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Abstract

A method to compare the influence of a treatment on different properties within subjects
is proposed. The properties are measured by several Likert scaled items. It is shown that
many existing approaches such as repeated measurement analysis of variance on sum/mean
scores, a linear partial credit model and a graded response model conceptualize a comparison
of changes in a way that depends on the distribution of the pretest values, while in the
present paper change is measured in terms of the conditional distributions of posttest
values given the pretest values. A multivariate regression/ANCOVA approach is unbiased,
but shows power deficiencies in a simulation study. A new approach is suggested based on
poststratification, i.e., aggregating change information conditional on each pretest value,
which is unbiased and has a superior power. The approach is applied in a study that
compares the influence of a certain piece of music on five different basic emotions.
Keywords: multivariate regression, repeated measurements, item response theory, graded
response model, poststratified relative change scores, music and emotions

Introduction

In the present article, the analysis of data of the following form is addressed: I properties (that
could be, e.g., attitudes or emotional states) of K test persons are measured by Ji, i = 1, . . . , I,
items (usually the Ji are the same for all properties, but this is doesn’t have to be assumed)
before and after a treatment. The items are scaled by P ordered categories, which should
have a comparable meaning with respect to the various items. The question of interest is
if one of the properties is significantly more affected by the treatment than the others. We
suggest to analyze such data by a new approach based on poststratified relative change scores
(PRCS). Before this approach is introduced, we discuss the application of some already existing
methodology.

While there is a lot of literature on measuring change within pretest-posttest data (e.g.
Cronbach and Furby, 1970, Fischer, 1976, Andersen, 1985, Embretson, 1991, Eid and Hoffmann,
1998, Dimitrov and Rumrill, 2002, Achcar et al., 2003, Fischer, 2003, further references can be
found in Bonate, 2000), almost all work concerns the comparison of changes between subjects of
different groups. In our setup, we want to compare changes between different variables within
the same subject. The meaningfulness of such a comparison is discussed in the discussion.

Denote the random variables giving the pre- and posttest values of the items by Xhijk,
where

• h ∈ {0, 1} is 0 for a pretest score and 1 for a posttest score,
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• i ∈ IN I = {1, . . . , I} denotes the number of the property,

• j ∈ INJi
denotes the number of an item corresponding to property i, i.e. an item is

specified by the pair (i, j),

• k ∈ INK denotes the test person number. If nothing else is said, h, i, j, and k are used as
defined here.

A typical example is data from questionnaires where the measurement of different properties
of the test persons is operationalized by asking Ji questions with five ordered categories for
the answers with the same descriptions for all items, e.g., “strongly agree”, “agree”, “neither
agree nor disagree”, “disagree”, “strongly disagree”. In the data example, which is treated
after the methodological sections, the aim was to find out if a piece of music from the movie
soundtrack of “Alien III” affects anxiety significantly more than other emotions. The data was
obtained by a questionnaire, which consisted of J = Ji = 10 times i = 1, . . . , I = 5 questions
on a P = 5-point scale as above corresponding to the emotions joy, sadness, love, anger and
anxiety.

Such properties are frequently measured by Likert scales (Likert, 1932), i.e., the categories
are treated as numbers 1, 2, 3, 4, and 5, and the mean over the values of the Ji items is taken
as a score for each property (in the literature, often the sum is taken, but the mean allows
unequal values of Ji): Lhik = 1

Ji

∑Ji

j=1 Xhijk, called Likert mean scores in the following.
The distribution of such mean scores is often not too far from the normal, and they allow
the application of several linear models such as a repeated measures analysis of variance or
an analysis of covariance (Jaccard and Wan, 1996). Instead of the analysis of covariance, we
introduce a multivariate regression model, which is more general and more appropriate for the
multiple properties data.

Alternatively, the data can be analyzed on the level of the single items using item response
theory. This can be done by the so-called partial credit model (Masters, 1982), which is applied
to the measurement of changes by Fischer and Ponocny (1994). This is the only reference
known to us that can be directly applied to the data analysis problem treated in the present
article. We discuss this approach along with a possible application of the graded response
model (Samejima, 1969) to data of this kind. Pretest-posttest data have also been analyzed
by means of structural equation models (Raykov, 1992, Steyer, Eid and Schwenkmezger, 1997,
Cribbie and Jamieson, 2004). It would be possible in principle to adapt this approach to the
present situation, but on the mean score level, such a method will be very similar to ANCOVA,
and on the single item level, the normality assumption will be strongly violated.

Our conception of a comparison of change is based on a comparison of the conditional
distributions of the posttest values given the pretest values. Our definition for “equal changes
in different properties” is that for all possible pretest values these conditional distributions are
equal between the properties.

Existing approaches such as the repeated measures ANOVA and the item response theory
model “equality of change” in different ways, usually via parameters corresponding to dif-
ferences between the pretest and posttest distribution that are interpreted as time-property
interactions. We show by a toy-example that change for these approaches depends on the dis-
tribution of the pretest values and that the corresponding parameters may indicate interactions
even if all conditional distributions are equal. The reason is that the lower the pretest value, the
more increase is possible. For example, from a pretest value of x = P = 5, no further positive
change can happen. The effect is similar to the so-called regression towards the mean in the
pretest-posttest literature (cf. Bonate, 2000, Chapter 2). It is more serious for within-subject
comparisons, because for comparisons between groups, the same theoretical distribution of the
pretest values can be arranged by randomization, while this is not possible for comparisons
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between different variables. However, the example is also relevant for between-groups compar-
ison situations where the pretest distribution varies between the groups. Jamieson (1995) and
Cribbie and Jamieson (2004) addressed similar effects by means of simulations.

After these sections, a new method is proposed that is more directly tailored to the specific
kind of data. The proposed poststratified relative change scores (PRCS) method is based on a
separate poststratification of the items of every single test person. The PRCS aggregates the
differences between the posttest scores of the items corresponding to the property of interest
and the mean posttest score for all other items with the same pretest score. It makes explicit
use of the fact that a property is measured by aggregating the results from m items with p
ordered categories (p not too large) instead of analyzing the Likert mean scores.

Poststratification based scoring has been introduced by Bajorski and Petkau (1999). These
authors compute weighted sums of the P Wilcoxon rank test statistics for the posttest scores
conditional on the P pretest values. As opposed to the present setup, Bajorski and Petkau
(1999) deal with the comparison of two independent groups of test persons.

The Alien dataset is introduced and analyzed by the multivariate regression and the PRCS
after the methodological sections.

As ANCOVA in standard setups, the multivariate regression on the pretest values in our
setup is also a reasonable strategy to deal with regression towards the mean. However, the
fact that it ignores the way how the Likert mean values are obtained, may result in serious
power losses in some situations. This is illustrated in a small simulation study, which reveals
a superiority of the PRCS approach.

Note that we do not restrict our attention to a particular model for change or treatment
effects. We start with a data analytic question and compare tests derived from very different
models which can be applied to give an answer. The linear regression and ANOVA approaches
are based on models for (Lhik)hik (denoting the vector of all Likert mean scores for all values of
h, i, k), where differences between changes of different properties i1, i2 are modeled by param-
eters that specify different expected values of L1i1k and L1i2k conditional on L0i1k = L0i2k. In
item response theory, a difference between the changes of different properties i1, i2 is modeled
by an effect parameter for a difference between the distributions of (Xhi1jk)j and (Xhi2jk)j that
does only occur for h = 1 but not for h = 0. For the PRCS approach, such a difference is un-
derstood as a difference between the expectations of the values of X1i1jk and X1i2jk conditional
under X0i1jk = X0i2jk in a nonparametric setup.

Most item response theory methods operate on logits or probits of probabilities, while the
regression, ANOVA and PRCS methods operate on the raw Likert scores. The question of
scaling is discussed, along with some other issues, in the concluding discussion.

Linear regression and ANOVA approaches

Repeated measures ANOVA

A straight forward approach to analyze the Likert mean score data is a repeated measures
analysis of variance model:

Lhik = µ + ah + bi + ck + dhi + ehik, (1)

where µ is the overall mean, ah is the effect of time (pre- or posttest), bi is the effect of
the property, ck is the random effect of the test person, dhi is the interaction of time
and property and ehik is the error term, usually modeled as independently and identically
distributed (i.i.d.) according to a normal distribution. If it is of interest to contrast one
particular property i0 with the others, i may take the “values” i0 and “−i0”, where Lh−i0k =
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1
∑

q 6=i0
Jq

∑

q 6=i0

∑Jq

r=1 Xhqrk is the aggregated Likert mean score of all items not belonging to

property i0 (a subscript with a minus generally denotes aggregation of all possible values at
this place except of the one with the minus). The effects are assumed to be appropriately
constrained for identifiability. A difference of changes between properties would be tested
by testing the equality of the time-property interactions dhi (equality to 0 under the usual
constraints), by analogy to the case where difference of changes between groups is of interest,
compare Chapter 7 of Bonate (2000).

Example 1 We present an extreme, but simple example to demonstrate that the model Eq. 1
can indicate a time-property interaction even if for all pretest values the conditional distribu-
tions of the posttest values equal between the properties. This is caused here by different pretest
value distributions for the properties,

Assume that there are only two properties with one item for each, and these items can only
take the values 0 and 1. For both items a pretest value of 0 leads to a posttest value of 0 with
probability 0.1 and to a posttest value of 1 with probability 0.9. A pretest value of 1 leads always
to a posttest value of 1, independently for both items. Therefore, the distributions of the changes
for both items are exactly the same. The distribution of the pretest values for a test person
k is assumed to be: P{L01k = 0} = 0.9, P{L01k = 1} = 0.1, P{L02k = 0} = 0.1, P{L02k =
1} = 0.9. This yields the following distribution of the posttest values: P{L11k = 0} = 0.09,
P{L11k = 1} = 0.91, P{L12k = 0} = 0.01, P{L12k = 1} = 0.99. Because of the independence
of the items, they could also be interpreted as items belonging to different groups. Thus, the
example is also relevant for between-groups comparisons under different pretest distributions.

Some tolerance is required to apply the model Eq. 1 to this situation, because the dependent
variable is only two-valued and so the error term cannot be normally distributed. Note, however,
that the fact that only zeroes and ones occur as values is by no means essential for this example.
The same problem as demonstrated below occurs with mixtures of normally distributed random
variables or bimodally distributed Likert scores arranged so that the expected values are the same
as below. The reason why we used a two-valued example is only that this makes the calculations
easier (two-valued responses may be associated with techniques like logistic regression).

For the sake of simplicity, we use the constraints a0 = 0, b2 = −b1, d01 = d02 = d12 = 0.
We obtain from the expected values E:

EL01k = 0.1 ⇒ 0.1 = µ + b1,

EL02k = 0.9 ⇒ 0.9 = µ − b1,

EL11k = 0.91 ⇒ 0.91 = µ + a1 + b1 + d11,

EL12k = 0.99 ⇒ 0.99 = µ + a1 − b1.

Solving for the parameters:

µ = 0.5, b1 = −0.4, a1 = 0.09, d11 = 0.72.

The interaction term d11 has the largest absolute value, even though the effect of time is equal
for both items conditional on both possible values. The parameter models the fact that EL11k −
EL01k is much larger than EL12k − EL02k, which does not reflect a difference between the
changes, but a pretest distribution of item 1 that leaves much more space for a positive change.

ANCOVA

In usual pretest-posttest setups, the related phenomenon of regression towards the mean can
be handled by ANCOVA, i.e., introducing the pretest value as a covariate. The analogous
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model for the present setup would be

L1ik = µ + bi + ck + β(L0ik − L̄0) + ehik, (2)

where bi is the effect of the property, ck is a random within-subject effect, β is the regression
coefficient for the pretest value, L̄0 =

∑l
i=1

∑n
k=1 L0ik/(nl) is the overall pretest score mean,

and ehik is the error term. Here, absence of differences of changes is modeled by equal property
effects bi. Some suitable constraints have to be added to guarantee identifiability. The pretest
scores are centered by L̄0 independent of i, because this makes the contribution of β(L0ik − L̄0)
independent of i given the pretest score, and differences between changes manifest themselves
completely in the bi. For a more general model the regression coefficient β could be chosen
dependent of i, which restricts the clear interpretation of bi to the case L0ik = L̄0. These
models assume that the posttest value of property i is independent of the pretest values of
the other properties and that the dependence between results of the same test person takes
the form of an additive constant, i.e., the within-subject correlation has to be positive, which
cannot be taken for granted in the present setup.

Multivariate regression

These assumptions can be avoided by a more general multivariate regression model. For ease
of notation, we assume that only property i (and the aggregated score for the other properties,
denoted by “−i”) is of interest. With that,

(

L1ik

L1−ik

)

=

(

µ1

µ2

)

+

(

β11 β12

β21 β22

)(

L0ik − L̄0i

L0−ik − L̄0i

)

+

(

e1k

e2k

)

, (3)

L̄0i = (
∑K

k=1(L0ik + L0−ik))/(2K) being the overall pretest score mean. µ1 and µ2 are the
treatment effects on property i and on the aggregate of the other properties. The regression

matrix

(

β11 β12

β21 β22

)

specifies the influence of the pretest scores. e1k and e2k are error vari-

ables with zero mean independent of L0ik and L0−ik, but may depend on each other, which
accounts for the within-subject correlation. The null hypothesis of interest is the equality of
the treatment effects for L1ik and L1−ik, i.e., µ1 − µ2 = 0. This may be tested by a standard
t-test of µ = 0 in the univariate linear regression model

L1ik − L1−ik = µ + β1(L0ik − L̄0i) + β2(L0−ik − L̄0i) + ek. (4)

While this is the most general approach, it can be favorable in terms of the power of
the test (see the simulation study) to reduce the number of free parameters by
assuming

β11 = β22, β12 = β21 = 0, thus β2 = −β1 in Eq. 4. (5)

This means that the difference between L1ik and L1−ik apart from the random error can be
explained by µ1 − µ2 and the difference between L0ik and L0−ik alone. If this is not the case,
the difference depends on the size of L0ik and L0−ik even if they are equal. The assumption Eq.
5 will often not be justified in practice, but it makes the interpretation of µ1−µ2 more obvious
and the real data and simulation sections demonstrate that it can improve the power of the
resulting tests. The only difference between the model Eq. 2 and the multivariate regression
Eq. 3 is that the latter model allows for a more general within-subject correlation structure
(this could also be introduced in the models Eqs. 1 and 2 by replacing the within-subject
random effect with a more complicated covariance structure among the errors).
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In the setup of Example 1, it can be shown by analogous calculations that indeed µ1 = µ2

under Equation 3. Thus, the multivariate regression approach is superior to the repeated
measurements approach in this setup. Nevertheless, the approach shows a weak power under
some non-identical distributions of L0ik and L0−ik in the simulation study. The reason is that
it ignores the nature of the Likert mean scores, which apparently leads to a violation of the
linearity of the influence of the pretest scores on the posttest scores. An improvement can be
attained by the PRCS introduced later, which utilizes information at the item level. First, we
discuss another item-based method, which is already well-known in the literature.

Item response theory approaches

A linear partial credit model

As a contribution to item response theory, Fischer and Ponocny (1994) proposed the linear
partial credit model (LPCM), which can be applied to the data treated in the present paper.
Using our notation, the LPCM looks as follows:

P (Xhijk = x|θk, δxhij) =
exp(xθk + δxhij)

∑P
t=1 exp(tθk + δxhij)

,

δxhij = βxij + xτhi, (6)

where x is the item value on the P -point scale, θk is a person effect, βxij is the item parameter
for item (i, j), one for every possible value x, τhi for h = 1 specifies the change between pretest
and posttest on the items of property i (a more complicated model may involve parameters
τhij). To test whether “the treatment effects generalize over items”, which is Fischer and
Ponocny’s (p. 188/189) formulation of a within-subject comparison of change, they suggest
to test the equality of the τ1i. Some constraints are needed to ensure the identifiability of the
parameters:

τ0i = 0 ∀i, δ1hij = 0 ∀h, i, j,
∑

x,h,i,j

δxhij = 0. (7)

In the present setup, the LPCM, as well as the model Eq. 1, can suggest a property-time-
interaction via the parameters τ1i even if for all pretest values the conditional distributions
of the posttest values are equal between items. This can again be illustrated by means of
Example 1. To apply the model to the example with only two items, we replace the pairs (i, j)
in Equation 6 by a single index i = 1, 2. x takes the values 0 and 1 and the first constraint to
the δxhij is taken as δ0hi = 0. Further, θk is assumed constant. This yields

P (X01k = 1|θk, δ101) = 0.1 =
exp(θk + δ101)

1 + exp(θk + δ101)
⇒ θk + δ101 = −2.197,

P (X02k = 1|θk, δ102) = 0.9 ⇒ θk + δ102 = 2.197,

P (X11k = 1|θk, δ111) = 0.91 ⇒ θk + δ111 = 2.314,

P (X12k = 1|θk, δ112) = 0.99 ⇒ θk + δ112 = 4.595.

Solving for the parameters,

θk = 1.727, δ101 = −3.924, δ102 = 0.47, δ111 = 0.587, δ112 = 2.867,

δ101 = β11, δ102 = β12, δ111 = β11 + τ11, δ112 = β12 + τ12

⇒ τ11 = 4.511 6= τ12 = 2.397.
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The parameters describing the change are unequal, which would lead to the conclusion that
the changes are different between items 1 and 2. The reason is again that the model does
not separate the influence of the pretest value distribution from the comparison of changes.
The τ -parameters are obtained from the differences P (X1ik = 1|θk, δ11i)−P (X0ik = 1|θk, δ10i),
which do not correspond to the changes alone. Thus, the LPCM is able to parametrize the
given situation, but the parameters do not have the desired interpretation.

Again, it has to be emphasized that the simplicity of the example is not essential for the
problem. Examples with more possible values can generate analogous problems as well as
situations with more items.

There are multivariate approaches to the measurement of change (Embretson, 1991, Wang
and Chyi-In, 2004) in which the within-person parameter θk is a multidimensional vector con-
taining so-called modifiabilities to measure the change. Furthermore, there could be different
components of θk corresponding to different properties. Parameters θhik, h = 0 indicating a
baseline effect and h = 1 indicating a modifiability, i = 1, 2 indicating two different properties
with one item each, would be introduced. However, in the simple example above this is equiv-
alent to the univariate LPCM: assuming that the comparison of within-subject changes can be
modelled by an additive constant, θ12k = θ11k + τ , the null hypothesis τ = 0 would have to be
tested. δ11i = θ1ik and δ10i = 0 have to grant identifiability and eventually τ = τ12 − τ11 above,
indicating that the multivariate approaches are affected by the same problem.

A graded response model

A further class of item response models are the graded response models (Samejima, 1969).
We are not aware of any literature where these models have been applied to within-subject
comparisons of change. Therefore we propose our own adaptation to Example 1. There are
various versions of the graded response model around. Our approach is based on the model
formulation of Eid and Hoffmann (1998). The basic model is

P (Xhik ≥ x|ai, θhik, λxi) = Φ[ai(θhik − λxi)], (8)

where Φ is the cumulative distribution function of the standard normal distribution (distri-
bution of the underlying latent variables), ai is an item difficulty parameter, λxi is a cutoff
parameter determining the borders between the ordered categories and θhik is an ability pa-
rameter of the subject depending on item and occasion (pre- or posttest). A suitable model for
within-subject comparison of changes is θ1ik = θ0ik + ci, where c1 = c2 is the null hypothesis to
be tested (assuming, for our toy example, that there are only two properties with one item each,
i = 1, 2). In the given form, the model is heavily overparametrized. x can only take the values
0 and 1, therefore {Xhik ≥ 1} = {Xhik = 1} and only λ1i are needed. As above, there are only
four equations to determine the parameters, but there are still eight parameters. Therefore
four further constraints have to be made, namely a1 = a2 = 1, λ11 = λ12 = λ, θ01k = 0. This
yields

P (X01k = 1|λ) = Φ[−λ] = 0.1,

P (X02k = 1|θ02k, λ) = Φ[θ02k − λ] = 0.9,

P (X11k = 1|λ, c1) = Φ[c1 − λ] = 0.91,

P (X12k = 1|θ02k, λ, c2) = Φ[θ02k + c2 − λ] = 0.99.

Solving for the parameters:

λ = 1.28, θ02k = 2.56, c1 = 2.62, c2 = 1.04.
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Again, the within-subject changes seem to differ between items, but this is only due to the
different pretest value distributions.

To summarize, the discussed item response theory approaches, as well as the linear model
Eq. 1, model the time-property-interaction in a way that it depends on the distribution of the
pretest values and can be present even in the case that all conditional distributions of posttest
values are equal between the properties. We acknowledge, however, that it may be appropriate,
depending on the application, to conceptualize a comparison of changes in terms of (logit or
probit scaled) differences between pretest and posttest distributions. In such a situation, the
item response theory approach makes sense. It is not our intention to criticize item response
theory generally or to say that it detects “wrong” interactions, but to demonstrate that these
interactions do not provide a comparison of changes independently of the pretest distribution,
as defined by comparing conditional distributions given the pretest values.

Poststratified relative change scores

The idea of the poststratified relative change scores (PRCS) is the aggregation of measures for
the changes of the item scores belonging to the property of interest relative to the changes of the
other properties conditional on their pretest values. Note that PRCS are of a non-parametric
nature, i.e., they are not derived as estimators of some quantity in a parameterized model. This
implies in particular that there is no “true value plus measurement error” formulation. Neither
true but unobserved scores nor measurement errors are quantified. However, the resulting
score values provide a directly interpretable measure of the size of the differences between
within-subject changes.

The model to start is simply the whole common distribution of the random vector (Xhijk)h=0,1, i=1,...,I, j=1,...,Ji
,

assumed to be i.i.d. over the test persons k. The null hypothesis of no difference between the
changes of the items is operationalized by

H0 : ∀x ∈ {1, . . . , P}, i = 1, . . . , I, j = 1, . . . Ji :

E(X1ij1|X0ij1 = x) = c(x), (9)

c(x) being a value that only depends on x, i.e., all item’s posttest means are equal conditional
under all pretest values (the condition X0ij1 = x means that the pretest value corresponding
to the posttest value X1ij1 is x, and the H0 states that Equation 9 holds for all x, i, j). This
hypothesis may seem rather restrictive, but note that the hypothesis τ1i = c in the model Eq.
6 induces an equality between some functions of such conditional expectations as well, which
are more difficult to interpret, because they depend also on the pretest value distribution. Note
further that H0 is formulated in terms of raw scores while the discussed item response theory
approaches operate on logit or probit scaled probabilities. We don’t claim that it is superior
in general to consider the raw scores. We use the comparison of conditional expectations
as a practical simplification of the comparison of the full conditional distributions, which is
straighforward and easy to interpret. It would be conceivable to compare other functionals of
the conditional distributions such as functions of the probability logits, but this would not lead
to conventional item response approaches, as has been demonstrated in the previous section.
See the last section for more discussion of the scaling issue.

PRCS enable an asymptotically unbiased test of H0 against the alternative that all item’s
conditional posttest means of property i are larger or equal than the other’s properties means
(Eq. 10; conditioning is again on the corresponding pretest values), and that there is at least
one pretest value conditional under which a nonzero difference can be observed with probability
larger than 0 (Eq. 11):

H1 : ∀x ∈ {1, . . . , P}, q 6= i, j ∈ {1, . . . , Ji}, r ∈ {1, . . . , Jq} :
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E(X1ij1|X0ij1 = x) ≥ E(X1qr1|X0qr1 = x), (10)

∃x ∈ {1, . . . , P}, q 6= i,

j ∈ {1, . . . , Ji}, r ∈ {1, . . . , Jq}, P{X0ij1 = x, X0qr1 = x} > 0 :

E(X1i0j1|X0i0j1 = x) > E(X1qr1|X0qr1 = x). (11)

Equation 10 formulates a one-sided alternative. There is no difficulty to use the
same methodology for a one-sided test against the other direction, with “≤” in
Equation 10 and “<” in Equation 11, or for a two-sided test against the union
of these two alternatives. However, it is not possible to replace “≥” in Equation
10 by “6=”, because items with larger and smaller conditional expectations under
property i may cancel their effects out in the computation of the PRCS.

The PRCS for a test person k and a property of interest i is defined as follows:

1. For each pretest value x ∈ IN P , compute the difference between the mean posttest value
over the items belonging to property i and the other properties:

Di·k(x) = X1i·k(x) − X1−i·k(x), where

X1i·k(x) =

∑

j: X0ijk=x

X1ijk

N0i·k(x)
,

X1−i·k(x) =

∑

q 6=i,r: X0qrk=x

X1qrk

N0−i·k(x)
,

N0i·k(x) being the number of items of property i with pretest value x, and N0−i·k(x)
being the corresponding number of the other items. If one of these is equal to zero, the
corresponding mean posttest value can be set to 0. Note that the sum in the definition of
X1i·k(x) is over all values j fulfilling X0ijk = x and the sum in the definition of X1−i·k(x)
is over all pairs q, r fulfilling q 6= i and X0qrk = x. A dot in the subscipt generally refers
to an aggregation (summing up or averaging, depending on the precise definition) of all
possible values at this place.

2. The PRCS Di·k for person k is a weighted average of the Di·k(x), where the weight should
depend on the numbers of items N0i·k(x) and N0−i·k(x) on which the difference is based:

Di·k =

P
∑

x=1

w(N0i·k(x), N0−i·k(x))Di·k(x)

P
∑

x=1

w(N0i·k(x), N0−i·k(x))

. (12)

The weights should be equal to 0 if either N0i·k(x) or N0−i·k(x) is 0, and > 0 else. It is
reasonable to assume that the denominator of Di·k is > 0. Otherwise, there is no single
pair of items for property i and any other property with equal pretest values, and therefore
the changes of property i cannot be compared to the changes of the other properties for
this test person. In this case, person k should be excluded from the analysis. The weights
are suggested to be taken as

w(n1, n2) =
n1n2

n1 + n2
, (13)

as motivated by Lemma 1 below. Obviously it makes sense to weight up pretest values x
which occur more often for the given person, because the corresponding Di·k-values are
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more informative (it can easily be checked that Equation 13 achieves this). The weights
may be chosen more generally as dependent also on the value of x itself, if this is suggested
by prior information.

Inference can now be based on the values Di·k, k = 1, . . . ,K.
The null hypothesis to be tested is EDi·k = 0 with a one-sample t-test. The underlying

theory of this test is presented below. In Theorem 1 it is shown that the test statistic
∑

k Di·k

standardized by a variance estimator (see below) is asymptotically normal with variance of 1
under both hypotheses, expected value 0 under H0 and a larger expected value under H1. In
other words, a one-sided test of EDi·k = 0 based on the standardized statistic is asymptotically
unbiased for H0 against H1 under the assumptions Eqs. 14-16 given below.

The tK−1-distribution is asymptotically equivalent to the normal distribution and can often
be expected to be a better approximation for finite samples. The reason is that the value range
is bounded. If the values are not strongly concentrated far from the bounds (which may be
checked by graphical methods), the distribution of Di·k will have lighter tails than the normal
distribution. This results in heavier tails of the distribution of the test statistic than expected
under the normal according to Cressie (1980). Since the tK−1-distribution has heavier tails
than the normal, it will match the distribution of the test statistic better in most situations.
The one-sample-Wilcoxon- or sign test may also be considered as alternatives, but for finite
samples it can neither be guaranteed that the distribution of Di·k is symmetric, nor that the
median is 0 under H0. The simulations indicate a superior power of the t-test.

Note that H0 is fulfilled in Example 1 with x = 0, 1, c(0) = 0.9, c(1) = 1, assuming that
the two items correspond to two different properties. Test persons would only be included in
the comparison if the pretest values of the two items were equal (because there is only one
item for each property; otherwise the denominator of Equation 12 is zero), which is the reason
why the problems demonstrated in the previous sections don’t occur. Excluding some persons
may look like a drawback, but it is actually a sensible strategy, because subjects with a pretest
outcome of 1 on one item and 0 on the other one don’t provide useful information concerning
a within-subject comparison of change. In this case, N0i·k(x) = 1 and E(Di·k(x)) = 0 because
the conditional distributions given X0i11 = x are the same for both items i = 1, 2.

The theory needs the following assumptions:

∃x ∈ {1, . . . , P}, q 6= i, j ∈ {1, . . . , Ji}, r ∈ {1, . . . , Jq} : ∀(x1, x2) ∈ {1, . . . , P}2 :

P{X0ijk = x, X0qrk = x} > 0, (14)

P{X1ijk = x1, X1qrk = x2} < 1, (15)

∀x ∈ {1, . . . , P}, i ∈ {1 . . . , I}, j ∈ {1, . . . , Ji} : X1ijk independent of (X0qrk)qr

conditional under X0ijk = x. (16)

Assumption Eq. 14 ensures the existence of at least one item for property i and some other
property such that the changes are comparable conditional under a given X0ijk = x. Equation
15 excludes the case that all comparable posttest values are deterministic. In that case, sta-
tistical methods would not make sense. The only critical assumption is Eq. 16, which means
that X1ijk is allowed to depend on (X0qrk)qr (denoting the whole pretest result of test person
k) only through X0ijk. Similar restrictions are implicit in the LPCM Eq. 6 and, on the Likert
mean score level, in the linear models Eqs. 1 and 2. Moreover, the PRCS test does allow
for arbitrary dependence structures among the pretest values as opposed to the latter three
models.
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Theorem 1 Assume Eqs. 14-16. For Di·k as defined in Equation 12,















K
∑

k=1

Di·k

(KS2
K)1/2















converges in distribution to N (aj , 1), j = 0, 1, (17)

under Hj with a0 = 0, a1 > 0, where S2
K is some strongly consistent variance estimator, e.g.

S2
K = 1

K−1

K
∑

k=1



Di·k −
1

K

K
∑

q=1

Di·q





2

.

The proof is given in the Appendix.
An optimal choice of the weight function w depends on the alternative hypothesis. For

example, if differences between the changes in property i and the other properties would only
be visible conditional under a single particular pretest value of x, this x would need the largest
weight, but of course such information has to be obtained independently of the observed data
if it should be used in the definition of the weights.

To construct a reference alternative model, we assume that all items and pretest values
behave in the same manner conditional under the pretest value. More precisely, it is assumed
that for property i the conditional expectation Ei,x of the posttest values doesn’t depend on the
item, and that for all other properties, all pretest values and items, the conditional expectation
of the posttest value is by a fixed constant c smaller than Ei,x. All variances of the conditional
posttest value distributions are assumed to be the same (conditioning is as usually on the
corresponding pretest value):

∀x ∈ {1, . . . , P}, j ∈ {1, . . . , Ji} :

E(X1ijk|X0ijk = x) = Ei,x independent of j,

∀x ∈ {1, . . . , P}, q 6= i, r ∈ {1, . . . , Jq} :

E(X1qrk|X0qrk = x) = Ei,x − c, c independent of q, r, x,

∀x ∈ {1, . . . , P}, q = 1, . . . , I, r ∈ {1, . . . , Jq} :

Var(X1qrk|X0qrk = x) = V independent of q, r, x. (18)

The optimality result needs a further independence condition additionally to assumption Eq.
16, namely that, given X0ijk = x, a posttest value for a person is even independent of the
posttest values of the same person for the other properties ((X1qrk)−i denoting the vector of
posttest values for person k excluding property i):

∀x ∈ {1, . . . , P}, i ∈ {1 . . . , I}, j ∈ {1, . . . , Ji} : X1ijk independent of (X1qrk)−i

conditional under X0ijk = x. (19)

Keep in mind that the assumptions Eqs. 18 and 19 do not restrict the applicability of the
PRCS method, but are only needed to define a reference alternative that can be used to find
an optimal weight function (which should still be reasonable under most other alternatives).

Lemma 1 For Di·k as defined in Equation 12 and H1 fulfilling Equations 16, 18 and 19, a1

from Theorem 1 is maximized by the weight function w given in Equation 13.

The proof is given in the appendix.
Both the PRCS and the Likert mean scores are relatively weakly affected by missing values

in single items. They can be simply left out for the computation of the means.
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For exploratory purposes, the mean values of the Di·k may be considered for all properties
i = 1, . . . , I and can be interpreted directly in terms of the category values 1, . . . , P as “relative
effect sizes”, namely as properly weighted averages of the differences in changes. The PRCS
may also be used to test the equality of changes in property i between different groups with a
two-sample t-test or a more general ANOVA.

Reliability of the PRCS can be assessed by the usual split-half method. The items should
be split in such a way that all properties are represented by the same number of items in both
halves.

Application: effects of music on emotions

The study

At least since the days of Immanuel Kant, it is a widespread notion that music bears a close
relationship to human emotions. Kant articulated in his “Kritik der Urteilskraft” that music
‘speaks’ through felt sensations and could therefore be seen as a language of affects (Kant,
1957, §53).

Given this important function of music, it is not surprising that in the last decades many
studies in music psychology and music perception tried to clarify the relationship between music
or musical features and the evocation of emotions (for an overview see for example Scherer and
Zentner, 2002). Difficulties arise in this research area from the lack of a unified theoretical
framework for music and emotions (e.g. Kleinginna and Kleinginna, 1981, Sloboda and Juslin,
2002) and from problems with the measurement of emotions or emotional changes caused by
music listening (Madsen, 1996; McMullen, 1996; Müllensiefen, 1999; Schubert, 2002). Many
empirical findings concerning music and its emotional effects are seemingly contradictory and
unrelated. Among the more important reasons for this unsatisfying state of empirical knowledge
are the idiosyncratic nature of emotional reactions to a wide range of aesthetic stimuli and the
difficulty to control all the intervening variables in the measurement of emotional responses.
To get a clearer picture of how music can induce emotional changes, a tool for the measurement
of emotional change due to music listening was developed and applied in a study with high
school students (Bargmann, 1998). The scope of the study has been restricted to the subjective
aspects of emotions, as could be articulated verbally via a questionnaire. Physiological and
gestural measurements have not been taken into account.

The original study used a semantic differential to measure the emotional states of the
subjects before and after the music treatment. The semantic differential itself consisted of 50
self-referential statements that belonged to five emotional states, ten statements (items) for
each state. The 50 items and their respective emotional states were selected according to the
results of an extensive pretest. The results of this pretest indicated five emotional categories
(called “properties” in the statistical part): joy, sadness, love, anger, and anxiety/fear. The
semantic differential with its 50 items was used to evaluate the momentary state for each
subject in each of the five emotional categories. The answers have been given on a five-point
Likert scale as explained in the Introduction.

From a second pretest with several music examples, the instrumental piece “Bait and Chase”
from the motion picture soundtrack “Alien III” was chosen as a piece that evoked strongest and
most homogeneous emotions, judged by direct statements of the test persons of the pretest. It
is characterized by dissonant orchestral sounds that are distorted by a lot of noise elements.
It lacks an identifiable melody as well as a recognizable structure. Its associated emotional
quality was anxiety/fear.

The subjects in the main study were 125 students aged 16 to 19 from two different high
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schools in northern Germany. They were tested in groups in their usual classroom environment
to minimize disturbing influences of laboratory testing on their emotional conditions.

The design consisted of six groups: group E with K = 24 was the experimental group
that received the treatment (music listening) between the pretest and posttest rating of the
semantic differential. Group E (Counter Demand) with K = 20 received the same treatment
and made pretest and posttest ratings exactly like group E. The two groups differed only
in the instructions given with the music example. While the instructions for group E were
neutral concerning the measurement of the subjects’ emotions, subjects in group E (CD) were
suggested that the music example evoked joy in prior tests. The idea of the counter demand
group is to evaluate the effect of the experimental instruction.

The first control group C1 with K = 18 received the pretest and had to complete a verbal
task instead of the music treatment. As in group E, this was followed by the survey of the
individual emotional state on the semantic differential in the posttest.

As in the “Solomon four group design” (Solomon, 1949), there have been three other control
groups without pretest to control the effect of pretest sensitization. The statistical evaluation
of these groups was by means of standard methodology and is not further discussed here.

The main research hypotheses of the experiment were that

1. the Alien III music example would increase the ratings of the items associated with
anxiety/fear from pretest to posttest scores in groups E and E (CD). The increase should
be stronger than any increase of the other ratings. Thus, it has been expected that the
null hypothesis of no difference in the changes would be rejected.

2. the changes of the anxiety ratings should not differ from changes of the other categories
from pre- to posttest in the C1 group where there was no treatment.

Furthermore, there have been comparisons between the posttest scores of the different groups.
Because of a lack of time and resources, the assignment of students to the groups has not been
randomized, so that a reliable conclusion from the study results to causal effects is not possible.
The aim of the study was rather to demonstrate the suitability of the semantic differential.
However, the results have been validated by subsequent qualitative interviews with a different
group of subjects.

Results

The results of the analysis for the Alien data are as follows: In the experimental group E, the
t-tests for µ = 0 and i being the anxiety score under the model Eq. 4 leads to p-values of
0.00055 (unrestricted) and < 0.0001 under assumption Eq. 5. All tests are one-sided, unless
indicated explicitly. The means of the PRCSs are 0.6207 (anxiety), -0.4882 (joy), -0.3450 (love),
0.1099 (sadness) and 0.2731 (anger). The t-test for the anxiety mean to be equal to zero leads
to p < 0.0001. Not only is the change in anxiety clearly significant compared with the other
changes, but the PRCS has also the largest absolute value. With the same methodology, anxiety
could also be tested against every single one of the other emotions, the data being restricted
to the items of two emotions for all these tests. The largest of the resulting p-values is 0.006
(anger), which is still significant at the 5%-level compared to the Bonferroni-p of 0.05/5.

In the experimental group E (Counter Demand), the regression t-test p-values for anxiety
are 0.223 (unrestricted) and 0.265 under assumption Eq. 5. The means of the PRCSs are
0.0645 (anxiety), 0.2547 (joy), 0.1825 (love), -0.1488 (sadness) and -0.0324 (anger). The t-test
for the anxiety mean to be equal to zero leads to p = 0.2894. As opposed to the research
hypothesis, the different experimental instructions compared to group E seem to destroy the
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effect on anxiety. The effect on joy has the largest absolute value, but it is also not significant
(p = 0.1218).

In the control group C1, the changes in anxiety are negative, so that the one-sided tests do
never reject the H0. Thus, the two-sided p-values are reported and discussed. These are not of
primary interest in the study, but they can be used to highlight differences between the PRCS
and the multivariate regression method. The regression t-test for anxiety leads to p = 0.0779
(unrestricted) and p = 0.0099 under assumption Eq. 5. The means of the PRCSs are -0.1545
(anxiety), 0.8328 (joy), 0.1643 (love), -0.3065 (sadness) and 0.1102 (anger). The t-test for the
anxiety mean to be equal to zero leads to p = 0.0174. The restricted regression test and the
test based on PRCS detect a weakly significant decrease in anxiety, and it can also be shown
that anxiety is significantly more decreased as in group E (CD) by a two-sample t-test applied
to the PRCS (two-sided p = 0.0495), which could be interpreted as detecting a positive effect
of “Alien III” on anxiety in the E (CD) group in comparison to no treatment. However, the
difference between the effects on joy in these two groups (two-sided p = 0.0371) seems to be
dominant.

The unrestricted regression test does not lead to a significant result in the group C1, and
it may be wondered why the different tests lead to different conclusions and which result is
most reliable. Table 1 gives the distributions of the posttest values conditional on all pretest
values, computed separately for the items belonging to anxiety/fear and all other items. The
PRCS test tests the H0 that the two conditional distributions for each of the five pretest values
are equal, against a uniformly smaller (or larger) conditional expectation for anxiety/fear.
Although the table does not contain information about items belonging to the same test person,
the alternative hypothesis is indicated by the smaller conditional mean posttest values and
the almost uniformly stochastic smaller conditional distributions of the posttest values for
anxiety/fear. This is the information on which the PRCS method operates.

In Figure 1, the pretest and posttest Likert mean scores are plotted, to which the regression
methods are applied. The regression methods test the equality of the intercepts of the regression
lines belonging to anxiety/fear (“F”) and the other scores (“O”). This is difficult to judge by eye.
The posttest values of the “O”-score show a relatively large variance even for similar pretest
scores, so that the corresponding regression coefficients cannot very precisely be estimated. The
assumption Eq. 5 (both regression lines are parallel) reduces the variation in the estimation of
the regression coefficient by aggregating information of both scores. A likelihood ratio test to
compare the model under assumption Eq. 5 with the unrestricted model yields p = 0.446, so
that the data do not contradict assumption Eq. 5. However, the two regression lines cannot
be compared very well, because many “F”-pretest scores are so small that there are no “O”-
pretest scores to compare them to, and many “O”-pretest scores are concentrated at about 0.2,
where there are few “F”-pretest scores. We conclude that a test based on the information in
Table 1 seems to be more adequate. The difference between the distributions of the pretest
values of anxiety/fear and the other properties does not bias the regression test, but seems to
cause a loss of power. Note that a test of the time/property interaction in the model in Eq.
1 with p = 0.868 obscures any evidence for a difference in changes. This test is related to the
posttest-pretest difference between the difference of the total means for fear and others. This
difference is (1.66−2.08)−(1.77−2.15) = −0.04, which has a smaller absolute value than all five
differences between the conditional means (cf. the last three columns of the “total-f/o”-lines
of the Table 1).

To assess the reliability of the scores, we carried out 20 random partitions of the items in two
halves exemplary for the experimental group. We give two mean correlation coefficients
for every property. The first one refers to the correlation of the test person’s
PRCS values of both halves, the second one refers to the test person’s differences
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between pretest and posttest Likert scores of both halves. The correlations are
0.342/0.600 (anxiety), 0.609/0.553 (joy), 0.343/0.165 (love), 0.414/0.510 (sadness)
and 0.434/0.621 (anger). The analogous correlations between the raw pretest Likert scores
were between 0.6 and 0.87. While the reliability of the PRCS seems to be limited in this
example, note that they are directly used for testing while for the tests involving the Likert
scores additional variability is introduced because more parameters are estimated in the model
underlying the analyses.

Simulations

We carried out a small simulation study to compare the performance of some of the proposed
tests. We did not simulate the tests based on the repeated measurement model Eq. 1 and
the LPCM Eq. 6, which have been shown to lead to wrong conclusions in the Example 1, and
which need by far more computing time than the tests based on the PRCS approach and the
multivariate regression Eq. 4. Five tests have been applied:

Regression The t-test for µ = 0 in the multivariate regression Eq. 4 with unrestricted regres-
sion parameters.

RegrRestrict The t-test for µ = 0 in the multivariate regression Eq. 4 under the assumption
Eq. 5.

RCS-t The one-sample t-test with PRCS for EDi·k = 0.

RCSWilcoxon The one-sample Wilcoxon test for symmetry of the distribution of the PRCS
about 0.

RCSsign The sign test for MedDi·k = 0.

All simulations have been carried out with K = 20, P = 5, I = 5, Ji = 10, i = 1, . . . , 5,
and property 1 has been the property of interest, i.e., a situation similar to the Alien data.
Emphasis is put to the effect of different pretest distributions between property 1 and the
other properties. We simulated from three different setups under the null hypothesis and three
different setups under the alternative:

standard Uniform distribution on {1, . . . , 5} for all pretest values. Each posttest value has
been equal to the corresponding pretest value with probability 0.4, all other posttest
values have been chosen with probability 0.15. (H0)

lowPre1 The pretest values for property 1 have been chosen with probabilities 0.3, 0.25,
0.2, 0.15, 0.1 for the values 1, 2, 3, 4, 5. The pretest values for the other properties have
been chosen with probabilities 0.1, 0.15, 0.2, 0.25, 0.3 for 1, 2, 3, 4, 5 (lower pretest values
for property 1). The posttest values and the pretest values for the other properties have
been chosen as in case standard. (H0)

lowPre1highPost The pretest values have been generated as in case lowPre1, the posttest
values have been chosen equal to the pretest value with probability 0.4. The remaining
probability of 0.6 for the case that the posttest values differ from the pretest values has
been distributed as follows: the two highest remaining values have been chosen with
probability 0.2, and the two lower values have been chosen with probability 0.1. (H0)

highPost1 The pretest values and the posttest values for the properties 2-5 have been gener-
ated as in case standard (no differences in the pretest distribution), the posttest values
for property 1 have been generated as in case lowPre1highPost. (H1)



16

lowPre1highPost1 The pretest values have been generated as in case lowPre1, the posttest
values have been generated as in case highPost1. (H1)

highPre1highPost1 As for case lowPre1highPost1, but with pretest value probabilities of
0.1, 0.15, 0.2, 0.25, 0.3 for 1, 2, 3, 4, 5 for the items of property 1 and vice versa for the
items of the other properties (higher pretest values for property 1).

The results of the simulation are shown in Table 2. The results for the H0-cases do not
indicate any clear violation of the nominal level. Note that this would be different using tests
derived under the models Eqs. 1, 6 and 8. The sign test always appears conservative, and the
regression methods are conservative for lowPre1highPost. The results for the H1-cases show
that different distributions for the pretest values of property 1 and the other properties result
in a clear loss of power of the regression methods compared to the PRCS methods. The two
nonparametric tests based on the PRCS perform a bit worse than the t-test under H1. The
linear regression test shows a better power under the assumption Eq. 5 than unrestricted in
all cases.

Discussion

Some methods for comparing the changes between different properties measured on Likert
scales between pretest and posttest have been discussed. Tests based on a repeated measure-
ment model and item response theory have been demonstrated to depend on the pretest distri-
bution, which, given our conceptualization of the comparison of change based on conditional
distributions, means that they are biased under differences in the pretest value distributions.
Two proposed tests based on multiple linear regression use the Likert mean scores while the
PRCS tests are directly based on the item values. The advantage of the PRCS is that the
effect of the pretest scores is corrected by comparing only items with the same pretest value,
while the regression approach needs a linearity assumption which is difficult to justify. To work
properly, the PRCS approach needs a sufficient number of items, compared with the number of
categories for the answers, because the number of comparisons of items with the same pretest
values within test persons determines the precision of the PRCS. If there are few items with
many categories, the linear regression approach is expected to be superior.

PRCS can more generally be applied in situations where pretest and posttest data are not of
the same type. The pretest data must be discrete (not necessarily ordinal) with not too many
possible values, the posttest data has to allow for arithmetic operations such as computing
differences and sums. Note that it may be disputable if the computation of means for five-
point Likert scales is meaningful (the regression/ANOVA methods operate to an even stronger
extent on the interval scale level). We think that the precise values of the PRCS have to be
interpreted with care. However, no problem arises with the use of the PRCS for hypothesis
tests, because this is analogous to computations with ranks as in the Spearman correlation.
The only difference is that the effective difference between successive values is governed by the
number of possible values in between, and not by the number of cases taking these values.

As opposed to the other methods discussed in this paper, the PRCS method is not based
on a parametric model. This has the advantage that no particular distributional shape has to
be assumed. On the other hand, while the PRCS values can be interpreted in an exploratory
manner, the method does not provide effect parameter estimators and variance decompositions,
which can be obtained from linear models. However, we have demonstrated that the effect
parameters for other models may be misleading in certain situations.

For all methods, a significant difference in changes for anxiety/fear may be caused not only
by the treatment affecting anxiety directly, but also if another property is changed primarily.
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Therefore, it is important not only to test the changes of anxiety, but to take a look at the
absolute size of the other effects. A sound interpretation is possible for a result as in group
E, where the PRCS of anxiety is not only significantly different from zero, but also the largest
one in absolute value.

Concern may be raised about the meaning of a comparison of measurement values for
different variables (properties and items). The PRCS and the ANOVA-type analyses of Likert
scores assume that it is meaningful to say that a change from “agree” to “disagree” for one item
is smaller than a change from “agree” to “strongly disagree” for another item corresponding
to another property (or for the same item between pretest and posttest). While we admit
that this depends on the items in general (and it may be worthwhile to analyze the items with
respect to this problem), we find the assumption acceptable in a setup where the categories
for the answers are identical for all items and are presented to the test persons in a unified
manner, because the visual impression of the questionnaire suggests such an interpretation to
the test persons.

Item response theory as presented in Samejima (1969), Andrich (1978), Muraki (1990),
and Fischer and Ponocny (1994) addresses such comparisons of categories between different
items by model assumptions that formalize them as “difficulties” corresponding to several
“abilities”. While it could be interesting to apply such approaches to the present data, we think
that the concept of a “true distance” between categories that can be inferred from the data
is inappropriate for attitudes and feelings. Every data-analytic approach assumes implicitly
that the “true distance” between categories is determined by the probability distributions of
the values of the test persons belonging to these categories. This idea seems to be directly
related to the idea of the difficulty of ability tests, which can indeed be adequately formalized
by probabilities of subjects solving a particular task. Because in these situations the pretest
distribution is meaningful in terms of the difficulty of tasks, the dependence of the measurement
of change on the pretest distribution as demonstrated in Example 1 can be seen as sensible.

However, in the present setup, we don’t see a clear relationship between the distribution
of test person’s answers to any underlying “true distance”. A more reasonable way to exam-
ine such a distance would be a survey asking people directly for their subjective concepts of
between-category distances.

An example for between-subjects comparisons of different variables on a different topic is
the work of Liotti et al., 2000, who compare the activities in different regions of the human
brain connected to the induction of certain emotions.

An important difference between the approaches discussed here is the scaling on which the
methods operate. The linear models and the PRCS operate on the raw scores scale, while the
item response theory approaches operate on logit or probit transformed probabilities. We do
not claim that one of these scales is generally better than the other. However, we emphasize
that our concept of “equality of changes” defined by the equality of all pretest value-conditional
distributions of the posttest values between the properties is independent of the scale, because
it doesn’t depend on any scaling whether two distributions are equal or not.

The scaling issue arises for the PRCS on two levels. First, the distributions to be compared
are conditional on the raw score values. This is inevitable: in probability theory distributions
are always conditioned on the outcomes of random variables, not on the probabilities (however
scaled) of these outcomes. Second, the alternative hypothesis of the PRCS approach models
differences between expected values of raw scores, because in practice the difference between
changes has to be measured by a suitable test statistic, for which we have chosen the average of
raw score values. Other alternative hypotheses and other statistics, measuring the differences
between the conditional distributions on other scales, are conceivable and leave opportunities
for further research.
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Appendix

Proof of Theorem 1: The Di·k are weighted averages of differences between bounded
random variables and assumed to be i.i.d. over k. Therefore, VarDi·k < ∞ and Di·k, k ∈ INK

i.i.d. S2
K converges almost surely to VarDi·k > 0 because of Equation 15. Thus, the central

limit theorem ensures convergence to normality. It remains to show that EDi·1 = 0 under H0

and EDi·1 > 0 under H1.
Let x̃ ∈ {1, . . . , P}J1+...+JI be a fixed pretest result. Under (X0qr1)qr = x̃, define ni(x, x̃) =

N0i·1(x), analogously n−i(x, x̃). Let wx,x̃ be the corresponding value of the weight function.
By assumption Eq. 16,

a(x, x̃) = E (Di·1(x)|(X0qr1)qr = x̃) =

= 1
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∑
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∑
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unless ni(x, x̃) = 0 or n−i(x, x̃) = 0, in which case wx,x̃ = 0. Further,
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Under H0, a(x, x̃) = 0 regardless of x and x̃. Under H1, always a(x, x̃) ≥ 0 and “>” with
positive probability under the distribution of (X0qr1)qr for some x with w(x, x̃) > 0.

Proof of Lemma 1: The following well-known result can be shown by analogy to the
Gauss-Markov theorem: If Y1, . . . , YK are independent random variables with equal mean c
and variances Vr, r = 1, . . . ,K, then the weighted mean 1

∑K

r=1
(1/Vr)

∑K
r=1

Yr

Vr
has minimum

variance among all unbiased estimators of c that are linear in the observations.
The notation of the proof of Theorem 1 is used. Observe a(x, x̃) = c under assumption Eq.

18 regardless of x and x̃ unless wx,x̃ = 0. Therefore, E
(

Di·1|(X0qr1)qr = x̃
)

= c by Equation

20. From assumptions Eqs. 18 and 19,

Var (Di·1(x)|(X0qr1)qr = x̃) =

(

1

ni(x, x̃)
+

1

n−i(x, x̃)

)

V =: VD.

Since Di·1 is linear in the Di·1(x) for given x̃, its conditional variance is minimized by choosing

the weights wx,x̃ = 1/VD = ni(x,x̃)n−i(x,x̃)
V (ni(x,x̃)+n−i(x,x̃)) . V is independent of x and can be reduced in

Equation 12. Since the conditional expectation of Di·1 is independent of x̃, separate mini-
mization of the conditional variances for all x̃ also minimizes the unconditional variance of
Di·1.
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Figure 1: Pretest Likert mean scores vs. posttest Likert mean scores of all test persons of group
C1. “F” indicates items belonging to anxiety/fear and “O” indicates the itmes belonging to
the other categories. The “F” and the “O” of the same test person are connected by a gray
line.
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Posttest values condi- Pretest
Pretest 1 2 3 4 5 tional distributions
values n % n % n % n % n % mean fear other

1-fear 83 81.4 16 15.7 3 2.9 0 0.0 0 0.0 1.22
1-other 207 72.6 63 22.1 10 3.5 4 1.4 1 0.4 1.35

56.7 39.7

2-fear 11 32.4 18 52.9 3 8.8 2 5.9 0 0.0 1.88
2-other 55 29.4 92 49.2 35 18.7 5 2.7 0 0.0 1.95

18.0 26.1

3-fear 7 24.1 8 27.6 13 44.8 1 3.4 0 0.0 2.28
3-other 19 15.0 39 30.7 53 41.7 15 11.8 1 0.8 2.53

16.1 17.7

4-fear 1 7.7 4 30.8 5 38.5 3 23.1 0 0.0 2.77
4-other 1 1.1 18 19.8 26 28.6 37 40.7 9 9.9 3.38

7.2 12.7

5-fear 0 0.0 0 0.0 1 50.0 0 0.0 1 50.0 4.00
5-other 0 0.0 4 14.8 3 11.1 6 22.2 14 51.9 4.11

1.1 3.8

total-f 102 56.7 46 25.6 25 13.9 6 3.3 1 0.6 1.66 mean mean
total-o 282 39.3 216 30.1 127 17.7 67 9.3 25 3.5 2.08 1.77 2.15

Table 1: Conditional distributions of all posttest values in the group C1 given the pretest
values. Left numbers are case numbers, right numbers are percentages, computed along the
rows. The percentages are computed separately for anxiety/fear and other items conditional
on the pretest value. Only the percentages of the pretest distributions (last two columns) are
computed along the columns. The total n is 180 for fear, 717 for others. The last two columns
of the last line give the means of the pretest distributions, the “conditional mean” entry in the
“total-f/o”-lines give the means of the posttest distributions.

Regression RegrRestrict RCS-t RCSWilcoxon RCSsign

standard 0.050 0.049 0.055 0.050 0.033
lowPre1 0.044 0.037 0.053 0.050 0.038
lowPre1highPost 0.039 0.036 0.049 0.053 0.043

highPost1 0.517 0.574 0.516 0.491 0.340
lowPre1highPost1 0.107 0.115 0.468 0.444 0.301
highPre1highPost1 0.115 0.142 0.483 0.465 0.318

Table 2: Simulated probability of rejection of H0 from 1000 simulation runs. The nominal level
has been 0.05.


