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Abstract

Two robustness criteria are presented that are applicable to general clus-
tering methods. Robustness and stability in cluster analysis are not only
data dependent, but even cluster dependent. Robustness is in the present
paper defined as a property of not only the clustering method, but also of
every individual cluster in a data set. The main principles are: (a) dissimi-
larity measurement of an original cluster with the most similar cluster in the
induced clustering, (b) the dissolution point, which is an adaptation of the
breakdown point concept to single clusters, (c) isolation robustness: given a
clustering method, is it possible to join, by addition of g points, arbitrarily
well separated clusters?

Results are derived about k-means, k-medoids (k estimated by average
silhouette width), trimmed k-means, mixture models (with and without noise
component, with and without estimation of the number of clusters by BIC),
single and complete linkage.
AMS 2000 subject classification: Primary 62F35; secondary 62H30.
Keywords: breakdown point, model-based cluster analysis, mixture model,
trimmed k-means, average silhouette width

1 INTRODUCTION

Stability and robustness are important issues in cluster analysis. As a motivation,
Figure 1 shows the 7-means clustering of a 4-dimensional data set of 80 images that
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Figure 1: First two variables of 80-images data set with 7-means clustering.

are screen captures of movies (only the first two variables are shown in all figures).
The data set has been obtained by first defining a visual distance measure between
the images. Then the data have been embedded in the 4-dimensional space by
choosing four so-called “vantage objects” and taking their distances to all objects
as variables (see Hennig and Latecki 2003 for the full procedure). The images
are from 8 different scenes, and therefore there is a “true clustering” (cluster 5 in
Figure 1 consists of the images of two scenes). Originally, the data set consisted
of 100 images from 10 scenes. The images from the two omitted scenes are very
different from the other images. Four of them are included in Figure 2, and they
are used to illustrate the effect of “realistic” outliers on a clustering. The clustering
on the right side is further discussed in Section 3.4.

If only one of the outliers shown as “cluster 2” in Figure 2 is added to the data set
on the left side, the 7-means solution reserves one cluster for the outlier and merges
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the well separated clusters 5 and 7 on the left side. This could be interpreted as
a kind of breakdown or “dissolution” of at least cluster 7 (cluster 5 consists of 20
points and still has the majority in the merged cluster).

The 8-means solution on the 80-images data splits cluster 4 into two parts instead
of separating the two scenes underlying cluster 5. With additional outlier, 8-means
generates the clustering of Figure 1 plus one cluster for the outlier, which seems
to be an adequate clustering. Here, the splitting of cluster 4 into two halves is
unstable. The addition of suitable non-outliers to the center of cluster 4 instead of
the outlier added above would result in splitting up cluster 5 instead. As opposed
to the situation above, it seems to be inadequate to judge this latter instability
as a serious robustness problem of the clustering method, because from looking
at the data alone it is rather unclear if a good clustering method should split up
cluster 4, cluster 5, both, or none of them.

This illustrates that not all instabilities in cluster analysis are due to weaknesses of
the clustering methods. There also exist data constellations that are unstable with
respect to clustering. Some features of a clustering are expected to be more stable
than others (the separation between clusters 5 and 7 is clearly more meaningful
than the question if cluster 4 should be split up or not). The approach of the
present paper to handle such feature-dependent instabilities is the introduction
of a cluster-dependent concept of robustness. Here is an even clearer example:
be there 100 one-dimensional points distributed more or less uniformly between
0 and 1, 15 points between 10 and 10.4 and 15 points between 10.6 and 11. It
should be clear that a reasonably robust clustering method (estimating k, say)
should assign the first 100 points to a single stable cluster, while it may depend
on small variations in the data whether the remaining points are estimated as a
single cluster or split up into two clusters, and no sensible clustering method can
be expected to be stable in that respect.

The 80-images data set illustrates further that a proper estimation of the number of
clusters, which adds clusters fitting extreme outliers, could be a key to robustness
against outliers. However, not every method to estimate the number of clusters is
suitable for this purpose, see Section 3.4.

The assessment of the effect of a perturbation of the data to a clustering has a
long history in cluster analysis (Rand 1971, a large number of references is given
in Gordon 1999, Chapter 7, and Milligan 1996). Recently, there are also attempts
to apply key concepts of robust statistics such as the influence function (Hampel
1971) and the breakdown point (Hampel 1974, Donoho and Huber 1983) to certain
cluster analysis methods (Kharin 1996, Garcia-Escudero and Gordaliza 1999, Gal-
legos 2003, Hennig 2004a). The disadvantage of the latter influence/breakdown
approach is that it only applies to cluster analysis methods estimating parameters
of statistical models, and the results are only comparable between methods esti-
mating the same parameters. While being able to handle and to compare more
general cluster analysis techniques, the disadvantage of the former cluster pertur-
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Figure 2: Same data as in Figure 1 with 4 outlying images added and average
silhouette width (2-medoid) clustering
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bation approach is that it consists mainly of simulation studies, and the results
depend strongly on the design of these studies.

The aim of the present paper is to develop robustness concepts for cluster analysis
that can be applied to a wide range of cluster analysis methods. Considerations
are restricted to methods yielding disjunct clusters, but the proposed methodology
can also be applied to more general cluster analysis methods (Hennig 2004c).

An important difference between the theory given here and the results published
so far is that the present approach treats stability as a property of an individual
cluster instead of the whole clustering. It is intuitively clear and has been demon-
strated above that a single data set can contain at the same time stable and much
less stable (in most cases this means: less clearly separated) clusters.

The following two concepts are introduced in Section 2:

• The “dissolution point” is an adaptation of the breakdown point concept to
all individual clusters yielded by general cluster analysis methods.

• “Isolation robustness” means that a theorem of the following type can be
shown: For g arbitrarily large but fixed, a cluster with a large enough iso-
lation (minimum distance between a point inside and a point outside the
cluster, depending on g) cannot be merged with points not belonging to the
cluster in the original data set by addition of g points to the data set.

The concepts are applied to various cluster analysis methods, namely k-means, k-
medoids with estimation of k by average silhouette width (Kaufman and Rousseeuw
1990, Chapter 2), trimmed k-means (Cuesta-Albertos, Gordaliza and Matran 1997;
all in Section 3), mixture models with and without noise and with and without es-
timation of the number of clusters (Fraley and Raftery 1998, McLachlan and Peel
2000; Section 4), single and complete linkage agglomerative clustering (Section
5), fixed point clustering (Hennig 1997, 2002, 2005a, Hennig and Christlieb 2002;
Section 6). The paper is concluded with an overview of the robustness results and
some discussion in Section 7.

2 ROBUSTNESS CONCEPTS

2.1 The dissolution point and a dissimilarity measure between

clusters

In Hennig (2004a), a definition of a breakdown point for a general clustering
method has been proposed (though applied only to ML-estimators for location-
scale mixtures), of which the definition is based on the assignments of the points to
clusters and not on parameters to be estimated. This concept deviates somewhat
from the traditional meaning of the term “breakdown point”, since it attributes
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“breakdown” to situations that are not always the worst possible ones. Further-
more, the definition is not linked to an equivariance property and it is not possible
to derive a non-trivial upper bound for this definition, which may be taken as
a requirement for a breakdown point definition, cf. Davies and Gather (2002).
Therefore, the proposed robustness measure is called “dissolution point”. It is
thought to measure a kind of “breakdown” in the sense that the addition of points
changes the cluster solution so strongly that the pattern of the original data can
be considered as “dissolved”. The definition here is a modification of that given
in Hennig (2004a).

A sequence of mappings E = (En)n∈IN is called a general clustering method, if
En maps a set of entities xn = {x1, . . . , xn} (this is how xn is always defined
throughout the paper) to a collection of subsets {C1, . . . , Cs} of xn. Note that it
is assumed that entities with different indexes can be distinguished. This means
that the elements of xn are interpreted as data points and that |xn| = n even
if, for example, for i 6= j, xi = xj . This could formally be achieved by writing
(xi, i) and (xj , j) instead, but for simplicity reasons such a notation has not been
chosen. Assume for the remainder of the paper that E is a disjunct cluster method
(DCM), i.e., Ci ∩ Cj = ∅ for i 6= j ≤ k. Most popular DCMs yield partitions, i.e.,
k
⋃

j=1

Cj = xn.

If E is a DCM and xn+g is generated by adding g points to xn, En+g(xn+g)
induces a clustering on xn, which is denoted by E∗

n(xn+g). Its clusters are denoted
by C∗

1 , . . . , C∗
k∗ . E∗

n(xn+g) is a DCM as well. k∗ may be smaller than k if E
produces k clusters for all n.

The definition of stability with respect to the individual clusters requires a measure
for the similarity between a cluster of E∗

n(xn+g) and a cluster of En(xn), i.e.,
between two subsets C and D of some finite set.

There are a lot of possible similarity measures. Such measures are used, e.g., in
ecology to measure similarity of species populations of regions (Shi 1993). The
Jaccard coefficient (Jaccard 1901) is presumably the most popular measure, and I
suggest it for the purpose of the present paper (see Remark 2.4):

γ(C,D) =
|C ∩ D|
|C ∪ D| .

The definition of dissolution is based on the similarity of a cluster C ∈ En(xn)
to its most similar cluster in E∗

n(xn+g). A similarity between C and a clustering
Ên(xn) is defined by

γ∗(C, Ên(xn)) = max
D∈Ên(xn)

γ(C,D).

How small should γ∗ be to say that the pattern corresponding to C in the original
data is dissolved in E∗

n(xn)? The usual choice for a breakdown point in robust
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statistics would be the worst possible value. In the present setup, this value
depends on the dataset and on the clustering method. The key problem is that in
a partition E∗

n(xn+g)) there has to be at least one cluster that intersects with C,
so that the natural minimum value 0 of γ cannot be attained. See Hennig (2004a)
for examples of data dependent worst values. In general, the worst possible value
may be difficult to compute, while one would judge a cluster as “broken down” or
“dissolved” already in much simpler constellations of E∗

n(xn+g). I propose

γ∗ ≤ 1

2
= γ({x, y}, {x}) = γ(C,C1) if C1 ⊂ C, |C1| = |C|/2, (2.1)

as a cutoff value to consider a cluster as dissolved. The definition of the Jaccard
coefficient enables a simple interpretation: If γ∗(C,E∗

n(xn+g)) ≤ 1
2 , then the num-

ber of points of C and its most similar cluster in E∗
n(xn+g)) for which the two

clusters differ is at least as large as the number of points where they coincide.

The cutoff value 1
2 can be further motivated by the following Lemma, which means

that every cluster can dissolve, at least in absence of further subtle restrictions on
the possible clusterings.

Lemma 2.1 Let En(xn) 3 C be a DCM with |En(xn)| ≥ 2. Let K ⊆ IN be
the set of possible cluster numbers containing at least one element k ≥ 2. Let
F = {F partition on xn : |F | ∈ K}. Then ∃F̂ ∈ F : γ∗(C, F̂ ) ≤ 1

2 .
1
2 is the

smallest value for this to hold.

This is equivalent to Lemma 3.3 in Hennig (2004a).

Note that F is restricted here to consist of partitions, not of disjunct clusterings.
The reason for this is that the claim of the Lemma would be trivial if the new
clustering F̂ would be allowed to consist of no clusters at all or to assign only
very few points to clusters. The Lemma shows that dissolution is possible by new
assignments of points to clusters, not only by not clustering points.

Definition 2.2 Let E = (En)n∈IN be a DCM. The dissolution point of a cluster
C ∈ En(xn) is defined as

∆(E,xn, C) = min
g

{

g

|C| + g
: ∃xn+g = (x1, . . . , xn+g) : γ∗(C,E∗

n(xn+g)) ≤
1

2

}

.

The dissolution point is defined by addition of points to the original data set here,
which is not the only possibility. See Section 7 for a discussion.

Note that it would be mathematically equivalent with respect to all theory pre-
sented in this paper to define the dissolution point as the minimal g instead of

g
|C|+g

. I suggest g
|C|+g

because this enables comparisons between the dissolution
points of different clusters and the choice of a proportion between 0 and 1 follows
the tradition of the breakdown point (though there is no proof of the dissolution
point to be bounded from above by 1

2 under some reasonable assumptions).
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Remark 2.3 It follows from Remark 3.5 in Hennig (2004a), that at least r ≥ 1
clusters of En(xn) have to dissolve if |En(xn)| = k, |E∗

n(xn+g)| = k − r.

Remark 2.4 In Shi (1993), 39 similarity measures between sets are compared. In

Hennig (2004a), γ1(C,D) = 2|C∩D|
|C|+|D| has been used, which is a monotone function of

the Jaccard coefficient and leads to an equivalent dissolution definition if the cutoff
value 1

2 is replaced by 2
3 . The interpretation of (2.1) seems to be most natural for

the Jaccard coefficient and the cutoff value of 1
2 , and the Jaccard coefficient is well

known and widely used (though usually for much different purposes).

It does not depend on the number of points which are neither in C nor in D, it
is symmetric and attains its minimum 0 only for disjoint sets and its maximum
1 only for equal sets. 1 − γ is a metric (Gower and Legendre 1986). Many of
the measures listed in Shi (1993) do not fulfill these basic requirements, others are
criticized by Shi for stability reasons. See Hennig (2004c) for a further discussion
of the choice of the Jaccard coefficient.

The comparison of whole clusterings has been treated, e.g., by Rand (1971), Hubert
and Arabie (1985).

2.2 Isolation robustness

In the following sections, there will be various results on dissolution points for dif-
ferent DCMs. While these results are informative about the nature of the methods,
in most cases they do not allow a direct comparison. The concept of isolation ro-
bustness should enable such a comparison. The rough idea is that it can be seen
as a minimum robustness demand on cluster analysis that an extremely well iso-
lated cluster remains stable under the addition of points. The isolation i(C) of a
cluster C is defined as the minimum distance of a point of the cluster to a point
not belonging to the cluster, which means that a distance structure on the data is
needed. The DCMs treated in this paper, as far as they are not directly distance
based, operate on the Euclidean space, so that the Euclidean distance can be used.
It is further assumed that the distance measure is a metric because the idea of
“isolation” is incompatible with the possibility that there may be a distance of
100 between two points and a third point can be added that has a distance of 1
to both of them.

Definition 2.5 A DCM E = (En)n∈IN is called isolation robust, if there exists
a sequence of functions vm : Mm × IN 7→ IR, m ∈ IN (where Mm is the space of
distance matrices between m objects permissible by the distance structure underly-
ing the DCM) so that
for n ≥ m for any data set xn, for given g ∈ IN , for any cluster C ∈ En(x) with
|C| = m, within-cluster distance matrix MC and i(C) > vm(MC , g) and for any
data set xn+g, where g points are added to xn the following statement holds:
For all D ∈ E∗

n(xn+g) : D ⊆ C or D ⊆ xn \ C and ∃E∗
n(xn+g) 3 D ⊆ C.
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Note that a well isolated cluster may be unstable not because of robustness prob-
lems with the DCM, but because of internal inhomogeneity. Isolation robustness
addresses only robustness of a good separation, not robustness of a large homo-
geneity. Under a sensible DCM, it is always possible to construct data in which a
rather inhomogeneous cluster is split up in more than one part under addition of
a single point. The definition allows C to be split up and prevents only that parts
of C are joined with parts of xn \ C in the same cluster.

Remark 2.6 It would be possible to define a weaker version of isolation robustness
“of degree α” by demanding the existence of vm(MC , g) only for g < αm. With
such a definition, it would not be necessary that for a large enough isolation the
definition above holds for arbitrarily large g, which may be even larger than n.
However, the following theory will show that isolation robustness is either violated
already for g = 1 or it holds for arbitrarily large g, thus α = ∞, for any of the
discussed methods.

3 VARIATIONS ON k-MEANS

3.1 Definition of methods

In the following subsection, dissolution and isolation robustness of some versions
of the k-means clustering method (MacQueen 1967) will be investigated. These
versions have been proposed to robustify the k-means approach.

• The k-medoids method (Kaufman and Rousseeuw 1990, Chapter 2), which
uses (in its default form) the L1-norm instead of the squared L2-norm and
uses optimally chosen cluster members instead of means as cluster centers.
Thus, it can also be applied to data that come as distance matrix (the
distances being not necessarily L1-norms) and is a modification of k-medians.

• The trimmed k-means method (Cuesta-Albertos, Gordaliza and Matran 1997)
optimizes the k means criterion after an optimally chosen portion of α of the
data has been left out.

• The number of clusters k is often treated as fixed. It is also possible to
estimate this number. Many criteria have been proposed to do this (see,
e.g., Milligan and Cooper 1985). In the present paper, the “average silhouette
width” criterion proposed for k-medoids (but applicable to all partitioning
techniques) by Kaufman and Rousseeuw (1990, Chapter 2) is considered for
the k-medoids case. This criterion recently became very popular, see, e.g.,
Jörnsten (2004).
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Definition 3.1 The k-means clustering of xn is defined by

En(xn) = arg min
{C1,...,Ck} partition of xn

n
∑

i=1

min
j

‖xi − x̄j‖2
2, (3.1)

where x̄j = 1
|Cj |

∑

xi∈Cj
xi and ‖ • ‖p denotes the Lp-norm.

(For ease of notation, assume n ≥ k even if “n ∈ IN” is written.)

Definition 3.2 The k-medoids clustering of xn is defined by

En(xn) = arg min
{C1,...,Ck} partition of xn, x̃1∈C1,...,x̃k∈Ck

n
∑

i=1

min
j

‖xi − x̃j‖1. (3.2)

Definition 3.3 The α-trimmed k-means clustering of xn is defined by

En(xn) = arg min
{C1,...,Ck} partition of y⊂xn, |y|=dn(1−α)e

n
∑

i=1

1(xi ∈ y)min
j

‖xi − x̄j‖2
2,

(3.3)
where dze is the smallest integer larger or equal to z and 1(•) denotes the indicator
function.

Definition 3.4 For xi ∈ xn with underlying distance measure d, a clustering
Ek,n(xn) = {C1, . . . , Ck} and xi ∈ Cj, s(i, k) = b(i,k)−a(i,k)

max(a(i,k),b(i,k)) is called silhouette
width of point xi, where

a(i, k) =
1

|Cj| − 1

∑

x∈Cj

d(xi, x), b(i, k) = min
xi 6∈Cl

1

|Cl|
∑

x∈Cl

d(xi, x).

If |Cj | = 1, s(i, k) = 0.
For k ≥ 2 (it is not possible to estimate k = 1 with this method; the method may
be accompanied with a test detecting the presence of any clustering), let Ek be a
partitioning method with |Ek,n(xn)| = k for all data sets.

En(xn) = E
k̂,n

(xn) with k̂ = arg max
k∈{2,...,n}

1

n

n
∑

i=1

s(i, k)

is called average silhouette width-clustering corresponding to the partitioning
method Ek.

Maximizing the average silhouette width means that, on average, the distance of
the points to their neighboring clusters is large compared to the distance to their
own clusters, so that an optimal solution can be expected to yield homogeneous
clusters (which is easier for large k), but so that neighboring clusters are far away
from each other (which is not possible with k too large). The average silhouette
width in the given form assumes partitions and is therefore not applicable to
trimmed k-means.
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Figure 3: Left side: 79-images data set (one image of 80-images data has been
deleted, which belongs to cluster 5 of the clustering on the right side) with 0.1-
trimmed 5-means clustering. Right side: same with the 80-images data set. “N”
denotes trimmed points.

3.2 General robustness problems with fixed k

With fixed k, all robustness results for the versions of k-means defined above
(and for most other reasonable clustering methods) depend on the structure of
the whole data set. A characterization of dissolution robustness in terms of an
individual cluster and its isolation is impossible. Therefore, all these methods are
not isolation robust. Here are the reasons:

• For k-means and k-medoids, consider a sequence of single outliers xn+1 to be
added to the data set xn so that minx∈xn ‖xn+1 −x‖1 → ∞ (then, of course,
also the L2-distance converges to infinity). If xn+1 is grouped together in
the same cluster with points of xn, the target criterion converges to infinity.
If, for the clustering Ek,n+1(xn+1), D = {xn+1} is chosen as the first cluster
and xn is partitioned into k−1 clusters, the target criterion is bounded from
above. Therefore, if the outlier is extreme enough, the best solution is to
partition xn into k−1 clusters, which means that at least one of the original
clusters has to be dissolved because of Remark 2.3. If all clusters are strongly
isolated, points of at least two of them will be merged into the same cluster
(this happens to cluster 3 in Figure 1). Isolation robustness is impossible.

• For trimmed k-means, single extreme outliers can be trimmed. However,
isolation robustness is still not possible, because for an arbitrarily strongly
isolated cluster C, a constellation with k + 1 groups of points (including C)
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with very similar structure and isolation with the following properties can
always be constructed: In the k-clusters solution of the resulting data set,
C is a cluster and there is one cluster D corresponding to two others of the
k+1 groups (the two groups are joined or, depending on α, one of them is as
a whole or partly trimmed). If a single point is added close to the mean of
one of the groups corresponding to D, then the two groups corresponding to
D yield two new clusters and C is joined with another group or trimmed (or
some of its points are joined and some are trimmed) instead. Thus, trimmed
k-means is unstable if k is not well chosen. This violates even isolation
robustness of degree α (Remark 2.6).

Example 3.5 An example can be constructed from the 80-images data. The left
side of Figure 3 shows a 0.1-trimmed 5-means solution for 79 of the 80 points.
The solution for all 80 points is shown on the right side (the point that has been
left out on the left side belongs to cluster 3). In this solution, some members of the
well-separated former cluster 4 are joined with a part of the former cluster 3 and
the other former members of cluster 4 are trimmed. Similar things would happen
if the separation between all “natural groups” in the data (the clusters shown in
Figure 1, say) would be uniformly increased. The separation of the former cluster
4 does not prevent parts of it from being joined with points very far away by adding
a single point.

These arguments hold for more general clustering methods with fixed k, and it has
been presumed (and shown for mixture models) that the estimation of k is crucial
for robustness in cluster analysis (Hennig 2004a). Garcia-Escudero and Gordaliza
(1999) have already shown the non-robustness of k-means and k-medians. They
show that trimmed k-means is often breakdown robust (breakdown defined in
terms of the estimated means), but that the robustness is data dependent (see
also Example 3.9). In fact, while trimmed k-means are not isolation robust, a
useful dissolution robustness result can be derived.

3.3 Trimmed k-means, fixed k

For a given data set xn and a clustering C = {C1, . . . , Ck}, which is a partition of
some y(C) ⊆ xn (interpreted as non-exhaustive clustering on xn), let

Q(xn, C) =
n
∑

i=1

1(xi ∈ y(C)) min
j∈{1,...,k}

‖xi − x̄j‖2
2.

Let Bn(C) = xn \ y(C) be the set of the trimmed points. Let Ek = (Ek,n)n∈IN be
the α-trimmed k-means.
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−2 0 2 4 6

Figure 4: “Standard” example dataset: 25 points (0,1)-NSD combined with 25
points (5,1)-NSD

Theorem 3.6 Let n−dn(1−α)e ≥ g ∈ IN, C ∈ Ek,n(xn) with |C| > g. Consider
partitions C∗ of subsets y(C∗) ⊂ xn with |y(C∗)| = d(n + g)(1 − α)e − g into l ≤ k
clusters so that

γ∗(C, C∗) ≤ 1
2 , (3.4)

there exist l possible centroids so that C∗ assigns every point of y(C∗)

to the closest centroid and all points of y(C∗) are closer to their closest centroid

than any point of xn \ y(C∗) is close to any of the centroids. (3.5)

If for any such C∗

min
y1,...,yg∈Bn(Ek,n(xn))

g
∑

i=1

min
j

‖yi − x̄j‖2
2 < Q(xn, C∗) − Q(xn, Ek,n(xn)), (3.6)

then ∆(Ek,xn, C) > g
|C|+g

.

The proof is given in the appendix. Note that (3.5) means that C∗ can occur as
an induced clustering of a clustering on some xn+g.

The theorem says that the cluster C cannot be dissolved by adding g points, if
there are g points among the originally trimmed points that are fitted well enough
by the original clusters. Dissolution point theorems are useful if they enable the
computation of the dissolution point of a given cluster in a given data set without
being forced to find the worst g points to be added. The computation of ∆
according to Theorem 3.6 may be difficult, as (3.6) requires to be evaluated for
all possible partitions C∗. However, in simple situations it is easy to guess how to
minimize Q(xn, C∗).

Example 3.7 The following definition is used to generate reproducible reference
datasets:

Definition 3.8 Φ−1
a,σ2(

1
n+1), . . . ,Φ−1

a,σ2(
n

n+1) is called a (a, σ2)-Normal standard

dataset (NSD) with n points, where Φa,σ2 denotes the cdf of the Normal distribu-
tion with parameters a, σ2.
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I will use a data set consisting of two NSDs with 25 points each, with (a, σ2) =
(0, 1), (5, 1), respectively, as standard example, to which the robustness results are
to be applied, see Figure 4.

Let k = 2, α = 0.1. The α-trimmed k-means is obtained by trimming the four
extreme points of the two NSDs and one further point of the four extreme points
of the remaining data. There are two resulting clusters corresponding to the re-
maining points of the two NSDs, one with 22 (let this be the C of interest) and
one with 23 points, Q(xn, Ek,n(xn)) = 24.79,

min
y1,...,yg∈Bn(Ek,n(xn))

g
∑

i=1

min
j

‖yi − x̄j‖2
2 = 14.75.

For g = 6, C can be dissolved because only 5 points are trimmed and one extreme
outlier can remain, which has to be fitted by its own cluster, compare Section 3.2.
Let therefore g = 5. How can Q(xn, C∗) be minimized over partitions of the 45
points of y(Ek,n(xn)) that dissolve C? Because of (3.5), the clusters of C∗ have
to be topologically connected. The two obvious possibilities to do this are to take
a subcluster of C with 11 points, trim the 5 points at one side of the NSD of
which C is a subset, and join the remaining points with the other NSD, which
leads to Q(xn, C∗) = 131.14, or to form a cluster with 44 points containing C,
trim the 5 most extreme points on the opposite side and take the second cluster to
fit the remaining single point, which even yields Q(xn, C∗) = 259.38. Thus, (3.6)
is fulfilled and ∆(E2,xn, C) = 6

28 . For k-means and k-medoids, for C1, C2 being
the original clusters with 25 points each, ∆(E2,xn, Cj) = 1

21 , j = 1, 2, because if
xn+1 ≥ 24 (k-means) or xn+1 ≥ 67 (k-medoids) is added, the two original clusters
are merged.

Example 3.9 For the 8-images data, 0.1-trimmed 7-means (and also trimmed 7-
means with other choices of α) seems to be rather robust and yields the solution of
Figure 1 with some points of cluster 4 being trimmed. A small enough number of
added outliers is trimmed and does no further harm than reducing the number of
trimmed points of cluster 4.

The separations between the clusters seem to be different enough that “isolation
dissolution” as in Example 3.5 could not be constructed for 0.1-trimmed 6-means
by leaving out only one point.

3.4 Average silhouette width

In Section 3.2 it has been presumed that the robustness problems of k-means and
k-medoids are mainly caused by the fixed number of clusters k. Unfortunately, the
average silhouette width method to estimate k does not yield a better robustness
behavior. The following theorem shows that if a single extreme enough outlier is
added to a data set, the average silhouette width clustering consists of only two
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clusters one of which consists of only the outlier. Therefore, no isolation robustness
is possible and the dissolution point of any cluster C with |C| ≤ n

2 is the smallest
possible value 1

|C|+1 .

Theorem 3.10 Let xn+1 = xn ∪ {xn+1}, where xn is a fixed data set with n
pairwise different points. If xn+1 large enough,

En+1(xn+1) = {xn, {xn+1}},

where (En)n∈IN is the average silhouette width clustering corresponding to k-means
or k-medoids.

The assumption that the points of xn are pairwise different is not crucial. It can
be seen from the proof that the given clustering will be preferred to any clustering
with k < n but large including at least one cluster that contains two nonidentical
points.

Example 3.11 In the standard example data set (Figure 4), the necessary size
of an outlier so that the average silhouette width clustering joins the two original
clusters by estimating 2 clusters, one of which consists only of the outlier, is 67.

In the data set shown in Figure 2, four outliers have been added to the 80-images
data. This results in only two clusters as shown, so that all original clusters are
dissolved. Up to three of the shown outliers make up a new cluster and leave the
original clustering unchanged.

4 MIXTURE MODELS

4.1 Definition of methods

In cluster analysis based on mixture models (including a model for “noise”-points),
the data is assumed to be generated i.i.d. by a distribution of the form

fη(x) =
k
∑

j=1

πjfθj
(x) + π0u(x), (4.1)

where fθ is a density from some parametric family,
∑k

j=0 πj = 1, 0 ≤ πj ≤ 1 for
j = 0, . . . , k, η = (k, π0, . . . , πk, θ1, . . . , θk). u models points not belonging to any
cluster (“noise component”). The “classical” mixture model assumes π0 = 0. For
literature on models like these and more structured models (mixtures of regressions
etc.), see McLachlan and Peel (2000).

Having estimated η by η̂ = (k̂, π̂0, . . . , π̂k, θ̂1, . . . , θ̂k), and, if necessary, u by û (it
may be assumed that k̂ is constant or π̂0 = 0), a clustering on xn can be generated
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by En(xn) = {C1, . . . , Ck̂
}. For j = 1, . . . , k̂:

Cj =

{

x ∈ xn : π̂jfθ̂j
(x) > π̂0û(x), j = arg max

l

π̂lfθ̂l
(x)

}

, (4.2)

given a rule to break ties in the π̂jfθ̂j
(x). For simplicity reasons, in the present

paper one-dimensional data and mixture models of the following form are consid-
ered:

fη(x) =
k
∑

j=1

πjfaj ,σj
(x) + π0u(x),where fa,σ(x) =

1

σ
f0,1

(

x − a

σ

)

, (4.3)

f0,1 being continuous, symmetrical about 0, monotonically decreasing on [0,∞],
larger than 0 on IR. Of particular interest is the standard normal distribution,
which is often used in cluster analysis (McLachlan and Peel 2000, Fraley and
Raftery 1998) and the tν-distribution, which was suggested as a more robust al-
ternative (with π0 = 0; Peel and McLachlan 2000). Banfield and Raftery (1993)
suggested robustification of the classical normal mixture by including a noise com-
ponent where u is taken to be the uniform distribution over the convex hull of the
data, i.e., for one-dimensional data, û(x) = 1

xmax,n−xmin,n
1(xmax,n ≥ x ≥ xmin,n),

where xmax,n and xmin,n are the maximum and the minimum of xn. Basic robust-
ness properties will carry over to the multivariate case.

For fixed k̂ = k, η̂ can be estimated by maximum likelihood, which is implemented
by means of the EM-algorithm in the software packages “EMMIX” (McLachlan
and Peel 2000) and “mclust” (Fraley and Raftery 2003). Because the loglikelihood

Ln,k(η,xn) =
n
∑

i=1

log





k
∑

j=1

πjfaj ,σj
(xi) +

π0

xmax,n − xmin,n



 (4.4)

converges to ∞ if â1 = x1 and σ̂1 → 0, the parameter space has to be restricted.
Here, the restriction

σj ≥ σ0 > 0 (4.5)

for some pre-specified σ0 is used (for a discussion of the choice of σ0, see Hennig
2004b). An alternative would be to assume all σj to be equal.

The most frequently used methods to estimate k are the information criteria AIC
(Akaike 1974) and BIC (Schwarz 1978). The estimator k̂ with BIC (AIC has about
the same robustness behavior) is defined as k̂ = arg max

k
BIC(k), where

BIC(k) = 2Ln,k(η̂n,k,xn) − q(k) log n, (4.6)

where q(k) denotes the number of free parameters, i.e., q(k) = 3k − 1 for the
classical mixture and q(k) = 3k with noise component, and η̂n,k denotes the ML-
estimator of η for xn under k mixture components.
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4.2 Robustness results

The robustness of these methods has already been investigated in Hennig (2004a),
where parameter breakdown points have been considered and immediate conse-
quences of these results for dissolution points have been outlined. Here is a sum-
mary of these results for fixed k:

• For fixed k, the situation for all considered methods is similar to Section
3.2. If a single point xn+1 → ∞ is added to xn, then it follows from Lemma
4.1 of Hennig (2004a) that eventually {xn+1} is a cluster. The necessary
sizes of an outlier to dissolve the original k = 2 clusters by merging in the
standard example data set (Figure 4) are 15.2 (classical normal mixture),
about 800 (t3-mixture), 3.8 × 106 (t1-mixture), 3.5 × 107 (normal mixture
with noise). These values depend on σ0, which was chosen as 0.025. Note
that the clusterings of the t-mixtures and the noise component approach are
somewhat robust even under the addition of more outliers, as long as they
are not all at the same point (Hennig 2004b).

• The above argument does not hold if the noise component u is taken as some
nonzero data independent constant (improper density), because in this case
the loglikelihood cannot diverge to −∞, see Theorem 4.11 of Hennig (2004a).
The same discussion as given for trimmed k-means in Section 3.2 applies.
Unfortunately, dissolution results will be less tractable than Theorem 3.6,
because such results will be similarly difficult to evaluate (and more difficult
to derive) than those given in Theorem 4.1 below.

If extreme outliers are added under estimated k, the BIC will enlarge the number of
mixture components to fit the outliers, as opposed to the average silhouette width.
However, while it can be shown that the parameter estimators of the original
mixture components are prevented from diverging to infinity (Theorems 4.13 and
4.16 of Hennig 2004a), cluster dissolution is still possible by adding points that
change the local clustering structure. A corresponding theorem is easily derived:

Theorem 4.1 For a data set xn, let k̂ be a maximizer of the BIC, and let E =
(En)n∈IN be the corresponding maximum likelihood method according to (4.4) (π0

estimated or fixed = 0). Let g ∈ IN, C ∈ En(xn) with |C| > g. Consider
parameter vectors η∗ for 1 ≤ k∗ ≤ n mixture components, so that γ∗(C, C∗) ≤ 1

2
for the corresponding clustering C∗. If for any such η∗

[

L
n,k̂

(η̂
n,k̂

,xn) − Ln,k∗(η∗,xn) − 1

2
(5g + 3k̂ − 3k∗ + 2n) log(n + g) + n log n

]

> 0,

(4.7)
then ∆(E,xn, C) > g

|C|+g
.

The proof is completely analogous to the proof of Theorem 4.13 (Theorem 4.16
with noise component) in Hennig (2004a).
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Unfortunately, Theorem 4.1 is not as useful as Theorem 3.6, because the optimiza-
tion of (4.7) over all possible η∗ seems computationally intractable. Empirically,
in the standard example data set of Figure 4, the addition of 12 (normal mixture
with and without noise component) or 13 points (t1-mixture) between the two
original clusters yield k̂ = 1 and therefore dissolution of both clusters.

The isolation robustness result is more expressive.

Theorem 4.2 Let E be a clustering method defined by maximizing (4.4) for given
k and the BIC over k (π0 estimated or fixed = 0). Then E is isolation robust.
(The corresponding function vm does only depend on g, but not on MC .)

The proof is given in the Appendix.

The fact that vm does not depend on the distance matrix within C in this case is
a consequence of the missing invariance property. If a clustering would not change
under multiplication of the data with a constant, the required isolation for robust-
ness should not be constant but depend on some spread measure of C. Invariance
is violated by (4.5), and multiplying a data set with an extremely large factor
(depending on σ0) would result in a clustering where k̂ would equal the number of
pairwise distinct points in the data. This is irrelevant in practice, and clusterings
can be considered as “practically invariant” under linear transformations, unless
σ0 is chosen far too small.

5 AGGLOMERATIVE HIERARCHICAL METHODS

5.1 Definition of methods

Most agglomerative hierarchical methods assume that the objects of a data set xn

are characterized by an n × n distance matrix D = (dij)i,j=1,...,n, dij = d(xi, xj),
the distance between xi and xj. In the present paper, d is assumed to be a metric,
and it is assumed that the definition of dij does not depend on the presence or
absence of other points in the data set. Furthermore, it is assumed that the
underlying object space O ⊃ xn is rich enough that

∀x ∈ xn, d∗ ∈ IR+ ∃y ∈ O : d(x, y) = d∗, (5.1)

∀x, y ∈ O, IR+ 3 d∗ < d(x, y) ∃z ∈ O :

d(x, z) = d∗, d(y, z) = d(x, y) − d∗. (5.2)

These assumptions ensure that the possible “locations” of points to be added to
xn are not too restricted.

For simplicity, it is also assumed that the nonzero distances are pairwise distinct.
I will restrict considerations to the single linkage and the complete linkage method
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(see Chapter 4 of Gordon 1999, for references). The isolation robustness results
will carry over to compromises between these two methods such as average linkage.

Definition 5.1 Let δ : P(xn)×P(xn) 7→ IR+
0 be a dissimilarity measure between

data subsets. Let Cn = {{x} : x ∈ xn}, hn = 0. For k = n − 1, . . . , 1:

(Ak, Bk) = arg min
A,B∈Ck+1

δ(A,B), hk = δ(Ak, Bk), (5.3)

Ck = {Ak ∪ Bk} ∪ Ck+1 \ {Ak, Bk}. (5.4)

C =
⋃n

k=1 Ck is called

a) Single linkage hierarchy, if δ(A,B) = δS(A,B) = min
xi∈A,xj∈B

dij,

b) Complete linkage hierarchy, if δ(A,B) = δC(A,B) = max
xi∈A,xj∈B

dij,

There are two simple methods to obtain a partition from a hierarchy. The first one
is to cut the hierarchy at a prespecified number of clusters k, the second one is to
cut the hierarchy at a given distance level h (the reader is referred to Gordon 1999,
Section 3.5, for more sophisticated methods to estimate the number of clusters).

Definition 5.2 Given a hierarchy C =
⋃n

k=1 Ck on xn defined as in Definition 5.1
equipped with a monotonically decreasing sequence of level number h1, . . . , hn, see
(5.3), Ck is called the k-number partition for given n ≥ k ∈ IN , and Ck(h) with
hk(h) ≤ h and hk(h)−1 > h is called the h-level partition for given h ≥ 0.

5.2 Robustness results

While the k-number and the h-level partition are similarly simple, their robustness
properties are different. The discussion in Section 3.2 applies to the k-number
partition (not only of single and complete linkage clustering, but also of all other
agglomerative methods that I know). An extreme enough outlier xn+1 always
forms a cluster on its own, as long as k ≥ 2, because δ({xn+1}, A) can be driven
to infinity for all A ⊂ xn.

The h-level partition (denoted Eh = (Eh,n)n∈IN in the following) is more stable.
Let h be fixed, Eh,n(xn) = Ck(h) = {C1, . . . , Ck(h)}.
Here are the results for single linkage. For two clusters Ci, Cj , i, j = 1, . . . , k(h),
let g(i,j) = dδS(Ci, Cj)/he. If Ci and Cj were the only clusters, this would be the
number of additional points needed to join Ci and Cj. For given Ci, g ∈ IN , let
q(i, g) be the maximum number of points of xn which are not members of Ci, but
can be joined with Ci if g points are added to xn.
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Theorem 5.3 Given the notation above, where Eh is the h-level partition of the
single linkage hierarchy,

γ(Ci, E
∗
n(xn+g) ≥ |Ci|

|Ci| + q(i, g)
, (5.5)

|Ci|
|Ci| + q(i, g)

>
1

2
⇒ ∆(Eh,xn, Ci) >

g

|Ci| + g
. (5.6)

Further,

q(i, g) = max
{Cj1

,...,Cjl
}∈Dg(Ci)

l
∑

m=1

|Cjm | − |Ci|, (5.7)

where Dg(Ci) denotes the set of all “g-reachable cluster trees”, i.e., subsets S of
Ck(h) with the following properties:

• Ci ∈ S,

• there exists Q ⊆ {(Cj1 , Cj2), Cj1 6= Cj2 ∈ S} so that the graph with the
members of S as vertices and Q as the set of edges is a tree, i.e., a connected
graph without circles, and

∑

(Cj1
,Cj2

)∈Q

g(j1,j2) ≤ g. (5.8)

The proof is given in the Appendix.

Corollary 5.4 The h-level partition of the single linkage hierarchy is isolation
robust.

This follows because for given g and i(Ci) = minj 6=i δS(Ci, Cj) large enough, g(i,j)

for any j 6= i is larger than g and q(i, g) = 0.

Example 5.5 The isolation of the two clusters corresponding to the NSDs in the
standard example data set of Figure 4 is 1.462 and the largest within-cluster dis-
tance is 0.343. The 2-number partition would join the two original clusters if a
single point at 8.23 (original data maximum plus isolation) is added. For the
h-level partition, h could be chosen between 0.343 and 1.462 to generate two
clusters. If h > 0.713 (half of the isolation), ∆(Eh,xn, Cj) = 1

26 . If h =
0.344, ∆(Eh,xn, Cj) = 4

29 . While the stability depends on h chosen favorably
with respect to the data, the theory does not allow h to be chosen data-dependent.
The main problem with the h-level approach is that h has to be chosen by use of
background knowledge, and such knowledge does not always exist. Furthermore,
the h-level clusterings are not invariant with respect to multiplying all distances
with a constant.
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The h-level partition of complete linkage is trivially isolation robust, because under
complete linkage no two points with a distance larger than h can be in the same
cluster. Therefore, if i(C) > h, no point of C can be together in the same cluster
with a point that has not been in C before the addition of g points with g arbitrarily
large.

Contrary to single linkage, complete linkage h-level clusters can be split by addition
of points. Therefore it is more difficult to prevent dissolution. The following
theorem gives a condition which prevents dissolution. Let Eh = (Eh,n)n∈IN be the
h-level partition of complete linkage, d(C) be the diameter of a set C (maximum
distance within C), dh(C,D) = maxx∈D\C, y∈C, d(x,y)≤h d(x, y) (the maximum over
∅ is 0).

Theorem 5.6 For a given C ∈ Eh,n(xn), let H ⊂ C be a subcluster of C (i.e., a

member of Eh∗,n(xn) with h∗ = d(H) ≤ h) with |H| > |C|
2 . Define

m0 = max(d(H), dh(H,xn)), m1 = d(H) + dh(H,xn) + m0,

mg = d(H) + mg−1 + mg−2

for g ≥ 2. If mg ≤ h and if

qH = |{y ∈ xn \ C : min
x∈H

d(x, y) ≤ h}| < 2|H| − |C|, (5.9)

then ∆(Eh,xn, C) > g
|C|+g

. H may be chosen to minimize mg.

According to this theorem, dh(H,xn) has to be much smaller than h to enable
good dissolution robustness. This can happen if C is strongly isolated and its
diameter is much smaller than h. However, the proof of the theorem deals with a
very specific worst-case situation, and it will be very conservative for lots of data
sets. This can be seen in the following example. A better result under additional
restrictions may be possible.

Example 5.7 The 2-number partition would join the two original clusters in the
data set of Figure 4 if a single point at about 11.8 is added. For the h-level partition,
h could be chosen between 3.54 and 8.53 to generate two clusters. Theorem 5.6
does not yield a better lower bound than 1

26 for the dissolution point of one of
the clusters, the (0,1)-NSD, say. The only subcluster with ≥ 13 points is H =
{x11 . . . x25}, d(H) = 1.96. Even for h = 3.54, there are points in the (5,1)-
NSD which are closer than h to all points of H, and dh(H,xn) = 3.54. In fact,
dh(H,xn) > h

2 for any h between 3.54 and 8.53, enforcing m1 > h. The theorem
does not apply until h = 9.05 and the second cluster is chosen as an (11.7,1)-NSD,
in which case qH = 4 and m1 = 9.04, thus ∆(Eh,xn, C1) ≥ 2

27 .

However, the worst case scenario of the proof of Theorem 5.6 is impossible here
and in fact I have not been able to dissolve one of the two clusters by adding
any g < |C| points unless h ≥ 8, so that the result of the theorem is extremely
conservative here. Figure 5 shows data where the dissolution point bound obtained
in the theorem is attained.
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0 1 2 3 4 5 6 7 8

d(H)

h

Figure 5: Let (0.1, 2, 2, 3, 3, 4.85) (circles) form a well separated complete linkage
cluster (4.8 < h < 7.6) in a data set. Let H = {2, 2, 3, 3}. Thus, d(H) =
1, dh(H,xn) = m0 = 1.9, m1 = 4.8, m2 = 7.7, qH = 0. Therefore, ∆ = 2

8 .
Dissolution works by adding points at 1.04 and 7.7 (stars). The resulting complete
linkage clusters are shown below the x-axis.

6 FIXED POINT CLUSTERS

Note: This section is not part of the version of this paper which I submitted for
journal publication. It may be published later elsewhere.

6.1 Definition of fixed point clusters

Fixed point cluster (FPC) analysis has been introduced by Hennig (1997). FPC
analysis has been applied to clusterwise linear regression (Hennig, 1997, 2002,
2003) and normal-shaped clusters of p-dimensional data (Hennig and Christlieb,
2002) based on the Mahalanobis distance. The latter is introduced here.

The basic idea of FPC analysis is that a cluster can be formalized as a data subset,
which is homogeneous in the sense that it does not contain any outlier, and which
is well separated from the rest of the data meaning that all other points are outliers
with respect to the cluster. That is, the FPC concept is a local cluster concept:
It does not assume a cluster structure or some parametric model for the whole
dataset. It is based only on the cluster candidate itself and its relation to its
surroundings.

In order to define FPCs, a definition of an outlier with respect to a data subset
is needed. The definition should be based only on a parametric model for the
non-outliers (reference model), but not for the outliers. That is, if the Gaussian
family is taken as reference model, the whole dataset is treated as if it came from
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a contamination mixture

(1 − ε)Np(a,Σ) + εP ∗, 0 ≤ ε < 1, (6.1)

where p is the number of variables, Np(a,Σ) denotes the p-dimensional Gaussian
distribution with mean vector a and covariance matrix Σ, and P ∗ is assumed to
generate points well separated from the core area of Np(a,Σ). The principle to
define the outliers is taken from Becker and Gather (1999). They define α-outliers
as points that lie in a region with low density such that the probability of the
so-called outlier region is α under the reference distribution. α has to be small in
order to match the impression of outlyingness. For the Np(a,Σ)-distribution, the
α-outlier region is

{x : (x − a)tΣ−1(x − a) > χ2
p;1−α},

χ2
p;1−α denoting the 1−α-quantile of the χ2-distribution with p degrees of freedom.

In a concrete situation, a and Σ are not known, and they have to be estimated.
This is done for Mahalanobis FPCs by the sample mean and the maximum likeli-
hood covariance matrix. (Note that these estimators are non-robust, but they are
reasonable if they are only applied to the non-outliers.)

A dataset xn consists of p-dimensional points. Data subsets are represented by
an indicator vector w ∈ {0, 1}n. Let xn(w) be the set with only the points xi,
for which wi = 1, and n(w) =

∑n
i=1 wi. Let m(w) = 1

n(w)

∑

wi=1 xi the mean

vector and S(w) = 1
n(w)

∑

wi=1(xi −m(w))(xi −m(w))′ the ML covariance matrix
estimator for the points indicated by w.

The set of outliers from xn with respect to a data subset xn(w) is

{x : (x − m(w))′S(w)−1(x − m(w)) > χ2
p;1−α}.

That is, a point is defined as an outlier w.r.t xn(w), if its Mahalanobis distance to
the estimated parameters of xn(w) is large.

An FPC is defined as a data subset which is exactly the set of non-outliers w.r.t.
itself:

Definition 6.1 A data subset xn(w) of xn is called Mahalanobis fixed point
cluster of level α, if for i = 1, . . . , n :

w =
(

1
[

(xi − m(w))′S(w)−1(xi − m(w)) ≤ χ2
p;1−α

])

i=1,...,n
. (6.2)

If S(w)−1 does not exist, the Moore-Penrose inverse is taken instead on the sup-
porting hyperplane of the corresponding degenerated normal distribution, and wi =
0 for all other points.

For combinatorial reasons it is impossible to check (6.2) for all w. But FPCs can
be found by a fixed point algorithm defined by

wk+1 =
(

1
[

(xi − m(wk))′S(wk)−1(xi − m(wk)) ≤ χ2
p;1−α

])

i=1,...,n
. (6.3)



6 FIXED POINT CLUSTERS 24

This algorithm is shown to converge toward an FPC in a finite number of steps if
χ2

p;1−α > p (which is always fulfilled for α < 0.25, i.e., for all reasonable choices
of α) in Hennig and Christlieb (2002). Note that the proof requires the use of
the ML-estimator for the covariance matrix, i.e., division is by n(w) instead of
n(w) − 1 for the UMVU estimator.

The problem here is the choice of reasonable starting configurations w0. While,
according to this definition, there are many very small FPCs, which are not very
meaningful (e.g., all sets of p or fewer points are FPCs), an FPC analysis aims
at finding all substantial FPCs, where “substantial” means all FPCs correspond-
ing to well separated, not too small data subsets which give rise to an adequate
description of the data by a model of the form (6.1). For clusterwise regression,
this problem is discussed in depth in Hennig (2002) along with an implementation,
which is included in the add-on package “fpc” for the statistical software system
R. In the same package, there is also an implementation of Mahalanobis FPCs.
There, the following method to generate initial subsets is applied:

For every point of the dataset, one initial configuration is chosen, so that there
are n runs of the algorithm (6.3). For every point, the p nearest points in terms
of the Mahalanobis distance w.r.t. S(1, . . . , 1) are added, so that there are p + 1
points. Because such configurations often lead to too small clusters, the initial
configuration is enlarged to contain nstart points. To obtain the p + 2nd to the
nstartth point, the covariance matrix of the current configuration is computed (new
for every added point) and the nearest point in terms of the new Mahalanobis
distance is added.

nstart = 20 + 4p is chosen as the default size of initial configurations in package
“fpc”. This is reasonable for fairly large datasets, but should be smaller for small
datasets. Experience shows that the effective minimum size of FPCs that can
be found by this method is not much smaller than nstart. The default choice for
α is 0.99; α = 0.95 produces in most cases more FPCs, but these are often too
small, compare Example 6.5. A simulation study comparing different choices for
the parameters of the algorithm and a discussion of a fuzzy version of fixed point
clusters can be found in Hennig (2005b).

Note that Mahalanobis FPCs are invariant under linear transformations, i.e., for
any invertible matrix A and vector b ∈ IRp, and any FPC xn(w), yn(w) is also an
FPC for yn = {Axi + b : xi ∈ xn} and vice versa.

6.2 Robustness results for fixed point clusters

To derive a lower bound for the dissolution point of a fixed point cluster, the
case p = 1 is considered for the sake of simplicity. This is a special case of both
Mahalanobis and clusterwise linear regression FPCs.

En(xn) is taken as the collection of all data subsets fulfilling (6.2). En(xn) is not a
partition, because FPCs may overlap and not all points necessarily belong to any
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FPC.

FPCs are robust against gross outliers in the sense that

an FPC x(w)is invariant against any change, especially addition of points,

outside its domain {(x − m(w))′S(w)−1(x − m(w)) ≤ c}, (6.4)

c = χ2
p;1−α, because such changes simply do not affect its definition. However,

FPCs can be affected by points added inside their domain, which is, for p = 1,

D(w) = [m(w) − s(w)
√

c,m(w) + s(w)
√

c], s(w) =
√

S(w).

The aim of the following theory is to characterize a situation in which an FPC is
stable under addition of points. The key condition is the separateness of the FPC,
i.e., the number of points in its surrounding (which is bounded by k2 in (6.7)) and
the number of points belonging to it but close to its border (which is bounded by
k1 in (6.6)). The derived conditions for robustness (in the sense of a lower bound
on the dissolution point) are somewhat stronger than presumably needed, but the
theory reflects that that the key ingredient for stability of an FPC is to have few
points close to the border (inside and outside).

In the following, xn(w) denotes a Mahalanobis FPC in xn.

Let Sgk(w) be the set containing the vectors (m+g, s
2
+g,m−k, s

2
−k) with the follow-

ing property:

Property A(g, k,xn(w)): Interpret xn(w) as an FPC in itself, i.e., yñ = xn(w) =
yñ(1, . . . , 1) (ñ = n(w)).
(m+g, s

2
+g,m−k, s

2
−k) possess the Property A(g, k,xn(w)), if it is possible to

add points yñ+1, . . . , yñ+g to yñ, so that if the algorithm (6.3) started from
the original FPC yñ is run on the dataset yñ+g = yñ ∪{yñ+1, . . . , yñ+g} and
converges to a new FPC yñ+g(w

∗), m+g and s2
+g are the values of the mean

and variance of the points {yñ+1, . . . , yñ+g} ∩ yñ+g(w
∗), and m−k and s2

−k

are the values of the mean and variance of the points lost in the algorithm,
i.e., yñ \ yñ+g(w

∗), where it is assumed that |yñ \ yñ+g(w
∗)| ≤ k. Mean and

variance of 0 points are taken to be 0. Note that always (0, 0, 0, 0) ∈ Sgk(w),
because of (6.4) and the added points can be chosen outside the domain of
yñ.

In the proof of Theorem 6.2 it will be shown that an upper bound of the domain of
yñ+g(w

∗) in the situation of Property A(g, k,xn(w)) (assuming m(w) = 0, s(w) =
1) is

xmax(g, k,m+g , s
2
+g,m−k, s

2
−k) =

ngm+g−km
−k

n1
+

√

c

(

n(w)+ngs2
+g−ks2

−k

n1
+

c1m2
+g+c2m2

−k
+c3m+gm

−k

n2
1

)

, (6.5)
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where ng = |{w∗
j = 1 : j ∈ {n + 1, . . . , n + g}}| is the number of points added

during the algorithm,

n1 = n(w) + ng − k, c1 = (n(w) − k)ng, c2 = −(n(w) + ng)k, c3 = 2kng.

Further define for g, k ≥ 0

xmaxmax(g, k) = max
(m+g ,s2

+g,m
−k,s2

−k
)∈Sgk(w)

xmax(g, k,m+g , s
2
+g,m−k, s

2
−k),

xmaxmin(g, k) = min
(m+g ,s2

+g
,m

−k,s2
−k

)∈Sgk(w)
xmax(g, k,m+g , s

2
+g,m−k, s

2
−k).

Note that xmaxmin(g, k) ≤ √
c ≤ xmaxmax(g, k), because (0, 0, 0, 0) ∈ Sgk(w).

xmaxmax(g, k) is nondecreasing in g, because points can always be added far away
that they do not affect the FPC, and therefore a maximum for smaller g can always
be attained for larger g. By analogy, xmaxmin(g, k) is non-increasing.

Theorem 6.2 Let xn(w) be an FPC in xn. Let xn+g = {x1, . . . , xn+g}. If ∃k1, k2

with

k1 ≤ |xn ∩
([m(w) − s(w)xmaxmax(g + k1, k2),m(w) − s(w)

√
c] ∪

[m(w) + s(w)
√

c,m(w) + s(w)xmaxmax(g + k1, k2)])|, (6.6)

k2 ≤ |xn ∩
([m(w) − s(w)

√
c,m(w) − s(w)xmaxmin(g + k1, k2)] ∪

[m(w) + s(w)xmaxmin(g + k1, k2),m(w) + s(w)
√

c])|, (6.7)

then

γ∗(x(w), E∗
n(xn+g)) ≥

n(w) − k2

n(w) + k1
. (6.8)

If n(w)−k2

n(w)+k1
> 1

2 , then ∆(xn(w),xn) > g
n(w)+g

.

The proof is given in the appendix. k1 is the maximum number of points in xn

outside the FPC xn(w) that can be added during the algorithm, k2 is the maximum
number of points inside the FPC xn(w) that can be lost during the algorithm due
to changes caused by the g new points.

Theorem 6.2 shows the structure of the conditions needed for stability, but in
the given form it is not obvious how strong these conditions are (and even not
if they are possible to fulfill) for a concrete dataset. It is difficult to evaluate
xmaxmax(g + k1, k2) and xmaxmin(g + k1, k2) and the conditions (6.6) and (6.7),
where k1 and k2 also appear on the right hand sides. The following Lemma will
give somewhat conservative bounds for xmaxmax(g+k1, k2) and xmaxmin(g+k1, k2)
which can be evaluated more easily. The conditions (6.6) and (6.7) can then be
checked for any given g, k1 and k2.



6 FIXED POINT CLUSTERS 27

Lemma 6.3 For g ≥ 0, 0 ≤ k < n(w):

xmaxmax(g, k) ≤ x∗
maxmax(g, k,m∗

+g), (6.9)

xmaxmin(g, k) ≥ x∗
maxmin(g, k,m∗

−k), (6.10)

where for 0 ≤ k < n(w)

x∗
maxmax(0, k,m+g) =

√
c, for g > 0 :

x∗
maxmax(g, k,m+g) =

gm+g + k
√

c

n1
+

√

√

√

√c

(

n(w) + g(amax(g)2 − m2
+g)

n1
+

c1m2
+g

n2
1

)

,

x∗
maxmin(g, k,m−k) =

−gm∗
+g − km−k

n1
+

√

√

√

√c

(

n(w) − k(c − m2
−k)

n1
+

c2m2
−k − c3m−km

∗
+g

n2
1

)

,

amax(g) = x∗
maxmax(g − 1, k,m∗

+(g−1)),

m∗
+g =

1

g

g
∑

i=1

amax(i),

m∗
−k = arg min

m
−k∈[0,

√
c]

x∗
maxmin(g, k,m−k),

The proof is given in the appendix. For the minimization needed to obtain m∗
−k,

the zeros of the derivative of x∗
maxmin(g, k,m−k) are the zeros of tm2

−k +um−k + v
where

t = k3 +
c2

n2
1

− n1ck
2 + 2k2c(n(w) + g) − k2(n(w) + g)2c

n1
,

u = −2kgm∗
+g

n1
+ 2k2gcm∗

+g −
2k2(n(w) + g)gcm∗

+g

n1
,

v = k2n(w) − k3c +
(n(w) − k)g(m∗

+g)
2

n1
− k2g2c(m∗

+g)
2

n1
. (6.11)

Isolation robustness of type (a) is not adequate for FPC analysis, because every
set of identical points forms an FPC. But a consequence of the theory above is
that FPC analysis is isolation robust of type (b).

Theorem 6.4 FPC analysis is isolation robust of type (b) under the following
condition on an FPC C = xn(w) with i(C) > vm(MC , g):

∃k2 :
|C| − k2

|C| >
1

2
,

k2 ≤ |T (C) ∩ ([−s(w)
√

c,−s(w)xmaxmin(g, k2)] ∪
[s(w)xmaxmin(g, k2), s(w)

√
c])|, (6.12)

where T (C) = xn(w) − m(w) is C transformed to mean 0.
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Example 6.5 Consider the standard example dataset of 50 points, see Figure
4. For α = 0.99, the computation scheme outlined in Section 6.1 finds two
FPCs, namely the two NSDs, for nstart down to 4. Let xn(w) be the (0,1)-
NSD, m(w) = 0, s(w)2 = 0.788, D(w) = [−2.287, 2.287]. The largest point is
1.769, the second largest one is 1.426, the smallest point in the data not belong-
ing to x(w) is 3.231, the second smallest one is 3.574. If g = 1 point is added,
s(w)x∗

maxmax(1, 0,m∗
+1) = 2.600, s(w)x∗

maxmin(1, 0,m∗
−0) = 2.154. Thus, (6.6) and

(6.7) hold for k1 = k2 = 0. The same holds for g = 2: s(w)x∗
maxmax(2, 0,m∗

+2) =
3.000, s(w)x∗

maxmin(2, 0,m∗
−0) = 2.019. For g = 3: s(w)x∗

maxmax(3, 0,m∗
+3) =

3.528, s(w)x∗
maxmin(3, 0,m∗

−0) = 1.879. This means that (6.6) does not hold for
k1 = 0, because the smallest point of the (5,1)-NSD would be included into the cor-
responding FPC. g = 3 and k1 = 1 in Theorem 6.2 correspond to g = 4 in Lemma
6.3. For g = 4: s(w)x∗

maxmax(4, 0,m∗
+4) = 4.250, s(w)x∗

maxmin(4, 0,m∗
−0) = 1.729.

This means that for g = 3, neither k1 = 1, nor k2 = 0 works, and in fact an
iteration of (6.3) with added points 2.286, 2.597, 2.929 leads to dissolution, namely
to an FPC containing all 50 points of the dataset. Thus, ∆(En,xn,xn(w)) = 3

28 .

For α = 0.95, there is also an FPC xn(w0.95) corresponding to the (0,1)-NSD, but
it only includes 23 points, the two most extreme points on the left and on the right
are left out. According to the theory, this FPC is not dissolved by being joined
with the (5,1)-NSD, but by implosion. For g = 1, s(w0.95)x

∗
maxmax(1, 0,m∗

+1) =
1.643, s(w0.95)x

∗
maxmin(1, 0,m∗

−0) = 1.405. This means that the points −1.426, 1.426
can be lost. s(w0.95)x

∗
maxmax(1, 2,m∗

+1) = 1.855, s(w0.95)x
∗
maxmin(1, 2,m∗

−2) =
0.988, which indicates that k2 is still too small for (6.7) to hold. Nothing better
can be shown than ∆(En,0.05,xn,xn(w0.05)) ≥ 1

24 . However, here the conservativ-
ity of the dissolution bound matters (the worst case of the mean and the variance
of the two left out points used in the computation of x∗

maxmin(1, 2,m∗
−2) cannot be

reached at the same time in this example) and dissolution by addition of one (or
even two) points seems to be impossible.

7 SUMMARY AND DISCUSSION

The aim of this paper was to provide a stability theory for cluster analysis that
can be applied to general methods for disjoint clustering. Here is a summary of
the results concerning the different clustering methods:

• All examined methods with a fixed number of clusters and without trimming
(k-means, k-medoids, normal or t-mixture with fixed k, k-number partitions
of agglomerative hierarchical clusterings) can be spoiled by adding a single
outlier.

• The same holds for the average silhouette width estimation of k and for the
mixture model with noise, if the density of the noise component is taken as
the uniform density on the convex hull of the data. However, in the latter
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case, the outlier(s) that have to be added to the data set to spoil the original
clustering have to be extremely and presumably unrealistically large (the
same holds for t1-mixtures).

• Trimmed k-means and the normal mixture with fixed k and a data-independent
noise density are not isolation robust (which seems to matter mainly if k is
misspecified), but well enough separated clusters in data sets with not too
many outliers and a well specified number of clusters are robust against
dissolution with these methods.

• Normal and t-mixture models with k estimated by the BIC or the AIC and
the h-level partitions of single and complete linkage are isolation robust. In
practice, well enough separated clusters will be robust against dissolution
with these methods.

In spite of the generality of the definitions given in the present paper, a general
quality ranking of the methods by means of the results is not justified. For example,
the dissolution result for h-level complete linkage is weak, but seemingly more
conservative than the results for other methods. The trimmed k-means is not
isolation robust but outperforms at least the isolation robust h-level single linkage
in the one-dimensional standard example data set as well as some isolation robust
methods in other data sets I have seen. This, however, requires a suitable choice
of k. While the theoretical results given in the present paper do not indicate a
robustness advantage of complete linkage over single linkage, it seems that such an
advantage exists in practice, because isolated clusters can be “chained” by single
linkage usually under addition of much fewer points than by complete linkage.
More sensible definitions could be needed to capture such differences.

Robustness and stability are not the only requirements of a good clustering. For
example, there are many data sets where the density of points is high in a central
area of the data space, which might be significantly clustered (though the clusters
are not strongly isolated), but the density of points becomes much lower toward
the borders of the data region. If single linkage (be it the k-number or the h-
level partition) is applied to such data, the solution is often one very large cluster
containing all central points and a lot of clusters containing only one or two more or
less outlying points. This general structure is then very robust against addition or
removal of points (only the exact composition of the outlier clusters changes), but
it is not very useful. The most interesting patterns are not revealed. Therefore, the
robustness properties should be regarded as one of a number of desirable features
for a cluster analysis method. In the literature, lists of such desirable features have
been investigated for a long time to assess the quality of different methods, see,
e.g., Fisher and van Ness (1971), Chen and van Ness (1994). Differences between
cluster stability in concrete data sets and theoretical properties of the methods
with respect to idealized situations have already been noted by Milligan (1996).
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The mixture models and the agglomerative hierarchical methods have also been
applied to the 80-images data set. Single and complete linkage showed the expected
robustness behaviour. The addition of a single outlier dissolved a well separated
cluster using the k-number partitions, while the h-level partitions with properly
chosen h were reasonable and robust.

The add-on package mclust for the statistical software R (www.R-project.org)
for normal mixture modeling with BIC, however, ended up with suboptimal and
non-robust solutions because of computational problems. These were seemingly
caused by the occurrence of non-invertible covariance matrices during the iterations
of the EM-algorithm (the software is described in Fraley and Raftery 2003; other
implementations of normal mixtures seem to be sensitive to problems of this kind
as well). This illustrates that the practical stability of a clustering algorithm
may deviate seriously from the theoretical robustness of the underlying global
optimization problem.

Concerning the practical relevance of the results, I have to admit that it was very
difficult to find a real data set illustrating at least the most interesting theoret-
ical results given in the present paper. The reason is that the results concern
well separated clusters (not only isolation robustness, but also the assumptions
of the dissolution point theorems are connected to good separation), while most
cluster analysis methods yield at least some not well separated and often very
unstable clusters in most real data sets. Therefore, the robustness theory should
be complemented with methods to assess the stability of single clusters in a con-
crete clustering. A publication on using the Jaccard similarity for this task is in
preparation (see Hennig 2004c). A graphical method to validate single clusters is
introduced in Hennig (2005a). A choice of a cluster analysis method for a par-
ticular application has always to depend on the data set and on the aim of the
study.

In the robustness literature there are verious definitions of a breakdown point
(Hampel 1971, Donoho and Huber 1983). In particular, breakdown (and dissolu-
tion) can be defined via addition and replacement of points (deletion is usually
not considered, because replacement is clearly stronger). In many situations, ad-
dition and replacement are equivalent, see Zuo (2001). Unfortunately, this is not
the case in cluster analysis. As a simple example, consider two extremely well
separated homogeneous clusters, one with 100 and the other with 10 points. The
number of points to be added to lead the smaller cluster into dissolution can be
arbitrarily large if an isolation robust method is used. Under replacement, the 10
points of the smaller cluster have simply to be taken into the domain of the other
cluster. For single linkage, it is impossible to split a cluster by addition, but it
would be possible by replacement. Therefore it would be interesting if replacement
based definitions would reveal similar characteristics of the methods. The addition
approach has been taken here for the sake of simplicity.
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An interesting result is the role of outliers in cluster robustness. Outliers are
extremely dangerous for some methods with fixed k, but are completely harmless
for mixtures with BIC-estimated k and h-level partitions. It is interesting if this
holds for other methods to estimate k (see, e.g., Section 3.5 of Gordon 1999,
Celeux and Soromenho 1996, McLachlan 1987). With fixed k, trimmed k-means
can handle a moderate number of outliers (unless k is ill-specified) and t-mixtures
and normal mixtures with noise are only sensitive to such extreme outliers that
they can be easily discarded by a routine inspection of the data (less extreme
outliers may be dangerous if there are some of them at the same point). Local
instability, caused by points between the clusters or at their borders, seems often
to be the more difficult robustness problem in cluster analysis.

APPENDIX: PROOFS

Proof of Theorem 3.6: Assume that ∆(Ek,xn, C) ≤ g
|C|+g

, i.e., it is possible to
add g points to xn so that C is dissolved. Let xn+1, . . . , xn+g be the corresponding
points, xn+g be the resulting data set, D = Ek,n+g(xn+g), D∗ = E∗

k,n(xn+g).

Let F be a clustering on xn+g, which is defined as follows: Take the original
clusters C1, . . . , Ck and add the g minimizing points y1, . . . , yg ∈ Bn(Ek,n(xn)) of
∑g

i=1 minj ‖yi − x̄j‖2
2 to their corresponding clusters Cj . Trim

Bn+g(F) = Bn(Ek,n(xn)) ∪ {xn+1, . . . , xn+g} \ {y1, . . . , yg}.

Because maximal g points have been added to any Cj, C with |C| > g is not
dissolved in the induced clustering, which equals F , because all added g points
have been trimmed. But C is assumed to dissolve. Therefore,

Q(xn+g,D) < Q(xn+g,F).

Because D is a trimmed k-means clustering, D∗ fulfills (3.5), where the centroids
are the cluster means of D (otherwise D could be improved by changing assign-
ments so that points are assigned to the cluster with the closest centroid and
trimmed point are changed into clusters to whose centroid they are closer than
some of its former members). A contradiction of (3.6) follows from

Q(xn+g,F) = min
y1,...,yg∈Bn(Ek,n(xn))

g
∑

i=1

min
j

‖yi − x̄j‖2
2 + Q(xn, Ek,n(xn)),

Q(xn+g,D) ≥ Q(xn,D∗),

because all summands of Q(xn,D∗) also appear in Q(xn+g,D).

Proof of Theorem 3.10: Consider xn+1 → ∞. For D = {xn, {xn+1}} get
s(n + 1, 2) = 0 and s(i, 2) → 1 for i = 1, . . . , n, because a(i, 2) does not change
while b(i, 2) → ∞. Thus, 1

n+1

∑n+1
i=1 s(i, k) → n

n+1 .
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Because of the arguments given in Section 3.2, {xn+1} will be contained eventually
in the optimal clustering for any k. For any partition in which there are nonempty
different clusters C1 ⊂ xn and C2 ⊂ xn, eventually b(i, k) ≤ maxx,y∈xn d(x, y),
where d is the underlying distance, a(i, k) ≥ minx,y∈xn d(x, y) > 0 as long as xi

does not form a cluster in itself, and therefore there exists a constant c so that
1

n+1

∑n+1
i=1 s(i, k) < c < n

n+1 . For large enough xn+1, this is worse than D, and
therefore D is the average silhouette width clustering.

Proof of Theorem 4.2: First consider the case without noise component, i.e.,
π0 = 0. Let C ∈ En(xn) with isolation i(C), |En(xn)| = k̂. Let fmax = 1

σ0
f0,1(0).

Under addition of g points to xn,

BIC(n + g) ≥ 2
n+g
∑

i=1

log





n+g
∑

j=1

1

n + g
fmax



− (3(n + g) − 1) log(n + g). (A.1)

The latter can be attained by fitting xn+g with the following n + g mixture com-
ponents:

aj = xj, σj = σ0, πj =
1

n + g
, j = 1, . . . , n + g.

If this would be the solution maximizing the BIC, there would be no violation of
isolation robustness, because every point would form a cluster, so that there would
be no cluster in E∗

n(xn+g) joining points of C and of xn \ C.

Suppose that there exists D ∈ E∗
n(xn+g) so that neither D ⊆ C nor D ⊆ xn \ C,

i.e., ∃x, y ∈ xn : x ∈ C ∩ D, y ∈ (xn \ C) ∩ D. Thus, |x − y| ≥ i(C), and there
exists a mixture component l in η∗ = η̂

n+g,k̂∗
(k̂∗ maximizing the BIC for xn+g;

the components of η∗ being denoted by π∗
j , a

∗
j , σ

∗
j ) so that

l = arg max
j

π∗
j fa∗

j
,σ∗

j
(x) = arg max

j
π∗

j fa∗

j
,σ∗

j
(y).

By choosing i(C) large enough, at least one of the fa∗

l
,σ∗

l
(z), z = x, y can be

made arbitrarily small, and therefore
∑k̂∗

j=1 π∗
j fa∗

j
,σ∗

j
(z) and even L

n+g,k̂∗
(η∗,xn+g)

can be made arbitrarily small as well. Hence, i(C) can be made so large that
2L

n+g,k̂∗
(η∗,xn+g)− 3(k̂∗ − 1) log(n + g) is smaller than the lower bound in (A.1),

which contradicts the existence of D ∈ E∗
n(xn+g) joining points of C and xn \ C.

Since E∗
n(xn+g) is a partition, it must contain C or a subset of C.

There exists an upper bound on min(fa,σ(x), fa,σ(y)), which is independent of a

and σ (namely maxσ∗≥σ0

1
σ∗

f0,1

(

x−y
2σ∗

)

because |x − y| ≤ 2max(|x − a|, |y − a|))
and converges to 0 as |x − y| → ∞. All proportion parameters are ≤ 1, and the
number of clusters is smaller or equal to n + g (see Lindsay 1995, p.22). (A.1) is
independent of xn and C, and therefore the above argument holds for large enough
i(C) uniformly over all xn and C for given n. This proves isolation robustness.

If a noise component is added, E∗
n(xn+g) is not necessarily a partition, so that

the last argument does no longer hold. The former arguments are not affected by
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introduction of the noise component. It remains to show that E∗
n(xn+g) contains

C or a subset of C, which means that not all members of C are assigned to the
noise component. But by choosing i(C) large enough, 1

xmax−xmin
becomes arbi-

trarily small, and assigning even a single point of C to the noise component again
can make the loglikelihood arbitrarily small in contradiction to (A.1) with π∗

0 = 0.

Proof of Theorem 5.3: It is well known (see, e.g., Bock 1974, p. 389) that
the single linkage h−level clusters are the connectivity components of the graph
G(xn) where all members of the data set are the vertices and there is an edge
between xl and xm whenever dlm ≤ h.

Since it is not possible to reduce connectivity components by adding points, ∃D ∈
E∗

n(xn+g) : Ci ⊆ D. Let q∗(i, g) be the right side of (5.7). q(i, g) = q∗(i, g) holds
because

• two clusters Cj and Cl can always be linked by adding g(j,l) equidistant
points between the points xj and xl with djl = δS(Cj , Cl) because of (5.2);
∑l

m=1 |Cjm |− |Ci| points can be joined by adding g points if {Cj1 , . . . , Cjl
} ∈

Dg(Ci) because of (5.8), therefore q(i, g) ≥ q∗(i, g),

• q(i, g) ≤ q∗(i, g) because for all x, y ∈ D there must be a path P between
x and y in G(xn+g), and the minimum set of clusters from Eh,n(xn) needed
to cover P ∩ xn, i.e. the path without the g added points, can obviously be
joined by these g points, fulfills (5.8) and is therefore a member of Dg(Ci).

Get γ(Ci, D) ≥ |Ci|
|Ci|+q(i,g) , therefore (5.5). (5.6) follows directly.

Proof of Theorem 5.6: Suppose that in the induced clustering E∗
n(xn+g) the

points of H are not in the same cluster. It will be shown by complete induc-
tion over g ≥ 1 that max δC(C1, C2) ≤ mg, where the maximum is taken over
C1, C2 ∈ En+g(xn+g) with C1 ∩H 6= ∅, C2 ∩H 6= ∅ and that furthermore for such
Cj, j = 1, 2, the largest possible dh(H ∩ Cj , Cj) ≤ mg−1 and the second largest
possible dh(H ∩ Cj, Cj) ≤ mg−2. If mg ≤ h, the clusters C1, C2 would be joined
in the h-level partition, because all distinct clusters must have distances larger or
equal to h from each other.
g = 1: δC(C1, C2) ≤ dh(H ∩ C1, C1) + dh(H ∩ C2, C2) + d(H), because d is a
metric and d(z1, z2) ≤ d(z1, x1) + d(z2, x2) + d(x1, x2) for z1 ∈ C1, z2 ∈ C2, x1 ∈
C1 ∩ H, x2 ∈ C2 ∩ H. Observe d(xn+1,H) = minx∈H d(xn+1, x) ≤ d(H), because
otherwise the points of H would be joined as in the original data set at the level
d(H), before xn+1 can change anything about H. Points x ∈ H not being in
the same cluster as xn+1 can only be joined with y ∈ xn if d(x, y) < dh(H,xn).
Thus, one of the dh(H ∩ Cj , Cj), j = 1, 2 (namely where xn+1 ∈ Cj) has to be
≤ max(dh(H,xn), d(H)) and the other one has to be ≤ dh(H,xn).
1 ≤ g → g+1: Order the points xn+1, xn+2, . . . so that the smaller d(xn+j ,H), the
smaller the index. Observe still d(xn+1,H) ≤ d(H), d(xn+q+1,H) ≤ mq, q ≤ g+1,
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the latter because otherwise all clusters containing points of H obtained after ad-
dition of xn+q are joined before xn+q+1 can affect them. Thus, for g + 1 added
points, mg is the largest possible value for dh(H ∩ Cj , Cj), j = 1, 2, and it can
only be reached if xn+g+1 is a member of the corresponding cluster. The largest
possible dh(H ∩ Cj , Cj), j = 1, 2 for xn+g+1 6∈ Cj can be attained by either one
of xn+l ∈ Cj, l ≤ g or is dh(H,xn). Observe dh(H ∩ Cj, Cj) ≤ mg−1 for all these
possibilities. This finishes the induction.
This means that all points of H are in the same induced h-level cluster C ∗ if g
points are added and mg ≤ h. Observe γ(C,C∗) ≥ |H|

|C|+qH
> 1

2 , because by (5.9),
no more than qH points outside of C can be joined with H.

Proof of Theorem 6.2: Because of the invariance of FPCs and the equivariance
of their domain under linear transformations, assume w.l.o.g. m(w) = 0, s(w) = 1.

First it is shown that xmax(g, k,m+g , s
2
+g,m−k, s

2
−k) as defined in (6.5) is the upper

border of the domain of yñ+g(w
∗) in the situation of Property A(g, k,xn(w)), i.e.,

xmax(g, k,m+g , s
2
+g,m−k, s

2
−k) = m(w∗) +

√
cs(w∗). (A.2)

Assume, w.l.o.g., that the k points to be lost during the algorithm are y1, . . . , yk

and the ng added points are yñ+1, . . . , yñ+ng , thus yñ+g(w
∗) = {yk+1, . . . , yñ+ng},

|yñ+g(w
∗)| = n1. Now, by straightforward arithmetic:

m(w∗) =
n(w)m(w) + ngm+g − km−k

n1
=

ngm+g − km−k

n1
,

s(w∗)2 =
1

n1





ñ
∑

i=1

(yi − m(w∗))2 +
∑

w∗

i
=1,wi=0

(yi − m(w∗))2 −
k
∑

i=1

(yi − m(w∗))2





=
1

n1

(

ñ
∑

i=1

(

yi −
ngm+g − km−k

n1

)2

+
∑

w∗

i
=1,wi=0

(

yi − m+g +
(n(w) − k)m+g + km−k

n1

)2

−
k
∑

i=1

(

yi − m−k +
(n(w) + ng)m−k − ngm+g

n1

)2
)

=
n(w)s(w)2 + ngs

2
+g − ks2

−k

n1

+
1

n3
1

[(n(w)n2
g + ng(n(w) − k)2 − kn2

g)m
2
+g

+(n(w)k2 + ngk
2 − (n(w) + ng)

2k)m2
−k

+(2kng(n(w) − k) − 2n(w)kng + 2kng(n(w) + ng))m+gm−k]

⇒ (A.2).
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(6.8) remains to be shown (the bound on ∆ then follows directly from Definition
2.2). From (A.2), get that in the situation of Property A(g, k,xn(w)), the algo-
rithm (6.3), which is known to converge, will always generate FPCs in the new
dataset yñ+g with a domain [x−, x+], where

x− ∈ [−xmaxmax(g, k),−xmaxmin(g, k)], x+ ∈ [xmaxmin(g, k), xmaxmax(g, k)],
(A.3)

if started from xn(w). Note that, because of (6.4), the situation that xn(w) ⊂ xn

is FPC, g points are added to xn, k1 further points of xn \ xn(w) are included
in the FPC and k2 points from xn(w) are excluded during the algorithm (6.3)
is equivalent to the situation of property A(g + k1, k2). Compared to x(w), if g
points are added to the dataset and no more than k1 points lie in [−xmaxmax(g +
k1, k2),−

√
c]∪ [

√
c, xmaxmax(g + k1, k2)], no more than g + k1 points can be added

to the original FPC xn(w). Only the points of xn(w) in [−√
c,−xmaxmin(g +

k1, k2)] ∪ [xmaxmin(g + k1, k2),
√

c] can be lost. Under (6.7), these are no more
than k2 points, and under (6.6), no more than k1 points of xn can be added. The
resulting FPC xn+g(w

∗) has in common with the original one at least n(w) − k2

points, and |xn(w) ∪ (xn ∩ xn+g(w
∗))| ≤ n(w) + k1, which proves (6.8).

The following proposition is needed to show Lemma 6.3:

Proposition 7.1 Assume k < n(w). Let y = {xn+1, . . . , xn+g}. In the situation
of Property A(g, k,xn(w)), m+g ≤ m∗

+g and max(y ∩ xn+g(w
∗)) ≤ amax(g).

Proof by induction over g.
g = 1: xn+1 ≤ √

c is necessary because otherwise the original FPC would not
change under (6.3).
g > 1: suppose that the proposition holds for all h < g, but not for g. There
are two potential violations of the proposition, namely m+g > m∗

+g and max(y ∩
xn+g(w

∗)) > amax(g). The latter is not possible, because in previous iterations of
(6.3), only h < g points of y could have been included, and because the proposi-
tion holds for h, no point larger than x∗

maxmax(g−1, k,m∗
+(g−1)) can be reached by

(6.3). Thus, m+g > m∗
+g. Let w.l.o.g. xn+1 ≤ . . . ≤ xn+g. There must be h < g so

that xn+h > amax(h). But then the same argument as above excludes that xn+h

can be reached by (6.3). Thus, m+g ≤ m∗
+g, which proves the proposition.

Proof of Lemma 6.3: Proof of (6.9): Observe that xmax(g, k,m+g , s
2
+g,m−k, s

2
−k)

is enlarged by setting s2
−k = 0, ng = g and by maximizing s2

+g. s2
+g ≤ amax(g)2 −

m2
+g because of Proposition 7.1. Because xmaxmax(g, k) ≥ √

c, if
xmax(g, k,m+g, s

2
+g,m−k, s

2
−k) is maximized in a concrete situation, the points to

be left out of xn(w) must be the smallest points of xn(w). Thus, −√
c ≤ m−k ≤

m(w) = 0.

Further, c2 ≤ 0, c3 ≥ 0. To enlarge xmax(g, k,m+g , s
2
+g,m−k, s

2
−k), replace the

term −km−k in (6.5) by k
√

c, c2m
2
−k by 0 and c3m+gm−k by 0 (if m+g < 0 then
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m−k = 0, because in that case m+g would enlarge the domain of the FPC in both
directions and xn+g(w

∗) ⊇ xn(w)). By this, obtain x∗
maxmax(g, k,m+g), which is

maximized by the maximum possible m+g, namely m∗
+g according to Proposition

7.1.

Proof of (6.10): To reduce xmax(g, k,m+g , s
2
+g,m−k, s

2
−k), set s2

+g = 0 and observe
s2
−k ≤ (c−m2

−k). The minimizing m−k can be assumed to be positive (if it would
be negative, −m−k would yield an even smaller xmax(g, k,m+g , s

2
+g,m−k, s

2
−k)).

c1 ≥ 0, and therefore ngm+g can be replaced by −gm∗
+g, c1m

2
+g can be replaced

by 0, and c3m−km+g can be replaced by −c3m−km
∗
+g. This yields (6.10).

Proof of Theorem 6.4: Note first that for one-dimensional data, T (C) can
be reconstructed from the distance matrix MC . If i(C) > s(w)xmaxmax(g, k2),
there are no points in the transformed data set xn − m(w) that lie in

([−s(w)xmaxmax(g, k2),−s(w)
√

c] ∪ [s(w)
√

c, s(w)xmaxmax(g, k2)]),

and it follows from Theorem 6.2 that

∃D ∈ E∗
n(xn+g) : D ⊆ C, γ(C,D) ≥ |C| − k2

|C| >
1

2
.

vm(MC , g) = s(w)xmaxmax(g, k2) is finite by Lemma 6.3 and depends on C and
xn only through s(w) and k2, which can be determined from MC .
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