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Abstract The following mixture model-based clustering methods amgared in a simu-
lation study with one-dimensional data, fixed number ofteltssand a focus on outliers and
uniform “noise”: an ML-estimator (MLE) for Gaussian mixes, an MLE for a mixture of
Gaussians and a uniform distribution (interpreted as ‘&ommponent” to catch outliers),
an MLE for a mixture of Gaussian distributions where a umifatistribution over the range
of the data is fixed (Fraley and Raftery (1998)), a pseudo-NtirEa Gaussian mixture with
improper fixed constant over the real line to catch “noiselMRBE; Hennig (2004)), and
MLEs for mixtures of t-distributions with and without estition of the degrees of freedom
(McLachlan and Peel (2000)). The RIMLE (using a method tasledhe fixed constant first
proposed in Coretto (2008)) is the best method in some, aceptable in all, simulation
setups, and can therefore be recommended.

Keywords Model-based clusteringGaussian mixture Mixture of t-distributions- Noise
component

1 Introduction

This paper compares several methods for robust clusteeesgcdoon mixture models. The
term “model-based cluster analysis” was coined by Banfialll Raftery (1993) for clus-
tering based on finite mixtures of Gaussian distributiorts r@tated methods. The standard
Gaussian mixture model is to assume that §&ia. . ., X,) are modelled as drawn i.i.d. from
a distribution with density
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where (-, 4, 0?) is the density of a Gaussian distribution with mgamand variances?,
m; is the proportion of thejth mixture componentngzlnj = 1. The parameter vectd@
contains all proportions, means and variances. Analogotetians will be used later for
other models as well, the proportions sometimes including a

The maximum likelihood estimator (MLE) of the parameterfrom a datasek, =
{X1,%2,...,X,} is obtained by

n
bn = argmaxy logf(x;6), )

where® = {6 | 01-2 >s j=12...,G, Zszl m; = 1} for some choice 0§ > 0. It is nec-
essary to bound variances from below in order to avoid degeies of the log-likelihood
function. The MLE is usually computed by the EM algorithm,igthmeans that only local
maxima of the likelihood function are available. For morekmround and details on the EM
algorithm, see Redner and Walker (1984), McLachlan andikes (1997), McLachlan and
Peel (2000).

Based orf, (the included parameters are denoted by giving them hais,dbservations
X can be classified to component

k= i
argp:T?fEB Tip, (3

where the quantity;, is the estimated posterior probability thatvas generated by theth
mixture component:

- Po@(xi: fp, 0F)

P f(x:;0)

A sensible philosophy for model-based clustering is thais(hot necessarily assumed to be
“true”, but rather that the Gaussian distribution is treas a cluster shape prototype, given
that many distributions can be approximated closely by asGian mixture. However, for
a wide class of finite mixtures, including Gaussians, MLEs ot robust (Hennig, 2004).
This implies that deviations from the nominal model such amall proportion of outliers
in the data can lead to poor estimates and clustering. Noteever, that the concept of
“high breakdown” is generally more problematic in clustealysis than in traditional robust
statistics, because it cannot be taken for granted thaing@ddme outliers, it is not desired
to use a mixture component to fit them, which would yield bdeatn of parameters.

Here we present a simulation study that compares the Mimasdr for Gaussian mix-
tures with several alternatives that have been proposerier to deal better with outliers.
Considerations are confined to one-dimensional data andarixmber of clusters. Apart
from the practical relevance of fitting one-dimensionakgaiur aim is to contribute to the
deeper understanding of a simple situation in order to alsdribute to the understanding
of more complex setups. In robust cluster analysis the casgoaof the quality of different
methods depends strongly on features such as separatitustd#rs and number and loca-
tion of outliers, and even for one-dimensional data and fi®ohe could imagine many
more setups of interest apart from those that we considéeiprtesent study.

A way to deal with the outlier problem is to add a “noise conmgmt to the mixture,
i.e., an additional mixture component to capture points bkitliers that are not consistent
with the Gaussian mixture. This was originally proposed anfield and Raftery (1993),
who propose to add a uniform mixture component on the conut#hohthe data (the range
in one-dimensional situations). Variations of this ideaehlbeen proposed by Coretto (2008)
who added uniform mixture components estimated by ML to theure, and the proposal
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of Hennig (2004), where the noise component is representedl fixed constant on the
real line. He showed that the resulting estimates are rdioust’en extreme outliers, as
opposed to the noise component method of Banfield and Raft®83). Coretto (2008)

studied the asymptotics of this approach and its computdiased on the EM algorithm
(note that further journal publications of the material ior€tto (2008) are in preparation by
the authors of the present paper, and that an overview ofdbie leas was already given
in Hennig and Coretto (2008)).

As an alternative approach, fitting mixtures of t-distribns (McLachlan and Peel (2000))
is included in our simulation study.

In Section 2, the compared methods are defined. Section 8iegph more details how
they are computed in the simulation study. Section 4 defimesétups from which data are
generated. Section 5 presents and discusses the resufiis situlation study. Section 6
concludes the paper.

Alternative methods for robust clustering exist, pariely high breakdown methods
based on a fixed partition model and trimming of observat{@Gheesta-Albertos et al (1997),
Garcia-Escudero et al (2008), Gallegos and Ritter (20E9¢ Neykov et al (2007) for a
recent approach based on mixtures.

2 Methods and estimators

In this section we describe the estimators and methods wodgparison. For computational
details of the estimators proposed in this section, seedBe®t

2.1 MLE for Gaussian mixtures
In order to assess whether things can be improved by thetraliesnatives, the ML esti-

mator for Gaussian mixtures as in (1), computed by the EMrétyn, is included in the
simulation study.

2.2 Gaussian mixtures with uniform noise on the data-range

The method suggested in Banfield and Raftery (1993) andyraalé Raftery (1998), con-
sists of modelling the population by the following densimé€tion (notation as above):

. G
G67) = Tol{x € [min(x,), max(x,)|} Zlnj(p(x; uj, 0?). (5)
=

max(X,) — min(x,)

The vector of all parameters is calléd W, ¥ = {{ | O'J-Z >s>0,j=12,...,G, sz:O M =
1} for some fixedk. {n is defined as maximizer of the log-likelihood function asated to
0. Note that this does not define a proper maximum likelihoddregor (MLE) because
the model specification is data dependent. Moreaves, o = [maxx,) — min(x,)]~* — 0
a.s. Banfield and Raftery (1993), Fraley and Raftery (1988psested to computéh by
applying the EM algorithm (the range held fixed).



The estimated posterior probabilify, that the observatior was generated by compo-
nentp now looks like this:

T0(%iflp.55) fp=12..6G
T B S ©6)
P 7o ~ ifp=0.

[max(X,) —min(xq)]9(%:{)

Hennig (2004) argued that this method is not robust agaist @xtreme outliers. As op-

posed to low breakdown methods in traditional setups sudbcasion estimation, it may

however remain unaffected by less extreme outliers, anéiyt have good satisfactory be-
havior in many practical situations. We call this the rangeR-method.

2.3 MLE for Gaussian mixtures with uniform noise

In Coretto (2008), an ML-estimator for the following modegldonsidered:

G
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wherel(A) is the indicator function of the sét The parameter vector is callgd

n
Yo = argmax$ logu(x;;y), (8)
yel (&
with " = {y | MinmpVm/Vp >h>0; mp=0,12,...G; Z(j;:o”j =1}, wherevy = (b—
a)/v/12 andvp, = o, for p > 0. The restricted sdT allows to obtain an MLE that exists
and is scale-equivariant (see Hathaway (1985)), thougmtaseémization problem in (8) is
rather difficult: the log-likelihood function has infiniiemany points of discontinuity, the
restricted parameter set is not compact, moreéveannot be described as a set of smooth
inequalities, hence standard optimization theory doespply. Coretto (2008) showed that
the MLE exists and is strongly consistent for the set of ma@ns of the expected log-
likelihood function, and he also developed the EM algorifemcomputing (8) and showed
convergence. In the simulation study, for computationakoms, we stick the simpler opti-
mization onlp = {y | v]Z >s,j=0,1,2,...G;} for fixeds > 0.
The estimated posterior probabilify, to be maximized for classification &f becomes

_[Es fe=0
ﬂ%%%gﬁ ifp=1,2,...,G
Coretto (2008) showed that the EM algorithm generates lmeadima of the log-likelihood
for (a,b) chosen as any pair of data points as long as the restrictiomgeaare fulfilled,
so that the EM-algorithm is not very informative about thegpaeters of the uniform. One
possible solution is to run the EM algorithm several times| @ach time the uniform param-
eters are initialized by a suitable pair of distinct dat& s Among all solutions the MLE
will be chosen so that the likelihood value is the largest.céfeine the search of the best lo-
cal maxima over a selected grid of distinct data-points.tBy the quality of approximation
of the MLE is affected but the computational complexity cacbntrolled. We call this the
grid- or G-method. Note that the breakdown point for thisrapph, according to the defini-
tion of Hennig (2004), can at best lﬁéz (compared tqi—l for the R-method), because two
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added outliers on both sides converging to infinity in absol@lue emulate the robustness
problem that the R-method has with a single point, namelyttielog-likelihood can only
be prevented from converging tex by fitting one of the outliers by a Gaussian component.

2.4 Robust improper maximum likelihood estimator

The idea of the robust improper maximum likelihood estim@RIMLE) is to choose a fixed
constant over the whole real line for the noise, instead aetimg it by a proper uniform
distribution. Hennig (2004) showed that this has a betteakdown behavior than the two
previous approaches. The approach is based on the follomimgper density:

G
Ac(Xn) = THC+ Z‘mfp(x;um;z)- (10)
J:

¢ > Ois a constant that (in order to apply the theory in Henni@@Pneeds to be specified
in advance. The idea is that points are classified as noiseyfdrise from areas where the
Gaussian components account for density values smallerctiiene RIMLE is defined as:

Mn(C) = argmax, Z\Iog()\c(xi;n)). (11)

whereA = {n|oj >s>0, j=12,...,G; Z?:o”j = 1}. The constrained s& ensures
existence but does not guarantee scale-equivariance. Mhaldgorithm can be applied to
compute the RIMLE because for a fixed dataset (10) can beewidkbwn as a proper density
with valuec on a set of Lebesgue-meas%e:ontaining the observed data (the RIMLE is
not a proper ML estimator for such a model, though). Asyniptatalysis of the method is
given in Coretto (2008). Points can be classified by maximgizi

foc fio@(Xi; Hp, T7)
S DT for p=1,2,...,G,
Ac(Xi; Nn(c)) Ac(Xi; MIn(C)) P (12)

wherefg is the “improper” posterior probability that the obseraatk; belongs to the noise
component based on the proper, but data dependent modebnezhbelow (12).

The key issue here is how to fex Hennig (2005) gives some orientation about a data-
independent (subject matter based) choice bfowever Coretto (2008) provided empirical
evidence that in most situations a bad choice céin seriously affect the performance of the
RIMLE. The author suggested a data dependent choicealied “filtering method”:

Step 1 Start from a set of value’se”[0,c] and for each of them compute the RIMLz.

Step 2 For eaclyy remove those observations classified as noise and thus abgaffil-
tered dataset”.

Step 3 Use the filtered dataset to compute the MLE of a digioibdunction of a mixture
).

Step 4 Compute the empirical distribution function over fiftered dataset and use the
Kolmogorov distance to compare it to the distribution fumictof the Gaussian mixture
estimated in the previous step.

Step 5 Choose the value ofminimizing the Kolmogorov distance.

The method depends on the choicedbut this can be easily fixed. For large values tie
RIMLE will end up classifying all points as noise, which istriesired. Hence the vale
can be fixed in terms of the maximum proportion of data poirgsave willing to accept as
noise points. We chose 50% here.

Tip= for p=0 and fip=



2.5 MLE for t-mixtures

McLachlan and Peel (2000) argue that for elliptical shagesters with heavier than Gaus-
sian tails or atypical observations, the use of Gaussiarpoosnts may affect the fit of
the data. The strategy proposed by the authors is as folibwee population is assumed
to containG Gaussian clusters plus noise, we model it as arising fromite fimixture of
t-distributions withG components. Noise is identified with the set of data-poing &re
far away from the cluster centers. The meaning of “far awayf’ve explained later in this
section. Consider a finite mixture of univariate t-disttibns with G components having
density

G

t6 &) = Y My k05,4, (13)

j=1

wherey(x; i, 0i, u;) is the density of a non-central t-distribution with locatig;, scaleg;
and degrees of freedom. Note that the scale parameter is related to the variaf\oéthe
distribution by

u
Ve = ujiza?. (14)

The parameter vector is denoted &ythe degrees of freedom could be included or fixed).
McLachlan and Peel (2000) proposed to estindat®y ML. The estimator can be obtained
by the EM algorithm. Classification can be carried out maxing

fp— WO Op o) g5 g (15)
t(xi; én)

over=={&|V¥>s j=12...,G, 3%, m =0} for fixeds > 0. Define the Mahalanobis
squared distance between the poilaind u

X— 11)2
sc.0)= CHE (16)
We also define the sequence:
G ~ ~ ~
G=Y Hargmax s, ofij=i}806 R, 6);  i=12...n.  (17)
=1

McLachlan and Peel (2000) argued (without proof) that if aml.i sample is generated
from a Gaussian mixtures wit® components, thefC;; i =1,2,...,n} follows (at least
approximately) ax? distribution. They consider the observatignas “noise” if Ci ex-
ceeds the @5-quantiles ofx?. Therefore,x is assigned to th&th cluster (the Gaussian
cluster prototype is mimicked by the set of non-noise poofta t-distribution here), if
k=argmax_,, fij1{Ci < 3.841459. k=0 (assignment to no component) means that
the points is assigned to the noise.

In terms of the breakdown behavior, this approach is verylairto the R-method, see
Hennig (2004).



3 Computational details

In the simulation study we considered sample sizas-6560,200,500. For each data gener-
ating process and for each sample size we drew 500 samptefsrazach replica we applied
the estimation methods described before. For each estimatperformed clustering and
computed summary statistics to evaluate relative perfoomgsee Section 5.1). Here we
describe some computational aspects of these methodslogie

The EM algorithm depends on the initialization of the paremealues. For all methods
involving arp, its initial value was fixed at.05, following the idea that if data are partitioned
into several clusters, the remaining noise proportion malmally be quite small (this is not
necessarily the case in practice, but many practitionerddmike to have as many points
as possible assigned to clusters). For all methods, theogiops of the other components
are always initialized at equal value. The means and vaeg¢ Gaussian components
are initialized by trimming the 10% of observations in bdtle tails of the data and then
applying the k-means algorithm wit® components with randomly chosen initial values.
This is related, but not identical to the trimmkdneans method (Cuesta-Albertos et al
(1997)), which is usually computed by a more computer-isiten algorithm. In general,
good initialization of the EM-algorithm for a Gaussian nuise alone is a complicated issue,
and alternatives to our approach exist, see for examplaskantl Xekalaki (2003) and the
hierarchical approach in the software package MCLUST éyrahd Raftery (2006)). For
the t-mixtures we do the same but we use both the variance Kroreans after trimming
and degrees of freedom to get the initial values for scakss,($4). Each EM run stops
either when the likelihood value has not improved by more tha € or when the number
of iterations exceeds 600. The latter did not happen moredhae (out of 500 replicas) in
any simulation setup, in which case the corresponding tresd discarded.

The lower variance bound was chosersas 0.1 for all methods. Note that as a side-
effect of the described initialization method variance®Wwe.1 never occurred in any EM
run (though of course in practice the order of magnitude efabservations would need to
be taken into account chosisy

Gaussian mixtures with uniform noise (R,G-method)in Section 2 we introduced two
methods where the noise is represented by uniform densitesR-method was initialised
as previously explained.

The ML estimate for (7) was approximated using the EM alamitwith the uniform
parametel(a,b) initialized over a selected grid of data points (G-methddje proportion
parameters, means and variances were initialized as b&aren the sample size, we de-
fined a preliminary grid of equi-spaced points on the rangthefdata. For computational
reasons, the size of the preliminary grid decreases as thglesize increases. Far= 50
the grid consists of 20 points, for= 200 the grid consists of 15 points, and for= 500
it consists of 10 points. We then defined the initializatioid @y using the nearest data
point for each point in the preliminary grid. Out of two panh the initialization grid with
distance of less than 1% of the interquartile range, one weamved (in order to prevent
problems with the variance restrictions in Section 2.3).

RIMLE (If,I-method) . The RIMLE defined in Section 2 was computed by selecting
the improper constant density via the filtering method. Epgproach is referred to as “If-
method”.

In order to illustrate how good the method could be with nezringal selection o€ (and
how close the quality of the If-method is to that), we addedsthod called “I-method” that
makes use of (unrealistic) knowledge of the data generationess. In the I-method the
value ofc was fixed as the value that we found for a given data-gengratiocess (over all



replicas and all sample sizes) that achieved the lowesageeanisclassification percentage.
All other initializations were as previously described.

t-mixture (Te, Tf-method). We considered the methodology based on t-mixtures both
in the case where degrees of freedom are estimated (“Teedigttand the case when the
degrees of freedom are fixed (“Tf-method”). The computatibiine MLE for the Te-method
was done using the EM/ECM algorithm studied in Liu (1997)riDg our experiments we
noted that the EM/ECM algorithm does not move too far from skarting values with
respect to degrees of freedom when these are estimatedsPussibly due to the fact that
the log-likelihood surface has many local maxima or has #igtans with respect to the
degrees of freedom. We could not find any research on this.tépjood practice (though
not followed in the previous study for computational reagorould be to run the ECM
several times, with many possible combinations of initellres for the degrees of freedom,
and then select the solution that corresponds to the higpgdikelihood value.

When the degrees of freedom were estimated, they werelizgihato be equal to 15
for each component (half way between Gaussian tails anddrdails, given that from 30
degrees of freedom upwards the t-distribution can be cersitito be approximately Gaus-
sian). For the t-mixture with fixed degrees of freedom we fitkein at 3 for all components
(allowing for heavy tails but with existing variances).

See Section 4.3 for the proportions, means and varianciesagstl by the Te- and Tf-
method.

Furthermore, we computed théLE for plain Gaussian mixtures (N-method) as ex-
plained already.

4 Data generating processes

We considered six different data generating processeaughout the rest of this chap-
ter, N(u,v) is the Gaussian distribution with meanand variancer; U (a,b) is the uni-
form distribution with support on the intervgd, b]. Forg > 2, Ty(u,V) is the non-central
t-distribution withg degrees of freedom, location parametesind variance. Note that we
here parameterized the t-distribution in terms of variarssuming thag > 2, see (14).
We tried to cover a range of essentially different archegbpsituations that are not obvi-
ously unrealistic. Note particularly that, whereas alupstfulfil the model assumptions of
at least one method (and all methods apart from the RIMLE Haeie model assumptions
fulfilled in at least one setup), most methods are in mostpsetonfronted with data gen-
erating processes that violate their nominal assumptitims.is realistic and it also reflects
the philosophy that we are interested in the method to cactsteasonable Gaussian shaped
clusters regardless of whether model assumptions ardddlfil

4.1 Side, inside and wide uniform noise

Noise here is defined as points drawn from a uniform mixturegmmnent. We consider three
alternatives, differing in terms of the position of the amifi support relative to the means
of the Gaussians. We refer to these models as side-nois#g-ingise, and wide-noise.
Sde-noise:

0.1U(17,25) +0.30N(0, 1.5) + 0.25N(7,2) + 0.35N(14,1.5). (18)



We chose a noise proportion of 10% here in order to still hav&ters that are clearly visible.
Though this may not always be the case in reality, it is a mimmbenchmark requirement
whether cluster analysis methods can find the clusters toatiin with at least fairly clearly
separated clusters. The noise produced in this model isgld@m the right of the mean of
the largest Gaussian (see Fig. 1) Note that the Gaussianoc@n{s are reasonably sepa-
rated, they have relatively small variances, and their griagns do not deviate much from
being equal. Hosmer (1978) showed that when the number asBaucomponents is larger
than two and the separation between components is smadipthiion provided by the EM
algorithm can be a poor approximation for the maximum Itketid estimate. In some ex-
periments we noted also that this happens particularly vinerariances in the underlying
Gaussians are relatively large and the proportions deui@tsiderably from equality. This
latter effect was documented by Karlis and Xekalaki (2068)wever, these problems are
not the focus of this research. Hence the choice of well s@épaiGaussian components with
relatively small variances and not very dissimilar projors.

Inside-noise:

0.1U(11,19) + 0.30N(0, 1.5) +0.25N(7,1.5) + 0.35N(21, 2). (19)

The model is similar to the previous one with the exceptiat the uniform noise is now
located in the region between the tails of two GaussiansKgpd.).
Wde-noise:

0.1U(0,21) + 0.45N(7,2) + 0.45N(14,1.5). (20)

Here, the uniform noise spreads over the entire range ofdte(dee Fig. 2).

4.2 Outlier process

This model consists of a two-Gaussian mixture plus two googigers drawn from a uniform
distribution. In each replica of the simulation study fomgde size equal tm we drew a
sample ofn — 2 points from the mixture model

0.5N(0,2) 4 0.5N(5,1.2) (21)

and then added two outliers from(2D,25) (see Fig. 2). We call these points “outliers”
because they are so far away from the Gaussian componentsittexr a Gaussian mixture
(21) such points are generated with a probability of vityuaéro.

4.3 t-noise

Here data were generated by a mixture of t-distributions, @oints were declared to be
“noise” if they are far in the tails of the t-distribution. iBhis necessary in order to make
the distinction between “noise” and “cluster” compatibléghathe other setups, and it also
reflects the idea that t-distributions are not used becawsedre thought to model “true
clusters”, but rather because their ML-estimators canmotodate outliers. The setup is
included in order to have “similar-to-Gaussian” but notgsely Gaussian clusters and
“noise” that corresponds to the model assumptions of then@trod (the fixed number of
degrees of freedom assumed for the Tf-method is in thist&tuaorrect for one of the three
mixture components):

0.4T5(0,2) 4 0.3T10(6,2) +0.3T10(12 1). (22)
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“Noise” is defined by the method proposed by McLachlan and®660):xy,j,, X2, - - -, Xn, jn
denotes the sample, whejec {1,2,...,G}, andx j; is generated by th@th component.
For each observation we compuie= 8(x; j;; U, j;)- A point x; j, will be defined as noise
if & > 3.841459 (see Section 2.5, Fig. 3). In order to make the pamrsstimators com-
parable over different methods, proportions were re-cdetpto add up to 1 (including a
“noise component proportion” for the points classified as&) and means and variances
were re-computed for the non-noise components based orotiiaagise points only. The
same method was generally applied to the estimators fronfehend Tf-method to cal-
ibrate it properly in order to be comparable with the othethuds. This model produces
noise with an average proportion of about 10.7%.

4.4 Gaussian mixture/noiseless data

We also added a process fulfilling the basic Gaussian mixssemption (1) with moder-
ately well separated clusters (see Fig. 3):

0.4N(0,2) +0.3N(6,2) + 0.3N(12, 1). (23)

No points were treated as “true noise” here.

5 Evaluation of the simulation study
5.1 Measures of performance

As a measure of clustering performance we computed the astication percentages.
Because in all setups the non-noise component means arsepeltated, we used lexico-
graphical ordering of component means to match estimattétdtie components. Misclas-
sification percentages were averaged over all 500 replicdsage given (component-wise
and overall) in the Tables 1, 3,5, 7, 9, and 11.

Recall that in most of the situations under consideratiandata generating process
does not coincide with the estimated model. Measuremengrdépnance cannot fairly be
made by comparing parameter estimates with the truth. Weadavinstead is to compare
the moments and proportions of what was defined as “true”-(rse) clusters with their
estimated counterparts. We based our evaluation objtléstance for vectors of classes of
estimates. Let us assume that the data generating progessts@fG components plus the
noise component. Lety, 70, ..., 1€ be the true proportion parameters, ..., u2 the true
means and‘f, .. ,v% the true variances of the non-noise components. Suppasasfance,
that an estimation method A produces the following estimage 7", ..., 18, pf,..., ué
andvy, ..., V3. For each replica we considered thedistances of the three different classes
of vectors: proportions, means and variances. That is,&oh eeplica we computed

G G G
o= 3 =] =3 —pfl =3 -
J= =1

=1
Note thatd,, andd, do not contain means and variances for the noise componantagh
setup and sample size we give 90%-upper-trimmed means tfey&00 replica) as quality

measurements in the Tables 2, 4, 6, 8, 10, and 12. This is #edausome sample the EM
algorithm solution can be strongly dependent on the ini@lies, and in some situations
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this could cause anomalous values of thedistances, which should not affect the quality
measurement too much (following the idea that if a method getestimator grossly wrong,
it is not important how wrong it exactly is). Standard errfas90%-upper-trimmed means
were estimated by nonparametric bootstrap.

Complementary to 90%-upper-trimmed mean, Table 13 givademabout how often
a method produced grossly outlying parameter estimatsrsuggested by a referee. It is
subtle to define “gross outliers” in such a situation. Whatligewas to aggregate, for a given
n and data generating process, all valuesipf(distance from truth of mean estimators).
All estimators in the upper 1% were interpreted as grossessiland Table 13 gives the
percentage for this to happen for each method. The samepeveas applied to variance
estimators (results not shown; they were generally sirbiladooked a bit more favourable
for the G- and R-method).

5.2 Results

Side noisg(Tables 1, 2). The RIMLE method (I and If) clearly performeskh at least
with respect to classification. Even the If-method perfatrbetter than the G-method, of
which the model assumptions were fulfilled here. The G-netthas bad for smath. The
R-method assigned too many points to the noise componadrits bocation estimators were
acceptable. As in many other setups, Te, Tf and N were cleaige than the competitors.

Inside noise(Tables 3, 4). The results were generally similar to thosédinle noise”.
However, the G- and R-method were better than If with respeobhean estimation with
not too smalin (but worse with respect to classification), and the Te- andh&thod were
clearly better than the G- and R-method for smmall

Wide noise (Tables 5, 6). This setup did not only fulfil the model assuons of the
G-method, but also corresponded to the R-method in the shasavith high probability
the two extreme points in the dataset were generated fronmiifierm distribution. Keeping
this in mind, it is remarkable that the If-method was stilitbethan the R-method for= 50
and not much worse for larger The G-methods again required a higko work well, and
the Te-, Tf- and N-methods fell again clearly behind (thotfght-mixture methods worked
reasonably well to estimate the cluster locations and vetytew estimate the proportion).

Outlier process (Tables 7, 8). The If-method was clearly worse than the agitim
method here, so that this is the only setup in which the R-atkttorked consistently better
than the If-method. The G-method was only goodrice 500 here. Comments as before
apply for the Te-, Tf and N-method, though the Te-method waegtable for parameter
estimation. Both t-mixture methods classified far too mapip{s as outliers, though.

t-noise (Tables 9, 10). As expected, the methods based on t-mixperdsrmed best in
this setup. The If-method performed better than R in mogieets (except with respect to
classification fom = 200, and estimation of variances fot= 50,200). It is interesting here
that, whereas the I-method was overall better in terms afsdiaation than If (as it should
be), the If-method was better in terms of proportion estiomatThe G-method was worse
than the robust competitors, though still better than thaé@thod fom = 500.

Gaussian mixture (Tables 11, 12). As expected, the N-method was optimal loerte,
the almost flawless performance of the RIMLE (I and If) is rekaale. All other methods
suffered from finding many outliers where they did not extsbugh the Te-method was still
relatively good.
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General. In most setups, the results with respect to classificatiae weich more con-
clusive than those with respect to estimation. The G-metaslgenerally bad for smatt
apparentlyn = 50 is not enough to locate the uniform component correcthy.r— 200,
its overall performance was still disappointing, giventttwar out of six setups fulfilled its
model assumptions. The Te-, Tf- and N-method performedibeise setups for which their
model assumptions were fulfilled, but fell behind in mosteotsituations, though Te and Tf
were often surprisingly good at estimation of mixture pntiems, which apparently is still
possible with suboptimal results with respect to the othiéerga. The Te-method (estimat-
ing the degrees of freedom) was almost always better, andtgoes much better than Tf.
The R-method was good for the outlier process, but in mosasdns it was worse than the
If-method, which often was close to the I-method. This is adyeesult for the If-method,
because the I-method was defined using (in practice unal@jleformation about the true
data generating process. The R-, Te- and Tf-method (and-tinetBGod for smalh) have a
tendency to find too many outliers. As expected, the N-metbacually by far the worst
one where its model assumptions are violated.

The variability of the results can be assessed by the stdresrs for global misclas-
sification rates and 90%-upper-trimmed distance means givthe tables. Note, however,
that even though standard errors for some quantities may sede large, they give a
too pessimistic impression of what can be said about the adsipns between methods,
because all methods were computed on the same simulatedetatdn order to get an
impression of which comparisons are statistically meduingve also ran some paired two-
sample Wilcoxon tests. Most of these were highly signifieamn in cases where there was
considerable overlap between confidence intervals routgifyulated from standard errors.
Just to give a single example for this, the comparison betwee global misclassification
rates of the I- and If-method far = 200 in Table 1 was still borderline significant under
the paired test (difference 0.06 between methods with beifdard errors estimated to be
about 0.9, but paired Wilcoxop = 0.043).

Table 13 is consistent with the other results in the sengdrifmost cases the N- and
G-method, which performed worst in other respects as weklyced the largest number
of outlying estimators. Interestingly, the outlier pertzayes rarely behave monotonically
overn, but of course the percentages are based on small numbe@mnsovariation can be
expected.

6 Concluding remarks

Though different methods “win” different setups in the slation study, the RIMLE method
with c estimated by the filtering method (If) as explained in Sec#igl can be recommended
as optimal in some situations, and always acceptable cRktly it does not suffer as many
other supposedly robust methods from overestimating thebeu of outliers/noise points,
and is therefore clearly better than those for data from ia @aussian mixture.

Note that we did not include in the simulations a setup withiens in which the bet-
ter breakdown point of the I- and If-method can be directlgeied. This can be better
explored by finding out how extreme an outlier has to be addethta from a “nice” mix-
ture in order to drive a mixture component away from the notliers. This does not depend
strongly on simulated variation. Examples given in Hengi@g04), Hennig (2005) show that
a single outlier has to be very extreme for the R- and t-metbathieve “practical break-
down” (for example above ¥Gor the R-method in a situation with “good data” between -5
and 10; as opposed to estimators with robustness probleptkén statistical setups, these
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methods remain almost unaffected as long as added outhensoh extreme enough), but
two or three outliers put together on the same point do nat labe that extreme.

The authors currently work on a similar study for multidireemal data; the filtering
method for the RIMLE needs to be slightly modified for this &ese the multidimensional
Kolmogorov distance is not suitable. The G-method is comtportally cumbersome to gen-
eralise, and the current study suggests that it would not cthwhile anyway (though
mixtures of Gaussian and uniform distributions may be egting for reasons other than
robustness).

Designing simulations like the present one involves sutiéleisions in order to make
parameters and results from methods and data generatiogsses based on different mod-
els comparable. The present study does this in a particagrwhich may be controversial,
but at least highlighting the issue is an intended contidboubf this paper.

Certainly it would be interesting to compare the methodsudised here with further
robust clustering competitors such as high breakdown mistbased on a fixed partition
model, and to simulate situations where the number of alsisdeestimated.
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Fig. 1 Right side: histogram for a sample of 200 points drawn fromdite-noise model (18) with density
function. Circles on the bottom represent the non-noisetpan data set, strokes represent noise points. Left
side: same for a sample of 200 points drawn from the insideenmodel (19).
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Fig. 2 Left side: sample of 200 points from wide-noise model (20ghRside: same for outlier process, 198
points from (21) and 2 outliers.
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Fig. 3 Left side: sample of 200 points from t-noise model (22). Agaircles on the bottom represent the
non-noise points in data set, strokes represent noisesp&tight side: sample of 200 points from Gaussian
mixture model (23).
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Table 1 Average misclassification percentages for “side noise® @dmponents’ average misclassification
percentage is the average percentage of points wronglyreeskto that component. Percentages are computed
with respect tan. Standard errors are given in brackets.

n  Method Global Component
Noise 2 3 4
50 G 20.72(1.81) 13.12 0.60 4.58 2.41
R 19.90(1.79) 1475 056 4.16 0.43
| 13.43 (1.52) 331 0.85 5.90 3.37
If 13.67 (1.54) 340 1.18 6.04 3.04
Te 17.16 (1.69) 3.27 1.64 567 6.59
Tf 17.57 (1.70) 6.70 131 5.12 4.44
N 19.73(1.78) 0.00 1.70 6.35 11.68
200 G 529(1.00) 4.42 011 047 0.29
R 11.00 (1.40) 10.17 0.01 0.78 0.04
| 4.24 (0.90) 247 0.07 0.89 0.81
If 4.30(0.91) 250 0.07 0.90 0.82
Te 8.78 (1.27) 3.25 0.03 0.70 4.81
Tf 10.84 (1.39) 6.25 0.01 1.06 3.52
N 13.89 (1.55) 0.00 0.17 0.79 1293

500 G 251(0.70) 2.08 0.11 019 012
R 821(1.23) 819 001 000 0.01

| 2.39(0.68) 0.89 0.08 009 1.33

If 2.08(0.64) 142 006 009 051

Te 7.27(1.16) 334 001 001 391

Tf 9.66(1.32) 632 001 003 3.30

N 13.04(1.51) 000 0.17 013 1274

Table 2 Upper-trimmed means of distances for classes of paranfeteiside noise”. For the If-method and
I-method we also report the average value for the impropesitlec. Standard errors are given in brackets.

n  Method c dr dy dy

50 G 0.36(0.01) 2.22(0.18)  2.54(0.06)
R 0.49(0.01) 1.69(0.13)  2.63(0.05)

I 0.020 0.26(0.01) 1.68(0.13)  3.20(0.28)

If 0.014 (0.001) 0.27(0.01) 1.52(0.15)  3.18(0.26)

Te 0.21(0.01) 1.76(0.18)  6.23(0.34)

T 0.20(0.01) 1.59(0.10)  5.42(0.33)

N 0.35(0.01) 2.11(0.18) 14.18(0.37)

200 G 0.19(0.01) 0.45(0.01) 1.16 (0.03)
R 0.41(0.01) 0.46(0.01) 1.76(0.03)

| 0.020 0.15(0.00) 0.53(0.02) 1.62(0.16)
If 0.020 (0.000) 0.18(0.00) 0.45(0.01)  1.17 (0.03)

Te 0.12(0.00) 0.65(0.02)  3.12(0.13)

T 0.15(0.00) 0.62(0.01)  3.02(0.09)

N 0.32(0.00) 1.16(0.02) 14.43(0.17)

500 G 0.10(0.00) 0.27(0.01)  0.68(0.02)
R 0.38(0.00) 0.27(0.01)  1.60 (0.01)

| 0.020 0.12(0.00) 0.30(0.01)  0.84(0.02)
If 0.020(0.000) 0.13(0.00) 0.28(0.01)  0.80(0.02)

Te 0.09(0.00) 0.43(0.01) 2.38(0.07)

T 0.14 (0.00) 0.43(0.01)  2.59 (0.04)

N 0.31(0.00) 1.06(0.01) 14.00 (0.10)
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Table 3 Average misclassification percentages for “inside noisb& components’ average misclassification
percentage is the average percentage of points wronglyreeskto that component. Percentages are computed
with respect tan. Standard errors are given in brackets.

n  Method Global Component
Noise 2 3 4

50 G 21.04(1.82) 1592 1.04 214 194
R 15.48(1.62) 1223 052 1.36 1.36

| 10.81 (1.39) 3.27 074 340 3.40

If 10.55 (1.37) 340 1.07 3.43 265

Te 13.18 (1.51) 343 211 456 3.08

Tf 14.07 (1.56) 6.81 185 3.05 236

N 13.22(1.51) 0.00 217 6.37 4.68

200 G 6.01(1.13) 533 009 029 1.20
R 9.05(1.28) 7.66 0.0 0.03 1.36

| 5.24(1.00) 291 0.02 020 211

If 5.65(1.03) 3.14 002 021 227

Te 8.41(1.24) 320 0.04 218 2.99

f 8.76(1.26) 588 0.04 056 2.28

N 10.96 (1.40) 0.00 0.06 543 547

500 G 5.27(1.00) 387 006 014 1.20
R 7.33(1.17) 6.00 0.0 0.00 1.33

| 462(0.94) 108 002 006 3.47

If 450(0.93) 219 001 001 2.28

Te 6.97(1.14) 318 0.00 1.18 261

f 7.78(1.20) 553 0.00 0.10 2.15

N 10.76 (1.39) 0.00 0.02 565 509

Table 4 Upper-timmed means of classes of parameters for “insidgehd-or the If-method and I-method
we also report the average value for the improper dewsiBtandard errors are given in brackets.

n  Method c dn dy dv
50 G 0.41(0.01) 2.24(0.14) 2.47(0.07)
R 0.42 (0.01) 1.44(0.14) 2.35(0.04)
| 0.024 0.25(0.01) 1.46(0.10) 3.03 (0.20)
If 0.016 (0.001) 0.25(0.01) 1.30(0.08) 3.05(0.24)
Te 0.20 (0.00) 1.56(0.08) 5.24 (0.27)
T 0.18(0.00) 1.30(0.06) 3.66 (0.20)
N 0.29 (0.00) 1.80(0.08) 8.11(0.31)
200 G 0.22(0.00) 0.48(0.01) 1.15(0.03)
R 0.34(0.00) 0.50(0.01) 1.43(0.02)
| 0.024 0.15(0.00) 0.72(0.02) 2.05(0.12)
If 0.026 (0.000) 0.18(0.00) 0.54(0.01) 1.28(0.03)
Te 0.11(0.00) 0.75(0.02) 2.55 (0.14)
T 0.12(0.00) 0.57(0.01) 1.55(0.04)
N 0.24(0.00) 1.38(0.02) 8.50 (0.20)
500 G 0.18(0.00) 0.33(0.01) 0.88 (0.02)
R 0.31(0.00) 0.33(0.01) 1.20(0.01)
| 0.024 0.11(0.00) 0.45(0.01) 1.09 (0.03)
If 0.026 (0.000) 0.14 (0.00) 0.39(0.01) 0.99 (0.02)
Te 0.07 (0.00) 0.49(0.01) 1.53(0.08)
Tf 0.10(0.00) 0.39(0.01) 1.24(0.02)

N 0.24(0.00) 1.30(0.01) 9.10(0.17)
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Table 5 Average misclassification percentages for “wide noise’® €bmponents’ average misclassification
percentage is the average percentage of points wronglyreessto that component. Percentages are computed
with respect tan. Standard errors are given in brackets.

n  Method Global Component
Noise 2 3
50 G 31.89(2.08) 25.35 3.78 276
R 15.04 (1.60) 10.47 2.42 2.15
| 8.28 (1.23) 0.70 4.19 3.39
If 9.54 (1.31) 234 398 321
Te 9.70(1.32) 377 333 261

f 12.05(1.46) 7.05 2.75 2.26
N 10.44(1.37) 0.00 541 5.02

200 G 8.96(1.28) 254 3.44 2098
R 7.99(1.21) 1.72 3.35 2.93

| 7.70(1.19) 044 3.88 3.38

If 8.29(1.23) 125 379 3.26

Te 9.28(1.30) 3.96 2.89 2.43

f 11.02(1.40) 6.29 254 2.19
N 10.44 (1.37) 0.00 521 523

500 G 750(1.18) 094 343 313
R 7.49(1.18) 094 343 3.13

| 7.49(1.18) 033 3.76 3.40

If 7.74(1.20) 0.65 3.72 3.37

Te 9.12(1.29) 3.98 275 2.39

Tf 10.81(1.39)  6.19 245 2.17
N 10.35(1.36) 0.00 5.14 521

Table 6 Upper-trimmed means of classes of parameters for‘wideshioi®r the If-method and I-method we
also report the average value for the improper dertsiStandard errors are given in brackets.

n  Method c dn dy dv

50 G 0.49(0.01) 1.41(0.09) 1.97 (0.06)
R 0.33(0.01) 0.49(0.01) 1.32(0.03)

| 0.043 0.17(0.00) 0.45(0.01) 1.06 (0.03)
If 0.025 (0.001)  0.20 (0.00) 0.47(0.01) 1.18(0.03)

Te 0.13(0.00) 0.46(0.01) 1.06 (0.03)

Tf 0.13(0.00) 0.48(0.01) 1.22(0.02)

N 0.23(0.00) 0.50(0.01) 2.06 (0.07)

200 G 0.11(0.00) 0.23(0.01) 0.55(0.02)
R 0.10(0.00) 0.22(0.01) 0.51(0.01)

| 0.043 0.09 (0.00) 0.22(0.01) 0.53(0.01)
If 0.035(0.001) 0.12(0.00) 0.22(0.01) 0.65(0.02)

Te 0.07(0.00) 0.23(0.01) 0.69 (0.01)

T 0.07 (0.00) 0.23(0.01) 0.92(0.02)

N 0.20(0.00) 0.34(0.01) 2.04(0.04)

500 G 0.06 (0.00) 0.14(0.00) 0.32 (0.01)
R 0.06 (0.00) 0.14(0.00) 0.32(0.01)

| 0.043 0.06 (0.00) 0.14(0.00) 0.33(0.01)
If 0.037 (0.001) 0.08 (0.00) 0.15(0.00)  0.40 (0.01)

Te 0.05(0.00) 0.15(0.00) 0.63 (0.01)

Tf 0.05(0.00) 0.15(0.00) 0.92(0.01)

N 0.20(0.00) 0.31(0.01) 2.04(0.02)
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Table 7 Average misclassification percentages for the “outliecpss”. The components’ average misclassi-
fication percentage is the average percentage of pointsglyrassigned to that component. Percentages are
computed with respect t@ Standard errors are given in brackets.

n  Method Global Component
Noise 2 3

50 G 31.10 (2.07) 24.50 4.06 2.53
R 3.63(0.84) 042 153 1.68

| 3.33(0.80) 0.08 1.62 1.62

If 5.13(0.99) 2.13 1.44 1.56

Te 6.98(1.14) 360 042 296

Tf 9.50 (1.31) 5.44 1.73 2.34

N 25.67(1.95) 0.00 10.76 14.90

200 G 3.39(0.81) 0.88 1.05 1.45
R 2.61(0.71) 0.10 1.03 1.47

| 2.52(0.70) 0.02 1.03 1.46

If 3.22(0.79) 0.73 1.02 1.47

Te 7.23(1.16) 5.63 0.64 0.97

T 9.46(1.31) 812 050 0.84

N 22.05 (1.85) 0.00 0.10 21.95
500 G 2.43(0.69) 0.11 1.03 1.29
R 2.35(0.68) 0.03 1.02 1.30

| 2.33(0.67) 001 103 1.30

If 2.68(0.72) 0.36 1.02 1.30

Te 6.92(1.14) 535 076 0.81

Tf 9.88 (1.33) 8.83 0.41 0.64

N 14.35(1.57) 000 0.01 1434

Table 8 Upper-trimmed means of classes of parameters for theoytliocess”. For the If-method and I-
method we also report the average value for the impropeiitgensStandard errors are given in brackets.

n  Method c dr dy dy

50 G 0.38(0.02) 6.95(0.46)  1.24(0.05)
R 0.09 (0.00) 0.46(0.01)  0.91(0.02)

I 0.015 0.06 (0.00) 0.46(0.01)  0.88(0.02)
If 0.019(0.002) 0.12(0.01) 0.47(0.01)  0.97 (0.02)

Te 0.11(0.00) 0.49(0.01)  1.17 (0.02)

Tf 0.16 (0.00) 0.53(0.02)  1.38(0.03)

N 0.56 (0.01) 3.35(0.41) 19.92(0.41)

200 G 0.03(0.00) 0.22(0.01) 0.43(0.01)
R 0.04(0.00) 0.22(0.01)  0.43(0.01)

| 0.015 0.03(0.00) 0.22(0.01)  0.42(0.01)
If 0.025(0.002) 0.06(0.00) 0.22(0.01)  0.48 (0.01)

Te 0.11(0.00) 0.24(0.01)  0.87(0.01)

T 0.16 (0.00) 0.24(0.01)  1.08(0.01)

N 0.53(0.00) 1.71(0.01) 10.95(0.04)

500 G 0.02(0.00) 0.14(0.00)  0.27(0.01)
R 0.02(0.00) 0.14(0.00)  0.27 (0.01)

| 0.015 0.02(0.00) 0.14(0.00)  0.27 (0.01)
If 0.027 (0.002) 0.04(0.00) 0.14(0.00)  0.31(0.01)

Te 0.10(0.00) 0.15(0.00)  0.83(0.01)

T 0.17(0.00) 0.16 (0.00)  1.14 (0.01)

N 0.36(0.00) 1.45(0.02)  6.21(0.05)
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Table 9 Average misclassification percentages for “t-noise”. Toragonents’ average misclassification per-
centage is the average percentage of points wrongly asktgrthat component. Percentages are computed
with respect tan. Standard errors are given in brackets.

n  Method Global Component
Noise 2 3 4

50 G 25.21(1.94) 16.70 3.18 3.21 212
R 12.81 (1.49) 850 1.67 189 0.75

| 11.00 (1.40) 412 263 294 1.30

If 10.55 (1.37) 1.36 383 331 205

Te 8.52(1.25) 191 251 268 1.43

Tf 9.24 (1.30) 466 144 213 1.01

N 12.24 (1.47) 0.00 548 390 2.85

200 G 10.95 (1.40) 4.96 270 1.71 158

R 6.53(1.10) 1.82 240 1.27 1.05
| 5.93(1.06) 215 203 0094 0.82
If 7.45(1.17) 079 315 193 158
Te 430(0.91) 088 142 118 0.82
T 471(0.95) 330 054 0.65 0.23
N 10.44(1.37) 0.00 553 240 251
500 G 8.17(1.22) 046 358 230 1.82
R 7.74(1.20) 014 365 227 167
| 449(0.93) 176 170 057 045
If 6.82(1.13) 024 321 190 1.47
Te 3.18(0.78) 043 120 100 0.54
Tf 3.76(0.85) 272 041 052 0.1

N 1058 (1.38) 0.00 564 239 255

Table 10 Upper-trimmed means of classes of parameters for “t-nolse!’ the If-method and I-method we
also report the average value for the improper dertsi§tandard errors are given in brackets.

n  Method c dn dy dv

50 G 0.35(0.01) 1.01(0.07) 1.29(0.04)
R 0.30(0.01) 0.39(0.02) 0.78(0.03)

| 0.056 0.21(0.01) 0.37(0.02) 0.88(0.03)
If 0.016 (0.001) 0.18(0.01) 0.38(0.01) 1.19(0.05)

Te 0.11(0.01) 0.33(0.01) 0.79(0.04)

T 0.11(0.00) 0.34(0.01) 0.65 (0.03)

N 0.21(0.00) 0.43(0.01) 1.78(0.07)

200 G 0.16 (0.00) 0.21(0.01) 0.84 (0.03)
R 0.14 (0.01) 0.16 (0.00) 0.52(0.02)

| 0.056 0.16 (0.00) 0.16(0.00) 0.44 (0.01)
If 0.041(0.001) 0.11(0.00) 0.17 (0.00) 0.79(0.02)

Te 0.06 (0.00) 0.14(0.00) 0.35 (0.01)

T 0.06 (0.00) 0.15(0.00) 0.33(0.01)

N 0.20 (0.00) 0.21(0.01) 1.64(0.02)

500 G 0.10 (0.00) 0.12 (0.00)  0.91 (0.02)
R 0.09 (0.00) 0.11(0.00) 0.85 (0.02)

| 0.056 0.18(0.00) 0.09(0.00) 0.30 (0.01)
If 0.048 (0.000)  0.07 (0.00) 0.11(0.00) 0.72(0.02)

Te 0.05(0.00) 0.09(0.00) 0.24 (0.01)

Tf 0.04(0.00) 0.10(0.00) 0.26 (0.01)

N 0.21(0.00) 0.15(0.00) 1.78(0.02)
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Table 11 Average misclassification percentages for “Gaussian maxtrhe components’ average misclas-
sification percentage is the average percentage of pointsglyr assigned to that component. Percentages are
computed with respect t@ Standard errors are given in brackets.

n  Method Global Component
Noise 2 3 4
50 G 28.05(2.01) 2488 054 154 1.09
R 2410(1.91) 2278 0.32 085 0.16
| 3.06 (0.77) 0.00 0.76 180 0.50

If 439(0.92) 144 072 185 0.39
Te 6.86(1.13) 456 054 146 0.30
f 11.88(1.45) 10.15 0.42 115 0.5
N 2.99(0.76) 0.00 076 174 0.50

200 G 1763 (1.70) 16.36 046 064 017
R 10.82(1.39) 10.09 0.32 0.35 0.05
| 1.83(0.60) 0.00 0.67 0.94 0.23

If 2.92(0.75) 1.21 0.62 0.90 0.19
Te 5.65(1.03) 455 039 0.64 0.07
f 10.47 (1.37) 9.84 020 040 0.04
N 1.83(0.60) 0.00 0.67 093 0.23
500 G 687(1.13) 573 048 051 015
R 432(0.91) 3.09 055 057 0.12
| 1.65(0.57) 0.00 0.67 0.76 0.22
If 2.09(0.64) 049 065 0.75 0.21
Te 5.43(1.01) 450 0.38 048 0.07
f 10.22(1.35) 9.77 0.16 0.26 0.03
N 1.66(0.57) 0.00 0.66 0.76 0.23

Table 12 Upper-trimmed means of classes of parameters for “Gaussigture”. For the If-method and
I-method we also report the average value for the impropesitlec. Standard errors are given in brackets.

n  Method c dn dy dv
50 G 0.57(0.01) 1.41(0.05) 2.64(0.04)
R 0.65(0.01) 1.00(0.03) 2.74(0.04)
| 0.001 0.15(0.00) 0.78(0.02) 1.76 (0.05)
If 0.006 (0.001) 0.18(0.01) 0.81(0.02) 1.90 (0.05)
Te 0.19 (0.00) 0.83(0.02) 1.97 (0.04)
T 0.27 (0.00) 0.89(0.02) 2.29(0.04)
N 0.15(0.00) 0.78(0.02) 1.76 (0.05)
200 G 0.39(0.01) 0.66(0.02) 1.60(0.03)
R 0.41(0.01) 0.47(0.01) 1.56(0.03)
| 0.001 0.08(0.00) 0.42(0.01) 0.83(0.02)
If 0.019 (0.001) 0.12(0.00) 0.42(0.01) 0.94(0.02)
Te 0.13(0.00) 0.44(0.01) 1.29(0.02)
T 0.21(0.00) 0.46(0.01) 1.81(0.02)
N 0.08(0.00) 0.41(0.01) 0.82(0.02)
500 G 0.22(0.00) 0.35(0.01) 0.96 (0.02)
R 0.22(0.00) 0.27(0.01) 0.89 (0.02)
| 0.001 0.05(0.00) 0.25(0.01) 0.53(0.01)
If 0.020 (0.001) 0.08 (0.00) 0.26(0.01) 0.60 (0.01)
Te 0.10 (0.00) 0.27(0.01) 1.14 (0.01)
Tf 0.20(0.00) 0.29(0.01) 1.79 (0.02)

N 0.05(0.00) 0.25(0.01) 0.53(0.01)
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Table 13 Percentage of estimation of mean parameters of a methodpier U6 of distanced,, from true
means aggregated over all methods for gimemd model (these sum up to 7 for eveyynodel-combination
because there are seven methods).

Model n Method
G R | If Te Tf N
Side noise 50 16 04 02 12 08 14 14
200 08 20 16 10 08 0.2 0.6
500 00 00 02 00 04 02 6.2
Inside noise 50 14 06 08 12 06 12 12
200 34 18 08 04 02 02 0.2
500 08 00 04 00 22 00 36
Wide noise 50 70 00 00 00 00 00 O00
200 20 02 02 02 04 04 36
500 00 00 00 00 00 00 70
Outlier 50 52 00 00 00 00 0.0 18
200 16 00 00 00 00 00 54
500 0.2 00 00 00 00 0.0 6.8
t-noise 50 30 06 04 04 04 06 16
200 62 00 00 00 00 00 0.8
500 18 10 00 06 00 0.0 36
Gaussian 50 40 12 04 04 02 04 04
200 70 00 00 00 00 00 0.0
500 42 04 04 04 04 10 0.2




