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Abstract. Cluster validation is necessary because the clusters resulting from clus-
ter analysis algorithms are not in general meaningful patterns. I propose a method-
ology to explore two aspects of a cluster found by any cluster analysis method: the
cluster should be separated from the rest of the data, and the points of the cluster
should not split up into further separated subclasses. Both aspects can be visually
assessed by linear projections of the data onto the two-dimensional Euclidean space.
Optimal separation of the cluster in such a projection can be attained by asym-
metric weighted coordinates (Hennig (2002)). Heterogeneity can be explored by the
use of projection pursuit indexes as defined in Cook, Buja and Cabrera (1993). The
projection methods can be combined with splitting up the data set into clustering
data and validation data. A data example is given.

1 Introduction

Cluster validation is the assessment of the quality and the meaningfulness
of the outcome of a cluster analysis (CA). Most CA methods generate a
clustering in all data sets, whether there is a meaningful structure or not.
Furthermore, most CA methods partition the data set into subsets of a more
or less similar shape, and this may be adequate only for parts of the data,
but not for all. Often, different CA methods generate different clusterings
on the same data and it has to be decided which one is the best, if any.
Therefore, if an interpretation of a cluster as a meaningful pattern is desired,
the cluster should be validated by information other than the output of the
CA. A lot of more or less formal methods for cluster validation are proposed
in the literature, many of which are discussed, e.g., in Gordon (1999, Section
7.2) and Halkidi et al. (2002). Six basic principles for cluster validation can
be distinguished:

Use of external information External information is information that has
not been used to generate the clustering. Such information can stem from
additional data or from background knowledge. However, such informa-
tion is often not available.

Significance tests for structure Significance tests against null models for-
malizing “no clustering structure at all” are often used to justify the
interpretation of a clustering. While the rejection of homogeneity is a
reasonable minimum requirement for a clustering, such tests cannot val-
idate the concrete structure found by the CA algorithm.
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Comparison of different clusterings on the same data Often, the agree-
ment of clusterings based on different methods is taken as a confirmation
of clusters. This is only meaningful if sufficiently different CA methods
have been chosen, and in the case of disagreement it could be argued that
not all of them are adequate for the data at hand.

Validation indexes In some sense, the use of validation indexes is similar to
that of different clusterings, because many CA methods optimize indexes
that could otherwise be used for validation.

Stability assessment The stability of clusters can be assessed by tech-
niques such as bootstrap, cross-validation, point deletion, and addition
of contamination.

Visual inspection Recently (see, e.g., Ng and Huang (2002)), it has been
recognized that all formal approaches of cluster validation have limita-
tions due to the complexity of the CA problem and the intuitive nature
of what is called a “cluster”. Such a task calls for a more subjective
and visual approach. To my knowledge, the approach of Ng and Huang
(2002) is the first visual technique which is specifically developed for the
validation of a clustering.

Note that these principles address different aspects of the validation problem.
A clustering that is well interpretable in the light of external information will
not necessarily be reproduced by a different clustering method. Structural
aspects such as homogeneity of the single clusters and heterogeneity between
different clusters as indicated by validation indexes or visual inspection are
not necessarily properties of clusters which are stable under resampling. How-
ever, these aspects are not “orthogonal”. A well chosen clustering method
should tend to reproduce well separated homogeneous clusters even if the
data set is modified.

In the present paper, a new method for visual cluster validation is pro-
posed. As opposed to the approach of Ng and Huang (2002), the aim of the
present method is to assess every cluster individually. The underlying idea is
that a valid cluster should have two properties:

e separation from the rest of the data, so that it should not be joined with
other parts of the data,

e homogeneity, so that the points of the cluster can be said to “belong
together”.

In Section 2, asymmetric weighted coordinates (AWCs) are introduced. AWCs
provide a linear projection of the data in order to separate the cluster under
study optimally from the rest of the data. In Section 3, I propose the applica-
tion of some projection pursuit indexes to the points of the cluster to explore
its heterogeneity. Additionally, if there is enough data to split the data set
into a “training sample” and a “validation sample”, the projections obtained
from clustering and visual validation on the training sample can be applied
also to the points of the validation sample to see if the found patterns can
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be reproduced. Throughout the paper, the data is assumed to come from the
p-dimensional Euclidean space. The methods can also be applied to distance
data after carrying out an appropriate multidimensional scaling method. Eu-
clidean data is only needed for the validation; the clustering can be done on
the original distances. In Section 4, the method is applied to a real data set.

2 Optimal projection for separation

The most widespread linear projection technique to separate classes goes back
to Rao (1952) and is often called “discriminant coordinates” (DCs). The first
DC is defined by maximizing the ratio
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n denotes the number of points, n; is the number of points of class i, s
denotes the number of classes, X;1,...,X;n; are the p-dimensional points of
class ¢, m; is the mean vector of class ¢ and m is the overall mean. The
further DCs maximize F' under the constraint of orthogonality to the previous
DCs w.r.t. W. B is a covariance matrix for the class means and W is a
pooled within-class covariance matrix. Thus, F' gets large for projections
that separate the means of the classes as far as possible from each other
while keeping the projected within-class variation small. Some disadvantages
limit the use of DCs for cluster validation. Firstly, separation is formalized
only in terms of the class means, and points of different classes far from
their class means need not to be well separated (note that the method of Ng
and Huang (2002) also aims at separating the cluster centroids). Secondly,
s — 1 dimensions are needed to display all information about the separation
of s classes, and therefore there is no guarantee that the best separation of
a particular cluster shows up in the first two dimensions in case of s > 3.
This could in principle be handled by declaring the particular cluster to be
validated as class 1 and the union of all other clusters as class 2 (this will
be called the “asymmetry principle” below). But thirdly, DCs assume that
the covariance matrices of the classes are equal, because otherwise W would
not be an adequate covariance matrix estimator for a single class. If the
asymmetry principle is applied to a clustering with s > 2, the covariance
matrices of these classes cannot be expected to be equal, not even if they
would be equal for the s single clusters.

A Dbetter linear projection technique for cluster validation is the appli-
cation of asymmetric linear dimension reduction (Hennig (2002)) to the two
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classes obtained by the asymmetry principle. Asymmetry means that the two
classes to be projected are not treated equally. Asymmetric discriminant co-
ordinates maximize the separation between class 1 and class 2 while keeping
the projected variation of class 1 small. Class 2, i.e., the union of all other
data points, may appear as heterogeneously as necessary. Four asymmet-
ric projection methods are proposed in Hennig (2002), of which asymmetric
weighted coordinates (AWCs) are the most suitable for cluster validation.
The first AWC is defined by maximizing
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d > 0 being some constant, for example the 0.99-quantile of the xf,—distribution.
The second AWC ¢, maximizes F* subject to c’ISflcQ = 0 and so on. ¢{B*c;
gets large if the projected differences between points of class 1 and class 2
are large. The weights w; downweight differences from points of class 2 that
are very far away (in Mahalanobis distance) from class 1. Otherwise, ¢} B*c;y
would be governed mainly by such points, and class 1 would appear separated
mainly from the furthest points in class 2, while it might be mixed up more
than necessary with closer points of class 2. The weights result in a projection
that separates class 1 also from the closest points as well as possible. More
motivation and background is given in Hennig (2002). As for DCs, the com-
putation of AWCs is very easily be done by an Eigenvector decomposition of
ST IB*. Note that AWCs can only be applied if n; > p, because otherwise
class 1 could be projected onto a single point, thus c’ISflcl = 0. If n; is not
much larger than p, ¢{S; ¢, can be very small, and some experience (e.g.,
with simulated data sets from unstructured data) is necessary to judge if a
seemingly strong separation is really meaningful.

3 Optimal projection for heterogeneity

Unfortunately, AWCs cannot be used to assess the homogeneity of a cluster.
The reason is that along projection directions that do not carry any informa-
tion regarding the cluster, the cluster usually does not look separated, but
often more or less homogeneous. Thus, to assess separation, the projected
separation has to be maximized, which is done by AWCs. But to assess ho-
mogeneity, it is advantageous to maximize the projected heterogeneity of the
cluster.
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Projection pursuit is the generic term for linear projection methods that
aim for finding “interesting”, i.e., heterogeneous projections of the data (Hu-
ber (1985)). The idea is to project only the points of the cluster to be vali-
dated in order to find a most heterogeneous visualization. There are lots of
projection pursuit indexes. Some of them are implemented in the data visual-
ization software XGOBI (Buja et al. (1996)). A main problem with projection
pursuit is that the indexes can only be optimized locally. XGOBI visualizes
the optimization process dynamically, and after a local optimum has been
found, the data can be rotated toward new configurations to start another
optimization run.

Two very simple and useful indexes have been introduced by Cook et al.
(1993) and are implemented in XGOBI. The first one is the so-called “holes
index”, which is defined by minimizing

F*(C) = Y ¢a2(C'xu),
=1

over orthogonal p x 2-projection matrices C, where ¢» denotes the density of
the two-dimensional Normal distribution and the points x1; are assumed to
be centered and scaled. F** becomes minimal if as few points as possible are
in the center of the projection, in other words, if there is a “hole”. Often, such
a projection shows a possible division of the cluster points into subgroups.

It is also useful to maximize F**, which is called “central mass index” in
XGOBI. This index attempts to project as many points as possible into the
center, which can be used to find outliers in the cluster. But it can also be
useful to try out further indexes, as discussed in Cook et al. (1993).

4 Example

As an example, two CA methods have been applied to the “quakes” data set,
which is part of the base package of the free statistical software R (to obtain
from www.R-project.org). The data consist of 1000 seismic events on Fiji,
for which five variables have been recorded, namely geographical longitude
and latitude, depth, Richter magnitude and number of stations reporting.
Because of the favorable relation of n to p, I divided the data set into 500
points that have been used for clustering and 500 points for validation.

The first clustering has been generated by MCLUST (Fraley and Raftery
(2003)), a software for the estimation of a Normal mixture model including
noise, i.e., points that do not belong to any cluster. The Bayesian information
criterion has been used to decide about the number of clusters and the com-
plexity of the model for the cluster’s covariance matrices. It resulted in four
clusters with unrestricted covariance matrices plus noise. As a comparison, I
have also performed a 5-means clustering on sphered data.

Generally, the validity of the clusters of the MCLUST-solution can be
confirmed. In Figure 1, the AWC plot is shown for the second cluster (points
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Fig. 1. Left: AWCs of cluster 2 (black points) of the MCLUST solution. Right:
validation data set projected onto the AWCs.
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Fig. 2. Left: AWCs of cluster 3 (black points) of the MCLUST solution. Right:
AWCs of cluster 1 (black points) of the 5-means solution.

of other clusters are always indicated with the cluster numbers). These points
do neither appear separated in any scatterplot of two variables nor in the
principal components (not shown), but they are fairly well separated in the
AWC plot, and the projection of the validation points on the AWCs (right
side) confirms that there is a meaningful pattern. Other clusters are even
better separated, e.g., cluster 3 on the left side of Figure 2. Some of the
clusters of the 5-means solution have a lower quality. For example, the AWC-
plot of cluster 1 (right side of Figure 2) shows the separation as dominated
by the variation within this cluster.
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Fig. 3. Left: “holes” projection of cluster 2 of the MCLUST solution. Right: “holes”
projection of cluster 3 of the MCLUST solution.
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Fig. 4. Left: “holes” projection of cluster 1 of the 5-means solution. Right: “central
mass” projection of cluster 4 of the 5-means solution.

Optimization of the holes index did not reveal any heterogeneity in MCLUST-
cluster 2, see the left side of Figure 3, while in cluster 3 (right side) two sub-
populations could roughly be recognized. Sometimes, when applying MCLUST
to other 500-point subsamples of the data, the corresponding pattern is in-
deed divided into two clusters (it must be noted that there is a non-negligible
variation in the resulting clustering structures from MCLUST, including the
estimated number of clusters, on different subsamples). Some of the 5-means
clusters show a much clearer heterogeneity. The holes index reveals some
subclasses of cluster 1 (right side of Figure 4), while the central mass index
highlights six outliers in cluster 4 (right side).
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5 Conclusion

A combination of two plots for visual cluster validation of every single cluster
has been proposed. AWCs optimize the separation of the cluster from the
rest of the data while the cluster is kept homogeneous. Projection pursuit is
suggested to explore the heterogeneity of a cluster.

Note that for large p compared to n, the variety of possible projections is
large. Plots in which the cluster looks more or less separated or heterogeneous
are found easily. Thus, it is advisable to compare the resulting plots with the
corresponding plots from analogous cluster analyses applied to data with the
same n and p generated from “null models” such as a normal or uniform
distribution to assess if the cluster to be validated yields a stronger pattern.
This may generally be useful to judge the validity of visual displays.

The proposed plots are static. This has the advantage that they are repro-
ducible (there may be a non-uniqueness problem with projection pursuit) and
they are optimal with respect to the discussed criteria. However, a further dy-
namical visual inspection of the data by, e.g., the grand tour as implemented
in XGOBI (Buja et al. (1996)), can also be useful to assess the stability of
separation and heterogeneity as revealed by the static plots.

AWCs are implemented in the add-on package FPC for the statistical
software package R, available under www.R-project.org.
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