, the sequence with 700 blues and two reds has two runs,
whereas a sequence of 700 blues followed by one red and one blue would have
three runs. With a level α = 0.01, the runs test rejects independence under
700 blues and two reds, but accepts it under 700 blues, one red and one blue.
Under the distribution of full data sets for which independence is accepted by
the runs test, a sequence of 700 blues and one red enforces blue in the 702nd
go, while red would lead to a rejection of independence and is thus impossible.
Thus, there is an obvious dependence between the goes in these sequences.

In the statistical literature it is well known that testing a model assumption,
under which subsequent statistical inference is to be made, damages the validity
of this assumption, see e.g. Harrell (2001, 56). Many standard textbooks on
inferential statistics (e.g., Bickel and Doksum 1977, 62) stress that null hypothe-
ses and models should not be chosen dependent on the same data on which they
are to be applied, because of the bias (which refers to what I call violation of
the model assumption by the goodness-of-fit paradox) in subsequent analyses
caused by preceding tests. Often, model checks by goodness-of-fit tests are re-
placed by informal graphical methods such as normal probability plots or time
series plots in applied data analysis, but this does not prevent the goodness-of-fit
paradox, because such graphical methods lead to the rejection of a true proba-
bility model with positive probability as well, with the only difference that this
probability cannot be explicitly computed because of the intuitive non-formal
nature of these methods.

The effect of a goodness-of-fit test on subsequent analyses which assume a
seemingly confirmed distribution P can be assessed by simulations, as is done
for normality tests in Easterling and Anderson (1978). However, I am not aware
of any mention of the implications of the goodness-of-fit paradox in the discus-
sion of the foundations of statistics with the single exception of Spencer-Brown
(1957), which is seemingly ignored in recent statistics as well as philosophy.
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4 Is hypothesis testing generally paradoxical?

In this section the meaning and the implications of the goodness-of-fit paradox
are discussed, supplemented by some more general comments on hypothesis
testing. It seems natural to me that the paradox gives rise to the following
questions:

Question: Why is it relevant that the goes conditional on the acceptance of
independence are no longer independent? Should not the test apply to the
underlying unconditional distribution, which may well be independent if
the test confirms independence?

Answer: From a practical point of view, consider the situation that a method
of statistical inference, a confidence interval, say, is to be applied to the
data conditional on the acceptance of independence, and that the known
statistical properties of this method require the assumption of indepen-
dence. The goodness-of-fit paradox results in a violation of the assump-
tion, because after application of the test, the method is confronted with
the conditional rather than the underlying distribution.

On a philosophical level, however, Ms A may still insist that she checks
the independence model of the underlying process, regardless of the de-
pendence caused in the conditional model. But there is a fundamental
epistemological difference between checking deterministic predictions and
probability models with a falsificationist attitude. The uncertainty about
the precise outcome and the possibility of outcomes with a small proba-
bility are essential components of a probability model. It is dubious to
take the realization of such a possibility as a reason to reject the model.
As long as a goodness-of-fit test is applied, the test (and not the under-
lying process) defines the sequences that can be observed as generated by
the model, because we do not regard sequences for which independence
is rejected as independent sequences. If full sequences of length 702, say,
were repeated, and Ms A repeated her test (all the statistical theory of
the tests is based on such an imaginary repetition), and recorded all se-
quences for which independence had been accepted, she could explore the
resulting distribution afterward. She would then find dependence due to
the goodness-of-fit paradox in these data, whether she would use them for
subsequent analyses or not. My conclusion is that the conditional and not
the underlying distribution is relevant, because that is the one which is
observable. The decision to which class we assign a phenomenon is part
of the observational act and is necessarily an integral part of the idea of a
repetition and a long run, as long as propensities are not seen as something
generally unobservable and therefore entirely metaphysical.

If we accept a model conditional on the result of a test, this test affects our
perception of the tested phenomenon. Only if we accept a model without a
test, we could observe data directly from the true underlying distribution
- given that we believe that there is one.
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Question: What about the practical relevance of the paradox? The violation of
the assumption to be tested is based on only a proportion of α false rejec-
tions of the null hypothesis. If α is small, can it be said that independence
is fulfilled, if not exactly, then at least approximately?

Answer: The answer depends on what “approximately” means and what kind
of analysis should be applied after the goodness-of-fit test. Usually, it is
stressed that statistical analyses are based on model assumptions and that
the analyses are only adequate if the assumptions are fulfilled. But model
assumptions can never be verified: A “confirmation” by a goodness-of-fit
test is not a verification. While α, the type I error of a statistical test,
is controlled, the type II error - confirmation of a wrong model - can
be arbitrarily large at least if flexible enough alternatives are considered.
Thus, for all model-based methods, it is important which violations of
the model cause misleading results, and whether such violations can be
caused by the application of goodness-of-fit tests. In some situations this
may indeed happen. For example, the omission of a variable with a non-
significant non-zero regression coefficient in linear regression can heavily
bias the estimation of the other coefficients in unfortunate circumstances,
and this becomes worse the more tests are used, see Harrell (2001). In
other situations, the goodness-of-fit test may be harmless and may yield
a distribution with which the method can cope very well, even if the real
underlying distribution did not match the model assumption. In the game
of red and blue, the runs test will reject the null hypothesis of independence
for seven blues and two reds in a row at a p-value of 0.0099. Thus, if under
the real underlying distribution the goes are independent, and Ms A uses
the game of red and blue as an alternative, she will guess a probability of
0 for blue in the tenth go with a probability of about 1% (because in the
game of red and blue, blue is impossible in this situation) instead of 7/9,
the standard estimation under independence. This is the price for being
able to reject the independence model when it does not hold. The reader
may judge whether this is harmless or not7. With 700 blues and 2 reds,
as above, the type I error is smaller than 10−15.

One could think that the influence of the paradox vanishes if α is chosen
smaller and smaller. This is in principle true, but the smaller α is, the
larger is the type II error, i.e., the probability to confirm a wrong model.
Interestingly, Dawid (2004), who is concerned with a “de Finetti-Popper
synthesis”, namely the empirical falsification of a model belief of a subjec-
tivist, proposes the so-called “Borel-criterion”, which is mathematically
equivalent to a hypothesis test with α = 0, thus avoiding the goodness-of-
fit paradox. But the avoidance is only theoretical, because his suggestions
for attaining α = 0 assume n = ∞, and a practical falsification for finite
n will require α > 0 as with a usual hypothesis test.

7A subjectivist, or any Bayesian, would say that this depends on the prior probability for
the exchangeability model.
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A formalization of the approximation of data by models can be obtained
by defining distance measures between distributions (data can be seen as
empirical distributions). This is discussed, e.g., in Davies (1995). Davies,
however, avoids assuming the existence of objective probabilities. In his
approach, the observed data are approximated by the probability model
and not an underlying true distribution.

The consequence of this discussion is that type I errors (which cause the
goodness-of-fit paradox) can often be tolerated in practice, but not always.
But this does only mean that the analyst is in a situation where his en-
visaged statistical method will presumably work reasonably8. It does not
mean that there is any certainty that a real underlying distribution is met
approximately by the accepted null hypothesis P - unless “approximation”
is defined in terms of confirmation by a goodness-of-fit test.

Question: The paradox does not only apply to goodness-of-fit tests, but to
statistical tests in general. Consider a one-sided t-test of the mean of a
normal distributed random variable to be zero and assume that the null
hypothesis holds for the underlying distribution. Conditional on accep-
tance of the zero mean by the test, data have neither a zero mean, nor are
they i.i.d. normally distributed. Is hypothesis testing generally paradoxi-
cal and should it be abandoned?

Answer: I think that there is nothing wrong with hypothesis tests which are
done at the end of a study, provided no analyses dependent on the outcome
of these tests are done. If a new medicine is compared to an old one
by means of a two-sample t-test of some measurement which is assumed
to be i.i.d. normally distributed among the patients, then the result of
the test will be interpreted with respect to new patients. Therefore, the
underlying distribution and not the distribution conditional on the test
result is of interest (see the first question). However, this is based on the
untestable assumption that the underlying distribution is really normal
(here, “approximate normality” in a well defined sense is sufficient) and
that it is the same for the participants of the test and for new patients. In
applied science, to the indignation of some philosophers, it is often useful
to do things based on untestable assumptions.

Question: Should then goodness-of-fit testing be abandoned and should the
scientists assume normality or independence without checking it?

8I am almost sure that the following result could be proven: Be Q a Bernoulli model for
independent goes with true probability p for heads in a single go. Let R be the distribution Q

conditional on confirmation of independence by the runs test. Let C be the usual confidence
interval to the level β calculated as if the underlying distribution were Q. Then R{p ∈ C} > β.
In words, the probability that the true parameter is inside the confidence interval is larger

under R than under the erroneously assumed Q. Therefore, the goodness-of-fit paradox, while
distorting Q, has no negative consequences on the succeeding statistical analysis in this case
except of the confidence level becoming conservative.



4 IS HYPOTHESIS TESTING GENERALLY PARADOXICAL? 12

Answer: Definitely not. There is a difference between the philosophical and
the practical aspect. Philosophically, normality or independence cannot be
checked without violating it. There is no observable objective distribution,
not even in a falsificationist sense, because “critical” observation (with
the option of rejection) does not leave the distribution unchanged. From
a practical point of view, data analytic experience shows that analysis
assuming an inadequate model is in most cases much worse than the slight
violation of the model assumption by checking it. Ms A is well advised
not to trust the independence model.

Question: What about testing and making subsequent inference on different
datasets? The goodness-of-fit tests and even a complicated model selection
process may be applied to the first 1000 goes and the resulting model can
then be used to analyze all later observations.

Answer: This avoids the goodness-of-fit paradox indeed and is often useful in
practical model selection. However, it assumes that the first and the later
dataset are independent of each other and follow the same model, which
is untestable, so that the philosophical problem is only shifted.

There are some more difficulties with hypothesis testing, of which presumably
multiple testing is the most notorious one. This is also relevant to Gillies’ de-
piction of the game of red and blue, where Ms A is pushed into running even
“a series of statistical tests”. On the one hand, this is useful, because a single
statistical test is only able to distinguish the null hypothesis from more or less
specific alternatives (not every kind of dependence leads to “runs”), and they
are useless if neither the null model, nor such distinguishable alternatives hold9.
On the other hand, multiple tests either raise the type I error of rejecting a true
model or have to be corrected so that the power of every single test is reduced.
Applicable corrections such as the Bonferroni correction (k tests of level α/k
yield a probability of at most α of at least one rejection of the null hypothesis,
cf. Holm 1979) are highly conservative, so that a researcher, who really wants
his null hypothesis to be confirmed by a proper statistical method, has only to
use so many tests that α/k gets smaller than any p-value10. Gillies (p. 155),
confronted with the fact that one out of eleven independence tests applied to
different “gambling systems” for coin tossing rejects his null hypotheses (which
he does not want to be rejected), writes that “our falsifying rule must be used
with a certain “judiciousness”” and discusses that a single “falsification” out
of a battery of tests should be tolerated under certain circumstances. But if

9It is easily forgotten that the alternatives against which a test is informative are not uni-
versal. Gillies (2000, 152) interprets the fact that the relative frequency of tails in some long
coin tossing experiments does not deviate significantly from 0.5 as “confirming the hypothesis

of an unbiased coin and independent tosses.” But such a test is only powerful against prob-
abilities different from 0.5 It assumes independence for the null hypothesis as well as for the
alternative, and it does not provide any information concerning independence. Gillies knows
better: on p. 155, he is concerned with real independence test.

10I admit that this does not always work; the minimum observed p-value becomes smaller
with larger k.
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he gave a formal rule for that, by this he would define a single combined test,
and this is exactly what the Bonferroni correction does. Indeed, the Bonfer-
roni combination with α = 0.05 and k = 11 of Gillies’ tests would not falsify
independence, but would be rather conservative.

5 Is subjectivism the answer?

As mentioned in Section 3, subjectivists could model a possible deviance from
exchangeability in principle if they specified alternative models and prior prob-
abilities for this case before they start observing. Objectivists are in principle
also not allowed to choose their hypothesis tests data-dependently if they do not
want the test distribution to be biased. Does this mean that Gillies’ argument
against the subjectivists is not valid, and that the subjectivists can even better
cope with the game of red and blue, because there is no goodness-of-fit paradox
in subjectivism? I do not think so.

Usually, not all strange phenomena that might occur in the data can be
anticipated before the observations are made. Objectivists are not constrained
so much by coherence considerations and change their models more easily, even
paying the price that some analyses may be moderately biased afterward. An
indication is that robust statistical methods, i.e., methods that can handle slight
deviations from model assumptions, are much more widespread and successful
in non-Bayesian than in Bayesian inference, because the possible deviation from
a standard model does not have to be modeled precisely in an objectivist setting.
The apparatus developed, e.g., in Huber (1981) and Hampel et al. (1986), is
much easier to handle than the Bayesian suggestions of Box (1980) and Berger
(1994). Reasons for this can be found in Huber (1980).

The problem is not only computational but also philosophical. Robust
Bayesian analysis requires that there is a “true” prior distribution of the subject
covering all possible model deviations, though it may be unknown to the subject
himself and unmeasurable by an operational elicitation procedure in finite time
(cf. Berger 1984). Subjectivists often criticize objectivists because they assume
that there is a true frequentist probability or propensity, which is metaphysi-
cal. But the subjectivist assumption made about the subjects is metaphysical
as well. The operational elicitation procedure proposed by de Finetti assumes
an idealized situation because S (notation taken from the introduction) has to
choose her probability assessments independently of any knowledge about the
beliefs and the behavior of O. It is assumed that money (or whatever is at stake)
has linear utility. The most problematic assumption is that the result of the
measurement procedure is meaningful, i.e., that a belief of S exists which can be
adequately expressed by values such as those elicited by the measurement pro-
cedure. The Bayesian model of probability beliefs is a mixture of a descriptive
and a normative model. It is well known that people do not generally behave
coherently, not even in the precisely defined Bayesian sense, see Walley (1991,
48) and the references given therein. The operational measurement procedure
forces them to do so - and as long as they are coherent, there are no other
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restrictions and the people are allowed to keep arbitrarily unreasonable beliefs.
I do not see any convincing argument why there should be true underlying per-
sonal probabilities which are coherent (even if the concrete person did not act
coherently unless forced), but not restricted in any other way. It is also not
clear why the results of the operational procedure should be called “rational”.
Walley (1991, Chapter 5) discusses in depth that, under a lack of information,
it is reasonable not to specify a precise betting quotient, namely the subjective
probability, but to place bets on A up to a certain betting quotient p− and to
place bets on Ac only up to some q− < 1 − p−. This would mean that S could
choose her betting quotients so that she has the feeling of making a good deal
whenever O accepts some of her bets.

Is coherence11 rational? Here is an elaboration of the incoherence which
would arise if the subjectivist Mr B rejected his exchangeability model, which
he had set up before the experiment, in the light of seemingly dependent ob-
servations in a situation like the game of red and blue. Let O now be the
opponent of Mr B. Assume that Mr B had assigned probabilities to a se-
quence of 0-1 events, X1, . . . , Xn, judged to be exchangeable. Let P denote
his whole initial model. Let p = P (Xn = 1|Xn−1 = xn−1, . . . , X1 = x1) for
some particular outcomes x1, . . . xn−1. Choose these outcomes so that they
seem to be incompatible with exchangeability in such a way that Xn = 1
seems to be favored compared with the prediction from an exchangeability
model, such as after, (1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1). To operational-
ize the violation of de Finettis coherence demand, O has to be allowed to
choose conditional stakes before the experiment as well as later, once the values
of X1, . . .Xn−1 have been observed. Let O choose a stake −T for the event
{Xn = 1|Xn−1 = xn−1, . . . , X1 = x1} in the beginning, which means that the
bet only takes place if Xn−1 = xn−1, . . . , Xn−1 = xn−1 will be observed. Then
O has to pay pT to Mr B (I assume T > 0) and Mr B has to pay back T if
{Xn = 1}. Suppose that O has held back at least another amount of T to bet
again, unconditionally, after the (n− 1)th observation.

After having observed Xn−1 = xn−1, . . . , X1 = x1, Mr B realizes that he no
longer believes in exchangeability and changes his betting quotient on {Xn = 1}
to q > p, because he now thinks that {Xn = 1} is more likely than under his
initial model. Now, O can generate a “Dutch book” by choosing stake T for
{Xn = 1}, because this means that in case of Xn = 0 he gets (q − p)T > 0
from Mr B, and in case of Xn = 1, he gets (1 − p)T − (1 − q)T = (q − p)T as
well, thus Mr B is incoherent. But this is not the whole story. Assume that
there is a real underlying (propensity) model Q with positive dependence among
the observations, so that there is a good chance that Mr B observes something
that lets him change his mind, and the real probability is Q(Xn = 1|Xn−1 =
xn−1, . . . , X1 = x1) = q0 ≥ q. If Mr B now did not change his probability from
p to q, and O placed another stake of −T on {Xn = 1}, then Mr B’s expected
loss would be 2q0(1 − p)T − 2(1 − q0)pT = 2(q0 − p)T , which is at least twice
the loss from the Dutch book. Even if O did not place any new stake on an

11Coherence is also required in Walley’s (1991) alternative approach.
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unchanged p, Mr B would be better off on average if he changed his probability
to q and O chose the Dutch book. This means that in the situation of the game
of red and blue, where Mr B’s suspicion against exchangeability is justified, it
is better for him to act incoherently than to follow his prior beliefs.

A subjective Bayesian might object that, if it is clear thatXn−1 = xn−1, . . . , X1 =
x1 would increase Mr S’s probability for {Xn = 1} compared to the exchange-
ability model, then exchangeability was already the wrong model for Mr S’s
prior belief12. This is, in principle, a valid argument. However, in all but
the simplest of setups, it is impossible to go through all possibilities, and this
would also make the mathematics intractable. Simple models are preferred in
most situations for reasons of interpretation, communication and understand-
ing (in most cases, Bayesian modeling is not done for offering bets - and even
the clients of bookmakers would prefer simple models). An important argu-
ment of de Finetti to favor the subjective approach over the frequentist (and
propensity) one is that his subjectivist definition is operational - probabilities
are observable and not metaphysical. This is not compatible with claiming after
the occurrence of an inconsistency that the “true” subjectivist probability had
not properly been observed in advance. Such a claim may lead to a posteriori
adjustment of the prior probability - and this means that observing betting be-
havior with the subjectivist framework in mind actually changes the observed
probabilities.

Furthermore, Mr B may change his mind not only because of the previous
observations, but also because of new information from other sources than the
modeled observations. It may therefore be more reasonable to start with an
overly simple model and to modify it in case of a serious “prior-data conflict”,
even though this violates coherence13. “Robust Bayes” does not solve this prob-
lem, because it requires a specification of possible disturbances of the model in
advance. The incoherent but pragmatic approach is presumably taken by many
practically oriented Bayesians. For example, Berger (1984) suggests “post-data
modification” of the prior without discussing the coherence issue.

This discussion should not be interpreted as proving that subjectivist mod-
eling is wrong. The attractive feature of de Finetti’s subjectivism is that it
is a full, consistent theory for a subject S that chooses to follow the Bayesian
rules. Not only the assigned probabilities, but also this choice is subjective, and
it has been shown that there are, at least in some situations, good arguments
against this choice. I would not interpret the prior probabilities of S (or the
consensus of a group of subjects) as a valid measurement of her real beliefs,
but as an (often useful) artificial construction. This construction is based on an
interplay between S’s (not exactly formalizable) beliefs and the Bayesian rules,

12De Finetti (1937) was more optimistic (too optimistic, I think) about exchangeability,
though. He wrote that “it suffices that the conditions. . . do not present any apparent asym-

metry”. In objectivist probability modeling, analogously, independence models are chosen in
most cases simply because the modelers have no idea where dependence might come from
in the particular application. Independence is seldom tested if the experiment seems to be
reasonably transparent.

13Even a very complicated model may be “overly simple”, if conditional probabilities on
some unexpected but possible events are not modeled separately.
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i.e., the coherence requirement. Further important aspects are the format and
the interpretability of the results of the data analyses for which the Bayesian
computations and assignments are used and the requirements of the (scientific)
social system to which the subject belongs. A decision for exchangeability can
be interpreted as the decision to ignore the order of the observations. It may be
known that effects according to this order are not interesting with respect to a
particular study, and this is an argument for exchangeability even if S did not
exclude the occurrence of conditional dependence structures which would violate
exchangeability. Through de Finetti’s representation theorem, exchangeability
guarantees the representation of the a posteriori-distribution by a distribution
over a single interpretable parameter (the probability for “1” in a sequence of
0-1 goes) and exchangeability is often chosen because such an interpretation is
desired. In general, the effect of prior modeling in Bayesian statistics is a prior
weighting of possible different posterior outcomes, and this can be done not
only because of belief, but also because of other reasons, e.g., to attain a desired
balance between simplicity and accuracy in model selection. Further, if the sub-
jectivist theory is not followed blindly and dogmatically, occasional remodeling
in case of extreme prior-data conflicts or new information may seem acceptable
(as well as goodness-of-fit testing and model checking by objectivists), even if
it is incoherent with the prior choices.

6 Discussion: probability models and reality

To summarize the main points, it has been shown that hypothesis tests cannot
be used to check objectively interpreted probability models in a falsificationist
sense. More generally, if (as usually done and necessary to define “indepen-
dence”) a whole sequence of observations is modeled by a probability model,
there is only a single observation (namely the whole sequence) at hand to judge
the adequacy of the model. Every “long run” interpretation of probability can
therefore at best be very weakly linked to the observations.

On the other hand it has been shown that in a subjectivist setup incoherent
assignments of probability can be rational, given that the initial assignment of a
priori probabilities involves exchangeability assumptions or other simplifications
(as usually made in the applied literature) that can get in conflict later with the
then observed data. If subjectivists insist on coherence and claim that in these
cases the initial probability assignment has not been “true” but there has been
a true coherent a priori-probability which has not been observed because of sim-
plicity considerations, the subjective interpretation loses its operationality and
has to be treated as dealing with an unobserved and unobservable hidden truth -
which was the main target of de Finetti’s criticism of objectivist interpretations.
Note further that exchangeability plays a key role in the Bayesian concept of
learning from experience, and therefore the adoption of complex models that
can deal with seemingly correlated data (where the correlation does not come
in a handy format including an exchangeable error term or something similar)
would spoil some other arguments that have been used to favor the (subjec-
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tivist) Bayesian approach. For the subjectivist interpretation, the link between
an a priori probability model and the observable reality (about personal beliefs)
becomes very weak as well, even though it is at least conceivable that a sub-
jectivist performs the Herculean task of assigning probabilities to all possible
outcomes of a sequence of moderate length so that all possible deviations from
the idea of exchangeability are taken into account a priori. Even such a subjec-
tivist, however, is forced to ignore every new knowledge becoming available in
the course of the random experiment from other sources than those modeled in
advance in order to behave coherently, which does not seem to be very rational.

Several good arguments are around as well (e.g., in Gillies, 2000) to dispute
strong links to observable reality for the frequentist approach, Popper’s (1990)
single case propensity approach and the objectivist Bayesian approach.

Instead of looking for a probability concept that is a “better” reflection of
reality than those mentioned above, I suggest to acknowledge that the very
idea of probability as formalization of uncertainty always has to involve non-
observable components such as the possibility or probability of events that did
not happen or the concept that some events had been unlikely though they
actually happened.

If probability interpretations are seen as concepts to structure our percep-
tion of ideas that do not necessarily refer to something objectively existing (be
it personal beliefs), it can further be acknowledged that such interpretations
changes our perception and therefore the observed reality. Here is one example
in the context of independence tests. Assume that a researcher wants to anal-
yse several series of observations using an independence assumption, and we test
this assumption for the different series using the runs test, say. In some cases
independence will be rejected. She will then consider the series for which inde-
pendence has been rejected as belonging to a different “class” from the others,
she will start to look for irregularities in the experiments leading to these spe-
cial series and quite often she will find some, while the “tested-as-independent”
series are accepted as they are14.

It has been demonstrated in the present paper how the checking procedure
for long run-propensities changes what is actually observed as a “run”. In every
application of a long run-concept it is necessary to define what a repetition is.
This always involves building up a class out of non-identical events, and this
can never be fully objective (as de Finetti, 1970, pointed out). It can also be
seen how the demand of coherence changes people’s behavior in many cases
or at least their observable probability assignments (the a priori assignments
of the subjectivist who takes all possible outcomes sensibly into account in

14Another illustration, which is related to the goodness-of-fit paradox, is given by Fine (1973,
91 f.). He shows that the apparent convergence of sequences of relative frequencies of some
experimental outcome follows from apparent randomness under reasonable formal definitions
of “apparent convergence” and “apparent randomness” for finite n. The frequentists use such
apparent convergence to motivate their interpretation of probability. A possible interpretation
is that, whenever we see a sequence of relative frequencies that does not seem to converge, we
reject the randomness of the sequence of experiments. Thus, apparent convergence of relative
frequencies is not an objective empirical fact (as von Mises suggests), but a mathematical
consequence of our construction of randomness.
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the beginning also seem to me rather a construction enforced by the Bayesian
methodology than a proper representation of what she believed before).

In this sense I see probability interpretations as methods to construct par-
ticular perceptions of reality15. With this in mind, different interpretations give
rise to different perceptions, none of which is in itself right or wrong. Long run-
concepts support (and change) our perception of phenomena in the “outside
world” (and are “objective” only in this sense) which we construct as “regular”
or “repetitions”, but can by no means claim that they are the only legitimate way
to formalize such phenomena. The subjective concept supports (and changes)
our perception of rational processing of degrees of belief, but alternative con-
cepts neither of rationality nor of modeling belief can be ruled out.

Therefore my attitude toward the foundation of probability is pluralist, but
in a different sense than that of Gillies (2000). While it makes sense to think
about the internal consistency of probability interpretations, a final decision
about “better” or “worse” concepts cannot be made by philosophers. Every
scientific problem using probability concepts needs a new decision in which way
we want our perception to be structured and changed and in which aspects of
uncertainty we are interested. This is necessarily subjective and not general.
The attitude discussed here puts me in the vicinity of constructivist philosophy
(see, e.g., Berger and Luckmann 1966, Watzlawick 1984, von Glasersfeld 1995,
Gergen 1999) and is in fact inspired by it. It may be worthwhile to elaborate
further what constructivism has to offer to the analysis of mathematical models
of reality and to the foundations of probability in particular.
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