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Abstract. It is argued that the determination of the best number of clusters k
is crucially dependent on the aim of clustering. Existing supposedly “objective”
methods of estimating k ignore this. k can be determined by listing a number of
requirements for a good clustering in the given application and finding a k& that
fulfils them all. The approach is illustrated by application to the problem of finding
the number of species in a data set of Australasian tetragonula bees. Requirements
here include two new statistics formalising the largest within-cluster gap and cluster
separation. Due to the typical nature of expert knowledge, it is difficult to make
requirements precise, and a number of subjective decisions is involved.

1 Introduction

Determining the number of clusters is a notoriously hard key problem in clus-
ter analysis. There is a large body of literature about it (for some references
beyond those given below see Jain (2010)).

One of the reasons why the problem is so hard is that most of the literature
is based on the implicit assumption that there is a uniquely best or “true”
clustering for given data or a given underlying statistical model assumed to be
true without defining unambiguously what is meant by this. This obscures the
fact that there are various ways of defining a “best clustering” which may lead
to different solutions for the same data set or model. Which of these definitions
is appropriate depends on the meaning of the data and the aim of analysis.
Therefore there is no way to find a uniquely best clustering considering the
data (or a model assumption) alone.

For example, the “true clusters” to be counted could correspond to, among
others,

Gaussian mixture components,

density modes,

connected data subsets that are strongly separated from the rest of the
data set,
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e intuitively clearly distinguishable patterns,
e the smallest number of data subsets with a given maximum within-cluster
distance.

It is clear that these definitions can lead to different “true” numbers of clusters
for the same data. For example it is well known that a mixture of several
Gaussians can be unimodal or have more than two modes, two density modes
are not necessarily separated by deep gaps, connected and well separated data
subsets may include very large within-cluster distances etc. Note further that
finding the “true” number of density modes or Gaussian mixture components
is an ill posed problem, because it is impossible to distinguish models with &
density modes or Gaussian mixture components from models with arbitrarily
more of them based on finite data for which a model with & modes/mixture
components fits well. A well known implication of this (Hennig (2010)) is
that the BIC, a consistent method for estimating the number of Gaussian
mixture components, will estimate a k tending to infinity for n — oo (n being
the number of observations) because of the fact that the Gaussian mixture
model does not hold precisely for real data, and therefore more and more
mixture components will fit real data better and better if there are only enough
observations to fit a large number of parameters.

Different concepts to define the number of clusters are required for different
applications and different research aims. For example, in social stratification,
the poorest people with the lowest job status should not be in the same cluster
(social stratum) as the richest people with the highest job status, regardless of
whether there is a gap in the data separating them, or whether these groups
correspond to different modes, i.e., large within-cluster dissimilarities should
not occur. On the other hand, in pattern recognition on images one often
wants to only separate subsets with clear gaps between them regardless of
whether there may be large distances or even multiple weak modes within the
clusters.

In the present paper I suggest a strategy to determine the number of clus-
ters depending on the research aim and the researcher’s cluster concept, which
requires input based on an expert’s subject matter knowledge. Subject matter
knowledge has already been used occasionally in the literature to determine
the number of clusters, see e.g., Chaturvedi et al. (2001), Morlini and Zani
(2012), but mostly informally.

Section 2 introduces a number of methods to estimate the number of clus-
ters. The new approach is illustrated in Section 3 by applying it to the problem
of determining the number of species in a data set of tetragonula bees. Some
limitations are discussed in Section 4.

2 Some methods to determine the number of clusters

Here are some standard approaches from the literature to determine the num-
ber of clusters. Assume that the data are x1,...,x, in some space S, are to
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be partitioned into exhaustive and non-overlapping sets C1, ...y, and that
there is a dissimilarity measure d defined on S2.

Calinski and Harabasz (1974) index. k¢ g maximises %, where

k
W(k) = Zh:l ﬁ Zmi,zjech d(xi’xj)2a and
B(k) = 5 327 j—y dlwi, 25)? = W (k).

n

Note that ko g was originally defined for Euclidean distances and use with
k-means, but the given form applies to general distances.

Average silhouette width (Kaufman and Rousseeuw (1990)). kasw maximises
LS s(i, k), where

. — b(i,k)—al(i,k)
s(i, k) = mxtatim b

a(i, k) = \CJ% ZzeCj d(.%'i,l'), b(l, /{3) = minmigcl \Tll\ ZIECL d(aci,x),

C; being the cluster to which x; belongs.

Pearson-version of Hubert’s I (Halkidi et al. (2001)). kpe maximises the
Pearson correlation between a vector of all dissimilarities and the cor-
responding binary vector with 0 for a pair of observations in the same
cluster and 1 for a pair of observations in different clusters.

Bootstrap stability selection (Fang and Wang (2012)). This is one of a num-
ber of stability selection methods in the literature. For each number of
clusters k of interest, B pairs of standard nonparametric bootstrap sub-
samples are drawn from the data. For each pair, both subsamples are
clustered, and observations not occurring in any subsample are classified
to a cluster in both clusterings in a way adapted to the used clustering
method. For example, in Section 3, average linkage clustering is used and
unclustered points are classified to the cluster to which they have the
smallest average dissimilarity. For each pair of clusterings the relative fre-
quency of point pairs in the same cluster in one of the clusterings but not
in the other is computed, these are averaged over the B bootstrap samples,
and kpg is the k that minimised the resulting instability measure.

As many methods in the literature, the former three methods all try to find
a compromise between within-cluster homogeneity (which generally improves
with increasing k) and between-cluster separation (which usually is better
for smaller k). The terms “within-cluster homogeneity” and “between-cluster
separation” are meant here in a general intuitive sense and admit various ways
of measuring them, which are employed by the various different criteria. The
k optimising these indexes may differ. For example, experiments indicate that
kasw may lump together relatively weakly separated data subsets if their
union is strongly separated from what is left, whereas kcpy may leave them
separated if putting them together makes the resulting cluster too heteroge-
neous. kpg tends less than the two former methods to integrate single outliers
in clusters.
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A general remark on stability selection is that although good stability is a
reasonable requirement in many applications, optimal stability is more difficult
to motivate, because there is no reason why “bad” clusterings cannot be stable.

3 Analysis of the tetragonula bees data set

Franck et al. (2004) published a data set giving genetic information about
236 Australasian tetragonula bees, in which it is of interest to determine the
number of species. The data set is incorporated in the package “fpc” of the
software system R (www.r-project.org). Bowcock et al. (1994) defined the
“shared allele dissimilarity” formalising genetic dissimilarity appropriately for
species delimitation, which is used for the present data set. It yields values in
[0, 1].

In order to apply the approach taken here and in fact also in order to
choose an appropriate clustering method, it is important to specify formal
requirements of species delimitation. The following list was compiled with
help of the species expert Bernhard Hausdorf, museum of zoology, University
of Hamburg.

e Large within-cluster gaps should be avoided, because genetic gaps are es-
sential for the species concept. Some caution is needed, though, because
gaps could be caused by incomplete sampling and by regional separation
within a species.

e Species need to be well separated for the same reason. Experts would nor-
mally speak of different species even in case of rather moderate separation
among regionally close individuals, so to what extent separation is required
depends on the location of the individuals to some extent.

e In order to count as species, a group of individuals needs to have a good
overall homogeneity, which can be measured by the average within-species
dissimilarity.

e Cluster stability is needed in order to have confidence that the clustering
is not a random structure, although there is no specific reason why the
best clustering needs to have maximum stability.

The third criterion motivates the average linkage hierarchical clustering, which
is applied here, see Figure 1 (it is beyond the scope of the paper to give a
more conclusive justification). Determining the number of species amounts to
finding the best height at which the dendrogram is cut. Values of k between
2 and 15 were examined.

The criteria introduced in Section 2 do not yield a consistent decision about
the number of clusters, with kcg = kasw = 10, kpa = 9, ks = 5. Note
that for k£ > 3 all instability values are smaller than 0.08, so all clusterings
are rather stable and fulfil the fourth requirement. ks may generally be
rather low, because splitting up somewhat ambiguous data subsets may harm
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Fig. 1. Heatplot and average linkage clustering for tetragonula bee data. Colour
bars at the left side and on top indicate the clustering with k£ = 10.

stability. Just taking the general behaviour of the criteria into account, kasw
with its strong emphasis on separation looks closest to the listed requirements.

An approach driven stronger by the aim of clustering is to find a number
of clusters that fulfils all listed requirements separately instead of using a
criterion that aggregates them without caring about specific details.

To this end, the largest within-cluster gap wg of a clustering can be defined
as the maximum over all clusters of the dissimilarity belonging to the the last
connecting edge of the minimum spanning tree within each cluster.

Cluster separation se of a clustering can be measured by computing, for all
observations, the distance to the closest cluster to which the observation does
not belong. Then the average of the minimum 10% of these distances is taken
in order to consider only points close to the cluster borders (one should take
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Fig. 2. Largest within-cluster gap for tetragonula bee data.
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Fig. 3. Cluster separation for tetragonula bee data.

number ot cusiers

Fig. 4. Average within-cluster dissimilarity for tetragonula bee data.

a certain percentage of points into account in order to not make the index too
dependent on a single observation).

Neither the average within-cluster dissimilarity ad nor the two statistics
just introduced can be optimised over k, because increasing k will normally
decrease all three of them.

Examining the statistics (see Figures 2-4), it turns out that wg does not
become smaller than 0.5 for k¥ < 15 and 0.5 is reached for k > 8. se falls from
about 0.46 at k = 9 (which is fairly good) to below 0.4 for larger k. ad is 0.33
for k = 10, does not improve much for larger k, and is much higher for k£ < 9;
0.46 for k£ = 9. Overall this means that £k = 9 and k£ = 10 can be justified, with
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k = 9 much better regarding separation and k£ = 10 much better regarding
ad, i.e., homogeneity.

Automatic aggregation of these aspects by formal criteria such as kasw
or kpg obscures the fact that in this situation the decision which of the re-
quirements is more important really must come from subject matter expertise
and cannot be determined from the data alone.

For the given problem, the importance of separation depends on how
closely together the sampled individuals actually were taken geographically.
From existing information on the sampling of individuals it can be seen that
the two clusters merged going from k£ = 10 to 9 consist of individuals that
are rather close together, in which case according to B. Hausdorf one would
accept a weaker separation and demand more homogeneity. This favours the
solution with k& = 10. This solution is illustrated in Figure 1 by the colour
bars on the left side and above (for k = 9, the two clusters in the upper right
are merged).

Note that for this data set an expert decision about the existing species
exists (cf. Franck et al. (2004); we did not use this in order to define criteria
make decisions here), using information beyond the analysed data. This could
be taken as a “ground truth” but one needs to keep in mind that there is no
precise formal definition of a “species”. Therefore experts will not always agree
regarding species delimitation. According to the expert assessment there are 9
species in the data, but in fact the solution with k£ = 10 is the best possible one
(in the sense of matching the species decided by Franck et al.) in the average
linkage tree, because it matches the expert delimitation precisely except that
one “expert species” is split up, which is in fact split up in all average linkage
clusterings with k£ > 6 including k = 9, which instead merges two species that
should be separated according to Franck et al. (2004).

4 Conclusion

The number of clusters for the tetragonula bees data set has been deter-
mined by listing a number of formal requirements for clustering in species
delimitation and examining them all. This is of course strongly dependent on
subjective judgements by the experts. Note though that subjective judgement
is always needed if in fact the number of clusters depends on features such as
separation and homogeneity, of which it is necessary to decide how to balance
them. Supposedly objective criteria such as the ones discussed in Section 2
balance features automatically, but then the user still needs to choose a crite-
rion, and this is a more difficult decision, because the meaning of the criteria
in terms of the aim of the cluster analysis is more difficult to understand than
statistics that formalise the requirements directly.

Optimally the statistician would like the expert to specify precise cutoff
values for all criteria, which would mean that the best k& could be found by a
formal rule (e.g., the minimum k that fulfils all requirements). Unfortunately,
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required cluster concepts such as the idea of a “species” are rarely precise
enough to allow such exact formalisation.

The biggest obstacle for the presented approach is in fact that the re-
quirements of clustering are in most cases ambiguous and formalisations are
difficult to obtain. The fact that the subject matter experts often do not have
enough training in mathematical thinking does not improve matters. How-
ever, using supposedly “objective” criteria in a more traditional fashion does
not solve these problems but rather hides them.

The tetragonula bees data set has also been analysed by Hausdorf and
Hennig (2010), using a method that allows for leaving some outliers out of
all clusters. Indexes formalising separation and homogeneity would need an
adaptation for such methods.

The new indexes for the largest within-cluster gap and cluster separation
introduced above will soon be available in the R-package “fpc”.
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