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Abstract The following mixture model-based clustering methods are compared in a simu-
lation study with one-dimensional data, fixed number of clusters and a focus on outliers and
uniform “noise”: an ML-estimator (MLE) for Gaussian mixtures, an MLE for a mixture of
Gaussians and a uniform distribution (interpreted as “noise component” to catch outliers),
an MLE for a mixture of Gaussian distributions where a uniform distribution over the range
of the data is fixed (Fraley and Raftery (1998)), a pseudo-MLEfor a Gaussian mixture with
improper fixed constant over the real line to catch “noise” (RIMLE; Hennig (2004)), and
MLEs for mixtures of t-distributions with and without estimation of the degrees of freedom
(McLachlan and Peel (2000)). The RIMLE (using a method to choose the fixed constant first
proposed in Coretto (2008)) is the best method in some, and acceptable in all, simulation
setups, and can therefore be recommended.

Keywords Model-based clustering· Gaussian mixture· Mixture of t-distributions· Noise
component

1 Introduction

This paper compares several methods for robust clustering based on mixture models. The
term “model-based cluster analysis” was coined by Banfield and Raftery (1993) for clus-
tering based on finite mixtures of Gaussian distributions and related methods. The standard
Gaussian mixture model is to assume that data(X1, . . . ,Xn) are modelled as drawn i.i.d. from
a distribution with density

f (x;θ) =
G

∑
j=1

π jφ(xi; µ j,σ 2
j ), (1)
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whereφ(·,µ,σ 2) is the density of a Gaussian distribution with meanµ and varianceσ 2,
π j is the proportion of thejth mixture component,∑G

j=1 π j = 1. The parameter vectorθ
contains all proportions, means and variances. Analogous notations will be used later for
other models as well, the proportions sometimes including aπ0.

The maximum likelihood estimator (MLE) of the parameterθ from a datasetxn =
{x1,x2, . . . ,xn} is obtained by

θ̂n = argmax
θ∈Θ

n

∑
i=1

log f (xi;θ), (2)

whereΘ = {θ | σ 2
j ≥ s, j = 1,2, . . . ,G, ∑G

j=1 π j = 1} for some choice ofs > 0. It is nec-
essary to bound variances from below in order to avoid degeneracies of the log-likelihood
function. The MLE is usually computed by the EM algorithm, which means that only local
maxima of the likelihood function are available. For more background and details on the EM
algorithm, see Redner and Walker (1984), McLachlan and Krishnan (1997), McLachlan and
Peel (2000).

Based on̂θn (the included parameters are denoted by giving them hats, too), observations
xi can be classified to component

k = arg max
p=1,...,G

τ̂ip, (3)

where the quantitŷτip is the estimated posterior probability thatxi was generated by thepth
mixture component:

τ̂ip =
π̂pφ(xi; µ̂p, σ̂ 2

p)

f (xi; θ̂)
. (4)

A sensible philosophy for model-based clustering is that (1) is not necessarily assumed to be
“true”, but rather that the Gaussian distribution is treated as a cluster shape prototype, given
that many distributions can be approximated closely by a Gaussian mixture. However, for
a wide class of finite mixtures, including Gaussians, MLEs are not robust (Hennig, 2004).
This implies that deviations from the nominal model such as asmall proportion of outliers
in the data can lead to poor estimates and clustering. Note, however, that the concept of
“high breakdown” is generally more problematic in cluster analysis than in traditional robust
statistics, because it cannot be taken for granted that, adding some outliers, it is not desired
to use a mixture component to fit them, which would yield breakdown of parameters.

Here we present a simulation study that compares the ML-estimator for Gaussian mix-
tures with several alternatives that have been proposed in order to deal better with outliers.
Considerations are confined to one-dimensional data and a fixed number of clustersG. Apart
from the practical relevance of fitting one-dimensional data, our aim is to contribute to the
deeper understanding of a simple situation in order to also contribute to the understanding
of more complex setups. In robust cluster analysis the comparison of the quality of different
methods depends strongly on features such as separation of clusters and number and loca-
tion of outliers, and even for one-dimensional data and fixedG one could imagine many
more setups of interest apart from those that we consider in the present study.

A way to deal with the outlier problem is to add a “noise component” to the mixture,
i.e., an additional mixture component to capture points like outliers that are not consistent
with the Gaussian mixture. This was originally proposed by Banfield and Raftery (1993),
who propose to add a uniform mixture component on the convex hull of the data (the range
in one-dimensional situations). Variations of this idea have been proposed by Coretto (2008)
who added uniform mixture components estimated by ML to the mixture, and the proposal
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of Hennig (2004), where the noise component is represented by a fixed constant on the
real line. He showed that the resulting estimates are robustto even extreme outliers, as
opposed to the noise component method of Banfield and Raftery(1993). Coretto (2008)
studied the asymptotics of this approach and its computation based on the EM algorithm
(note that further journal publications of the material in Coretto (2008) are in preparation by
the authors of the present paper, and that an overview of the basic ideas was already given
in Hennig and Coretto (2008)).

As an alternative approach, fitting mixtures of t-distributions (McLachlan and Peel (2000))
is included in our simulation study.

In Section 2, the compared methods are defined. Section 3 explains in more details how
they are computed in the simulation study. Section 4 defines the setups from which data are
generated. Section 5 presents and discusses the results of the simulation study. Section 6
concludes the paper.

Alternative methods for robust clustering exist, particularly high breakdown methods
based on a fixed partition model and trimming of observations(Cuesta-Albertos et al (1997),
Garcı́a-Escudero et al (2008), Gallegos and Ritter (2005)). See Neykov et al (2007) for a
recent approach based on mixtures.

2 Methods and estimators

In this section we describe the estimators and methods undercomparison. For computational
details of the estimators proposed in this section, see Section 3.

2.1 MLE for Gaussian mixtures

In order to assess whether things can be improved by the robust alternatives, the ML esti-
mator for Gaussian mixtures as in (1), computed by the EM-algorithm, is included in the
simulation study.

2.2 Gaussian mixtures with uniform noise on the data-range

The method suggested in Banfield and Raftery (1993) and Fraley and Raftery (1998), con-
sists of modelling the population by the following density function (notation as above):

g(x;ζ ) =
π01{x ∈ [min(xn),max(xn)]}

max(xn)−min(xn)
+

G

∑
j=1

π jφ(x; µ j,σ 2
j ). (5)

The vector of all parameters is calledζ ∈Ψ ,Ψ = {ζ | σ 2
j ≥ s > 0, j = 1,2, . . . ,G, ∑G

j=0 π j =

1} for some fixeds. ζ̂n is defined as maximizer of the log-likelihood function associated to
g. Note that this does not define a proper maximum likelihood estimator (MLE) because
the model specification is data dependent. Moreover,n → ∞ ⇒ [max(xn)−min(xn)]

−1 → 0
a.s. Banfield and Raftery (1993), Fraley and Raftery (1998) suggested to computêζn by
applying the EM algorithm (the range held fixed).
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The estimated posterior probabilityτ̂ip that the observationxi was generated by compo-
nentp now looks like this:

τ̂ip =







π̂pφ(xi;µ̂p,σ̂2
p)

g(xi;ζ̂ )
if p = 1,2, . . . ,G

π̂0

[max(xn)−min(xn)]g(xi;ζ̂ )
if p = 0.

. (6)

Hennig (2004) argued that this method is not robust against very extreme outliers. As op-
posed to low breakdown methods in traditional setups such aslocation estimation, it may
however remain unaffected by less extreme outliers, and it may have good satisfactory be-
havior in many practical situations. We call this the range-or R-method.

2.3 MLE for Gaussian mixtures with uniform noise

In Coretto (2008), an ML-estimator for the following model is considered:

u(x;γ) =
π0 1{x ∈ [a,b]}

b−a
+

G

∑
j=1

π jφ(x; µ j,σ 2
j ). (7)

where1(A) is the indicator function of the setA. The parameter vector is calledγ ,

γ̂n = argmax
γ∈Γ

n

∑
i=1

logu(xi;γ), (8)

with Γ = {γ | minm.p vm/vp ≥ h > 0; m, p = 0,1,2, . . .G; ∑G
j=0 π j = 1}, wherev0 = (b−

a)/
√

12 andvp = σp for p > 0. The restricted setΓ allows to obtain an MLE that exists
and is scale-equivariant (see Hathaway (1985)), though themaximization problem in (8) is
rather difficult: the log-likelihood function has infinitely many points of discontinuity, the
restricted parameter set is not compact, moreoverΓ cannot be described as a set of smooth
inequalities, hence standard optimization theory does notapply. Coretto (2008) showed that
the MLE exists and is strongly consistent for the set of maximizers of the expected log-
likelihood function, and he also developed the EM algorithmfor computing (8) and showed
convergence. In the simulation study, for computational reasons, we stick the simpler opti-
mization onΓ0 = {γ | v2

j ≥ s, j = 0,1,2, . . .G;} for fixed s > 0.
The estimated posterior probabilityτ̂ip to be maximized for classification ofxi becomes

τ̂ip =







π̂01(xi∈[â,b̂])

(b̂−â)u(xi;γ̂n)
if p = 0

π̂pφ(xi;µ̂p,σ̂2
p)

u(xi;γ̂n) if p = 1,2, . . . ,G
. (9)

Coretto (2008) showed that the EM algorithm generates localmaxima of the log-likelihood
for (a,b) chosen as any pair of data points as long as the restrictions above are fulfilled,
so that the EM-algorithm is not very informative about the parameters of the uniform. One
possible solution is to run the EM algorithm several times, and each time the uniform param-
eters are initialized by a suitable pair of distinct data-points. Among all solutions the MLE
will be chosen so that the likelihood value is the largest. Weconfine the search of the best lo-
cal maxima over a selected grid of distinct data-points. By this the quality of approximation
of the MLE is affected but the computational complexity can be controlled. We call this the
grid- or G-method. Note that the breakdown point for this approach, according to the defini-
tion of Hennig (2004), can at best be2n+2 (compared to 1

n+1 for the R-method), because two
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added outliers on both sides converging to infinity in absolute value emulate the robustness
problem that the R-method has with a single point, namely that the log-likelihood can only
be prevented from converging to−∞ by fitting one of the outliers by a Gaussian component.

2.4 Robust improper maximum likelihood estimator

The idea of the robust improper maximum likelihood estimator (RIMLE) is to choose a fixed
constant over the whole real line for the noise, instead of modelling it by a proper uniform
distribution. Hennig (2004) showed that this has a better breakdown behavior than the two
previous approaches. The approach is based on the followingimproper density:

λc(x;η) = π0c+
G

∑
j=1

π jφ(x; µ j,σ 2
j ). (10)

c ≥ 0 is a constant that (in order to apply the theory in Hennig (2004)) needs to be specified
in advance. The idea is that points are classified as noise if they arise from areas where the
Gaussian components account for density values smaller than c. The RIMLE is defined as:

η̂n(c) = argmaxη∈Λ

n

∑
i=1

log(λc(xi;η)). (11)

whereΛ = {η |σ j ≥ s > 0, j = 1,2, . . . ,G; ∑G
j=0 π j = 1}. The constrained setΛ ensures

existence but does not guarantee scale-equivariance. The EM algorithm can be applied to
compute the RIMLE because for a fixed dataset (10) can be written down as a proper density
with valuec on a set of Lebesgue-measure1

c containing the observed data (the RIMLE is
not a proper ML estimator for such a model, though). Asymptotic analysis of the method is
given in Coretto (2008). Points can be classified by maximizing

τ̂ip =
π̂0c

λc(xi; η̂n(c))
for p = 0 and τ̂ip =

π̂pφ(xi; µp,σ 2
p)

λc(xi; η̂n(c))
for p = 1,2, . . . ,G,

(12)
whereτ̂i0 is the “improper” posterior probability that the observation xi belongs to the noise
component based on the proper, but data dependent model mentioned below (12).

The key issue here is how to fixc. Hennig (2005) gives some orientation about a data-
independent (subject matter based) choice ofc. However Coretto (2008) provided empirical
evidence that in most situations a bad choice ofc can seriously affect the performance of the
RIMLE. The author suggested a data dependent choice ofc called “filtering method”:

Step 1 Start from a set of values ˜c′ ∈ [0, c̄] and for each of them compute the RIMLÊηc′ .
Step 2 For eacĥηc′ remove those observations classified as noise and thus obtain the “fil-

tered dataset”.
Step 3 Use the filtered dataset to compute the MLE of a distribution function of a mixture

(1).
Step 4 Compute the empirical distribution function over thefiltered dataset and use the

Kolmogorov distance to compare it to the distribution function of the Gaussian mixture
estimated in the previous step.

Step 5 Choose the value ofc minimizing the Kolmogorov distance.

The method depends on the choice of ¯c, but this can be easily fixed. For large values ofc the
RIMLE will end up classifying all points as noise, which is not desired. Hence the value ¯c
can be fixed in terms of the maximum proportion of data points we are willing to accept as
noise points. We chose 50% here.
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2.5 MLE for t-mixtures

McLachlan and Peel (2000) argue that for elliptical shaped clusters with heavier than Gaus-
sian tails or atypical observations, the use of Gaussian components may affect the fit of
the data. The strategy proposed by the authors is as follows:if the population is assumed
to containG Gaussian clusters plus noise, we model it as arising from a finite mixture of
t-distributions withG components. Noise is identified with the set of data-points that are
far away from the cluster centers. The meaning of “far away” will be explained later in this
section. Consider a finite mixture of univariate t-distributions with G components having
density

t(x;ξ ) =
G

∑
j=1

π jψ(x; µ j,σ j,u j), (13)

whereψ(x; µi,σi,ui) is the density of a non-central t-distribution with location µi, scaleσi

and degrees of freedomui. Note that the scale parameter is related to the variancev2
j of the

distribution by

v2
j =

u j

u j −2
σ 2

j . (14)

The parameter vector is denoted byξ (the degrees of freedom could be included or fixed).
McLachlan and Peel (2000) proposed to estimateξ by ML. The estimator can be obtained
by the EM algorithm. Classification can be carried out maximizing

τ̂ip =
π̂pψ(xi; µ̂p, σ̂p, ûp)

t(xi; ξ̂n)
, j = 1,2, . . . ,G (15)

overΞ = {ξ | v2
j ≥ s, j = 1,2, . . . ,G, ∑G

j=1 π j = 0} for fixed s > 0. Define the Mahalanobis
squared distance between the pointx andµ

δ (x; µ,σ ) =
(x−µ)2

σ 2 . (16)

We also define the sequence:

Ci =
G

∑
j=1

1{argmaxj=1,2,...,Gτ̂i j = j}δ (xi; µ̂ j, σ̂ j); i = 1,2, . . . ,n. (17)

McLachlan and Peel (2000) argued (without proof) that if an i.i.d. sample is generated
from a Gaussian mixtures withG components, then{Ci; i = 1,2, . . . ,n} follows (at least
approximately) aχ2

1 distribution. They consider the observationxi as “noise” if Ci ex-
ceeds the 0.95-quantiles ofχ2

1 . Therefore,xi is assigned to thekth cluster (the Gaussian
cluster prototype is mimicked by the set of non-noise pointsof a t-distribution here), if
k = argmaxj=1,2,...,Gτ̂i j1{Ci < 3.841459}. k = 0 (assignment to no component) means that
the points is assigned to the noise.

In terms of the breakdown behavior, this approach is very similar to the R-method, see
Hennig (2004).
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3 Computational details

In the simulation study we considered sample sizes ofn = 50,200,500. For each data gener-
ating process and for each sample size we drew 500 samples, and for each replica we applied
the estimation methods described before. For each estimator we performed clustering and
computed summary statistics to evaluate relative performance (see Section 5.1). Here we
describe some computational aspects of these methodologies.

The EM algorithm depends on the initialization of the parameter values. For all methods
involving aπ0, its initial value was fixed at 0.05, following the idea that if data are partitioned
into several clusters, the remaining noise proportion willnormally be quite small (this is not
necessarily the case in practice, but many practitioners would like to have as many points
as possible assigned to clusters). For all methods, the proportions of the other components
are always initialized at equal value. The means and variances of Gaussian components
are initialized by trimming the 10% of observations in both the tails of the data and then
applying the k-means algorithm withG components with randomly chosen initial values.
This is related, but not identical to the trimmed-k-means method (Cuesta-Albertos et al
(1997)), which is usually computed by a more computer-intensive algorithm. In general,
good initialization of the EM-algorithm for a Gaussian mixture alone is a complicated issue,
and alternatives to our approach exist, see for example Karlis and Xekalaki (2003) and the
hierarchical approach in the software package MCLUST (Fraley and Raftery (2006)). For
the t-mixtures we do the same but we use both the variance fromk-means after trimming
and degrees of freedom to get the initial values for scales, see (14). Each EM run stops
either when the likelihood value has not improved by more than 10−6 or when the number
of iterations exceeds 600. The latter did not happen more than once (out of 500 replicas) in
any simulation setup, in which case the corresponding result was discarded.

The lower variance bound was chosen ass = 0.1 for all methods. Note that as a side-
effect of the described initialization method variances below 0.1 never occurred in any EM
run (though of course in practice the order of magnitude of the observations would need to
be taken into account chosings).

Gaussian mixtures with uniform noise (R,G-method)In Section 2 we introduced two
methods where the noise is represented by uniform densities. The R-method was initialised
as previously explained.

The ML estimate for (7) was approximated using the EM algorithm with the uniform
parameter(a,b) initialized over a selected grid of data points (G-method).The proportion
parameters, means and variances were initialized as before. Given the sample size, we de-
fined a preliminary grid of equi-spaced points on the range ofthe data. For computational
reasons, the size of the preliminary grid decreases as the sample size increases. Forn = 50
the grid consists of 20 points, forn = 200 the grid consists of 15 points, and forn = 500
it consists of 10 points. We then defined the initialization grid by using the nearest data
point for each point in the preliminary grid. Out of two points in the initialization grid with
distance of less than 1% of the interquartile range, one was removed (in order to prevent
problems with the variance restrictions in Section 2.3).

RIMLE (If,I-method) . The RIMLE defined in Section 2 was computed by selecting
the improper constant density via the filtering method. Thisapproach is referred to as “If-
method”.

In order to illustrate how good the method could be with near optimal selection ofc (and
how close the quality of the If-method is to that), we added a method called “I-method” that
makes use of (unrealistic) knowledge of the data generationprocess. In the I-method the
value ofc was fixed as the value that we found for a given data-generating process (over all
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replicas and all sample sizes) that achieved the lowest average misclassification percentage.
All other initializations were as previously described.

t-mixture (Te,Tf-method). We considered the methodology based on t-mixtures both
in the case where degrees of freedom are estimated (“Te-method”), and the case when the
degrees of freedom are fixed (“Tf-method”). The computationof the MLE for the Te-method
was done using the EM/ECM algorithm studied in Liu (1997). During our experiments we
noted that the EM/ECM algorithm does not move too far from thestarting values with
respect to degrees of freedom when these are estimated. Thisis possibly due to the fact that
the log-likelihood surface has many local maxima or has flat regions with respect to the
degrees of freedom. We could not find any research on this topic. A good practice (though
not followed in the previous study for computational reasons) would be to run the ECM
several times, with many possible combinations of initial values for the degrees of freedom,
and then select the solution that corresponds to the highestlog-likelihood value.

When the degrees of freedom were estimated, they were initialized to be equal to 15
for each component (half way between Gaussian tails and heavier tails, given that from 30
degrees of freedom upwards the t-distribution can be considered to be approximately Gaus-
sian). For the t-mixture with fixed degrees of freedom we fixedthem at 3 for all components
(allowing for heavy tails but with existing variances).

See Section 4.3 for the proportions, means and variances estimated by the Te- and Tf-
method.

Furthermore, we computed theMLE for plain Gaussian mixtures (N-method) as ex-
plained already.

4 Data generating processes

We considered six different data generating processes. Throughout the rest of this chap-
ter, N(µ,v) is the Gaussian distribution with meanµ and variancev; U(a,b) is the uni-
form distribution with support on the interval[a,b]. For g > 2, Tg(µ,v) is the non-central
t-distribution withg degrees of freedom, location parameterµ and variancev. Note that we
here parameterized the t-distribution in terms of variance, assuming thatg > 2, see (14).
We tried to cover a range of essentially different archetypical situations that are not obvi-
ously unrealistic. Note particularly that, whereas all setups fulfil the model assumptions of
at least one method (and all methods apart from the RIMLE havetheir model assumptions
fulfilled in at least one setup), most methods are in most setups confronted with data gen-
erating processes that violate their nominal assumptions.This is realistic and it also reflects
the philosophy that we are interested in the method to construct reasonable Gaussian shaped
clusters regardless of whether model assumptions are fulfilled.

4.1 Side, inside and wide uniform noise

Noise here is defined as points drawn from a uniform mixture component. We consider three
alternatives, differing in terms of the position of the uniform support relative to the means
of the Gaussians. We refer to these models as side-noise, inside-noise, and wide-noise.
Side-noise:

0.1U(17,25)+0.30N(0,1.5)+0.25N(7,2)+0.35N(14,1.5). (18)
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We chose a noise proportion of 10% here in order to still have clusters that are clearly visible.
Though this may not always be the case in reality, it is a minimum benchmark requirement
whether cluster analysis methods can find the clusters in a situation with at least fairly clearly
separated clusters. The noise produced in this model is located on the right of the mean of
the largest Gaussian (see Fig. 1) Note that the Gaussian components are reasonably sepa-
rated, they have relatively small variances, and their proportions do not deviate much from
being equal. Hosmer (1978) showed that when the number of Gaussian components is larger
than two and the separation between components is small, thesolution provided by the EM
algorithm can be a poor approximation for the maximum likelihood estimate. In some ex-
periments we noted also that this happens particularly whenthe variances in the underlying
Gaussians are relatively large and the proportions deviateconsiderably from equality. This
latter effect was documented by Karlis and Xekalaki (2003).However, these problems are
not the focus of this research. Hence the choice of well separated Gaussian components with
relatively small variances and not very dissimilar proportions.
Inside-noise:

0.1U(11,19)+0.30N(0,1.5)+0.25N(7,1.5)+0.35N(21,2). (19)

The model is similar to the previous one with the exception that the uniform noise is now
located in the region between the tails of two Gaussians (seeFig. 1).
Wide-noise:

0.1U(0,21)+0.45N(7,2)+0.45N(14,1.5). (20)

Here, the uniform noise spreads over the entire range of the data (see Fig. 2).

4.2 Outlier process

This model consists of a two-Gaussian mixture plus two grossoutliers drawn from a uniform
distribution. In each replica of the simulation study for sample size equal ton we drew a
sample ofn−2 points from the mixture model

0.5N(0,2)+0.5N(5,1.2) (21)

and then added two outliers from U(20,25) (see Fig. 2). We call these points “outliers”
because they are so far away from the Gaussian components that under a Gaussian mixture
(21) such points are generated with a probability of virtually zero.

4.3 t-noise

Here data were generated by a mixture of t-distributions, and points were declared to be
“noise” if they are far in the tails of the t-distribution. This is necessary in order to make
the distinction between “noise” and “cluster” compatible with the other setups, and it also
reflects the idea that t-distributions are not used because they are thought to model “true
clusters”, but rather because their ML-estimators can accommodate outliers. The setup is
included in order to have “similar-to-Gaussian” but not precisely Gaussian clusters and
“noise” that corresponds to the model assumptions of the Te-method (the fixed number of
degrees of freedom assumed for the Tf-method is in this situation correct for one of the three
mixture components):

0.4T3(0,2)+0.3T10(6,2)+0.3T10(12,1). (22)
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“Noise” is defined by the method proposed by McLachlan and Peel (2000):x1, j1,x2, j2, . . . ,xn, jn
denotes the sample, whereji ∈ {1,2, . . . ,G}, andxi, ji is generated by thejith component.
For each observation we computeδi = δ (xi, ji ; µ ji ,σ ji). A point xi, ji will be defined as noise
if δi ≥ 3.841459 (see Section 2.5, Fig. 3). In order to make the parameter estimators com-
parable over different methods, proportions were re-computed to add up to 1 (including a
“noise component proportion” for the points classified as noise), and means and variances
were re-computed for the non-noise components based on the non-noise points only. The
same method was generally applied to the estimators from theTe- and Tf-method to cal-
ibrate it properly in order to be comparable with the other methods. This model produces
noise with an average proportion of about 10.7%.

4.4 Gaussian mixture/noiseless data

We also added a process fulfilling the basic Gaussian mixtureassumption (1) with moder-
ately well separated clusters (see Fig. 3):

0.4N(0,2)+0.3N(6,2)+0.3N(12,1). (23)

No points were treated as “true noise” here.

5 Evaluation of the simulation study

5.1 Measures of performance

As a measure of clustering performance we computed the misclassification percentages.
Because in all setups the non-noise component means are wellseparated, we used lexico-
graphical ordering of component means to match estimated with true components. Misclas-
sification percentages were averaged over all 500 replicas and are given (component-wise
and overall) in the Tables 1, 3, 5, 7, 9, and 11.

Recall that in most of the situations under consideration the data generating process
does not coincide with the estimated model. Measurement of performance cannot fairly be
made by comparing parameter estimates with the truth. What we do instead is to compare
the moments and proportions of what was defined as “true” (non-noise) clusters with their
estimated counterparts. We based our evaluation on theL1 distance for vectors of classes of
estimates. Let us assume that the data generating process consists ofG components plus the
noise component. Letπ0

0 ,π0
1 , . . . ,π0

G be the true proportion parameters,µ0
1 , . . . ,µ0

G the true
means andv0

1, . . . ,v
0
G the true variances of the non-noise components. Suppose, for instance,

that an estimation method A produces the following estimates πA
0 ,πA

1 , . . . ,πA
G, µA

1 , . . . ,µA
G

andvA
1 , . . . ,vA

G. For each replica we considered theL1 distances of the three different classes
of vectors: proportions, means and variances. That is, for each replica we computed

dπ =
G

∑
j=0

|π0
j −πA

j |, dµ =
G

∑
j=1

|µ0
j −µA

j |, dv =
G

∑
j=1

|v0
j − vA

j |.

Note thatdµ anddv do not contain means and variances for the noise component. For each
setup and sample size we give 90%-upper-trimmed means (overthe 500 replica) as quality
measurements in the Tables 2, 4, 6, 8, 10, and 12. This is because for some sample the EM
algorithm solution can be strongly dependent on the initialvalues, and in some situations
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this could cause anomalous values of theL1 distances, which should not affect the quality
measurement too much (following the idea that if a method gets an estimator grossly wrong,
it is not important how wrong it exactly is). Standard errorsfor 90%-upper-trimmed means
were estimated by nonparametric bootstrap.

Complementary to 90%-upper-trimmed mean, Table 13 gives anidea about how often
a method produced grossly outlying parameter estimators, as suggested by a referee. It is
subtle to define “gross outliers” in such a situation. What wedid was to aggregate, for a given
n and data generating process, all values ofdµ (distance from truth of mean estimators).
All estimators in the upper 1% were interpreted as gross outliers, and Table 13 gives the
percentage for this to happen for each method. The same principle was applied to variance
estimators (results not shown; they were generally similarbut looked a bit more favourable
for the G- and R-method).

5.2 Results

Side noise(Tables 1, 2). The RIMLE method (I and If) clearly performed best, at least
with respect to classification. Even the If-method performed better than the G-method, of
which the model assumptions were fulfilled here. The G-method was bad for smalln. The
R-method assigned too many points to the noise component, but its location estimators were
acceptable. As in many other setups, Te, Tf and N were clearlyworse than the competitors.

Inside noise(Tables 3, 4). The results were generally similar to those for “side noise”.
However, the G- and R-method were better than If with respectto mean estimation with
not too smalln (but worse with respect to classification), and the Te- and Tf-method were
clearly better than the G- and R-method for smalln.

Wide noise (Tables 5, 6). This setup did not only fulfil the model assumptions of the
G-method, but also corresponded to the R-method in the sensethat with high probability
the two extreme points in the dataset were generated from theuniform distribution. Keeping
this in mind, it is remarkable that the If-method was still better than the R-method forn = 50
and not much worse for largern. The G-methods again required a highn to work well, and
the Te-, Tf- and N-methods fell again clearly behind (thoughthe t-mixture methods worked
reasonably well to estimate the cluster locations and very well to estimate the proportion).

Outlier process (Tables 7, 8). The If-method was clearly worse than the optimal I-
method here, so that this is the only setup in which the R-method worked consistently better
than the If-method. The G-method was only good forn = 500 here. Comments as before
apply for the Te-, Tf and N-method, though the Te-method was acceptable for parameter
estimation. Both t-mixture methods classified far too many points as outliers, though.

t-noise(Tables 9, 10). As expected, the methods based on t-mixturesperformed best in
this setup. The If-method performed better than R in most respects (except with respect to
classification forn = 200, and estimation of variances forn = 50,200). It is interesting here
that, whereas the I-method was overall better in terms of classification than If (as it should
be), the If-method was better in terms of proportion estimation. The G-method was worse
than the robust competitors, though still better than the N-method forn = 500.

Gaussian mixture (Tables 11, 12). As expected, the N-method was optimal here,but
the almost flawless performance of the RIMLE (I and If) is remarkable. All other methods
suffered from finding many outliers where they did not exist,though the Te-method was still
relatively good.
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General. In most setups, the results with respect to classification were much more con-
clusive than those with respect to estimation. The G-methodwas generally bad for smalln;
apparentlyn = 50 is not enough to locate the uniform component correctly. For n = 200,
its overall performance was still disappointing, given that four out of six setups fulfilled its
model assumptions. The Te-, Tf- and N-method performed bestin the setups for which their
model assumptions were fulfilled, but fell behind in most other situations, though Te and Tf
were often surprisingly good at estimation of mixture proportions, which apparently is still
possible with suboptimal results with respect to the other criteria. The Te-method (estimat-
ing the degrees of freedom) was almost always better, and sometimes much better than Tf.
The R-method was good for the outlier process, but in most situations it was worse than the
If-method, which often was close to the I-method. This is a good result for the If-method,
because the I-method was defined using (in practice unavailable) information about the true
data generating process. The R-, Te- and Tf-method (and the G-method for smalln) have a
tendency to find too many outliers. As expected, the N-methodis usually by far the worst
one where its model assumptions are violated.

The variability of the results can be assessed by the standard errors for global misclas-
sification rates and 90%-upper-trimmed distance means given in the tables. Note, however,
that even though standard errors for some quantities may seem to be large, they give a
too pessimistic impression of what can be said about the comparisions between methods,
because all methods were computed on the same simulated datasets. In order to get an
impression of which comparisons are statistically meaningful, we also ran some paired two-
sample Wilcoxon tests. Most of these were highly significanteven in cases where there was
considerable overlap between confidence intervals roughlycalculated from standard errors.
Just to give a single example for this, the comparison between the global misclassification
rates of the I- and If-method forn = 200 in Table 1 was still borderline significant under
the paired test (difference 0.06 between methods with both standard errors estimated to be
about 0.9, but paired Wilcoxonp = 0.043).

Table 13 is consistent with the other results in the sense that in most cases the N- and
G-method, which performed worst in other respects as well, produced the largest number
of outlying estimators. Interestingly, the outlier percentages rarely behave monotonically
overn, but of course the percentages are based on small numbers, sosome variation can be
expected.

6 Concluding remarks

Though different methods “win” different setups in the simulation study, the RIMLE method
with c estimated by the filtering method (If) as explained in Section 2.4 can be recommended
as optimal in some situations, and always acceptable. Particularly it does not suffer as many
other supposedly robust methods from overestimating the number of outliers/noise points,
and is therefore clearly better than those for data from a plain Gaussian mixture.

Note that we did not include in the simulations a setup with outliers in which the bet-
ter breakdown point of the I- and If-method can be directly observed. This can be better
explored by finding out how extreme an outlier has to be added to data from a “nice” mix-
ture in order to drive a mixture component away from the non-outliers. This does not depend
strongly on simulated variation. Examples given in Hennig (2004), Hennig (2005) show that
a single outlier has to be very extreme for the R- and t-methodto achieve “practical break-
down” (for example above 107 for the R-method in a situation with “good data” between -5
and 10; as opposed to estimators with robustness problems inother statistical setups, these
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methods remain almost unaffected as long as added outliers are not extreme enough), but
two or three outliers put together on the same point do not have to be that extreme.

The authors currently work on a similar study for multidimensional data; the filtering
method for the RIMLE needs to be slightly modified for this because the multidimensional
Kolmogorov distance is not suitable. The G-method is computationally cumbersome to gen-
eralise, and the current study suggests that it would not be worthwhile anyway (though
mixtures of Gaussian and uniform distributions may be interesting for reasons other than
robustness).

Designing simulations like the present one involves subtledecisions in order to make
parameters and results from methods and data generating processes based on different mod-
els comparable. The present study does this in a particular way, which may be controversial,
but at least highlighting the issue is an intended contribution of this paper.

Certainly it would be interesting to compare the methods discussed here with further
robust clustering competitors such as high breakdown methods based on a fixed partition
model, and to simulate situations where the number of clusters is estimated.
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Fig. 1 Right side: histogram for a sample of 200 points drawn from the side-noise model (18) with density
function. Circles on the bottom represent the non-noise points in data set, strokes represent noise points. Left
side: same for a sample of 200 points drawn from the inside-noise model (19).
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Fig. 2 Left side: sample of 200 points from wide-noise model (20). Right side: same for outlier process, 198
points from (21) and 2 outliers.
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Fig. 3 Left side: sample of 200 points from t-noise model (22). Again, circles on the bottom represent the
non-noise points in data set, strokes represent noise points. Right side: sample of 200 points from Gaussian
mixture model (23).
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Table 1 Average misclassification percentages for “side noise”. The components’ average misclassification
percentage is the average percentage of points wrongly assigned to that component. Percentages are computed
with respect ton. Standard errors are given in brackets.

n Method Global Component
Noise 2 3 4

50 G 20.72 (1.81) 13.12 0.60 4.58 2.41
R 19.90 (1.79) 14.75 0.56 4.16 0.43
I 13.43 (1.52) 3.31 0.85 5.90 3.37
If 13.67 (1.54) 3.40 1.18 6.04 3.04
Te 17.16 (1.69) 3.27 1.64 5.67 6.59
Tf 17.57 (1.70) 6.70 1.31 5.12 4.44
N 19.73 (1.78) 0.00 1.70 6.35 11.68

200 G 5.29 (1.00) 4.42 0.11 0.47 0.29
R 11.00 (1.40) 10.17 0.01 0.78 0.04
I 4.24 (0.90) 2.47 0.07 0.89 0.81
If 4.30 (0.91) 2.50 0.07 0.90 0.82
Te 8.78 (1.27) 3.25 0.03 0.70 4.81
Tf 10.84 (1.39) 6.25 0.01 1.06 3.52
N 13.89 (1.55) 0.00 0.17 0.79 12.93

500 G 2.51 (0.70) 2.08 0.11 0.19 0.12
R 8.21 (1.23) 8.19 0.01 0.00 0.01
I 2.39 (0.68) 0.89 0.08 0.09 1.33
If 2.08 (0.64) 1.42 0.06 0.09 0.51
Te 7.27 (1.16) 3.34 0.01 0.01 3.91
Tf 9.66 (1.32) 6.32 0.01 0.03 3.30
N 13.04 (1.51) 0.00 0.17 0.13 12.74

Table 2 Upper-trimmed means of distances for classes of parametersfor “side noise”. For the If-method and
I-method we also report the average value for the improper density c. Standard errors are given in brackets.

n Method c dπ dµ dv

50 G 0.36 (0.01) 2.22 (0.18) 2.54 (0.06)
R 0.49 (0.01) 1.69 (0.13) 2.63 (0.05)
I 0.020 0.26 (0.01) 1.68 (0.13) 3.20 (0.28)
If 0.014 (0.001) 0.27 (0.01) 1.52 (0.15) 3.18 (0.26)
Te 0.21 (0.01) 1.76 (0.18) 6.23 (0.34)
Tf 0.20 (0.01) 1.59 (0.10) 5.42 (0.33)
N 0.35 (0.01) 2.11 (0.18) 14.18 (0.37)

200 G 0.19 (0.01) 0.45 (0.01) 1.16 (0.03)
R 0.41 (0.01) 0.46 (0.01) 1.76 (0.03)
I 0.020 0.15 (0.00) 0.53 (0.02) 1.62 (0.16)
If 0.020 (0.000) 0.18 (0.00) 0.45 (0.01) 1.17 (0.03)
Te 0.12 (0.00) 0.65 (0.02) 3.12 (0.13)
Tf 0.15 (0.00) 0.62 (0.01) 3.02 (0.09)
N 0.32 (0.00) 1.16 (0.02) 14.43 (0.17)

500 G 0.10 (0.00) 0.27 (0.01) 0.68 (0.02)
R 0.38 (0.00) 0.27 (0.01) 1.60 (0.01)
I 0.020 0.12 (0.00) 0.30 (0.01) 0.84 (0.02)
If 0.020 (0.000) 0.13 (0.00) 0.28 (0.01) 0.80 (0.02)
Te 0.09 (0.00) 0.43 (0.01) 2.38 (0.07)
Tf 0.14 (0.00) 0.43 (0.01) 2.59 (0.04)
N 0.31 (0.00) 1.06 (0.01) 14.00 (0.10)
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Table 3 Average misclassification percentages for “inside noise”.The components’ average misclassification
percentage is the average percentage of points wrongly assigned to that component. Percentages are computed
with respect ton. Standard errors are given in brackets.

n Method Global Component
Noise 2 3 4

50 G 21.04 (1.82) 15.92 1.04 2.14 1.94
R 15.48 (1.62) 12.23 0.52 1.36 1.36
I 10.81 (1.39) 3.27 0.74 3.40 3.40
If 10.55 (1.37) 3.40 1.07 3.43 2.65
Te 13.18 (1.51) 3.43 2.11 4.56 3.08
Tf 14.07 (1.56) 6.81 1.85 3.05 2.36
N 13.22 (1.51) 0.00 2.17 6.37 4.68

200 G 6.91 (1.13) 5.33 0.09 0.29 1.20
R 9.05 (1.28) 7.66 0.00 0.03 1.36
I 5.24 (1.00) 2.91 0.02 0.20 2.11
If 5.65 (1.03) 3.14 0.02 0.21 2.27
Te 8.41 (1.24) 3.20 0.04 2.18 2.99
Tf 8.76 (1.26) 5.88 0.04 0.56 2.28
N 10.96 (1.40) 0.00 0.06 5.43 5.47

500 G 5.27 (1.00) 3.87 0.06 0.14 1.20
R 7.33 (1.17) 6.00 0.00 0.00 1.33
I 4.62 (0.94) 1.08 0.02 0.06 3.47
If 4.50 (0.93) 2.19 0.01 0.01 2.28
Te 6.97 (1.14) 3.18 0.00 1.18 2.61
Tf 7.78 (1.20) 5.53 0.00 0.10 2.15
N 10.76 (1.39) 0.00 0.02 5.65 5.09

Table 4 Upper-trimmed means of classes of parameters for “inside noise”. For the If-method and I-method
we also report the average value for the improper densityc. Standard errors are given in brackets.

n Method c dπ dµ dv

50 G 0.41 (0.01) 2.24 (0.14) 2.47 (0.07)
R 0.42 (0.01) 1.44 (0.14) 2.35 (0.04)
I 0.024 0.25 (0.01) 1.46 (0.10) 3.03 (0.20)
If 0.016 (0.001) 0.25 (0.01) 1.30 (0.08) 3.05 (0.24)
Te 0.20 (0.00) 1.56 (0.08) 5.24 (0.27)
Tf 0.18 (0.00) 1.30 (0.06) 3.66 (0.20)
N 0.29 (0.00) 1.80 (0.08) 8.11 (0.31)

200 G 0.22 (0.00) 0.48 (0.01) 1.15 (0.03)
R 0.34 (0.00) 0.50 (0.01) 1.43 (0.02)
I 0.024 0.15 (0.00) 0.72 (0.02) 2.05 (0.12)
If 0.026 (0.000) 0.18 (0.00) 0.54 (0.01) 1.28 (0.03)
Te 0.11 (0.00) 0.75 (0.02) 2.55 (0.14)
Tf 0.12 (0.00) 0.57 (0.01) 1.55 (0.04)
N 0.24 (0.00) 1.38 (0.02) 8.50 (0.20)

500 G 0.18 (0.00) 0.33 (0.01) 0.88 (0.02)
R 0.31 (0.00) 0.33 (0.01) 1.20 (0.01)
I 0.024 0.11 (0.00) 0.45 (0.01) 1.09 (0.03)
If 0.026 (0.000) 0.14 (0.00) 0.39 (0.01) 0.99 (0.02)
Te 0.07 (0.00) 0.49 (0.01) 1.53 (0.08)
Tf 0.10 (0.00) 0.39 (0.01) 1.24 (0.02)
N 0.24 (0.00) 1.30 (0.01) 9.10 (0.17)
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Table 5 Average misclassification percentages for “wide noise”. The components’ average misclassification
percentage is the average percentage of points wrongly assigned to that component. Percentages are computed
with respect ton. Standard errors are given in brackets.

n Method Global Component
Noise 2 3

50 G 31.89 (2.08) 25.35 3.78 2.76
R 15.04 (1.60) 10.47 2.42 2.15
I 8.28 (1.23) 0.70 4.19 3.39
If 9.54 (1.31) 2.34 3.98 3.21
Te 9.70 (1.32) 3.77 3.33 2.61
Tf 12.05 (1.46) 7.05 2.75 2.26
N 10.44 (1.37) 0.00 5.41 5.02

200 G 8.96 (1.28) 2.54 3.44 2.98
R 7.99 (1.21) 1.72 3.35 2.93
I 7.70 (1.19) 0.44 3.88 3.38
If 8.29 (1.23) 1.25 3.79 3.26
Te 9.28 (1.30) 3.96 2.89 2.43
Tf 11.02 (1.40) 6.29 2.54 2.19
N 10.44 (1.37) 0.00 5.21 5.23

500 G 7.50 (1.18) 0.94 3.43 3.13
R 7.49 (1.18) 0.94 3.43 3.13
I 7.49 (1.18) 0.33 3.76 3.40
If 7.74 (1.20) 0.65 3.72 3.37
Te 9.12 (1.29) 3.98 2.75 2.39
Tf 10.81 (1.39) 6.19 2.45 2.17
N 10.35 (1.36) 0.00 5.14 5.21

Table 6 Upper-trimmed means of classes of parameters for“wide noise”. For the If-method and I-method we
also report the average value for the improper densityc. Standard errors are given in brackets.

n Method c dπ dµ dv

50 G 0.49 (0.01) 1.41 (0.09) 1.97 (0.06)
R 0.33 (0.01) 0.49 (0.01) 1.32 (0.03)
I 0.043 0.17 (0.00) 0.45 (0.01) 1.06 (0.03)
If 0.025 (0.001) 0.20 (0.00) 0.47 (0.01) 1.18 (0.03)
Te 0.13 (0.00) 0.46 (0.01) 1.06 (0.03)
Tf 0.13 (0.00) 0.48 (0.01) 1.22 (0.02)
N 0.23 (0.00) 0.50 (0.01) 2.06 (0.07)

200 G 0.11 (0.00) 0.23 (0.01) 0.55 (0.02)
R 0.10 (0.00) 0.22 (0.01) 0.51 (0.01)
I 0.043 0.09 (0.00) 0.22 (0.01) 0.53 (0.01)
If 0.035 (0.001) 0.12 (0.00) 0.22 (0.01) 0.65 (0.02)
Te 0.07 (0.00) 0.23 (0.01) 0.69 (0.01)
Tf 0.07 (0.00) 0.23 (0.01) 0.92 (0.02)
N 0.20 (0.00) 0.34 (0.01) 2.04 (0.04)

500 G 0.06 (0.00) 0.14 (0.00) 0.32 (0.01)
R 0.06 (0.00) 0.14 (0.00) 0.32 (0.01)
I 0.043 0.06 (0.00) 0.14 (0.00) 0.33 (0.01)
If 0.037 (0.001) 0.08 (0.00) 0.15 (0.00) 0.40 (0.01)
Te 0.05 (0.00) 0.15 (0.00) 0.63 (0.01)
Tf 0.05 (0.00) 0.15 (0.00) 0.92 (0.01)
N 0.20 (0.00) 0.31 (0.01) 2.04 (0.02)
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Table 7 Average misclassification percentages for the “outlier process”. The components’ average misclassi-
fication percentage is the average percentage of points wrongly assigned to that component. Percentages are
computed with respect ton. Standard errors are given in brackets.

n Method Global Component
Noise 2 3

50 G 31.10 (2.07) 24.50 4.06 2.53
R 3.63 (0.84) 0.42 1.53 1.68
I 3.33 (0.80) 0.08 1.62 1.62
If 5.13 (0.99) 2.13 1.44 1.56
Te 6.98 (1.14) 3.60 0.42 2.96
Tf 9.50 (1.31) 5.44 1.73 2.34
N 25.67 (1.95) 0.00 10.76 14.90

200 G 3.39 (0.81) 0.88 1.05 1.45
R 2.61 (0.71) 0.10 1.03 1.47
I 2.52 (0.70) 0.02 1.03 1.46
If 3.22 (0.79) 0.73 1.02 1.47
Te 7.23 (1.16) 5.63 0.64 0.97
Tf 9.46 (1.31) 8.12 0.50 0.84
N 22.05 (1.85) 0.00 0.10 21.95

500 G 2.43 (0.69) 0.11 1.03 1.29
R 2.35 (0.68) 0.03 1.02 1.30
I 2.33 (0.67) 0.01 1.03 1.30
If 2.68 (0.72) 0.36 1.02 1.30
Te 6.92 (1.14) 5.35 0.76 0.81
Tf 9.88 (1.33) 8.83 0.41 0.64
N 14.35 (1.57) 0.00 0.01 14.34

Table 8 Upper-trimmed means of classes of parameters for the“outlier process”. For the If-method and I-
method we also report the average value for the improper density c. Standard errors are given in brackets.

n Method c dπ dµ dv

50 G 0.38 (0.02) 6.95 (0.46) 1.24 (0.05)
R 0.09 (0.00) 0.46 (0.01) 0.91 (0.02)
I 0.015 0.06 (0.00) 0.46 (0.01) 0.88 (0.02)
If 0.019 (0.002) 0.12 (0.01) 0.47 (0.01) 0.97 (0.02)
Te 0.11 (0.00) 0.49 (0.01) 1.17 (0.02)
Tf 0.16 (0.00) 0.53 (0.02) 1.38 (0.03)
N 0.56 (0.01) 3.35 (0.41) 19.92 (0.41)

200 G 0.03 (0.00) 0.22 (0.01) 0.43 (0.01)
R 0.04 (0.00) 0.22 (0.01) 0.43 (0.01)
I 0.015 0.03 (0.00) 0.22 (0.01) 0.42 (0.01)
If 0.025 (0.002) 0.06 (0.00) 0.22 (0.01) 0.48 (0.01)
Te 0.11 (0.00) 0.24 (0.01) 0.87 (0.01)
Tf 0.16 (0.00) 0.24 (0.01) 1.08 (0.01)
N 0.53 (0.00) 1.71 (0.01) 10.95 (0.04)

500 G 0.02 (0.00) 0.14 (0.00) 0.27 (0.01)
R 0.02 (0.00) 0.14 (0.00) 0.27 (0.01)
I 0.015 0.02 (0.00) 0.14 (0.00) 0.27 (0.01)
If 0.027 (0.002) 0.04 (0.00) 0.14 (0.00) 0.31 (0.01)
Te 0.10 (0.00) 0.15 (0.00) 0.83 (0.01)
Tf 0.17 (0.00) 0.16 (0.00) 1.14 (0.01)
N 0.36 (0.00) 1.45 (0.02) 6.21 (0.05)
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Table 9 Average misclassification percentages for “t-noise”. The components’ average misclassification per-
centage is the average percentage of points wrongly assigned to that component. Percentages are computed
with respect ton. Standard errors are given in brackets.

n Method Global Component
Noise 2 3 4

50 G 25.21 (1.94) 16.70 3.18 3.21 2.12
R 12.81 (1.49) 8.50 1.67 1.89 0.75
I 11.00 (1.40) 4.12 2.63 2.94 1.30
If 10.55 (1.37) 1.36 3.83 3.31 2.05
Te 8.52 (1.25) 1.91 2.51 2.68 1.43
Tf 9.24 (1.30) 4.66 1.44 2.13 1.01
N 12.24 (1.47) 0.00 5.48 3.90 2.85

200 G 10.95 (1.40) 4.96 2.70 1.71 1.58
R 6.53 (1.10) 1.82 2.40 1.27 1.05
I 5.93 (1.06) 2.15 2.03 0.94 0.82
If 7.45 (1.17) 0.79 3.15 1.93 1.58
Te 4.30 (0.91) 0.88 1.42 1.18 0.82
Tf 4.71 (0.95) 3.30 0.54 0.65 0.23
N 10.44 (1.37) 0.00 5.53 2.40 2.51

500 G 8.17 (1.22) 0.46 3.58 2.30 1.82
R 7.74 (1.20) 0.14 3.65 2.27 1.67
I 4.49 (0.93) 1.76 1.70 0.57 0.45
If 6.82 (1.13) 0.24 3.21 1.90 1.47
Te 3.18 (0.78) 0.43 1.20 1.00 0.54
Tf 3.76 (0.85) 2.72 0.41 0.52 0.11
N 10.58 (1.38) 0.00 5.64 2.39 2.55

Table 10 Upper-trimmed means of classes of parameters for “t-noise”. For the If-method and I-method we
also report the average value for the improper densityc. Standard errors are given in brackets.

n Method c dπ dµ dv

50 G 0.35 (0.01) 1.01 (0.07) 1.29 (0.04)
R 0.30 (0.01) 0.39 (0.02) 0.78 (0.03)
I 0.056 0.21 (0.01) 0.37 (0.02) 0.88 (0.03)
If 0.016 (0.001) 0.18 (0.01) 0.38 (0.01) 1.19 (0.05)
Te 0.11 (0.01) 0.33 (0.01) 0.79 (0.04)
Tf 0.11 (0.00) 0.34 (0.01) 0.65 (0.03)
N 0.21 (0.00) 0.43 (0.01) 1.78 (0.07)

200 G 0.16 (0.00) 0.21 (0.01) 0.84 (0.03)
R 0.14 (0.01) 0.16 (0.00) 0.52 (0.02)
I 0.056 0.16 (0.00) 0.16 (0.00) 0.44 (0.01)
If 0.041 (0.001) 0.11 (0.00) 0.17 (0.00) 0.79 (0.02)
Te 0.06 (0.00) 0.14 (0.00) 0.35 (0.01)
Tf 0.06 (0.00) 0.15 (0.00) 0.33 (0.01)
N 0.20 (0.00) 0.21 (0.01) 1.64 (0.02)

500 G 0.10 (0.00) 0.12 (0.00) 0.91 (0.02)
R 0.09 (0.00) 0.11 (0.00) 0.85 (0.02)
I 0.056 0.18 (0.00) 0.09 (0.00) 0.30 (0.01)
If 0.048 (0.000) 0.07 (0.00) 0.11 (0.00) 0.72 (0.02)
Te 0.05 (0.00) 0.09 (0.00) 0.24 (0.01)
Tf 0.04 (0.00) 0.10 (0.00) 0.26 (0.01)
N 0.21 (0.00) 0.15 (0.00) 1.78 (0.02)
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Table 11 Average misclassification percentages for “Gaussian mixture”. The components’ average misclas-
sification percentage is the average percentage of points wrongly assigned to that component. Percentages are
computed with respect ton. Standard errors are given in brackets.

n Method Global Component
Noise 2 3 4

50 G 28.05 (2.01) 24.88 0.54 1.54 1.09
R 24.10 (1.91) 22.78 0.32 0.85 0.16
I 3.06 (0.77) 0.00 0.76 1.80 0.50
If 4.39 (0.92) 1.44 0.72 1.85 0.39
Te 6.86 (1.13) 4.56 0.54 1.46 0.30
Tf 11.88 (1.45) 10.15 0.42 1.15 0.15
N 2.99 (0.76) 0.00 0.76 1.74 0.50

200 G 17.63 (1.70) 16.36 0.46 0.64 0.17
R 10.82 (1.39) 10.09 0.32 0.35 0.05
I 1.83 (0.60) 0.00 0.67 0.94 0.23
If 2.92 (0.75) 1.21 0.62 0.90 0.19
Te 5.65 (1.03) 4.55 0.39 0.64 0.07
Tf 10.47 (1.37) 9.84 0.20 0.40 0.04
N 1.83 (0.60) 0.00 0.67 0.93 0.23

500 G 6.87 (1.13) 5.73 0.48 0.51 0.15
R 4.32 (0.91) 3.09 0.55 0.57 0.12
I 1.65 (0.57) 0.00 0.67 0.76 0.22
If 2.09 (0.64) 0.49 0.65 0.75 0.21
Te 5.43 (1.01) 4.50 0.38 0.48 0.07
Tf 10.22 (1.35) 9.77 0.16 0.26 0.03
N 1.66 (0.57) 0.00 0.66 0.76 0.23

Table 12 Upper-trimmed means of classes of parameters for “Gaussianmixture”. For the If-method and
I-method we also report the average value for the improper density c. Standard errors are given in brackets.

n Method c dπ dµ dv

50 G 0.57 (0.01) 1.41 (0.05) 2.64 (0.04)
R 0.65 (0.01) 1.00 (0.03) 2.74 (0.04)
I 0.001 0.15 (0.00) 0.78 (0.02) 1.76 (0.05)
If 0.006 (0.001) 0.18 (0.01) 0.81 (0.02) 1.90 (0.05)
Te 0.19 (0.00) 0.83 (0.02) 1.97 (0.04)
Tf 0.27 (0.00) 0.89 (0.02) 2.29 (0.04)
N 0.15 (0.00) 0.78 (0.02) 1.76 (0.05)

200 G 0.39 (0.01) 0.66 (0.02) 1.60 (0.03)
R 0.41 (0.01) 0.47 (0.01) 1.56 (0.03)
I 0.001 0.08 (0.00) 0.42 (0.01) 0.83 (0.02)
If 0.019 (0.001) 0.12 (0.00) 0.42 (0.01) 0.94 (0.02)
Te 0.13 (0.00) 0.44 (0.01) 1.29 (0.02)
Tf 0.21 (0.00) 0.46 (0.01) 1.81 (0.02)
N 0.08 (0.00) 0.41 (0.01) 0.82 (0.02)

500 G 0.22 (0.00) 0.35 (0.01) 0.96 (0.02)
R 0.22 (0.00) 0.27 (0.01) 0.89 (0.02)
I 0.001 0.05 (0.00) 0.25 (0.01) 0.53 (0.01)
If 0.020 (0.001) 0.08 (0.00) 0.26 (0.01) 0.60 (0.01)
Te 0.10 (0.00) 0.27 (0.01) 1.14 (0.01)
Tf 0.20 (0.00) 0.29 (0.01) 1.79 (0.02)
N 0.05 (0.00) 0.25 (0.01) 0.53 (0.01)
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Table 13 Percentage of estimation of mean parameters of a method in upper 1% of distancesdµ from true
means aggregated over all methods for givenn and model (these sum up to 7 for everyn/model-combination
because there are seven methods).

Model n Method
G R I If Te Tf N

Side noise 50 1.6 0.4 0.2 1.2 0.8 1.4 1.4
200 0.8 2.0 1.6 1.0 0.8 0.2 0.6
500 0.0 0.0 0.2 0.0 0.4 0.2 6.2

Inside noise 50 1.4 0.6 0.8 1.2 0.6 1.2 1.2
200 3.4 1.8 0.8 0.4 0.2 0.2 0.2
500 0.8 0.0 0.4 0.0 2.2 0.0 3.6

Wide noise 50 7.0 0.0 0.0 0.0 0.0 0.0 0.0
200 2.0 0.2 0.2 0.2 0.4 0.4 3.6
500 0.0 0.0 0.0 0.0 0.0 0.0 7.0

Outlier 50 5.2 0.0 0.0 0.0 0.0 0.0 1.8
200 1.6 0.0 0.0 0.0 0.0 0.0 5.4
500 0.2 0.0 0.0 0.0 0.0 0.0 6.8

t-noise 50 3.0 0.6 0.4 0.4 0.4 0.6 1.6
200 6.2 0.0 0.0 0.0 0.0 0.0 0.8
500 1.8 1.0 0.0 0.6 0.0 0.0 3.6

Gaussian 50 4.0 1.2 0.4 0.4 0.2 0.4 0.4
200 7.0 0.0 0.0 0.0 0.0 0.0 0.0
500 4.2 0.4 0.4 0.4 0.4 1.0 0.2


