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Abstract

For clustering multivariate categorical data, a latent class model-based approach (LCC) with

local independence is compared with a distance-based approach, namely partitioning around

medoids (PAM). A comprehensive simulation study was evaluated by both a model-based as

well as a distance-based criterion. LCC was better according to the model-based criterion

and PAM was sometimes better according to the distance-based criterion. However, LCC had

an overall good and sometimes better distance-based performance as PAM, though this was

not the case in a real data set on tribal art items. Both methods produced significantly more

homogeneous clusters than the truth.



1 Introduction

This paper is about cluster analysis with multivariate categorical data. It has often been noted

that cluster analysis is not a well defined problem. “Clusters” are groups of data points that

belong together in some sense, but there are various possible meanings of “belonging together”.

In the present paper we consider particularly two different meanings. In model-based (latent

class) clustering (e.g., Vermunt and Magidson (2002)), the “true” clusters are defined by

parametric probability distributions that can be interpreted to generate homogeneous points,

and the whole data set is modelled by a mixture of such distributions. On the other hand,

there is a long tradition to regard as clusters data subsets that have small within-cluster

distances and large separation from other clusters (e.g., Everitt et al. (2011), Sec. 1.4), which

can be called a distance-based cluster concept. It is not obvious, and depends on details such

as the specific parametric model chosen, to what extent these cluster concepts coincide.

For multivariate categorical data, a standard parametric model used in latent class cluster-

ing is a locally (i.e., within-clusters) independent product of multinomial distributions (Ver-

munt and Magidson (2002)). We will compare this to partitioning around medoids (PAM,

Kaufman and Rouseeuw (1990)), a distance-based clustering method that does not attempt

to fit a mixture distribution. Both methods can legitimately be applied to the same data.

There is not much literature guiding users about whether to use one or the other, and so

it can be presumed that any of the two methods is preferred by some users for the same

kind of application. It is however not obvious at all that both methods serve the same aims.

Users may be interested in finding well separated clusters with low within-cluster distances

and also, at the same time, they would like to be reassured that the “true” clusters (cor-

responding to homogeneous mixture components) are found if data actually were generated

from a latent class model. But if this succeeds, will clusters actually be well separated and

have low within-cluster dissimilarities? Or are the two aims conflicting? The local indepen-

dence assumed in the latent class model allows a nice and well interpretable reduction of the

number of parameters to fit an empirical distribution, but it does not necessarily guarantee

distance-based homogeneity. These issues have been hardly addressed in the literature with
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the notable exception of Celeux and Govaert (1991), who related the latent class-likelihood

to a similarity-based criterion for binary data.

Comparing the different methods is not straightforward either, because typical objective

functions measuring clustering quality adhere to either of the two paradigms. They may

measure misclassification compared to the “true” latent class mixture model, or they may

measure within-cluster homogeneity and between-cluster separation in a distance based way.

In the first case this will favour the model-based approach, in the second case it will favour

the distance-based approach. We face this dilemma by investigating how well the methods

work according to objective criteria that apparently prefer the respective other approach, and

to what extent the approaches coincide.

When presenting this work, we have been confronted on several occasions by statisticians

claiming that finding the “true” clustering is really the only legitimate aim and that distance-

based quality should be seen as a by-product only. In real applications, this is however not so

clear because there is no guarantee that there is an underlying true model defining a “true”

clustering at all. Misclassification compared to the “true” clusters is not observable (unless

the truth is known and unsupervised classification is no longer of real interest), whereas

cluster homogeneity and separation are observable. Even if data are in fact generated from a

latent class mixture, in an application one may still be interested in finding homogeneous and

separated clusters in the first place. So the misclassification rate is not the unique “correct”

quality measure as opposed to a distance-based one, but this depends on the aim of clustering.

In Section 2, we introduce the applied methods formally. In Section 3, we present the

simulated data generating processes. In Section 4, we present and discuss the simulation

results and in Section 5, the methods are compared on real data on tribal art objects. Section

6 concludes the paper with a discussion.

2 Methods

A well known model-based clustering method for categorical data is the Latent Class Cluster-

ing (LCC) (Vermunt and Magidson (2002)): it assumes that data are generated by a mixture
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of underlying probability distributions, where each mixture component represents a single

cluster (i.e. latent class). In the case of nominal variables, the underlying model is a mixture

of multinomial distributions.

Consider the data x1, . . . ,xn, xi ∈ U1 × . . .× Up, i = 1, . . . , n, where Uj , j = 1, . . . , p, are

unordered finite sets. Data can be represented in a p-way contingency table that cross-classifies

a sample of n individuals with respect to p manifest polytomous variables. The LCC states

that the observed relationships - if any - among the p variables can be explained by a K-class

latent structure (i.e. a latent polytomous variable K), so that each of the n individuals is in

only one of the K classes with respect to this variable, and locally, i.e., within the kth latent

class, the manifest variables are mutually independent (Goodman (1974)). How to determine

the number K of latent classes in the study population is an unresolved issue. Currently,

applied researchers use a combination of criteria to guide the decision; such criteria include

agreement with substantive theory and the combination of statistical information criteria, like

Akaike Information Criterion (AIC; Akaike (1987)) and Bayesian Information Criterion (BIC;

Schwartz (1978)); for further references see Nylund et al. (2007).

The model is described by equation 1:

f(x) =

K∑
k=1

πkf(x,ak), (1)

with πk > 0 and
∑K

k=1 πk = 1, i.e., the mixing proportions sum to 1. The probability

mass function f(x,ak) describes a multinomial distribution with parameters ak = (ajlk , l =

1, . . . ,mj , j = 1, . . . , p):

f(x,ak) =

p∏
j=1

mj∏
l=1

(ajlk )
xjl

, (2)

with
∑mj

l=1 a
jl
k = 1. The generic polytomous variable j (j = 1, . . . , p) consists of mj categories,

and m =
∑p

j=1mj indicates the total number of levels.

The parameters of the model (1) can be estimated by maximum likelihood, using for

example the EM algorithm. Then, for each xi, its posterior class-membership probabilities
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are computed from the estimated model parameters and its observed score; units are thus

assigned to the class with the highest posterior probability.

A clustering approach based on distance, instead, does not require an underlying model.

Nevertheless it cannot be considered as a totally assumption-free option, because the definition

incurs implicit assumptions about the nature of the clusters to be found.

The idea is to evaluate distances among objects by a defined dissimilarity measure and,

basing on it, to allocate units to the closest group. In other words, the aim is to partition

the observations in such a way that objects within the same group are similar to each other,

whereas objects in different groups are as dissimilar as possible.

Since different values of a nominal variable should not carry numerical information (unless

there are interpretative reasons that can justify it), categorical variables were replaced with

binary indicator variables for all their values, which means that q above is the number of all

categories of all p categorical variables.

The dissimilarity measure used in this context is the Manhattan (or city block or L1)

distance for q variables, defined by:

dM (i, j) = |xi1 − xj1|+ |xi2 − xj2|+ . . .+ |xiq − xjq|

=

q∑
l=1

|xil − xjl|
(3)

In this context, the q above coincides with the sum of all categories over all p categorical

variables.

There are various dissimilarity measures that could have been used (see Section 3.2.2 of

Everitt et al. (2011); formula (3.1) there actually amounts to the L1-distance divided by p);

the decision of using the L1 was motivated by the fact that there was no prior knowledge about

the variables and by choosing this measure what mattered was the number of disagreements.

In this case, the city block distance is equivalent to the Euclidean distance.

One of the distance-based methods that can be viewed as an alternative to the LCC is

partition around medoids (PAM; Kaufman and Rouseeuw (1990)). The idea is to find K

representative “central” objects for the clusters. Specifically, they are those units for which
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the average dissimilarity to all the objects of the same cluster is minimal. The objective

function, for a given dissimilarity measure d, is

g(x∗
1, . . . ,x

∗
K) =

n∑
i=1

min
j∈{1,...,K}

d(xi,x
∗
j ), (4)

Each of x∗
j is called the medoid of the cluster. After finding the set of medoids, each object

of the data set is assigned to the nearest medoid. It is similar to the more popular k-means

algorithm (e.g., Everitt et al. (2011), Sec. 5.4, see also Section 6), but here the centers are

members of the data set and not the cluster means.

In the simulation study, results from the two clustering methods were compared according

to the Adjusted Rand Index and the Average Silhouette Width (for further details on the

simulation study see Anderlucci (2012)).

The Adjusted Rand Index (ARI) is a measure of similarity between two data clusterings;

it takes values in [−1, 1] (Hubert and Arabie (1985)) and is adjusted in order to have an

expected value of 0 for unrelated clusters, while the unadjusted version (Rand (1971)) yields

a value between 0 and 1.

Given a set of n elements S = {O1, . . . , On} and two partitions of S to compare, U =

{u1, . . . , uR} and V = {v1, . . . , vC}, the following is defined:

• a, the number of pairs of elements in S that are in the same set in U and in the same

set in V;

• b, the number of pairs of elements in S that are in different sets in U and in different

sets in V;

• c, the number of pairs of elements in S that are in the same set in U and in different

sets in V;

• d, the number of pairs of elements in S that are in different sets in U and in the same

set in V;

The Adjusted Rand Index is calculated as:
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ARI =

(
n
2

)
(a+ d)− [(a+ b)(a+ c) + (c+ d)(b+ d)](
n
2

)2 − [(a+ b)(a+ c) + (c+ d)(b+ d)]
(5)

In the simulation study, the ARI was used to compare the classifications yielded by a

model-based and a distance-based clustering approach with respect to what was recorded as

true cluster membership, defined by the underlying model.

The Average Silhouette Width (ASW), described in Kaufman and Rouseeuw (1990), is a

measure that emphasises the separation between the clusters and their neighbouring clusters.

For a partition of x into clusters C1, . . . , CK let

s(i) =
b(i)− a(i)

max{a(i), b(i)}

be the so called ‘silhouette width’, where

a(i) =
1

|Ch| − 1

∑
xj∈Ch

d(xi,xj),

b(i) = min
xi /∈Cl

1

|Cl|
∑
xj∈Cl

d(xi,xj)

for xi ∈ Ch. The a(i) is the average dissimilarity of object xi to all other objects of the same

cluster Ch, while b(i) is the neighbour of xi; this is like its second-best choice.

It is worth to note that the ASW is often used to estimate the number of clusters. Since

in this context the number of latent classes was assumed to be fixed and known, it was used

to compare the quality of the clustering. The assumption that the number of latent classes

is known is very strong and it rarely happen in practise, but here the objective is to compare

a model-based and a distance-based clustering approach with respect to the underlying true

clustering structure and in terms of clustering quality in specific situations all other features

being equal, so that differences between the two methods can be better detected and evaluated.

Furthermore, since LCC is by definition aimed to recover the true classification, it could

be seen as favoured by the ARI; whereas, since PAM is a distance-based approach, it was

expected to be favoured by the ASW.
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3 Simulation setup

A simulation study serves as a basis to understand similarities and differences in terms of

classification performances of the two approaches and to detect, if any, different roles played

by features of the data sets. Simulations consisted of generating several data sets from different

parameterizations and structures (i.e. 2000 data sets for each setting) with the LatentGoldr

software. The model’s parameter values were fixed according to a simulation scheme (i.e. full

factorial design) that allowed for examining the impact of the following aspects:

• number of latent classes (2/3/5): we generated data from models with 2 and 5 latent

classes, and in a few cases from 3 latent classes (namely when the too small number of

variables and levels would not have allowed for 5 identified classes);

• number of observed variables (4/12) and number of their categories (2/4/8): data has

been generated from models with small and large number of variables; the variables

considered each time were respectively only binary, only 4-levels, only 8-levels variables

and with a different number of categories, specifically

– 4 variables, namely one binary variable, two variables with three categories and

one variable with four categories, for a total of 11 binary variables ;

– 12 variables, namely three binary variables, three variables with three levels, four

variables with four categories and two variables with eight categories, for a total

of 44 binary variables;

• entity of mixing proportions (extremely different/equal): data sets were generated ac-

cording to models that have allowed for different mixing proportions (e.g. a model with

two clusters can have π1 = 0.85 and π2 = 0.15, while a model with five clusters can have

π1 = 0.10, π2 = 0.15, π3 = 0.20, π4 = 0.25, and π5 = 0.30) and for clusters supposed to

have about the same size (e.g. a model with two clusters can have π1 = π2 = 0.5, while

a model with five clusters can have π1 = . . . = π5 = 0.2);

7



• expected cluster separation (clear/unclear): parameters values have been chosen with

the idea of having, on one hand, a situation where clusters do not have a clear charac-

terization (hence one would expect to have overlapped clusters) and, on the other hand,

a situation where clusters have an evident characterization (therefore one would expect

to have clearly separated clusters). In other words, in the former case parameterizations

of different clusters are very similar (e.g. in the case of binary variable j = 1, for cluster

k = 1 the ajlk parameters of the probability function can be a111 = 0.6, a121 = 0.4, while

for cluster k = 2 they can be a112 = 0.65, a122 = 0.35); in the latter case, different clus-

ters have very different parameterizations (e.g. in the case of binary variable j = 1, for

cluster k = 1 the ajlk parameters of the probability function can be a111 = 0.8, a121 = 0.2,

while for cluster k = 2 they can be a112 = 0.2, a122 = 0.8, so that cluster 1 is likely to

contain mostly observations with level 1 of the considered variable, while cluster 2 is

likely to mostly contain observations with level 2);

• number of units for each data set (small samples/big samples): for each of the previous

framework we generated data sets with a small number of units, typically 100, but in

a few cases 200 or 500, depending on the sample size needed in order to estimate the

model), and a big number of units, namely 1000.

From the combination of all these specific features 128 different settings were obtained,

called ‘patterns’ (for a full description of the simulation settings see the Appendix of Ander-

lucci (2012)). We designed all simulated setups so that they are identifiable, see Allman et al.

(2009). Latent GOLDr was used for performing LCC. In order to find maximum likelihood

estimates for the model parameters, it uses both EM and Newton-Raphson algorithms; the

estimation process starts with 250 EM iterations. When close enough to the final solution,

the program switches to Newton-Raphson, carrying on for other 50 iterations (Vermunt and

Magidson (2005)). To avoid local maxima, each process was started from 20 different sets.

PAM was also applied, using the pam function from the R-package cluster with default

settings (the dissimilarity matrix and the number of clusters were given as input; since the

medoids were not specified, the algorithm first looked for a good initial set of medoids, then
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it found a local minimum for the objective function, that is, a solution such that there is no

single switch of an observation with a medoid that will decrease the objective).

A summary of the simulation results can be found in Tables 1, 2, 3, 4, 5, 6, 7, 8.

4 Simulation results

Table 1 and Table 2 contain the average values of the ARI and the ASW for each simulation

pattern which involved binary variables only, with unclear and clear cluster separation. Table 1

shows that values of the ARI are generally higher for LCC, given the other data features. Note

that differences between the two approaches in terms of ARI become smaller if clusters are

expected to be (according to the parametrization that generated the data) clearly separated.

Indeed, from Table 2 it is possible to see that their values are really close to each other;

nevertheless almost all of these differences are significant, because standard errors (written

in brackets) are fairly small because of the large number of repetitions. On the other hand,

Table 1 shows that as long as the number of the considered variables is small (i.e. equal to 4)

PAM actually outperformed LCC in terms of ASW, even though differences are generally low.

Where clusters are expected to be clearly separated (Table 2), the two approaches generally

yielded similar results, even though there are cases where LCC was slightly better.

Similar considerations can be done from Tables 3 and 4, where results refer to data sets

with number of categories for each observed variable increased to four. The only difference is

that PAM performed a little bit better in terms of ASW when clusters were not expected to

overlap.

When the number of categories for each observed variable increased to eight, LCC and

PAM are less able to find the true clustering (see Table 5), since values of the ARI are

lower than those of Table 1 and of Table 3. As previously observed, PAM shows its better

performance in terms of ASW when the number of variables is fairly small. This does not

hold where clusters are supposed to be separated (Table 6). In those cases, surprisingly PAM

performed at most as well as LCC. Values themselves are not low, they are actually very

good, but no longer better than those from LCC clustering. When the number of variables is
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12, again PAM performed a little bit worse than LCC.

Finally, the case where the variables do not have the same number of categories was

considered. In this framework, again LCC outperformed PAM in finding the true clustering,

but the outcome of the latter was not much worse (see Table 7). It has to be said that the

average performances of the two approaches are much higher if we consider the situations

where clusters are supposed to be clearly separated (see Table 8). Indeed, when the clusters

are expected to be clearly separated there is no particular evidence to prefer one of the two

methods in terms of ASW either, because values are about the same here, too.

Overall, the simulations tell us that, in terms of recovering the ‘true’ clustering (according

to a ‘true’ unknown model), LCC generally behaves better, yielding better results in terms of

ARI, even when the clusters are supposed to overlap. With strongly separated clusters, PAM

does not make the results worse, though.

PAM’s performances improve when the mixing proportions of the components of the mix-

ture that generate the data are about the same, i.e. when the clusters have about the same

size. This is apparently due to the fact that in general PAM seems to prefer equally-sized

clusters (similarly to what information criterion clustering does, Celeux and Govaert (1991)).

What is more surprising is that LCC, by trying to put together observations coming from

the same distribution, succeeded in getting similar observations together and in separating

objects that are very different in a way that is not much worse than what PAM usually does,

and actually sometimes it works even better (in 63 over 128 cases, on average). On one hand

this is encouraging, because it means that attempting to find the true clustering in a locally

independent model-based sense, we often also get clusters that are internally homogenous.

On the other hand, this is not a very good result for PAM. There are still situations in which

PAM works better than LCC, though, and therefore its use can still be beneficial.

Obviously, it is possible to evaluate the ASW for the true clustering, too. Actually, both

LCC and PAM achieved values of the ASW significantly higher than the true clustering. The

reason is that random variation sometimes produces observations that are quite atypical for

their true cluster. PAM generally attempts to produce compact clusters and can therefore
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be expected to achieve higher ASW values, but also the “highest posterior probability”-rule

applied for LCC will assign atypical observations to another cluster if they are closer (in the

sense of the posterior probability) to it, and does therefore tend to produce more compact

clusters than the true data generating process.

[Table 1 about here.]

[Table 2 about here.]

[Table 3 about here.]

[Table 4 about here.]

[Table 5 about here.]

[Table 6 about here.]

[Table 7 about here.]

[Table 8 about here.]

From these considerations it follows that performances (in terms of the quality of cluster-

ing) of the two approaches highly depend on the features of the data set, even though the

direction of the dependence is not always very clear. To fully understand the ‘mechanism’ an

analysis of variance on the differences between the indexes we calculated in the LCC and in

the PAM clustering outcomes was performed, with the idea that it might help to individuate

these determinants.

Operatively, a new data set was arranged; it contained a summary of the whole simulation

study. Each record was a single simulation, thus the database had 256000 rows, since there are

128 patterns times 2000 simulations for each setting. For each row the value of the following

dependent variables were recorded:

• the difference in terms of the ARI, between LCC and PAM clustering, evaluated with

respect to the true class membership;
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• the difference in terms of the ASW, between the true clustering and both LCC and

PAM;

The included factors were the data features coded as follows:

• number of variables (4,12);

• number of categories (binary,4-levels, 8-levels, mixed number of levels)1;

• number of clusters (small, large);

• sample size (small, large);

• mixing proportions (extremely different, equal);

• cluster separation (unclear, clear)

The Anova results in Anderlucci (2012) showed that for the difference in the ARI between

LCC and PAM all the factors were highly significant, and all the interaction terms - other than

the number of categories×the sample size - were significant too. According to the mean square

values, the factor with the highest effect on the dependent variable is the interaction term of

number of variables×the cluster separation (both approaches work much better when clusters

are expected to be clearly separated and they increase their performance with a larger number

of variables, but the improvement for PAM over the number of variables is less remarkable

if the clusters overlap), followed by the number of latent classes (the larger the better for

PAM, the opposite is true for LCC on average), the sample size (the smaller the better for

PAM on average) and the entity of the mixing components (PAM works better when clusters

have more or less the same size, whereas LCC gives better results on average when the mixing

proportions are extremely different). The number of variables and the cluster separation taken

as additive effects do not affect the outcome more than the other data features.

Differences in the ASW values of LCC and PAM are influenced by all the data characteris-

tics and the first-order interaction, that were all highly significant. What was more important

1We chose this coding rather than the total number of binary variables so that information about the
variable structure is preserved, since nominal variables were coded with binary ones only for PAM clustering
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in determining the differences was again the interaction between the number of variables and

the cluster separation (both approaches work better with clearly separated clusters and a

large number of variables, whereas when clusters overlap a smaller number of variables is

preferred, more strongly by PAM); among the additive terms, the element with the highest

mean square is the mixing proportion term (PAM works better when clusters have about the

same size, the opposite is true for LCC on average), followed by the number of categories and

the number of variables (both works better with binary variables and with a larger number

of variables on average).

[Figure 1 about here.]

Figure 1 shows the mean values of ARI and ASW for the two approaches according to

the most influential factor, namely the interaction between the number of variables and the

expected cluster separation. The blue lines represent the LCC, whereas the red lines represent

the PAM clustering; dashed lines indicate frameworks where clusters overlap whereas solid

lines indicate clearly separated clusters.

5 Real data example

In this section a real data example is presented for comparing LCC and PAM on data that is

not so artificially “nice” as simulated data. The data comes from the first existing database

of Tribal Art prices, which contains about 20000 records of items sold from 1998 to 2011 by

the most important auction houses (see Modugno and Giannerini (2008), Modugno (2012),

Modugno et al. (2012)). The database contains 43 variables, from the physical and historical

features of the object to the market characteristics. The information is collected from the

paper catalogues released from the auction houses before the auctions.

In this illustrative example for each object (here n = 19165) only a selection of 5 variables

was considered:

• OGG, Type of object, with 12 levels: Furniture, Sticks, Masks, Religious objects, Or-

naments, Sculptures, Musical instruments, Tools, Clothing, Textiles, Weapons, Jewels.
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• MATP, Material, with 10 levels: Ivory, Vegetable Fibre, Wood, Metal, Gold, Stone,

Precious stone, Terracotta/ Ceramic, Textile and hides, Bone/Horn.

• CONT, Continent, with 4 levels: Africa, America, Eurasia, Oceania.

• CPAT, Patina, with 4 levels: Not indicated, Pejorative, Present, Appreciative.

• CLIO Gaps and Repairs, with 3 levels: Missing piece, No significant repair, Generic

repair.

Variable selection was performed according to experts’ knowledge about features with a high

discriminating power for the price among the nominal variables.

The aim is to group the observations into homogenous clusters. LCC and PAM were

performed with the number of clusters allowed to vary between 2 and 10. The best LCC

model was chosen according to the BIC (K=10). LCC was computed by the function lcmixed

(R package fpc).

Since pam is based on the full dissimilarity matrix, the given data set would require too

much memory and time. Therefore another function, clara (R package cluster), was used;

CLARA is an approximate version of PAM for Euclidean distances that can be computed for

larger data sets (Kaufman and Rouseeuw (1990)). It performs pam on several data subsets,

assigns the further observations to the closest cluster medoid and selects from these the

solution that is best according to the objective function. The function’s default values were

not changed and, as was done for LCC, the number of clusters was allowed to vary between

2 and 10; the best model was chosen according to the ASW.

Both of the two approaches selected the maximum 10 groups. Since this is just an illus-

trative example a larger number of clusters was not explored. The two clusterings are quite

different: the ARI between them is 0.414. In this case there is no information about any

“true partition”, so it is not possible to compare the methods with respect to misclassifica-

tions. Nevertheless, the quality of the two clusterings can be measured by calculating the

ASW, which was 0.243 for LCC (and no better results for K < 10) and 0.275 for clara.

Thus, in this case, CLARA yields to a classification of units that is better than LCC in terms
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of dissimilarity. A concise description of the clusters follows.

Cluster 1 in LCC contains 339 items, mostly ornaments coming from Oceania. They are

generally made of vegetable fiber or precious stone and they do not have a specified patina

nor a significant repair. The analogue for CLARA contains 1145 items, they are all masks

coming mostly from Africa and Oceania. They are mostly made of wood and they do not

have a specified patina nor a significant repair; a few of them have pieces missing.

Cluster 2 in LCC contains 4216 items, mostly masks and sculptures. They are generally

made of wood and they come from Africa and Oceania. Most of them do not have a specified

patina; the majority does not have a significant repair, but some have piece missing. CLARA’s

cluster 2 contains 3347 observations, mostly sculptures. The material used are generally wood

and metal and they mostly come from Africa and Oceania. All of them do not have a specified

patina nor a significant repair.

Cluster 3 in LCC contains 694 objects; mostly ornaments, made of ivory and horn/bones.

They generally come from Africa (564) and some of them got an appreciative adjective. They

are mostly well preserved, only a few part have pieces missing. CLARA’s cluster 3 has 2010

units, mostly sculptures made of wood and ivory, coming from Africa. All of them got an

appreciative adjective and the major part is well preserved.

Cluster 4 in LCC contains 972 units, mostly ornaments and jewels, made of gold and

precious stone. Almost all of them are from America and do not have a specified patina nor a

significant repairs. CLARA’s cluster 4 contains 836 objects and has a similar characterization.

Cluster 5 in LCC has 898 units, mostly weapons from Africa, made of metal and wood.

Most of them do not have a specified patina nor a significant repair. The analogue in CLARA

has 1417 masks, generally made of wood, mostly coming from Africa. The majority has a

patina but it does not have a significant repair.

Cluster 6 in LCC contains 4945 observations, mostly sculptures from Africa, made of

wood. They are generally well preserved and come with an appreciative adjective. Cluster 6

in CLARA has 3201 units, mostly sculptures made of wood, coming from Africa. They all

have a patina and they are generally well preserved.
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Cluster 7 in LCC counts 692 objects, mainly textiles and clothes, made of textiles and

holes, coming from America. Most of them have no specified patina and no significant repair.

The analogue in CLARA has a similar characterization, but it is a bit smaller with 629 units.

Cluster 8 in LCC contains 2020 objects, mostly sculptures made of terracotta/ceramic,

coming from America. They generally do not have a specified patina nor a significant repair.

CLARA’s cluster 8 has a similar characterization, though it is a bit larger (2428 units).

Cluster 9 in LCC counts 2499 units, mainly wooden tools coming from Oceania. They

are generally well preserved and got an appreciative adjective. Cluster 9 in CLARA contains

1902 units with a similar characterization.

Finally, cluster 10 in LCC has 1890 units, mostly tools made of terracotta/ceramic, com-

ing from America. Generally, they do not have a specified patina nor a significant repair.

Cluster 10 in CLARA is a bit larger (1950 units) and contains only tools, generally made

of terracotta/ceramic and coming from America. Also in this case they are generally well

preserved and without a specified patina.

[Figure 2 about here.]

Figure 2 is a two-dimensional Multidimensional Scaling (MDS) representation of the ex-

ample considered, obtained with the function cmdscale (library MASS of the R statistical

software; Mardia et al. (1979)). The size of points is proportional to the number of identical

units and different colours refer to the different cluster memberships (yellow=1, orange=2,

black=3, grey=4, pink=5, green=6, purple=7, blue=8, brown=9, red=10). The picture on

the top refers to the LCC clustering, while the picture on the bottom refers to the CLARA

(approximate PAM) clustering. One thing that can clearly be seen is that CLARA, as op-

posed to LCC, is reluctant to put different large collections of identical units together into the

same cluster, resulting in more uniform cluster sizes. Most CLARA clusters are dominated

by one such point (used as cluster medoid), whereas LCC has a larger number of smaller

clusters without dominating point, and some very large clusters putting several points with

many identical units together.

It is difficult to state which of the two is the most useful classification, because it depends
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on the reasons and objectives that motivate the cluster analysis. Among the main differences

of the two classifications, LCC seems to discriminate more in materials and country of the

objects, whereas CLARA yields groups mainly distinguished by the kind of objects and their

origin. Of course this is just an illustrative example and more insights can rise with a larger

number of clusters and with a larger number of variables to be considered.

6 Discussion

The main achievement of the present study is to compare methods that are based on different

underlying principles and are therefore not comparable in a straightforward manner, but that

should be compared because in practice they are applied to the same kind of data with very

similar aims.

LCC and PAM refer to two wider classes of clustering methods, respectively model-based

and distance-based methods (LCC and PAM). In practice, the choice between the two ap-

proaches should be driven by the aims of the researcher, since they are based on very different

assumptions.

The research question that arose was whether both of these approaches lead to similar

clusterings and how good the clustering methods that are designed to fulfil one of these aims

are in terms of the other one. In order to have a fair ‘match’, the two clustering outcomes

were compared according to two different criteria, one (ARI) based on the ‘true’ clustering

defined by the data generating model, the other one (ASW) based on dissimilarities. In terms

of recovering the ‘true’ clustering, LCC generally behaved better in the simulations, but both

methods were similar with clearly separated clusters.

In terms of retrieving homogeneous groups as measured by the ASW, no method always

outperformed the other one on average. LCC quite often accomplished to get similar obser-

vations together and to separate objects that are very different in a not much worse manner

than PAM, and surprisingly sometimes it even outperformed PAM.

Notice that the ASW compares the dissimilarities of observations from other observations

of the same cluster with observations of the nearest other cluster, which is not exactly opti-
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mized by the PAM criterion, so there is no mathematical necessity that PAM performs better.

LCC was certainly helped by the fact that the data were generated by the very same model

that is assumed to be true by LCC, though LCC (as well as PAM) even came up with clusters

that were significantly more homogeneous than the true ones. Still, the good performance of

LCC with respect to the ASW cannot necessarily be expected to be reproduced in real data

that will normally deviate to some extent from this model.

Still, the results encourages a user who is interested in finding homogeneous well sepa-

rated clusters to try LCC. It is very useful about the ASW (and distance-based criteria in

general) that it can be evaluated for clusterings of real data without knowledge of the truth,

and therefore one can apply various methods and pick the best clustering according to the

ASW empirically. In the real data example, PAM did better in this respect than LCC. A

similar approach has been taken for mixed-type (categorical/homogeneous/continuous) data

in Hennig and Liao (2013).

A number of decisions have been made in this work that could have been made in a

different way. One could have used other distance-based criteria such as the Pearson version

of Hubert’s Γ (Hennig and Liao (2013)), other clustering methods such as k-means (this is

not normally seen as a distance-based method, but our distance measure can be computed

as the Euclidean distance on dummy variables) and other distance measures. LCC allows for

some relaxation of the local independence assumption, which could be tried out. Future work

could be done in these directions.

It may be controversial whether PAM or k-means is more appropriate for categorical

variables represented by dummies. PAM can be expected to produce clusters that are more

homogeneous in terms of the marginal distributions of the variables (although not necessarily

in terms of dissimilarities), because k-means’s centroids are defined by averaging frequencies

of the categories within clusters whereas PAM’s centroids are members of the data set and

therefore represent “pure” categories.

Furthermore results regarding comparing model-based with distance-based methodology

in other clustering problems such as mixed type data, functional clustering or time series
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clustering are still of strong interest, again attempting a fair multicriterion approach to quality

measurement, which may come up with some surprises, as in the present study.
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Figure 1: Average values of ARI and ASW according to the no. of variables and the expected
cluster separation
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Figure 2: Multidimensional Scaling of Tribal Art data
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Table 1: Average values (and their standard errors) of ARI and ASW: binary variables only
and unclear cluster separation

No.
K

Mixing No. ARI ARI ASW ASW ASW
Var Prop. obs. lcc pam true lcc pam

4

2
Dif

Small .590 (.003) .440 (.004) .374 (.001) .464 (.001) .490 (.001)
Big .620 (.001) .505 (.002) .375 (.000) .443 (.001) .496 (.001)

Eq
Small .112 (.002) .089 (.002) .160 (.001) .341 (.002) .336 (.001)
Big .161 (.002) .009 (.001) .161 (.000) .327 (.002) .305 (.000)

3
Dif

Small .150 (.002) .094 (.002) .107 (.001) .370 (.002) .395 (.001)
Big .156 (.003) .062 (.001) .128 (.000) .328 (.002) .364 (.001)

Eq
Small .109 (.001) .114 (.001) .042 (.001) .324 (.002) .373 (.001)
Big .134 (.001) .120 (.001) .048 (.000) .292 (.002) .369 (.000)

12

2
Dif

Small .224 (.005) .005 (.001) .051 (.000) .071 (.000) .091 (.000)
Big .637 (.001) .007 (.001) .075 (.000) .088 (.000) .049 (.000)

Eq
Small .060 (.002) .026 (.001) .032 (.000) .072 (.000) .060 (.000)
Big .264 (.001) .025 (.001) .032 (.000) .056 (.000) .050 (.000)

5
Dif

Small .160 (.001) .149 (.001) .018 (.000) .153 (.001) .147 (.000)
Big .253 (.001) .177 (.001) .034 (.000) .099 (.001) .128 (.000)

Eq
Small .140 (.001) .137 (.001) .021 (.000) .151 (.001) .147 (.000)
Big .212 (.001) .168 (.001) .035 (.000) .105 (.001) .129 (.000)
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Table 2: Average values (and their standard errors) of ARI and ASW: binary variables only
and clear cluster separation

No.
K

Mixing No. ARI ARI ASW ASW ASW
Var Prop. obs. lcc pam true lcc pam

4

2
Dif

Small .914 (.002) .819 (.002) .728 (.001) .739 (.001) .731 (.001)
Big .935 (.000) .819 (.001) .729 (.000) .739 (.000) .732 (.000)

Eq
Small .898 (.001) .896 (.001) .754 (.001) .763 (.001) .761 (.001)
Big .898 (.000) .897 (.000) .754 (.000) .762 (.000) .761 (.000)

3
Dif

Small .544 (.002) .469 (.003) .446 (.001) .556 (.001) .560 (.001)
Big .580 (.001) .479 (.002) .450 (.000) .540 (.001) .540 (.001)

Eq
Small .554 (.002) .546 (.002) .469 (.001) .578 (.001) .540 (.001)
Big .556 (.001) .546 (.001) .470 (.000) .570 (.001) .535 (.001)

12

2
Dif

Small .980 (.001) .912 (.002) .398 (.001) .398 (.001) .395 (.001)
Big .988 (.001) .934 (.001) .399 (.000) .400 (.000) .399 (.000)

Eq
Small .983 (.001) .952 (.001) .411 (.001) .411 (.001) .413 (.001)
Big .988 (.000) .961 (.000) .412 (.000) .412 (.000) .414 (.000)

5
Dif

Small .844 (.001) .846 (.001) .461 (.001) .476 (.001) .470 (.001)
Big .869 (.000) .844 (.001) .467 (.000) .479 (.000) .476 (.000)

Eq
Small .912 (.001) .922 (.001) .536 (.001) .543 (.001) .542 (.001)
Big .922 (.001) .921 (.000) .540 (.000) .547 (.000) .546 (.000)
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Table 3: Average values (and their standard errors) of ARI and ASW: 4-levels variables only
and unclear cluster separation

No.
K

Mixing No. ARI ARI ASW ASW ASW
Var Prop. obs. lcc pam true lcc pam

4

2
Dif

Small .080 (.003) .009 (.001) .071 (.001) .165 (.001) .160 (.000)
Big .232 (.002) -.003 (.000) .073 (.000) .135 (.000) .142 (.000)

Eq
Small .023 (.001) .012 (.001) .029 (.000) .158 (.001) .152 (.000)
Big .033 (.001) .009 (.000) .029 (.000) .104 (.001) .133 (.000)

5
Dif

Small .025 (.001) .023 (.000) -.053 (.000) .161 (.001) .163 (.000)
Big .025 (.000) .021 (.000) -.026 (.001) .076 (.000) .126 (.000)

Eq
Small .053 (.001) .051 (.001) -.035 (.000) .166 (.001) .168 (.000)
Big .063 (.000) .057 (.000) -.014 (.000) .090 (.001) .136 (.000)

12

2
Dif

Small .224 (.005) .005 (.001) .051 (.000) .071 (.000) .091 (.000)
Big .637 (.001) .007 (.001) .075 (.000) .088 (.000) .049 (.000)

Eq
Small .060 (.002) .026 (.001) .032 (.000) .072 (.000) .060 (.000)
Big .264 (.001) .025 (.001) .032 (.000) .056 (.000) .050 (.000)

5
Dif

Small .073 (.001) .040 (.000) .001 (.000) .054 (.000) .045 (.000)
Big .159 (.001) .043 (.000) .010 (.000) .032 (.000) .039 (.000)

Eq
Small .063 (.001) .039 (.000) .000 (.000) .054 (.000) .046 (.000)
Big .115 (.001) .043 (.000) .006 (.000) .031 (.000) .039 (.000)
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Table 4: Average values (and their standard errors) of ARI and ASW: 4-levels variables only
and clear cluster separation

No.
K

Mixing No. ARI ARI ASW ASW ASW
Var Prop. obs. lcc pam true lcc pam

4

2
Dif

Small .628 (.004) .169 (.006) .257 (.001) .278 (.001) .197 (.001)
Big .740 (.001) -.024 (.000) .258 (.000) .281 (.000) .147 (.000)

Eq
Small .644 (.002) .098 (.001) .200 (.001) .218 (.002) .522 (.000)
Big .711 (.001) .093 (.000) .200 (.000) .212 (.000) .507 (.000)

5
Dif

Small .463 (.002) .539 (.002) .245 (.001) .316 (.001) .322 (.001)
Big .564 (.001) .554 (.001) .254 (.000) .328 (.000) .330 (.000)

Eq
Small .505 (.002) .604 (.002) .269 (.001) .331 (.001) .342 (.001)
Big .603 (.001) .609 (.001) .278 (.000) .350 (.000) .350 (.000)

12

2
Dif

Small .980 (.001) .912 (.002) .398 (.001) .398 (.001) .395 (.001)
Big .988 (.001) .934 (.000) .399 (.000) .400 (.000) .399 (.000)

Eq
Small .983 (.001) .952 (.001) .411 (.001) .412 (.001) .413 (.001)
Big .988 (.000) .962 (.000) .412 (.000) .412 (.000) .414 (.000)

5
Dif

Small .938 (.001) .941 (.001) .332 (.000) .334 (.000) .333 (.000)
Big .958 (.000) .957 (.000) .335 (.000) .338 (.000) .337 (.000)

Eq
Small .929 (.001) .935 (.001) .328 (.000) .330 (.000) .329 (.000)
Big .952 (.001) .952 (.000) .330 (.000) .333 (.000) .333 (.000)
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Table 5: Average values (and their standard errors) of ARI and ASW: 8-levels variables only
and unclear cluster separation

No.
K

Mixing No. ARI ARI ASW ASW ASW
Var Prop. obs. lcc pam true lcc pam

4

2
Dif

Small .016 (.001) -.001 (.001) .026 (.000) .099 (.000) .106 (.000)
Big .032 (.001) -.003 (.000) .027 (.000) .066 (.000) .095 (.000)

Eq
Small .013 (.001) .006 (.001) .013 (.000) .086 (.000) .076 (.000)
Big .024 (.001) .005 (.000) .014 (.000) .052 (.000) .063 (.000)

5
Dif

Small .030 (.000) .024 (.000) -.016 (.000) .075 (.000) .076 (.000)
Big .044 (.000) .007 (.000) -.005 (.000) .045 (.000) .059 (.000)

Eq
Small .031 (.000) .026 (.000) -.013 (.000) .075 (.000) .075 (.000)
Big .042 (.000) .009 (.000) -.004 (.000) .046 (.000) .056 (.000)

12

2
Dif

Small .135 (.004) .004 (.001) .037 (.000) .038 (.000) .029 (.000)
Big .586 (.001) .002 (.000) .038 (.000) .044 (.000) .026 (.000)

Eq
Small .579 (.002) .105 (.002) .046 (.000) .051 (.000) .030 (.000)
Big .710 (.001) .128 (.002) .046 (.000) .051 (.000) .029 (.000)

5
Dif

Small .201 (.001) .050 (.000) .015 (.000) .026 (.000) .019 (.000)
Big .350 (.001) .054 (.000) .016 (.000) .026 (.000) .019 (.000)

Eq
Small .137 (.001) .034 (.000) .010 (.000) .024 (.000) .019 (.000)
Big .263 (.001) .036 (.000) .012 (.000) .022 (.000) .018 (.000)
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Table 6: Average values (and their standard errors) of ARI and ASW: 8-levels variables only
and clear cluster separation

No.
K

Mixing No. ARI ARI ASW ASW ASW
Var Prop. obs. lcc pam true lcc pam

4

2
Dif

Small .680 (.004) .322 (.008) .294 (.001) .284 (.001) .213 (.002)
Big .858 (.001) .061 (.006) .295 (.000) .305 (.000) .145 (.001)

Eq
Small .787 (.002) .802 (.002) .335 (.001) .341 (.001) .343 (.001)
Big .848 (.001) .801 (.001) .336 (.001) .348 (.001) .343 (.001)

5
Dif

Small .709 (.001) .768 (.001) .320 (.001) .333 (.001) .344 (.001)
Big .777 (.001) .262 (.001) .324 (.000) .346 (.000) .189 (.000)

Eq
Small .704 (.001) .766 (.001) .321 (.001) .334 (.001) .344 (.001)
Big .764 (.000) .172 (.000) .324 (.000) .348 (.000) .149 (.000)

12

2
Dif

Small .992 (.000) .984 (.001) .340 (.000) .340 (.000) .339 (.000)
Big .996 (.000) .987 (.000) .340 (.000) .340 (.000) .339 (.000)

Eq
Small .995 (.000) .995 (.000) .389 (.000) .389 (.000) .389 (.000)
Big .994 (.001) .996 (.000) .389 (.000) .389 (.000) .389 (.000)

5
Dif

Small .990 (.000) .990 (.000) .358 (.000) .358 (.000) .358 (.000)
Big .992 (.000) .991 (.000) .358 (.000) .358 (.000) .358 (.000)

Eq
Small .989 (.000) .989 (.000) .357 (.000) .358 (.000) .357 (.000)
Big .992 (.000) .991 (.000) .358 (.000) .358 (.000) .358 (.000)
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Table 7: Average values (and their standard errors) of ARI and ASW: mixed no.-levels
variables only and unclear cluster separation

No.
K

Mixing No. ARI ARI ASW ASW ASW
Var Prop. obs. lcc pam true lcc pam

4

2
Dif

Small .052 (.002) .028 (.001) .067 (.001) .214 (.001) .222 (.001)
Big .105 (.002) .014 (.000) .160 (.001) .192 (.000) .185 (.001)

Eq
Small .016 (.001) .011 (.001) .028 (.000) .202 (.001) .215 (.001)
Big .013 (.000) .003 (.000) .029 (.000) .121 (.002) .190 (.000)

5
Dif

Small .035 (.001) .035 (.001) -.068 (.000) .217 (.001) .237 (.001)
Big .031 (.000) .033 (.000) -.036 (.000) .109 (.002) .209 (.000)

Eq
Small .040 (.001) .042 (.001) -.059 (.000) .220 (.001) .236 (.001)
Big .035 (.000) .042 (.000) -.037 (.000) .109 (.001) .206 (.000)

12

2
Dif

Small .121 (.004) .027 (.001) .070 (.000) .084 (.000) .074 (.000)
Big .521 (.001) .012 (.001) .071 (.000) .089 (.000) .057 (.000)

Eq
Small .281 (.003) .118 (.002) .071 (.000) .093 (.000) .085 (.000)
Big .517 (.001) .176 (.002) .072 (.000) .091 (.000) .082 (.000)

5
Dif

Small .132 (.001) .104 (.001) .023 (.000) .058 (.000) .060 (.000)
Big .331 (.001) .128 (.000) .028 (.000) .055 (.000) .054 (.000)

Eq
Small .145 (.001) .111 (.000) .023 (.000) .061 (.000) .061 (.000)
Big .319 (.001) .141 (.001) .027 (.000) .055 (.000) .054 (.000)
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Table 8: Average values (and their standard errors) of ARI and ASW: mixed no.-levels
variables only and clear cluster separation

No.
K

Mixing No. ARI ARI ASW ASW ASW
Var Prop. obs. lcc pam true lcc pam

4

2
Dif

Small .851 (.002) .802 (.002) .570 (.001) .584 (.001) .577 (.001)
Big .891 (.000) .806 (.001) .572 (.000) .587 (.000) .578 (.000)

Eq
Small .844 (.002) .856 (.002) .573 (.001) .589 (.001) .588 (.001)
Big .859 (.000) .855 (.001) .573 (.000) .590 (.000) .588 (.000)

5
Dif

Small .662 (.002) .689 (.002) .412 (.001) .526 (.001) .525 (.001)
Big .681 (.000) .694 (.001) .418 (.000) .512 (.000) .527 (.000)

Eq
Small .666 (.002) .703 (.002) .435 (.001) .499 (.001) .501 (.001)
Big .710 (.001) .703 (.001) .440 (.000) .509 (.000) .505 (.000)

12

2
Dif

Small .998 (.000) .998 (.000) .596 (.000) .596 (.000) .596 (.000)
Big .999 (.000) .997 (.000) .596 (.000) .596 (.000) .596 (.000)

Eq
Small .998 (.000) .998 (.000) .597 (.000) .597 (.000) .597 (.000)
Big .998 (.001) .998 (.000) .596 (.000) .596 (.000) .596 (.000)

5
Dif

Small .982 (.000) .985 (.000) .475 (.000) .476 (.000) .476 (.000)
Big .988 (.000) .986 (.000) .477 (.000) .478 (.000) .477 (.000)

Eq
Small .981 (.000) .985 (.000) .476 (.000) .477 (.000) .477 (.000)
Big .987 (.001) .986 (.000) .478 (.000) .478 (.000) .478 (.000)
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