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Abstract

Gillies (1973) introduced a propensity interpretation of probability in
which probabilities are linked to experience by means of a falsifying rule for
probability statements. The present paper makes two main contributions.
(1) It is argued that general statistical hypothesis tests should be allowed
as falsification rules instead of the restricted rules proposed by Gillies.
(2) The “goodness-of-fit paradox” is introduced, which can be stated as
follows: the confirmation of a probability model by a statistical (goodness-
of-fit) test refutes the validity of the model.

The paradox is illustrated with an analysis of “the game of red and
blue”, which has been used by Gillies (1973, 2000) and Popper (1957a).
Several possibilities to interpret the paradox and to deal with it are given.
The validity of Gillies’ propensity interpretation is discussed in the light
of the results of the paper. The conclusion is that the propensity approach
is useful, but the connection of propensity models to the observed reality
is weaker and needs more subjective decisions of the researcher than ex-
pected by Gillies.
Keywords: Hypothesis tests, interpretations of probability, Neyman-
Pearson theory

1 Introduction

The present paper belongs to the realm of the foundations of probability, which
seems to be a somewhat unusual topic in Philosophia Mathematica up to now.
However, probability theory is a branch of mathematics, and therefore the foun-
dations of probability treat the relation of a particular class of mathematical
models to reality, which should be a legitimate part of the philosophy of math-
ematics.

Gillies (1973) introduced a propensity interpretation of probability in which
probabilities are linked to experience by means of a falsifying rule for probability
statements (FRPS), which will be discussed and modified in the present paper.
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In general, propensity approaches interpret probabilities as objective strength
of the tendency (“propensity”) of a situation or experimental condition to bring
forth a certain outcome. In so-called “long run propensity theories”, a proba-
bility of an event corresponds to the relative frequency of successful outcomes
under potentially infinitely many repetitions of the experiment (it is required
that arbitrarily many repetitions are possible in principle, according to general
natural laws). Gillies’ interpretation belongs to this class, as well as the early
propensity theory of Popper (1957b). A particular feature of Gillies’ approach
is that he explicitly requires the repetitions to be independent. Note that this
does not rule out probability models for dependent sequences of random experi-
ments such as Markov chains. They can be interpreted in terms of independent
repeatability of the whole sequence.

As an alternative to “long run” theories, “single case” propensity interpre-
tations have been proposed, e.g., by Fetzer (1983), Popper (1990) and Miller
(1994). Propensity theories can be distinguished from frequentist objective
probability interpretations (e.g., von Mises, 1928), which are operationalist,
while propensities are theoretical quantities which are not directly observable.
This avoids some important problems of the frequentist approach, namely the
necessity to observe “approximately infinitely long” sequences (under the propen-
sity interpretation, it suffices that they are “possible in principle”) and the pre-
cise specification of gambling systems under which probabilities are unchanged
(see, e.g., chapter 5 of Gillies, 2000). However, the connection of the propensity
concept to experience is less obvious than for the frequentist interpretation.

Gillies (1973) suggests the following link: if a high probability is assigned to
certain outcomes of an experiment, such outcomes can be treated as predicted
with practical certainty. The model can then be falsified if such a prediction is
not fulfilled in reality. This idea is equivalent to a statistical hypothesis test,
although Gillies only allows particular hypothesis tests as FRPS. In Section 2, I
will argue that Gillies’ definition of an FRPS is too restrictive and more general
tests should be allowed. This also strengthens the connection between Gillies’
interpretation and the Neyman-Pearson theory of statistical tests.

As Gillies himself already noticed, there is an essential difference between his
FRPS and traditional “Popperian” falsification rules for deterministic models.
Because in statistical tests there is always a certain probability of rejecting a
true null hypothesis (H0), repeated application of the FRPS in an attempt to
falsify a certain model by data generated from exactly that model will inevitably
lead to some erroneous falsifications of the true model. Though it may be
argued that erroneous falsifications of deterministic models may happen as well
because of random measurement errors, the positive probability of rejecting a
true probability model is more serious. It leads to the “goodness-of-fit paradox”,
which I will introduce in Section 3, and which essentially refers to the fact
that it can be proved in a certain sense that a probability model is violated by
successful application of the FRPS, i.e., if it is confirmed by the FRPS. Therefore,
it could be argued that a probability model, which is confirmed by the FRPS,
doesn’t hold anymore even if it held before. The goodness-of-fit paradox will be
illustrated by “the game of red and blue”, which is an example given by Gillies
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(2000, p. 77-83) to illustrate the superiority of his propensity interpretation
of probability to the subjective interpretation of de Finetti. The example goes
back at least to Feller (1950, p. 67-95) and was used by Popper (1957a) to argue
against the possibility of inductive logic.

In Section 4, in a summarizing discussion, I will discuss the validity of sta-
tistical hypothesis tests as falsification rules for propensity models in the light
of the goodness-of-fit paradox, some possible methods to deal with the paradox
and some connected issues such as multiple testing. I will argue that Gillies’
propensity approach (with the modification given in Section 2) can be main-
tained if it is interpreted in a more modest way, namely as a valid description
of how scientists can think about uncertainty in a rational way. It should be
acknowledged that there are some inevitably subjective and metaphysical el-
ements in modelling uncertainty in terms of propensities, but such elements
cannot be prevented by any interpretation of probability.

Though especially the Sections 2 and 3 may seem to be quite critical on
Gillies’ approach, I’d like to emphasize in advance that I find the basic principle
of giving a long run propensity interpretation using hypothesis tests as falsifi-
cation rules quite fruitful. I agree with many arguments given by Gillies (2000)
to support his interpretation and to highlight shortcomings of others, though I
won’t discuss them in the present paper.

The term “subjective” is used several times in the present paper and it is
emphasized that subjective decisions (e.g., to decide about a test statistic and a
rejection region) are necessary. I use “subjectivity” here in a quite broad sense,
meaning any kind of decision which can’t be made by the application of a formal
rule of which the uniqueness can be justified by rational arguments. Note that
“subjective decisions” in this sense can (and often do) take into account subject-
matter knowledge, and can be agreed upon by groups of experts after thorough
discussion, so that they could be called “intersubjective” in many situations and
are certainly not “arbitrary”. However, even in such situations different groups
of experts may legitimately arrive at different decisions.

2 Tests as falsification rules, and the role of al-

ternative hypotheses

2.1 Preliminaries

The elements of Gillies’ interpretation are:

• a probability space obeying Kolmogorov’s axioms,

• a specification of conditions of a real experiment, which can in principle
be repeated independently an arbitrary number of times1, and

1Gillies admits that not all conceivable conditions of an experiment can be held fixed - at
least the point in time and space can’t be repeated identically -, and he doesn’t require that
all details of the experiment are specified, only a subset chosen by the scientist. Furthermore,
a so-called “spacing condition” may be required which forces the repetitions to be separated
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• the FRPS, which can be used to falsify or confirm a probability model
using a finite amount of data generated by the specified experiment.

In Section 9 of Gillies (1973), the FRPS is defined as follows.

Definition: Let X be a random variable (RV) with values in some space R
(which in most cases will be IR), distributed according to a distribution P with
a density f (notation: L(X) = P ). The distribution P is falsifiable, if it is
possible to partition R into disjoint sets C and Cc, R = C ∪ Cc, where

(i) P (C) = α ≤ α0 where α0 is some small “critical probability”, e.g., α0 =
0.05 (I’ve chosen a notation here that looks more similar to the usual
notation of statistical tests than Gillies’ notation),

(ii) maxx∈C f(x)/ max f = l < l0, where l0 < 1 is a small critical value,

(iii) max f is “in some sense” representative (or at least not hugely atypical) for
the values of f . Gillies (1973) does not define more precisely what is meant
by “in some sense”, but he gives examples. From the discussion on his p.
170 it can be seen that Gillies intends (iii) to entail f(x) > l ∀x ∈ Cc.

P as a model for X is falsified if the observed realization of X is in C.

Part (i) defines a conventional statistical hypothesis test, while (ii) and (iii)
are side conditions that restrict the statistical tests qualified for being chosen as
FRPS (and the corresponding potentially falsifiable distributions) to such tests
that Gillies finds “intuitively justified”. Note that, as long as we don’t allow
randomized tests, a general statistical hypothesis test is defined by the specifi-
cation of a test statistic and a rejection region C. In situations where the choice
of the test statistic is not of major interest, I will sometimes refer to rejection
regions alone without explicitly defining the corresponding test.

I will argue below that general hypothesis tests should be allowed and the
restrictions (ii) and (iii) should be dropped.

Figure 1 illustrates Gillies’ definition. A N (0, 1)-distribution (normal dis-
tribution with mean 0 and variance 1) fulfills the conditions of a falsifiable
distribution with α0 = 0.05, where C = C1 = (−∞, u0.025] ∪ [u0.975,∞), uβ

being the β-quantile of the N (0, 1)-distribution. maxx∈C1
f(x)/ max f is obvi-

ously small and max f is, according to Gillies (1973, p. 174), “representative”
enough for the values of f . Therefore (ii) and (iii) can be accepted as fulfilled.

The region C2 = [u0.475, u0.525] shown in bright gray is a rejection region
of a valid hypothesis test with α = 0.05 as well, but it doesn’t fulfill Gillies’
conditions, because C2 contains the largest density values. According to Gillies,
it would be “counter-intuitive” to reject a N (0, 1)-distribution in case of X ∈ C2

because he considers the values where the density is high as the most typical
values of a distribution.

enough from each other in order to be interpretable as independent, see Gillies (1973, p. 95).
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Figure 1: N (0, 1)-distribution with rejection region C1 in the tails (dark gray),
which can be used for Gillies’ FRPS, while the rejection region C2 (bright gray)
is not allowed by Gillies’ definition because maxx∈C2

f(x)/ max f = 1.

Note that, because f(x) > l ∀x ∈ Cc is required, all sets C corresponding
to potential FRPSs have the form (−∞, uα/2]∪ [u1−α/2,∞). In particular, one-
sided tests are ruled out.

Therefore, given an RV and its distribution, the choice of the statistical test
to construct an FRPS seems to be quite restricted. However, the choice of
the RV itself is not restricted by Gillies. The reason can be illustrated by the
following example (Gillies, 1973, p. 193). Consider standard coin-tossing where
the n tosses are modelled as independent and the probability for heads and tails
is 0.5 each. This means that every possible sequence x̃ of tosses has the same
probability f(x̃) = 0.5n = max f . Therefore, this distribution is not falsifiable
according to Gillies’ definition. To be able to falsify this model nevertheless,
Gillies suggests to consider the RV which gives the numbers of heads. This
RV has a falsifiable distribution, given that n is not too small. The smallest
density values occur for results close to 0 and to n, and depending on α0 and
l0, an FRPS based on a suitable rejection region C containing the tails of this
distribution can be defined.

Gillies (1973) discusses in some length (Chapter 11) why he thinks that the
choice of the test for his FRPS should be restricted and why more general tests,
particularly as derived by the Neyman-Pearson theory, should be ruled out. His
main arguments are:
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(a) Counter-intuitive tests (see above) should be avoided.

(b) According to the Neyman-Pearson approach, the choice among the many
possible tests of a particular H0 has to be based on an alternative hy-
pothesis, but Gillies doesn’t want his FRPS to depend on the choice of an
alternative because

(i) the choice of an alternative hypothesis leads to a certain arbitrariness,
and

(ii) in many practical situations, there is no alternative hypothesis of
particular interest against which the H0 should be tested.

Here is an overview of my arguments why general hypothesis tests should be
allowed for defining an FRPS and alternative hypotheses should be taken into
account, as it is done in Neyman-Pearson theory. Note, however, that I don’t
suggest to stick to Neyman-Pearson optimality theory in all cases, because it
may be advantageous, depending on the practical situation, to use tests which
are good against many alternative hypotheses rather than optimal against a
single one2. More details will be given in the following subsections.

1. (Subsection 2.2) Gillies’ restricted tests can distinguish the H0 from some,
but not from all alternative models. This means that, according to Gillies,
a probability model cannot be falsified even if it is clearly wrong, given
that the true distribution belongs to the class of alternatives that can’t be
distinguished from the H0 by the given test.

2. (Subsection 2.3) The concept of an alternative hypothesis and of the power
of a test (namely the probability not to reject the H0 given that the
alternative is true) is quite useful to understand what a given test (which
may or may not be Gillies’ proposal) essentially does, and it is actually
necessary to explain why it doesn’t make sense to choose α0 = 0. Such
a choice would look quite attractive from Gillies’ theory alone, but is
certainly not sensible.

3. (Subsection 2.4) The fact that Gillies allows arbitrary RVs undermines
his own restrictions. By using transformations of RVs, tests can be con-
structed that fulfill Gillies’ conditions but are equivalent to the counter-
intuitive tests that he wants to rule out.

2.2 Wrong models that cannot be falsified by the FRPS

The core of the arguments 1 and 2 above is that any hypothesis test, whether
it is derived from a particular alternative hypothesis or not, can only distin-
guish the H0 from particular alternatives, but not from them all. The following
definition is based on the idea that evidence against a distribution (or class of

2Technically, for every reasonable test, an alternative hypothesis can be constructed against
which the test is optimal, but many reasonable tests are not mainly motivated by the particular
alternative hypothesis ensuring optimality, which can be quite counter-intuitive in some cases.
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distributions) in favour of an alternative distribution (or class) is given empir-
ically by sets which have a small probability under the first distribution and a
higher probability under the second one.

Definition: A class of distributions Q is distinguishable from a class of dis-
tributions P on the same probability space R, if there is a set C and 0 ≤ α < 1
such that

P (C) ≤ α, Q(C) > α ∀P ∈ P , Q ∈ Q. (1)

Such a set C defines an unbiased test of the H0 that the true distribution belongs
to P against Q and therefore distinguishes P from Q. α is the level of this test,
Q(C) the power at Q and minQ∈Q Q(C) the minimum power.

For a given C, the classes P and Q of all distributions for which (1) holds,
are called the maximum classes distinguished by C.

Note that the Neyman-Pearson theory is about maximizing the power for a
fixed level. We will not stress optimality here, but it is obviously desirable to
have high power and low level at the same time.

Whatever the set C is, as long as P (C) < 1 for a given distribution P , a
distribution Q on R can be found with Q(C) = 0. Therefore, obviously, the class
of all possible distributions on R\ {P} cannot be distinguished from P = {P}.
More general, C with P (C) = α can’t distinguish Q with Q(C) ≤ α from P .

This has an important practical implication. If the H0 is P and the true
distribution is Q 6= P , but Q is not distinguished from P with a given C
corresponding to an FRPS obeying Gillies’ conditions, it is not possible to falsify
P . This holds even in cases where it may be quite obvious from a data analytic
point of view, with enough observations, that the true distribution is rather Q
than P .

An example is given in Figure 2. Gillies suggests the set C1 for his FRPS, but
if P is N (0, 1) and Q is N (0, 0.09), P (C1) > Q(C1) and C1 cannot distinguish Q
from P (it distinguishes P from Q, i.e., it can reject Q in favour of P , though).
This holds for all sets of the form (−∞, uα/2] ∪ [u1−α/2,∞) and therefore for
all possible variants of the FRPS. Therefore, if Q is the true distribution, P
can never be falsified even though Q is obviously different enough from P that
the difference could be easily found by data analytic means if data from enough
independent repetitions were available.

However, Q can be distinguished from P , though not by sets obeying Gillies’
conditions. Instead, the set C2, which Gillies found counter-intuitive, distin-
guishes N (0, 0.09) from N (0, 1) and is actually optimal for doing this according
to the Neyman-Pearson theory. Therefore, there is a practical reason in a par-
ticular situation to consider C2 as rejection region of N (0, 1), and it shouldn’t
be ruled out by definition. I don’t agree with Gillies counter-intuitivity argu-
ment anyway, because if the variance is large, observations which are extremely
close to 0 are as unusual as observations which are in the tails, given that the
two sets are suitably defined (with P (C1) = P (C2) as in the given example),
and I don’t see why of two “unusual sets” with the same small probability one
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Figure 2: N (0, 1)-distribution with same sets C1 (dark gray) and C2 (bright
gray) as in Figure 1, and N (0, 0.09)-distribution.

should be generally “better” (in the sense of confirming H0) than the other.
It can be seen as a downside of the argument elaborated here that my sugges-

tion to drop restrictions allows the scientist a much stronger subjective decision,
because the resulting test depends on the choice of the alternative hypothesis.
However, if different tests can be of reasonable interest in different situations,
it is not convincing to prevent subjectivity by imposing one particular test by
definition.

In Section 2.4, the idea of favouring large density values will be made even
more suspect.

2.3 “Alternatives” and “power” are needed

For a given rejection region C, the maximum classes distinguished by C have
been defined above. This gives a description of what C essentially does. For
example, C1 in Figure 1 distinguishes distributions with more probability in
the tails (or in one of them) not only from N (0, 1), but from all distributions
with P (Cc

1) ≥ 0.95, Cc
1 = (u0.025, u0.975]. This is fine if the scientist, in a given

situation, considers the fact that most of the probability mass is concentrated
on Cc

1 as an essential characteristic of her model P = N (0, 1). As with all
mathematical models of reality, the scientist usually doesn’t believe precisely in
her model P , but considers it as a somewhat reasonable approximation of reality.
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Cc
1 doesn’t give evidence in favour of N (0, 1) alone, but in favour of the class of

distributions with P (Cc
1) large enough. It depends on the problem and on the

scientist, whether she is rather interested in this aspect of the true underlying
distribution, or in something else, for example in testing whether the probability
for values extremely close to 0 is small enough (which would be tested by C2).
Therefore thinking about alternatives leads to a deeper understanding of the
aspects of a model that are confirmed if the model is successfully tested.

Derived from the concept of the “alternative” is the concept of “power”.
The power of a test against a particular alternative is a measure of the quality
of the test - it should not only have a small probability of rejecting a true H0,
but also a large probability of rejecting a H0 which is wrong. Therefore, α held
fixed, it is desirable to have the power as large as possible. But this depends
inevitably on the alternative under which the power is computed.

Consider the following example. A scientist tries to confirm the model P of
n RVs X1, . . . , Xn independently identically distributed (i.i.d.) with L(Xi) =
N (0, 1) ∀i by application of an FRPS. Even following Gillies’ restrictions, he
has to decide about a suitable test statistic, and there are several possibilities.
The standard choice would be X̄ = 1

n

∑n
i=1 Xi, L(X̄) = N (0, 1

n ), which is
falsifiable. But because L(X1) = N (0, 1), which is falsifiable as well, X1 could
as well be chosen as a test statistic, ignoring all further observations. How to
choose between these statistics? While it could be argued that it is obviously
silly to take just one observation into account, in fact the choice depends on the
alternative that the scientist has in mind. In terms of power, for large enough
n, X̄ is much better to distinguish from P any i.i.d. model where L(Xi) has an
expected value 6= 0 ∀i. The use of X1 as test statistic is better to distinguish
from P models for independent RVs where L(X1) has an expected value 6= 0, but
E(Xi) = 0 for i ≥ 2. However, this is quite unlikely to be a realistic alternative
in a situation in which the scientist initially had chosen a model with identical
distributions as H0 and the first observation X1 is not known to be special in
any sense.

There is a second reason why power considerations are needed for falsification
rules. If the test level α is larger than 0, then the application of the FRPS is
inconsistent, as Gillies (1973, p. 188) notes, in the sense that its frequent
application to true models necessarily leads to a portion of about α wrong
falsifications. From this point of view it would be attractive to have α as small
as possible. So why can’t α be chosen as 10−7, corresponding to a very small,
unlikely rejection region, or even α = 0? The reason is that if α becomes
smaller and smaller, C becomes smaller and smaller as well. More precisely, if
a sequence of tests of H0 is constructed with levels α1 > α2 > α3 > . . ., then
C1 ⊃ C2 ⊃ C3 ⊃ . . . fro the corresponding rejection regions, given that all the
tests are constructed following the same principle3.

, and therefore its probability under any distribution becomes very small,
i.e., the power of the test against any alternative. It becomes almost impossible

3“The same principle” could either mean Gillies’ FRPS, or Neyman-Pearson tests against
the same alternative.
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Figure 3: Density of Z = Y ◦ X as defined in Section 2.4. The bright gray set
corresponds to C2 in Figure 1.

to reject a wrong H0, and therefore there is a trade-off between level and power.
In the extreme case, α = 0 implies that the H0 can never be falsified under
alternatives that have the same zero-probability sets as H0 (which holds, e.g.,
if H0 and the alternative are distributions with strictly non-zero densities on
the real line, such as normal distributions). This particular argument doesn’t
need the specification of an alternative, but an alternative is needed to base the
choice of α in real life situations on power considerations.

Of course, all of this is well known in principle, but it should be recalled to
understand that the proposal of a test to falsify a probability model without
specification of an alternative hypothesis rather ignores an important feature of
the resulting test than could be seen as an achievement.

2.4 The FRPS doesn’t rule out counter-intuitive tests

After the preceding discussion, it may be surprising to learn that Gillies’ ap-
proach actually doesn’t rule out “counter-intuitive” tests like the one based on
C2 in Figure 1. This means that the restrictions (ii) and (iii) don’t achieve what
they are supposed to achieve, and they are therefore superfluous, whether one
agrees that “counter-intuitive tests” should be ruled out or not.

The reason is that the choice of the RV is still flexible. Let X be an RV with
L(X) = N (0, 1). Let Y be defined as follows: Y (x) = 1 for x ∈ (−∞, u0.0475],
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Y (x) = 2 for x ∈ (u0.0475, u0.095], Y (x) = i for x ∈ (u0.0475(i−1), u0.0475i], i =
2, . . . , 10. Thus, (−∞, u0.475] is partitioned into 10 subsets with a probability of
0.0475 for each of them under N (0, 1), and Y assigns 1, . . . , 10 to these subsets.
In the same manner, partition (u0.475, u0.525] into 5 subsets with a probability
of 0.01 for each of them, and let Y assign 11, . . . , 15 to these subsets. Partition
(u0.525,∞] into 10 subsets with a probability of 0.0475 for each of them, and let
Y assign 16, . . . , 25 to these subsets. Now define the discrete RV Z = Y ◦X . The
distribution of Z is shown in Figure 3. This is a falsifiable distribution in Gillies’
sense, and the standard FRPS for α0 = 0.05 falsifies the shown distribution for
the set {11, . . . , 15} = Y (C2). This means that the distribution of Z, which
is derived from L(X) = N (0, 1), is falsified if X ∈ C2, which is exactly what
Gillies wanted to prevent. Analogous constructions are possible whenever the
probability mass of X isn’t concentrated on too few values.

A possible objection against this argument could be that Y is a counter-
intuitive transformation and should be ruled out somehow, but I generally like
to prevent arguments referring to “general intuition”, because intuition is often
not general, and even general intuition may be misled. Furthermore I am not
aware of any suggestion of a definition of admissible transformations.

A further argument against restrictions based on density values would point
out that in measure theory density values depend on the choice of the underlying
measure. Furthermore they are not uniquely defined on zero mass sets and quite
unstable, i.e., they can vary hugely under very small changes of the distribution.

2.5 Response to Gillies’ arguments

Here is a concluding response to Gillies’ arguments in favour of the restrictions
(ii) and (iii) in Section 2.1.

(a) Gillies’ “intuition” is not shared by everyone and intuition is generally
easily misled. The tests that Gillies wants to rule out are needed in some
practical situations.

(b-i) Subjective choices of the scientist neither can nor should be prevented -
and actually they are necessary even in Gillies’ own approach.

(b-ii) Whenever a statistical test is defined, it can distinguish some but not all
possible alternatives from the H0. It adds to the understanding of the test
to make this clear. Omnibus tests don’t exist.

3 The goodness-of-fit paradox

3.1 Statement of the paradox

The goodness-of-fit paradox in a general situation can be stated as follows.
Assume that the true distribution underlying a statistical experiment (which
may be a sequence of repeated sub-experiments) is Q. Assume further that a
statistician is interested in finding out whether the null hypothesis P can be
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Figure 4: N (0, 1)-distribution (dotted) and N (0, 1)-distribution conditional on
Cc

1 in Figure 1 (solid), i.e., on non-falsification of N (0, 1).

confirmed as a model for the experiment (P may or may not be true, i.e., equal
to Q). Note that the following discussion holds as well if the H0 is a class
P of distributions, for example all normal distributions or, if the experiment
consists of repeated sub-experiments, all distributions assuming independence
of the sub-experiments. Therefore the statistician carries out a statistical test
of level α > 0 defined by a test statistic and a rejection region C of the H0 that
Q = P , and she accepts P as a model for the experiment only if she observes
Cc, i.e., if the test doesn’t falsify P . Such tests to check an underlying model
are called “goodness-of-fit tests” in the statistical literature, therefore the name
“goodness-of-fit paradox”. Because our test is an α-level test, P (C) = α > 0.
Because P is accepted as a model for the underlying experiment only if it is
not falsified, the distribution R of the data for which P is accepted is the
true distribution Q conditional on the non-rejection of P , i.e., on Cc. Thus,
R(C) = 0 6= α, and therefore R 6= P . This proves that, if P is accepted as
a model only if it has been confirmed by a goodness-of-fit test, the effective
distribution of the data for which P is assumed (which is, according to the
propensity interpretation, the distribution over a potentially infinitely long run
of data sets for which P is accepted) cannot be P , whether P = Q, i.e., P is
the true underlying distribution of the untested data, or not. In other words: if
we do not carry out a goodness-of-fit test, we cannot check in a falsificationist
manner whether P holds. If we carry out such a test and confirm P , we can
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disprove that P is the distribution of a long run of observed data sets.
An illustration is given in Figure 4, which compares the N (0, 1)-distribution

with the truncated distribution that results from conditioning N (0, 1) on non-
falsification by the test defined by C1 in Figure 1.

The conceptual reason for the occurrence of the goodness-of-fit paradox is
that, following Gillies’ approach, a probability model is ruled out based on the
occurrence of an event, of which the possibility to occur with nonzero prob-
ability is an essential part of the model. Unfortunately, as seen in Section
2.3, falsification rules based on sets with zero probability under H0 don’t make
sense for most models, because they don’t have any power against alternatives
of interest. Therefore, the paradox can’t be prevented with any practically use-
ful falsification rule. Interestingly, Dawid (2004), who is concerned with a “de
Finetti-Popper synthesis”, namely the empirical falsification of a model belief of
a subjectivist, proposes the so-called “Borel-criterion”, which is mathematically
equivalent to a hypothesis test with α = 0, thus avoiding the goodness-of-fit
paradox. But the avoidance is only theoretical, because his suggestions for at-
taining α = 0 assume n = ∞, which is impossible in practice, and therefore a
practical falsification for finite n will require α > 0 as with a usual hypothesis
test.

This is different from falsification of deterministic models, where no such
paradox occurs. However, it could be argued that in reality the situation with
deterministic models is not different, because experiments to confirm or falsify
them are always subject to random variations and therefore statistical rules
derived from statistical measurement error models have to be used to decide how
much deviation from the model’s predictions can be tolerated, which, again, is
subject to the goodness-of-fit paradox.

It may be argued that the term “paradox” is not justified, because the
model refers to the underlying data generating process, which is modelled by
the unconditional distribution, and not to the observed data conditional on
non-falsification which cause the so-called “paradox”.

Here are two different possible interpretations of the situation. I argue that
the term “paradox” is justified if the first interpretation is adopted, but there
is a problem with the second one as well. The interpretations are distinguished
by whether the fact that a hypothesis test is carried out to confirm or falsify the
model is considered to be a part of the experimental conditions, which, according
to Gillies’ theory, define the propensities (recall the beginning of Section 2.1).

(a) The test is considered to be a part of the experimental conditions. This
means that, whenever we carry out an experiment to obtain observations
(usually a series of observations), we apply the goodness-of-fit test to con-
firm the model P , and we accept the model only if it is confirmed by the
test. In this situation, if we repeat the experiment independently and we
take into account all repetitions for which we confirm P , we will observe
a sequence of outcomes that follows the underlying distribution (which
may or may not be P ) conditional on non-falsification, i.e., the sequence
is subject to the paradox.

13



(b) The test is not considered to be a part of the experimental conditions. In
this case, formally, the model P does not refer to the conditional distribu-
tion, but to the data generating process unaffected by the falsification rule.
Therefore, R 6= P (using the notation above) is just a mathematical result,
but by no means paradox, and the question of interest is only whether or
not Q = P . Whether it is justified to interpret the test as not belonging
to the experimental conditions, however, depends on how the scientist ac-
tually handles the situation in practice. If, in fact, every outcome of the
experiment is tested, then interpretation (a) is a valid description of how
the data modelled by P are obtained, while (b) is incomplete. (b) can
be considered as valid if the test is just carried out once, but then P is
used as a model for further data from the experiment without testing. For
those further data, the paradox is prevented. The problem with this is
that it is based on the assumption that the further data are independent
of the data used to test P , and identically distributed. This assumption is
essentially untestable, because such a test would involve all available data
and accordingly would induce another goodness-of-fit paradox.

This leaves us with the following choice: either the paradox, i.e., the distur-
bance of the validity of a model by confirming it, is accepted, or we rely on the
untestable metaphysical assumption that new data is identically distributed in-
dependently from the data we use to test the model assumption, because every
attempt to test this leads us back into the paradox.

Note that in many practical situations there is only one data set at hand
for which a model is constructed, without the possibility of repeating the whole
experiment. Choice (a) - test all data sets - and (b) - test only the first data
set - are then indistinguishable. The occurrence of the paradox in this situation
depends on whether further statistical analyses that assume the model to hold
are carried out conditionally on non-falsification.

There is a third choice to deal with the paradox.

(c) Choose a model which makes testing with α = 0 possible, i.e., a truncated
distribution corresponding to a model conditional under non-falsification
such as the truncated normal from Figure 4. Because C1 has probabil-
ity zero under this model, a falsification rule based on C1 prevents the
paradox, and has still power against all alternatives with P (C1) > 0. The
problem with such a choice is that the model is then obviously not deter-
mined by considerations about the underlying phenomenon to be modelled
alone, but also by the subjective choice of a rejection region by the scientist
(which will usually be motivated by power considerations under another
model, namely an unconditional one), while propensity interpretations of
probability are intended to give an account of objective probabilities. How-
ever, it could be argued that choice (a) above involves the same problem
without being explicit about it and choice (b) is based on a metaphysical
assumption which to adopt is a subjective decision as well.

Unfortunately, if the test statistic is based on a series of observations and
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not on a single one, truncation of the distribution of the test statistic usu-
ally induces dependence among the individual observations (this will be
illustrated in the following section), and the resulting model is much more
difficult to handle and to analyze than an untruncated normal model, say.
Nevertheless, investigation of such truncated distributions (distributions
conditional on non-falsification) is certainly a promising direction for sta-
tistical research.

In the statistical literature it is well known that testing a model assumption,
under which subsequent statistical inference is to be made, damages the validity
of this assumption, see e.g. Harrell (2001, p. 56). Many standard textbooks
on inferential statistics (e.g., Bickel and Doksum 1977, p. 62) stress that null
hypotheses and models should not be chosen dependent on the same data on
which they are to be applied, because of the bias (which refers to what I call
violation of the model assumption by the goodness-of-fit paradox) in subsequent
analyses caused by preceding tests. Often, model checks by goodness-of-fit tests
are replaced by informal graphical methods such as normal probability plots or
time series plots in applied data analysis, but this does not prevent the goodness-
of-fit paradox, because such graphical methods lead to the rejection of a true
probability model with positive probability as well, with the only difference that
this probability cannot be explicitly computed because of the intuitive informal
nature of these methods.

The effect of a goodness-of-fit test on subsequent analyses which assume a
seemingly confirmed distribution P can be assessed by simulations, as is done
for normality tests in Easterling and Anderson (1978). A further example is
discussed in the next section.

Note that the three possible practical choices (a), (b) and (c) above corre-
spond to different approaches to statistical analyses. Choice (a) corresponds to
the mainstream approach to check a model first (either by goodness-of-fit tests
or by graphical diagnostics) before applying further statistical analyses. Choice
(b) corresponds to so-called cross-validation or bootstrap techniques (see, e.g.,
Efron and Tibshirani, 1993), where only a part of the data is used to decide
about the model which is then applied to the rest of the data. Generalization of
a model to future observations which are not tested again corresponds to choice
(b) as well. Investigations as described above (Easterling and Anderson, 1978)
or “adjustments for model choice” as discussed for example in Chapter 4 of
Harrell (2001) acknowledge that subsequent statistical analysis are done under
the conditional model instead of the original one, and are therefore connected
to choice (c).

However, I am not aware of any mention of the implications of the goodness-
of-fit paradox in the discussion of the foundations of statistics with the single
exception of Spencer-Brown (1957), which is seemingly ignored in recent statis-
tics as well as philosophy.
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3.2 An example: The game of red and blue

“The game of red and blue” is an example used by Gillies (2000, p. 78 f.)
to demonstrate the benefits of his propensity interpretation compared to the
subjectivist interpretation of probability according to de Finetti (1970). In
particular, he argues that objective independence, which can be confirmed or
falsified by statistical tests, is necessary to apply Bayesian models of exchange-
ability (i.e., that the observations are not independent, but their order doesn’t
matter, as advocated by de Finetti for various situations) successfully.

Here is how Gillies describes the experiment:
“At each go of the game there is a number s which is determined by previous

results. A fair coin is tossed. If the result is heads, we change s to s′ = s + 1,
and if the result is tails, we change s to s′ = s − 1. If s′ ≥ 0, the result of the
go is said to be blue, whereas if s′ < 0, the result of the go is said to be red. So,
although the game is based on coin tossing, the results are a sequence of red and
blue instead of a sequence of heads and tails. Moreover, although the sequence of
heads and tails is independent, the sequence of red and blue is highly dependent.
We would expect much longer runs which are all blue than runs in coin tossing
which are all heads.”

If the initial value of s being −1 or 0 is decided by a coin toss, red and
blue are exactly symmetrical. Gillies argument against de Finetti’s subjectivist
interpretation goes as follows:

“Two probabilists - an objectivist (Ms A) and a subjectivist (Mr B) - are
asked to analyze a sequence of events, each member of which can have one of
two values. Unknown to them, this sequence is in fact generated by the game of
red and blue. . . . Consider first the objectivist. Knowing that the sequence has a
random character, she will begin by making the simplest and most familiar con-
jecture that the events are independent. However, being a good Popperian, she
will test this conjecture rigorously with a series of statistical tests for indepen-
dence. It will not be long before she has rejected her initial conjecture; and she
will then start exploring other hypotheses involving various kinds of dependence
among the events. If she is a talented scientist, she may soon hit on the red
and blue mechanism and be able to confirm that it is correct by another series
of statistical tests.

Let us now consider the subjectivist Mr B. Corresponding to Ms A’s initial
conjecture of independence, he will naturally begin with an assumption of ex-
changeability. Let us also assume that he gives. . . ” equal probability 1/(n + 1)
to all possible numbers of blue results in a sequence of n goes (Gillies uses a
different notation here). This assumption is made only for ease of computations,
the argument given below also applies to any other exchangeable model. “Sup-
pose that we have a run of 700 blues followed by 2 reds. Mr B would calculate the
probability of getting blue on the next go . . . as 701/704 ≈ 0.996. . . .Knowing
the mechanism of the game, we can calculate the true probability of blue in the
next go, which is . . . zero.” (It can easily be seen that s at the start of go 703
must be −2.) Gillies then further cites Feller (1950) showing that even in ses-
sions as large as 31.5 millions of goes it happens with probability of about 0.7
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that the most frequently occurring color appears 73 per cent of the times or
more, in which case Mr B will estimate the subjectivist limit parameter θ0 as
at least 0.73 (here it is assumed that θ is prespecified as the parameter giving
the probability of the color that turns out to occur most frequently). “Yet, in
the real underlying game, the two colors are exactly symmetrical. We see that
Mr B’s calculations using exchangeability will give results at complete variance
with the true situation.

Moreover he would probably soon notice that there were too many long runs
of one color or the other for his assumption of exchangeability to be plausible.
He might therefore think it desirable to change his assumption of exchangeability
into some other assumption. Unfortunately, however, he would not be allowed
to do so according to de Finetti . . . ”, because assuming exchangeability a priori
means that with respect to all further Bayesian calculations only the number of
observations being red or blue, but not their order, can be taken into account.
Once assumed, exchangeability cannot be subsequently rejected. Otherwise, the
coherence of probability assignments would be violated. As Gillies puts it, “un-
less we know that the events are objectively independent, we have no guarantee
that the use of exchangeability will lead to reasonable results.” This is the oppo-
site of de Finetti’s opinion that the assumption of objective independence can be
made superfluous by subjective analysis using exchangeability. Gillies’ criticism
can be disputed by subjectivists by pointing out that it is, in principle, possible
to start with a subjectivist model that assigns some probability to violations of
the exchangeability assumption. However, this seems to be quite difficult from
a computational point of view and I have not succeeded in finding any simple
model in the Bayesian literature that allows for believing in exchangeability
with a high probability, but smaller than 1, and for assigning the rest of the
probability mass to deviations from exchangeability.

Here is a criticism of the part of Gillies argument that concerns Ms A, the
objectivist. Gillies seems to take for granted that the independence assumption
or a certain model for dependence can be reliably rejected or confirmed by “a
series of statistical tests”. But this gives rise to the goodness-of-fit paradox.

How does the goodness-of-fit paradox look like in the game of red and blue?
An adequate independence test is the runs test (Lehmann 1986, p. 176), which
uses as its test statistic the number of runs of experiments yielding the same
outcome. For example, the sequence with 700 successive blues and two reds has
two runs (one run being the 700 blues, the other one the two reds), whereas
a sequence of 700 blues followed by one red and one blue would have three
runs. With a level α = 0.01, the runs test rejects independence for 700 blues
and two reds, but accepts it for 700 blues, one red and one blue. Under the
distribution of full data sets for which independence is accepted by the runs
test, i.e., the distribution conditional on non-rejection, a sequence of 700 blues
and one red enforces blue in the 702nd go, while red would lead to a rejection
of independence and is thus impossible. Thus, there is an obvious dependence
between the goes in these sequences. Confirming independence by the runs test
induces dependence.

Note that this example, as most real statistical analyses using frequentist
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or propensity models, incorporates two different cases of repetition: a coin is
repeatedly tossed, n = 702 times, say, to define the experiment (independently,
but the observed outcome is only independent under the H0 and dependent
under the game of red and blue). But the interpretation of the distributions of
the vector of outcomes of the whole experiment, of the runs test statistic, and of
the outcomes conditional on non-falsification refers to independent repetitions of
the whole experiment, i.e., all n tosses. In many cases, when further data is not
available, we only have a single observation of this vector for our analyses. Any
H0 to be tested with reasonable power in this situation needs to involve some
independent repetition on some level (be it directly, as for the independence
model, or indirectly, as for the game of red and blue) to generate a large enough
“effective sample size” based on which it can be falsified. In most non-i.i.d.
models used in statistics, e.g., time series or regression models, the random
variation term is assumed to be i.i.d. for this reason. This means that the idea
of independence is not only needed to justify exchangeability in subjectivist
analyses, but also to ensure falsifiability (with effective sample sizes larger than
1) in objectivist analysis.

As outlined in Section 3.1, there are two main approaches to deal with the
goodness-of-fit paradox. One approach (choice (b) above) is to test the H0 on
a part of the data and then to assume it for further data, which are assumed
to be equally and independently from the test data, without testing these new
assumptions.

The alternative is to proceed with the data, conditional on non-falsification,
as if it were generated by the H0. This corresponds to choice (a) above, but
the investigation of the resulting behaviour under the conditional distribution
is rather connected to choice (c).

To explore the practical consequences of the goodness-of-fit paradox in the
given situation, I carried out some simulations (1000 simulation runs with n =
100 goes each) to compare the statistical properties of data generated by H0

(independent Bernoulli tosses with p = 0.5 and p = 0.2) with the distribution
conditional on non-falsification by the runs test. The runs test has been used
with α = 0.05 in the two-sided version, i.e., H0 is rejected by too few or too
many runs, corresponding to seemingly too large positive or negative correlation
between goes, and in the one-sided version against the alternative of positive
correlation between goes.

The following statistics have been computed for all simulated data sets: 0.9-
or 0.95-confidence intervals for p, the standard estimators for p and for the
estimation of the probability that “heads” is followed by another “heads” (i.e.,
conditional on heads in the preceding go). Theoretically, this should be p as well
because of independence. The coverage probabilities of the confidence intervals
and the means and mean squared errors of the estimators have been computed
over all data sets, and only over the data sets for which the runs test did not
reject independence. The latter corresponds to the conditional distribution of
the statistics under non-falsification of independence.

The results show that it depends on what the model is used for whether the
paradox affects the statistical analyses or not. No significant differences between
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the coverage probabilities of the confidence intervals have been found between
the three distributions (unconditional, conditional on non-falsification by the
two-sided runs test and by the one-sided runs test) and between the means and
mean squared errors of the estimators of p. Therefore, theses analyses seem to
be hardly affected by the goodness-of-fit paradox. The situation changes for
the estimation of the probability that “heads” is followed by another “heads”.
Conditional on non-falsification by the one-sided runs test, it was estimated
(on average over 1000 simulation runs) as 0.491, which is significantly smaller
than the corresponding simulated value for the unconditional distribution of
0.498. Similar results are observed with p = 0.2 (0.184 for conditional/one-
sided, 0.195 for unconditional - conditional/two-sided was between these values
in both cases). This corresponds to the intuition, because the one-sided runs
test excludes some sequences of goes with long runs, where “heads” has been
followed by “heads” often. Note that in this particular situation it doesn’t make
too much sense in practice to estimate the probability that “heads” is followed
by another “heads”, because the goes are assumed to be independent by the
model. The simulation serves as a toy example for situations where a more
sophisticated model is used to estimate conditional probabilities by simulation,
as it is done frequently, e.g., in meteorology.

Another way of looking at the practical implications is to take the “game of
red and blue”-model as an alternative into account. Still assuming that the H0

of independence holds, the runs test will falsify it if under n = 9, seven blues
and two reds are observed in a row (i.e., two runs). The p-value for this, i.e.
the probability for only two runs conditionally on seven blues and two reds in
any order, is 0.0099. Thus, if under the real underlying distribution the goes
are independent, and Ms A uses the game of red and blue as an alternative,
she will guess a probability for “blue” in the next go erroneously based on the
game of red and blue with a probability of about 1%, and this means, in the
given situation, that she will judge “blue” as impossible (because in the game of
red and blue, blue is impossible in this situation) instead of 7/9, the standard
estimation under independence4. This is the price for being able to reject the
independence model when it does not hold. The reader may judge whether this
is harmless or not5. With 700 blues and 2 reds, as above, the p-value is smaller
than 10−15.

4 Further discussion

4.1 How to deal with the paradox?

In the present paper, some aspects of Gillies’ concept of proposing particular
statistical hypothesis tests as falsification rules for probability models have been
discussed. In Section 2 it has been argued that general hypothesis tests should

4This discussion is conditioned on the fact that the total number of “blues” is seven.
5A subjectivist, or any Bayesian, would say that this depends on the prior probability for

the exchangeability model.
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be allowed as falsification rules and the restriction given by Gillies are superflu-
ous. The concepts of an alternative hypothesis and the power of a test against
that alternative, which are ruled out in Gillies’ approach, have turned out to
be useful. In Section 3, the goodness-of-fit paradox has been discussed, which
means that it can be shown that a statistical model confirmed by a hypothesis
test doesn’t hold anymore because of the confirmation (where “the model holds”
refers to the distribution conditional on confirmation). The validity of the ar-
guments in Section 3 doesn’t depend on whether general hypothesis tests are
allowed or only those obeying Gillies’ restrictions.

Several approaches can be taken to deal with the goodness-of-fit paradox
(the first three corresponding to the approaches (a)-(c) given in Section 3.1).

(a) The application of a falsification rule could be interpreted as part of the
experimental conditions. This defines the distribution conditional on non-
falsification R as the “true” probability model. R is equal to Q, the
true distribution before applying the falsification rule, conditional on Cc,
where C is the rejection region. This model is unequal to the initially
tested model P , as has been shown under the assumption α > 0.

P could then still be maintained as a reasonable approximation to the
true distribution R. We have P (C) = α, which is small, and R(C) = 0.
Whether or not P is a good approximation to R depends on two aspects:

(i) How strongly is the use that is made of the model affected by basing
analyses on P instead of P conditional on Cc? In many situations,
this can be simulated or worked out theoretically. Some examples
have been given in Section 3.2, in most of which using P seemed
to be harmless. However, different situations are known in the sta-
tistical literature. For example, the omission of a variable with a
non-significantly non-zero regression coefficient in linear regression
can heavily bias the estimation of the other coefficients in unfortu-
nate circumstances, see Chapter 4 of Harrell (2001).

(ii) How good is P as an approximation of Q on Cc? The discussion
under (i) implicitly assumed that Q = P . But the only thing that
is actually known from the successful application of our falsification
rule about Q is that Q gave rise to Cc, which allows the presumption
that Q(Cc) is rather large, as is P (Cc). Therefore, from confirmation
of P by a statistical test, we know nothing more than that P (C) = α
small and R(C) = 0. Based on the data, no further assessment is
possible whether P is a reasonable approximation, or even equal to
Q on Cc.

An important objection can be made at this point. Couldn’t further
tests or informal tests such as graphical diagnostics be carried out
to confirm P to be a reasonable model for the true Q on the non-
falsification region Cc of the first test? In other words, couldn’t it
make sense to test P against different alternatives to find out more
about it? Note that Gillies (2000) seems to have this in mind when he
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writes, e.g., on p.79 about “a series of statistical tests” to be carried
out to find out, eventually, that the data in question are generated
by the game of red and blue.

The answer is: yes, in principle. However, if k tests are carried out
and P is taken as falsified if any of these (or any prespecified num-
ber) rejects P significantly, the whole multiple test procedure can
be formalized as a single combined falsification rule leading again to
a rejection region C, which may look more complex than the rejec-
tion regions of the single tests, but mathematically, in terms of the
discussion given in the present paper, it is by no means essentially
different from a single test. Furthermore, multiple testing results in
a loss of power for every single set, given that the overall test level
is fixed. A standard illustration for this is the so-called Bonferroni
correction for multiple testing, which is based on the fact that in case
of a combination rule that rejects P if any of the k tests rejects it,
an overall level of α is kept if every single test is carried out on a
level of α/k (see Holm, 1979, for discussion and a more sophisticated
version). The more tests used, the weaker every single one becomes.

Eventually, under a combination of several tests, there is a combined
rejection region C, and whether P is a good approximation for Q on
Cc cannot further be assessed in terms of falsification. (Usually, the
choice of P as a plausible model will be motivated by mostly informal
subject-matter considerations, and these considerations are the only
further means to justify Q ≈ P on Cc.)

(b) If the application of the falsification rule is not interpreted as part of the
experimental conditions, the unconditional distribution Q is defined as the
“true model”. Under this interpretation, H0 : Q = P can be tested on
some test data without causing the goodness-of-fit paradox for new data
independent of the test data. The price is that it is not allowed to test
H0 or the independence of the test data on the new data. Again, this
can only be justified by subject-matter considerations (independence is
usually justified by arguments like “we don’t see any obvious source of
dependence”, which are clearly quite weak).

This is the usual approach to significance testing in applied research. In
an investigation whether a new drug is more effective than a placebo,
for example, the result is derived from data for some patients, but it
is interpreted in a way generalized to further patients. Whether these
further patients are independent of the test patients and follow the same
distribution remains untested.

(c) Truncated models could be used which can be tested with α = 0. Apart
from the problems already raised in Section 3.1, this is subject to the
discussion under (a-ii): how good is P as an approximation of Q on Cc?

(d) It could be suggested that goodness-of-fit testing should be abandoned
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altogether, which means that Gillies’ propensity interpretation with fal-
sification rule has to be rejected. It can be expected that this point of
view is taken by many Bayesians (who dislike the whole principle of sig-
nificance testing, see, e.g., Howson and Urbach, 1993), among others. I
don’t want to discuss alternative interpretations of probability in detail
here. I just mention some Bayesian literature (Box, 1980, Berger, 1984,
Dawid, 2004), in which the need to decide about the validity of a model
based on real data (be it informal diagnostics or test-like falsification pro-
cedures) is acknowledged. From a data analytical point of view, causing
the goodness-of-fit paradox by model diagnostics is in almost all cases less
dangerous than to assume an untested model.

4.2 Propensities with falsification rule - a valid interpre-

tation?

Concerning the validity of Gillies’ propensity interpretation with falsification
rule, I see two main implications of the present paper.

1. The connection between experience and probability models established by
the falsification method is weaker than Gillies seems to believe. Assuming
approach (a) above, the effect of the falsification rule is only that we know
that the probability of a rejection region under the resulting distribution
is in fact zero if we test a model which assigns a small probability α to this
region. This confirms the model to some extent as a reasonable approx-
imation if the fact that we don’t expect observations from the rejection
region is an aspect of P which is of major importance to us.

2. Though propensity interpretations refer to objective probabilities in the
“real world”, it is impossible to exclude a strong subjective contribution
to finding a model. Subjective considerations are needed to choose the
significance test(s) used for confirmation or falsification, to justify Q ≈ P
on the region of non-falsification and, assuming approach (b) above, to
make further untestable assumptions.

Having these implications in mind, I still believe that Gillies’ interpretation
is very useful, especially considering the strong arguments that can be raised
against alternative interpretations of probability (this doesn’t imply that I reject
all other interpretations). While I am much less optimistic than Gillies about
the possibility to observe strong information about whether there is some true
probability in the real world and what the “true model” is, I acknowledge that
Gillies gives a convincing account of the interpretation of the construct “proba-
bility” that researchers have in mind when thinking about objective uncertainty.
It seems that “falsification” of this construct is only possible based on rejection
regions with small probability - the core idea of the statistical hypothesis test.
The goodness-of-fit paradox, the possibilities to deal with it and the subjective
freedom to choose models and alternatives against which to test the models re-
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fer to the essentially unsolvable problems of data analysis based on objectivist
models.

I won’t discuss alternative interpretations of probability here, but I think
that these problems can be traced back to more basic difficulties with math-
ematical modelling of reality, which occur in different ways also with other
interpretations. For a brief account of this point of view, see Hennig (2002,
2003). Overviews of criticisms of alternative interpretations are given by Fine
(1973), Gillies (2000). The approach of Davies (1995) to interpret probability
models as approximations to data instead of objective features of the real world,
and to define so-called “adequacy regions” which are equivalent to particular
non-falsification regions in the sense of the given paper seems to be quite similar
to the more modest (compared to Gillies) interpretation of long run propensities
that I have in mind.
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