
 

Project Number 260041

SUPPORTING ACTION

EnRiMa
Energy Efficiency and Risk Management

in Public Buildings

Deliverable D7.3: Advisory Report on the Potential

Capacity Expansion Policy

Start date of the project: 01/10/2010

Duration: 42 months

Organisation name of lead contractor for this deliverable: UCL

Contributing authors: UCL, SU, CET, SINTEF

Revision: 31 March 2014

 

Project funded by the European Commission within the Seventh Framework Programme (2007-2013) 

Dissemination Level  

PU Public X 

PP Restricted to other programme participants (including the Commission Services)  

RE Restricted to a group specified by the consortium (including the Commission Services)  

CO Confidential, only for members of the consortium (including the Commission Services)  



Contents

List of Acronyms 3

Executive Summary 4

1 Introduction 5

2 Regulatory Settings 9

3 Strategic Model Overview 10

4 Numerical Results 12
4.1 FASAD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.2 Pinkafeld . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

5 Conclusions 18

Acknowledgements 18

References 20

Appendix A Strategic Model Formulation 21
A.1 Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

A.1.1 Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
A.1.2 Subsets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
A.1.3 Conditional sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
A.1.4 Constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
A.1.5 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
A.1.6 Decision Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

A.2 Strategic Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
A.2.1 Strategic Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
A.2.2 Operational Constraints . . . . . . . . . . . . . . . . . . . . . . . . . 32
A.2.3 Strategic-Operational Link Constraints . . . . . . . . . . . . . . . . . 33
A.2.4 Computation Constraints . . . . . . . . . . . . . . . . . . . . . . . . 35
A.2.5 Aggregation Constraints . . . . . . . . . . . . . . . . . . . . . . . . . 37
A.2.6 Risk Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
A.2.7 Mean-Risk Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . 39
A.2.8 Objective Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Appendix B Input Parameters of Numerical Examples 41
B.1 FASAD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
B.2 Pinkafeld . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Appendix C Epidemic Model for Technology Diffusion 43

1



List of Figures

1 EnRiMa DSS Schema . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2 Scenario Generation for the EnRiMa Strategic DSS (Kaut et al., 2014) . . . 7
3 Conditional Value-at-Risk Illustration . . . . . . . . . . . . . . . . . . . . . . 7
4 Energy Flows in the EnRiMa Strategic DSS . . . . . . . . . . . . . . . . . . 8
5 Adoption Propensity as a Function of Percentage Savings on the Energy Bill 44
6 Cumulative and Incremental Floor Space Adoption of DSS in EU15 with 10%

Energy Bill Savings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
7 Cumulative and Incremental Floor Space Adoption of DSS in EU15 with 20%

Energy Bill Savings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

List of Tables

1 Summary of Results for FASAD: Expected Cost Minimisation Framework . . 14
2 Summary of Results for FASAD: Expected CO2 Emissions Minimisation Frame-

work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3 Summary of Results for FASAD: Risk Minimisation Framework . . . . . . . 15
4 Summary of Results for Pinkafeld: Expected Cost Minimisation Framework . 16
5 Summary of Results for Pinkafeld: Expected CO2 Emissions Minimisation

Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
6 Summary of Results for Pinkafeld: Risk Minimisation Framework . . . . . . 17
7 Energy-Generation Technology Parameters for FASAD . . . . . . . . . . . . 41
8 Thermal Storage Parameters for FASAD . . . . . . . . . . . . . . . . . . . . 41
9 Energy Tariff Parameters for FASAD . . . . . . . . . . . . . . . . . . . . . . 41
10 Annual Growth Rate of FASAD’s Random Parameters . . . . . . . . . . . . 42
11 Energy-Generation Technology Parameters for Pinkafeld . . . . . . . . . . . 42
12 Thermal Storage Parameters for Pinkafeld . . . . . . . . . . . . . . . . . . . 42
13 Energy Tariff Parameters for Pinkafeld . . . . . . . . . . . . . . . . . . . . . 42
14 Annual Growth Rate of Pinkafeld’s Random Parameters . . . . . . . . . . . 42

2



List of Acronyms

BMS Building energy management system

CHP Combined heat and power

CVaR Conditional value-at-risk

DER Distributed energy resources

DER-CAM DER Customer Adoption Model

DG Distributed generation

DoW Description of Work

DSS Decision support system

DV Decision variable

EnRiMa Energy Efficiency and Risk Management in Public Buildings

EPBD Energy Performance of Buildings Directive

EU European Union

FASAD Fundación Asturiana de Atención y Protección a Personas con Discapacidades y/o
Dependencias

FiT Feed-in tariff

HVAC Heating, ventilation, and air conditioning

NG Natural gas

PV Photovoltaic

ST Solar thermal

ToU Time of use

VaR Value-at-risk

3



Executive Summary

In order to reduce energy consumption by public buildings, both short- and long-term de-

cision support is necessary. In previous work such as Deliverables D2.2 and D7.1, we have

demonstrated the powerful impact that smarter operations of installed equipment can have

on energy consumption, e.g., delivering 10% savings or more. Complementary to this ap-

proach is a long-term one based on strategic decisions, viz., investment in new technologies,

retrofit of the building shell, and decommissioning of installed technologies. Towards this

end, the stochastic optimisation framework developed in Deliverable D4.2 and refined in

D4.3 provides long-term decision support. An innovative feature of this model is the capa-

bility to handle not only uncertainty in energy prices and technology costs (thanks to the

scenario generation methodology from Deliverable D3.2) but also risk management. In this

deliverable, we synthesise these modelling developments to obtain managerial and policy in-

sights about the extent of reductions in energy consumption, costs, CO2 emissions, and risk

achievable at two EU test sites (real buildings in Austria and Spain). Relative to the “do

nothing” case of persisting with the current building configuration and installed equipment,

we find that an optimal long-term strategy for the Spanish site, FASAD, is to invest in new

CHP, PV, and solar thermal equipment over the next sixteen years. This will reduce ex-

pected costs by 17% (or, e0.5 million) over this time horizon and deliver 35% reductions in

expected primary energy consumption and CO2 emissions. By reducing exposure to volatile

energy prices, the strategy also gives a nearly 20% reduction in risk. For the Austrian site,

Pinkafeld, similar patterns in the metrics are observed. However, because of the site’s more

recent retrofit, its existing energy efficiency is high, and thus, the extent of savings is slightly

lower than for FASAD. Through this framework, alternative policy settings may also be

explored (“what-if” analysis), e.g., more stringent regulation on energy efficiency. Conse-

quently, tradeoffs among competing objectives and the effectiveness of proposed regulation

may be assessed via this model, thereby contributing to the project’s recovery-of-investment

analysis as part of Operational Objective O6 in the Description of Work. A preliminary

market analysis using an epidemic model for technology diffusion is also included and serves

as a basis for the development of an exploitation plan in Deliverable D7.4.
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1 Introduction

The overall objective of the “Energy Efficiency and Risk Management in Public Buildings”

(EnRiMa) project is to improve energy efficiency and to enable risk management in public

buildings. Its expected outcomes concerning Objective EeB.ICT.2010.10-2a (ICT for energy-

efficient buildings and spaces of public use) are as follows:

1. Contribution to the opening of a market for ICT-based customised solutions integrating

numerous products from different vendors and offering services from design of integrated

systems to the operation and maintenance phases.

2. Establishment of a collaboration framework between the ICT and buildings and con-

struction sectors aimed at exploiting opportunities for the development of ICT-based

systems in compliance with the Energy Performance of Buildings Directive (EPBD).

3. Radical reduction of energy consumption, in line with the policy framework for facili-

tating the transition to an energy-efficient, low-carbon economy through ICT.

Relevant to this deliverable is item 3, which pertains to Operational Objective O6 of the

DoW, i.e., a recovery-of-investment analysis that quantifies reductions in energy consumption

via ICT-enabled decision support at two real buildings. In particular, we focus here on

Task 7.5 of the DoW: to use the EnRiMa decision support system (DSS) in advisory mode

for “what-if” analysis to deliver policymaking insights concerning equipment adoption and

energy-efficiency retrofits given future uncertainties in energy prices and technology costs.

Towards this end, the EnRiMa project has devised two DSS modules: an operational one

and a strategic one (Fig. 1). The former is supposed to focus on short-term intra-day deci-

sions on equipment operations and energy sourcing, e.g., how to run the installed radiators

and heating, ventilation, and air condition (HVAC) systems optimally; see Deliverable D2.2

(UCL et al., 2012). At the lower level are the thermodynamic constraints on the equipment

and the building physics, which are described in further detail in Groissböck et al. (2014)

and illustrated via numerical examples. In particular, we show that simply by operating

the installed equipment in a smarter way, it is possible to realise reductions in energy con-

sumption for heating of at least 10%. Moreover, in Deliverable D7.1 (UCL et al., 2013),

we presented an integrated operational model that fuses the lower-level operations of the

conventional radiator and HVAC system with the possibilities to change the sourcing of the

energy, viz., suppliers and on-site generation.

By contrast, the focus of this deliverable is the strategic DSS that deals with long-term

decisions concerning investment in new technologies, decommissioning of old equipment,

and retrofitting the building shell. Unlike the operational DSS, all energy demands in the

strategic DSS are treated as parameters, and their seasonal variations are incorporated as
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Figure 1: EnRiMa DSS Schema

profiles, e.g., different seasons or day types with appropriate weights. Thus, the strategic DSS

comprises the upper-level operational constraints and decision variables (DVs) along with

strategic decision variables and constraints, i.e., it contains a simplified version of the oper-

ational model. Crucially, since strategic decisions take place over a time horizon of several

years or even decades, uncertainty in energy prices and technology costs cannot be ignored.

In fact, given the deregulation of the energy sector and incentives for new technology devel-

opment, such parameters are increasingly in flux. Exposure to such fluctuations may pose

risk for building managers contemplating strategic decision making. Indeed, without ade-

quate decision support, more risk-averse building owners may be deterred from undertaking

decisions that improve energy sustainability because of the perceived downsides.

Unlike extant models for long-term decision analysis of technology investment at the

building level (King and Morgan, 2007; Marnay et al., 2008), we endeavour to address not

only uncertainty but also risk management. For example, Maribu and Fleten (2008) allow for

uncertainty in both electricity and natural gas prices but do not treat risk endogenously. By

contrast, our approach not only generates scenarios (Kaut et al., 2014) for energy prices and

technology costs (Fig. 2) but also includes a coherent risk measure, the conditional value-at-

risk (CVaR, Rockafellar and Uryasev (2002)), in the objective function. The scenario tree

in Fig. 2 has red nodes corresponding to stages at which strategic decisions are made. Since

investment decisions require information about the subsequent performance of technologies,
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each strategic node encapsulates a simplified operational model (represented by blue nodes).

Each operational profile models energy production and consumption at each point in time

for different seasons or day types. Thus, although energy balances are maintained at a high

level, energy flows inside each subsystem, e.g., conventional radiators or HVAC systems, are

neglected. Indeed, these are dealt with in detail by the dedicated operational model for

short-term optimisation.

With the CVaR, the decision maker can specify the level of exposure to risk to control

for extremely high costs by minimising the expected cost given that the cost is in the top

(1 − α) × 100% of outcomes (Fig. 3). The confidence level, α, is typically chosen to be

0.95 or 0.99. Given the scenarios, energy-balance relations may be specified at each point in

time (Fig. 4) to formulate a stochastic programming model for risk-averse decision making

(Conejo et al., 2010). An overview of EnRiMa’s strategic approach can be found in Cano

et al. (2014). Deliverable D4.6 (URJC et al., 2014) contains the complete mathematical

formulation of EnRiMa’s strategic model.

 

Figure 2: Scenario Generation for the EnRiMa Strategic DSS (Kaut et al., 2014)

Cost

Figure 3: Conditional Value-at-Risk Illustration
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Figure 4: Energy Flows in the EnRiMa Strategic DSS

In order to fulfil the requirements of Task 7.5 and to contribute to the attainment of

Operational Objective O6, this deliverable implements the EnRiMa strategic DSS for vari-

ous regulatory settings in order to gain insights about the tradeoffs between expected cost

reduction and CO2 emissions mitigation or expected cost reduction and risk management,

for example. These runs are performed for likely regulatory settings and implemented for the

two EnRiMa test buildings: (i) Centro de Adultos La Arboleya (Siero, Spain), which belongs

to the Fundación Asturiana de Atención y Protección a Personas con Discapacidades y/o

Dependencias (FASAD), and (ii) Fachhochschule Burgenland’s Pinkafeld campus, which is

located in Pinkafeld, Austria. Hence, in contrast to the short-term focus of Deliverable D7.1

(UCL et al., 2013), the findings of this deliverable pertain to the long-term benefits that are

possible for public buildings from using ICT-enabled DSS under various regulatory settings.

We demonstrate that, relative to the “do nothing” case of maintaining the status quo

building configuration and installed equipment, expected reductions in energy consumption

of 35% are possible at FASAD from using the strategic DSS. This is achieved by installing

combined heat and power (CHP), photovoltaic (PV), and solar thermal (ST) equipment to

reduce exposure to increasingly high and volatile energy prices. At Pinkafeld, investing in

PV and ST equipment reduces expected primary energy consumption by 16%. At both

sites, further energy savings can be achieved by installing energy storage equipment. By

specifying alternative objective functions, higher reductions in expected CO2 emissions and

risk may be achieved, albeit by trading off some of the economic benefits. In a similar vein,

more stringent regulation stipulating a significant reduction in energy consumption relative

to the “do nothing” case may be attained at a much higher expected cost. In summary,

implementation of the strategic model reveals how to reduce the expected cost (by 17%

at FASAD and 5% at Pinkafeld) of meeting energy needs along with the expected CO2

emissions, expected primary energy consumption, and the financial risk.

The structure of this report is as follows:
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• Section 2 describes the regulatory settings under which the EnRiMa strategic DSS has

been implemented.

• Section 3 presents an overview of the strategic optimisation model.

• Section 4 provides the results of numerical examples for each site after careful calibration

with observed data in order to deliver policy insights.

• Section 5 summarises this report’s findings and relates them to the objectives set forth

in the DoW.

Appendices A, B, and C provide the mathematical formulation of the strategic optimisation

model together with its nomenclature, parameter values used in the numerical examples,

and a procedure for predicting technology diffusion, respectively.

2 Regulatory Settings

In order to gain policy insights about capacity expansion under uncertainty at public build-

ings, we first need to calibrate the EnRiMa strategic DSS. This is done by running the

model for just the current year with all strategic DVs fixed. The resulting output on en-

ergy consumption, production, purchases, and sales should match the observed values from

Deliverable D1.1 (HCE et al., 2011).

After this calibration step, we generate scenarios for energy prices and technology costs

over the specified time horizon. We use both time-series data and expert opinion to set

suitable parameter values. On the basis of these scenarios, the EnRiMa strategic DSS is run

with all investment, decommissioning, and retrofitting decisions fixed to capture the future

operations of existing buildings without any decision support. Metrics such as expected

costs, primary energy consumption, and CO2 emissions will be calculated along with the

CVaR for cost. Such a run is subsequently referred to as the “do nothing” one and serves as

the basis for comparison of the benefits of the EnRiMa strategic DSS.

Using the same generated scenarios, we then implement the EnRiMa strategic DSS with

all strategic decision variables, e.g., investment, decommissioning, and retrofitting, enabled.

For this baseline “invest” setting, the calculated metrics may be compared with those from

the “do nothing” one in order to estimate the extent of the benefits possible. For further

policy insights, e.g., in terms of understanding how new measures may enable further sus-

tainability gains, site-specific settings are identified in consultation with local experts. Thus,

for FASAD, the regulatory and market settings under consideration are the following:

• Setting 1 (baseline): flat energy tariff rates (0.1426 e/kWhe for electricity purchases

and 0.0523 e/kWh for natural gas purchases); electricity feed-in tariff1 (FiT) for CHP
1Source: Special Scheme for Electricity Generation with Renewable Energy Sources (BOE, 2013).
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of 0.1721 e/kWhe.

• Setting 2: revocation of the FiT.

• Setting 3: a regulatory requirement that the primary energy consumption be reduced

by 50% relative to the “do nothing” case.

• Setting 4: change from a flat to a time-of-use (ToU) electricity purchasing tariff (whose

rate is 0.1522 e/kWhe between 7:00 and 14:00 and between 17:00 and 20:00, 0.1438

e/kWhe between 14:00 and 17:00, and 0.1336 e/kWhe otherwise).

For Pinkafeld, we examine the following regulatory and market settings:

• Setting 1 (baseline): flat energy tariff rates (0.15 e/kWhe for electricity purchases, 0.08

e/kWhe for electricity sales, and 0.08 e/kWh for district heat purchases).

• Setting 2: availability of a subsidy of 200 e/kWp and a FiT for new PV installations2

(with a rate of 0.125 e/kWhe).

• Setting 3: regulatory requirement that imposes 30% savings in primary energy con-

sumption relative to the “do nothing” case.

• Setting 4: change from a flat to a ToU electricity purchasing tariff3 (whose rate is 0.16

e/kWhe between 7:00 and 14:00 and between 17:00 and 20:00, 0.15 e/kWhe between

14:00 and 17:00, and 0.14 e/kWhe otherwise).

3 Strategic Model Overview

In this section, we give a brief overview of the EnRiMa strategic optimisation model. Its

complete mathematical formulation is presented in Deliverable D4.6 (URJC et al., 2014).

To keep this deliverable self-contained, the formulation is repeated in Appendix A.

The strategic DSS is a dynamic optimisation model for the long-term management of a

public building under uncertainty. The model determines an optimal policy for investment

in new technologies and decommissioning of old equipment, given that the building’s en-

ergy demands must be met uninterruptedly over the planning horizon. Thus, along with

strategic DVs and constraints on investments, the model comprises operational DVs and

constraints that deal with energy production, storage, and procurement in order to evaluate

the performance of the strategic decisions (Fig. 1). In the strategic model, the planning

2Source: Ökostrom-Einspeisetarifverordnung 2012 (BKA, 2013).
3Source: Gewerbestrom SMART tariff from Energie AG (http://www.energieag.at/eag_at/resources/

339536908088248262_912154373613149818_jangqJY9.pdf). The tariff has been adjusted so that its average hourly rate
is equal to the corresponding flat rate of the baseline setting.
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horizon is partitioned into strategic (long-term) decision periods (e.g., with yearly time res-

olution), each of which accommodates many operational (short-term) decision periods (e.g.,

with hourly time resolution). Strategic decisions are selected at the start of each strategic

period, whereas operational decisions are made during each operational period. To reduce

computational complexity, we assume that strategic periods can be described by a small

set of operational profiles (with assigned probabilities). For instance, the operational pro-

files can be a selection of typical days representing conditions during different seasons and

load periods and of extreme days with particularly high load. Operational DVs and con-

straints for every operational period (e.g., hour) of each of these days are included in the

model. Concretely, the constraints of the strategic model can be divided into the following

categories:

1. Strategic constraints deal with strategic decisions, such as investments and contracting.

These constraints keep track of the installed equipment, impose upper limits on the

number of installed devices, pollution emissions, and investment cost, and guarantee

that only one sales and purchasing tariff is chosen per node and energy type.

2. Operational constraints deal with operational decisions, such as energy trade, gener-

ation, or storage. These include the energy-balance equations, which guarantee that,

for each energy type, the net energy supply must meet the energy demand (less the

energy saved due to passive technologies) in each time period. The net energy supply

consists of the energy produced by energy-generating technologies plus the energy dis-

charged from storage and the energy purchases less the energy used for production or

charging of storage devices and the energy sold. Also part of this constraint category

are the storage balance equations, which keep an inventory of the energy available in

energy-storage equipment.

3. Strategic-operational equations link the operational performance with the strategic

decisions or policies. These constraints ensure that the technologies operate within the

installed capacity limits and according to their availability (e.g., photovoltaic panels

cannot produce electric energy during the night), the energy purchases and sales do not

exceed the volumes stipulated in the signed energy contracts, and that minimum energy

efficiency requirements are satisfied. Moreover, they guarantee that the energy charged,

discharged, and stored into energy-storage devices remains within certain limits dictated

by the infrastructure and chemistry of those devices.

4. Computational equations compute auxiliary variables to simplify the largest equa-

tions. These auxiliary variables may be reused in different equations.

5. Aggregation equations create aggregated values of operational decisions or parameters
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per node. Those values are useful for visualisation and post-analysis purposes.

6. Risk constraints quantify the risk. The CVaR is used as risk measure.

7. Mean-risk constraints compute a weighted average of the expected value and the CVaR

of either the total discounted cost, the total pollution emissions, or the total primary

energy consumption.

In our strategic optimisation model, we consider a mean-risk objective function of either the

total discounted cost, the total pollution emissions, or the total primary energy consumed,

where the total discounted cost is composed of the discounted installation, decommission-

ing, maintenance, energy trading, and technology operation costs. The risk and mean-risk

constraints of the metrics that are not comprised in the objective function are excluded from

the optimisation model. For instance, if the total discounted cost is selected, then the goal is

to minimise a weighted average of the expected value and the CVaR of the total discounted

costs. The risk and mean-risk constraints involving pollution emissions and primary energy

consumption are excluded from the model in this setting.

4 Numerical Results

In order to provide managerial and policy insights about capacity expansion under uncer-

tainty at public buildings, we implement the EnRiMa strategic DSS using data from the

FASAD and Pinkafeld sites. For our numerical experiments, we consider a planning hori-

zon of sixteen years with yearly strategic and hourly operational decision intervals. For

FASAD, monthly operational profiles are used, whereas one operational profile is created for

each month–weekday/weekend combination for Pinkafeld. Discounting is carried out at an

annual rate of 5%.

In order to account for uncertainty in energy prices and technology investment costs

in the strategic model, we approximate the distribution of these random parameters by a

discretisation in the form of a scenario tree that branches at stages 6 and 11 and has a

branching factor of 5. This results in a total of 25 scenarios, which are generated with the

scenario generator presented in Deliverable D3.2 (SINTEF et al., 2012). Historical data are

used to estimate the parameters of the distribution of the energy prices and investment costs;

see Tables 10 and 14 for FASAD’s and Pinkafeld’s parameters, respectively.

For each test site, we run the EnRiMa strategic DSS with all investment and decommis-

sioning decisions first fixed (“do nothing” case) and then enabled (“invest” case). In addition,

we investigate the impact of the regulatory settings described in Section 2 on the optimal

investment solutions. For FASAD, the technologies under consideration are the following:
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• Currently installed: one 1279.1 kW and one 232.6 kW natural gas-fired boiler, and one

5.5 kWe CHP unit.

• Investment options: 5.5 kWe CHP units, 290 kW natural gas-fired boilers, 0.245 kWp

PV panels, and 2.011 kW solar thermal (ST) collectors.

For Pinkafeld, the following equipment is considered:

• Currently installed: one 1.28 kWp PV system and one 79.8 kW HVAC system.

• Investment options: 1.28 kWp PV panels and 1 kW solar thermal collectors.

Moreover, for each site, we extend the “invest” case to include thermal storage as part of

the investment portfolio (“invest incl. storage” case).

The main input parameters used in our numerical experiments are presented in Ap-

pendix B. All optimisation problems are solved via the EnRiMa DSS user interface (proto-

type V1.03) using the Solver Manager presented in Deliverable D4.6 (URJC et al., 2014).

EnRiMa’s strategic model is implemented as a mixed-integer linear program in the General

Algebraic Modeling System (GAMS) and solved using ILOG CPLEX.

4.1 FASAD

The numerical results for FASAD with expected cost minimisation exhibit significant benefits

relative to the “do nothing” situation (Table 1). The “do nothing” case resulted in an

expected discounted cost over 16 years of about e3 million, which may be trimmed by e0.5

million as a result of the strategic model. By investing in CHP technology in conjunction

with PV and solar thermal, it is possible to reduce the expected discounted cost by nearly

20% with 35% savings in expected primary energy consumption and CO2 emissions. Even

the risk, captured by a CVaR of e2.8 million, is reduced by nearly 20%. This means that

the expected discounted cost given that it is in the top 5% of discounted costs is e2.8 million

with the strategic model as opposed to nearly e3.5 million without it. These findings are

robust across all settings (described in Section 2) with the exception of setting 3 in which

primary energy consumption must be reduced by 50% relative to the “do nothing” situation.

While this is certainly possible, viz., by investing in larger DER systems, the higher expected

discounted cost and risk exposure of 30% and 20%, respectively, may not be justifiable for

the building owner. Further gains are possible with the use of thermal storage, whereas

changes to the FiT (setting 2) or inclusion of a ToU tariff (setting 4) make little difference

apart from rendering CHP units less attractive. Nevertheless, this example illustrates the

capability of EnRiMa to provide managerial as well as policy insights.

Besides minimising expected costs, other objectives can also be considered. For example,

Table 2 displays results with the minimisation of expected CO2 emissions. We find that
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Table 1: Summary of Results for FASAD: Expected Cost Minimisation Framework
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technology investment
boiler (kW)
CHP (kW) 11 11 5.5 27.5 5.5
PV (kWp) 97.5 98 88.9 390 98
solar thermal (kW) 1,142.4 1,180.7 1,172.6 5,120.9 1,156.5
thermal storage (kWh) 100

expected discounted cost
cost (ke) 3,046 2,515 2,496 2,536 3,897 2,514
% savings 17.4% 18.1% 16.8% -27.9% 17.5%

expected primary energy consumption
energy consumed (MWh) 40,833 26,681 26,096 26,599 20,417 26,852
% savings 34.7% 36.1% 34.9% 50.0% 34.2%

expected CO2 emissions
emissions (ton) 7,473 4,893 4,785 4,875 3,748 4,921
% savings 34.5% 36.0% 34.8% 49.8% 34.1%

risk
95% CVaR (ke) 3,467 2,824 2,797 2,833 4,145 2,813
% savings 18.5% 19.3% 18.3% -19.6% 18.9%

the best way to achieve higher CO2 emissions reductions is to adopt larger ST systems.

However, relative to the case in Table 1, the expected incremental decrease in CO2 emissions

is only 2%, which may not be enough to offset the slightly higher expected discounted costs

and risk. Finally, in Table 3, a risk-averse building owner’s decision problem is solved by

minimising the 95% CVaR of the discounted cost, i.e., the expected discounted cost given

that the discounted cost is greater than the 95% value-at-risk (VaR). Although CVaR is

slightly lowered as a result of investment, its gain comes at a relatively high discounted

expected cost, i.e., e2.8 million, which is 10% higher than in the baseline “invest” setting of

Table 1.
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Table 2: Summary of Results for FASAD: Expected CO2 Emissions Minimisation Framework
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technology investment
boiler (kW)
CHP (kW) 5.5 5.5 27.5
PV (kWp) 88.4 84.5 86.4 366 88.9
solar thermal (kW) 1,263.1 1,319.4 1,267.2 5,217.4 1,277.2
thermal storage (kWh) 100

expected discounted cost
cost (ke) 3,049 2,537 2,516 2,547 3,909 2,545
% savings 16.8% 17.5% 16.5% -28.2% 16.5%

expected primary energy consumption
energy consumed (MWh) 40,535 26,197 25,610 26,606 20,416 26,518
% savings 35.4% 36.8% 34.4% 49.6% 34.6%

expected CO2 emissions
emissions (ton) 7,419 4,801 4,693 4,872 3,748 4,856
% savings 35.3% 36.7% 34.3% 49.5% 34.6%

risk
95% CVaR (ke) 3,049 2,826 2,804 2,845 4,157 2,840
% savings 7.3% 8.0% 6.7% -36.4% 6.8%

Table 3: Summary of Results for FASAD: Risk Minimisation Framework
do nothing invest

technology investment
boiler (kW)
CHP (kW) 5.5
PV (kWp) 95
solar thermal (kW) 1,237
thermal storage (kWh)

expected discounted cost
cost (ke) 3,059 2,776
% savings 9.2%

expected primary energy consumption
energy consumed (MWh) 40,952 29,589
% savings 27.7%

expected CO2 emissions
emissions (ton) 7,493 5,422
% savings 27.6%

risk
95% CVaR (ke) 3,467 2,822
% savings 18.6%
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4.2 Pinkafeld

For Pinkafeld, the relatively low levels of CO2 emissions from district heating and power

mean that the building is in a good position from a sustainability perspective. In particular,

compare the expected CO2 emissions of 239 tons in Table 4 for the “do nothing” case with the

corresponding one for FASAD in Table 1 (7473 tons). Nevertheless, as Tables 4–6 illustrate,

improvements to the current configuration are still possible. For example, the installation

of PV panels and ST collectors can reduce expected primary energy consumption and CO2

emissions by 16% and 22%, respectively, along with modest reductions in expected cost and

risk. As for FASAD, the imposition of requirements to reduce primary energy consumption

(setting 3) results in an increase in expected costs. For Pinkafeld, the expected cost would

soar to more than four times the current values because of already-high energy efficiency.

Table 4: Summary of Results for Pinkafeld: Expected Cost Minimisation Framework
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technology investment
PV (kWp) 97.28 97.28 120.32 1800.96 96
solar thermal (kW) 4.48 38.73 4.48 100 4.48
thermal storage (kWh) 100

expected discounted cost
cost (ke) 929 888 872 863 4,423 867
% savings 4.5% 6.2% 7.1% -375.9% 6.7%

expected primary energy consumption
energy consumed (MWh) 12,008 10,096 9,107 9,822 8,406 10,115
% savings 15.9% 24.2% 18.2% 30.0% 15.8%

expected CO2 emissions
emissions (ton) 239 187 172 180 147 188
% savings 21.8% 28.0% 24.9% 38.6% 21.6%

risk
95% CVaR (ke) 1,052 971 953 937 4,477 910
% savings 7.7% 9.5% 10.9% -325.5% 13.5%

Elsewhere, the patterns of the results are broadly similar to those for FASAD: the avail-

ability of storage greatly enhances the expected primary energy savings, while offering a

FiT for PV with a subsidy (setting 2) and switching to a ToU tariff (setting 4) modestly

improve the metrics. Finally, using other objective functions, e.g., minimisation of expected

CO2 emissions or risk, implies that larger PV or ST systems are required at the expense of

slightly higher expected discounted costs.
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Table 5: Summary of Results for Pinkafeld: Expected CO2 Emissions Minimisation Framework
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technology investment
PV (kWp) 89.6 88.32 108.8 1800.96 88.32
solar thermal (kW) 54.49 97.07 73.06 100 54.49
thermal storage (kWh) 100

expected discounted cost
cost (ke) 929 894 879 882 4,423 895
% savings 3.8% 5.4% 5.1% -375.9% 3.7%

expected primary energy consumption
energy consumed (MWh) 12,008 9,862 8,839 9,506 8,406 9,885
% savings 17.9% 26.4% 20.8% 30.0% 17.7%

expected CO2 emissions
emissions (ton) 239 185 170 176 147 186
% savings 22.6% 28.9% 26.3% 38.6% 22.3%

risk
95% CVaR (ke) 1,052 978 963 959 4,477 943
% savings 7.0% 8.4% 8.9% -325.5% 10.3%

Table 6: Summary of Results for Pinkafeld: Risk Minimisation Framework
do nothing invest

technology investment
PV (kWp) 108.8
solar thermal (kW) 10.81
thermal storage (kWh)

expected discounted cost
cost (ke) 930 895
% savings 3.8%

expected primary energy consumption
energy consumed (MWh) 12,014 9,924
% savings 17.4%

expected CO2 emissions
emissions (ton) 239 183
% savings 23.5%

risk
95% CVaR (ke) 1,036 968
% savings 6.6%
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5 Conclusions

Current and forthcoming EU directives will require compliance with energy-efficiency mea-

sures. For example, after 2020, public buildings are supposed to become nearly zero energy.

Thus, existing building owners face the challenge of deciding which technologies to adopt

in the long term. Confounding their task are not only the manifold choices but also the

uncertainty in energy prices and technology costs. Hence, addressing the building owner’s

attitude to risk is a crucial element of strategic decision support.

Given this background, we implement a stochastic model for analysing strategic decision

making at the building level. Using two EU test sites, we calibrate parameters to be able to

replicate their observed energy balances. Next, we generate scenarios for uncertain param-

eters over which we solve the resulting problem. We find that relative to the “do nothing”

setting, the two sites are able to benefit from substantial savings in expected primary energy

consumption, i.e., 35% at FASAD and 16% at Pinkafeld, with similar levels of expected CO2

emissions reductions. These are accompanied by slightly lower improvements in economic

and financial indicators. Finally, we are also able to investigate the effects of alternative

regulatory settings and objective functions.

In this deliverable, we have met the requirements set forth in Task 7.5 of the DoW as

follows:

1. Performed “what-if” analyses by providing guidance on equipment adoption given future

uncertainties in prices, costs, and other parameters for various policies.

2. Examined how the proposed adoption would have performed given energy price and

load data after calibration of the model to existing data.

3. Quantified and compared the tradeoffs from various policy measures and developed a

framework for assessing the benefits of technology diffusion.
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Appendix A Strategic Model Formulation

In this appendix, we present the mathematical formulation of the strategic optimisation

model.

A.1 Nomenclature

A.1.1 Sets

A Technology age, a ∈ A. This set is used to model the effect of aging on the capacity and

the costs of the technologies.

I Energy technology, i ∈ I. Equipment available in the building, or suitable to be installed.

This equipment can be: (1) energy generator, (2) energy storage, or (3) energy saver.

Each element of the set is a specific model of a type of technology (e.g., CHP), with

different features.

K Energy type, k ∈ K. Type of energy that will be used in the building.

L Type of pollutant, ℓ ∈ L. Energy generation and consumption release pollutants into

the environment. The amount of a building’s emissions of each pollutant depends on

the emission ratios. The total emissions can be constrained by policymakers. Their

minimisation can also be an objective for certain decision makers.

M Operational profile, m ∈ M. This set gathers the representative profiles considered in

the model to link the short- and long-term performance of the energy systems in the

building: the short-term performance is scaled to the long-term performance through a

weight factor given as a parameter value.

N Energy tariff, n ∈ N . This set contains the tariffs available throughout the planning

horizon. It is possible that not all the tariffs are available at each scenario tree node.

S Scenario, s ∈ S.

T Short-term (operational) period, t ∈ T . These are the periods when operational decisions

are made. Such decisions are concerned with how much energy of each type must flow

through the building energy systems.

V Tree node, v ∈ V . This set contains the nodes in the scenario tree. For each node, its

time period, probability of occurrence, and parent node must be specified.
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A.1.2 Subsets

ANew := {0} , ANew ⊂ A. This set contains only the element 0 from the age set.

AOld := A \ {0} , AOld ⊂ A. This set contains all elements except 0 from the age set.

ICon Continuously-sized technologies, ICon ⊂ I. Technologies are continuously sized if they

do not have a nominal capacity and the investment can be done by power units.

IDs Discretely-sized technologies, IDs ⊂ I. Technologies are discretely sized if they have a

nominal capacity and the investment has to be done by devices.

IGen Energy-generation technologies, IGen ⊂ I. Technologies that receive energy as input

and return other type(s) of energy as output.

IInv Technologies available for investment, IInv ⊂ I. Technologies that are available for

investment and, hence, have an associated investment cost.

IPU Passive technologies (unitary), IPU ⊂ I. Passive technologies which have a multiplica-

tive effect on the demand, that is, the higher the demand, the higher the savings. They

provide savings over the use of energy regardless of the building dimensions.

ISto Storage technologies, ISto ⊂ I. Devices that store a given type of energy. These

technologies are susceptible to energy losses during both charging and discharging as

well as storage decay.

KDem Types of energy on the demand side, KDem ⊂ K.

KEpur Types of energy which can be purchased, KEpur ⊂ K.

KES Types of energy which can be sold, KES ⊂ K.

NLim Limited tariffs, NLim ⊂ N . Under limited tariffs, a maximum amount of energy can

be traded.

NTpur Purchase tariffs, NTpur ⊂ N . This subset contains the tariffs available to buy energy.

NTS Sales tariffs, NTS ⊂ N . This subset contains the tariffs available to sell energy.

VFut Future nodes, VFut ⊂ V . All the nodes excluding the root node.

VRoot Root node, VRoot ⊂ V . This subset only contains the root node and is used to identify

states at time 0, e.g., existing technologies.
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A.1.3 Conditional sets

Ai,v
Ages Possible ages of a technology at a node, i ∈ I, v ∈ V .

Ki
In Input energy types for a technology, i ∈ IGen . Generation technologies can utilise

different types of energy to generate output energy.

Ki
Out Output energy types for a technology, i ∈ IGen . Generation technologies provide one

or more output energy types.

Ki
Po Principal energy of technologies, i ∈ I. Each generation technology has a principal

output type of energy (when having more than one output energy type). For storage

technologies, the input and output types of energy are the same. For passive measures,

it is the type of energy which is saved.

Leaf (s) Leaf node of a scenario, s ∈ S.

N k
Pur Purchase tariffs for each energy type, k ∈ KEpur .

N k
Sal Sales tariffs for each energy type, k ∈ KES .

N k
Tr Markets in which energy can be traded, k ∈ K. This conditional set is the union of

N k
Pur and N k

Sal .

Pa(v) Parent of a node, v ∈ V .

T m
First First short-term period in a profile, m ∈ M.

T m
Last Last short-term period in a profile, m ∈ M.

T m
Tm Short-term periods by profile, m ∈ M. Each profile m can contain several operational

periods, whose duration is modeled through the DMm parameter.

Vs
Path Scenario path, s ∈ S.

A.1.4 Constants

AL Confidence level for the CVaR.

BE Risk weight.

DR Annual discount rate.
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A.1.5 Parameters

AF v,m,t
i Availability factor for a technology (kWh/kWh). i ∈ I, v ∈ V , m ∈ M, t ∈ T m

Tm .

The capacity of a technology may be different throughout the optimisation horizon.

For example, photovoltaic panels do not have the same performance during the day

and cannot produce electric energy during the night. The availability factor can also

be used to model the availability of future technologies.

AGa
i Technology aging factor (kW/kWh). i ∈ I, a ∈ A. This parameter adjusts the total

capacity of a technology throughout its lifetime. At age 0, a given technology has an

aging factor of 1, and its capacity reduces at some rate each year.

Bk,n Primary energy needed to produce final-use energy (kWh/kWh). k ∈ KEpur , n ∈ N k
Pur .

Units of primary energy required to produce one unit of a type of energy available from

a market where processed energy can be bought.

CDv,a
i Technology decommissioning cost (e/kW). i ∈ I, v ∈ V , a ∈ A. Decommissioning

a technology may lead to a removal cost or revenue from selling the equipment (in the

latter case, the value of the parameter is negative).

CI vi Technology installation cost (e/kW). i ∈ I, v ∈ V .

CM v
i Technology maintenance cost (e/kW, e/kWh). i ∈ I, v ∈ V . This is a fixed cost per

installed capacity.

COv
i,k Technology operation cost (e/kWh). i ∈ IGen , k ∈ Ki

Out , v ∈ V .

Dv,m,t
k Energy demand (kWh). k ∈ KDem , v ∈ V , m ∈ M, t ∈ T m

Tm . Total energy load of

the building for a type of energy, during each short-term (operational) period.

DMm Weight (scaling factor) for the operational profile in the objective (days). m ∈ M.

This parameter is used to scale the operational system performance (energy, cost) to

the strategic time resolution.
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DTm Duration of the short-term period within a given profile (hours). m ∈ M. The sum

over the durations of all operational periods must correspond to a whole day. This

parameter is used to convert energy to power or vice versa.

EC v
i,k,k′ Output energy generated from one unit of input energy (kWh/kWh). i ∈ IGen ,

k ∈ Ki
In , k

′ ∈ Ki
Out , v ∈ V . This is a conversion factor. It is applied to the input

energy of a technology to compute the output energy of this technology. Both types

of energy can be the same or different. We may also have several types of output and

input energy (e.g., natural gas, biogas).

EF v Required building energy efficiency (unitless). v ∈ V .

Gi Technology capacity (kW/Device). i ∈ I. Nominal capacity of each device of a given

technology. For continuous technologies, its value is 1.

ILv Investment limit (e). v ∈ V . This is needed when the building has a budget limit for

investing in technologies.

LC v
k,ℓ,n Pollution emissions by energy purchases (kg/kWh). k ∈ K, ℓ ∈ L, n ∈ N k

Pur , v ∈ V .
Mean rate of emission of a pollutant from processed energy purchased in the market.

LH v
k,ℓ Pollution emissions by generating technologies (kg/kWh). k ∈ K, ℓ ∈ L, v ∈ V .
Amount of pollutant that is emitted by a generating technology during its operation,

for each type of input energy.

LPv
i Physical limit (Devices/kW/kWh). i ∈ I, v ∈ V . Number of units or capacity of a

technology that can be installed at the site at a time.

ME k,n Maximum purchase/sale of a type of energy under a given contract (kW). k ∈ K,

n ∈ N k
Tr .

OAv
i,k Fraction of storage lower limit (kWh/kWh). i ∈ ISto , k ∈ Ki

Po , v ∈ V . Fraction of the

storage capacity of an energy-storage technology below which the level of stored energy
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may not fall.

OBv
i,k Fraction of storage upper limit (kWh/kWh). i ∈ ISto , k ∈ Ki

Po , v ∈ V . Fraction of

the storage capacity of an energy-storage technology which the level of stored energy

may not exceed.

ODv
i,k Energy demand reduction for a passive technology (kWh/kWh). i ∈ IPU , k ∈ Ki

Po ,

v ∈ V . For each unit of a passive technology, the total demand is reduced by some value.

OI vi,k Charging ratio to storage (kWh/kWh). i ∈ ISto , k ∈ Ki
Po , v ∈ V . Units of energy

available for each unit charged into an energy-storage technology.

OOv
i,k Discharging ratio from storage (kWh/kWh). i ∈ ISto , k ∈ Ki

Po , v ∈ V . Units of

energy needed to be discharged from storage in order to obtain one unit of energy.

OS i,k Energy storage availability (kWh/kWh). i ∈ ISto , k ∈ Ki
Po . This parameter models

the energy loss of a storage technology over time. It represents the amount of energy

available after one short-time period per unit of energy stored.

OX v
i,k Max. discharge rate (kW/kWh). i ∈ ISto , k ∈ Ki

Po , v ∈ V . Maximum energy dis-

charge rate per unit of storage capacity.

OY v
i,k Max. charge rate (kW/kWh). i ∈ ISto , k ∈ Ki

Po , v ∈ V . Maximum energy charge

rate per unit of storage capacity.

PLv
ℓ Pollution limit (kg). ℓ ∈ L, v ∈ V . Pollution limit for the building for each year.

PP v,m,t
k,n Energy purchasing cost (e/kWh). k ∈ K, n ∈ N k

Pur , v ∈ V , m ∈ M, t ∈ T m
Tm . Cost

of energy in markets where it can be bought.

PRv Probability of the node (unitless). v ∈ V .
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PT v Time period of the node (unitless). v ∈ V .

SPv,m,t
k,n Energy sales price (e/kWh). k ∈ K, n ∈ N k

Sal , v ∈ V , m ∈ M, t ∈ T m
Tm . For the

types of energy that can be sold, there is a price for each operational period.

SU v
i Subsidies for a technology (e/kW). i ∈ I, v ∈ V . Policy makers can subsidise the

investment of some efficient technologies. Usually an amount per kW is paid.

XZ a
i Existing devices (Devices/kW/kWh). i ∈ I, a ∈ A. Number of existing devices of

each technology of a given age at the start of the optimisation horizon.

A.1.6 Decision Variables

c Total expected discounted cost (e).

cnv Total discounted cost at a node (e). v ∈ V .

dnv
k Total demand at a node (kWh). k ∈ K, v ∈ V .

ev,m,t Primary energy consumed per operational period (kWh). v ∈ V , m ∈ M, t ∈ T m
Tm .

This is a computed variable for the energy consumption of the building during each

short-term period.

env Total energy consumed at a node (kWh). v ∈ V .

epv Energy consumed and sold (kWh). v ∈ V .

et Total averaged energy consumed (kWh).

hv
k,n Tariff choice (binary). k ∈ K, n ∈ N k

Tr , v ∈ V . Decision variable for selecting among

different tariffs. The choice is done for the subsequent period.
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mnv
i Fixed (maintenance) cost at a node (e). i ∈ I, v ∈ V .

oc Weighted average of the mean and risk of the total discounted cost (e).

oe Weighted average of the mean and risk of the primary energy consumed (kWh).

op Weighted average of the mean and risk of the pollution emissions (kg).

p Total averaged pollution emissions (kg).

pnv
ℓ Total emissions at a node (kg). ℓ ∈ L, v ∈ V .

r v,m,t
i,k Energy stored (kWh). i ∈ ISto , k ∈ Ki

Po , v ∈ V , m ∈ M, t ∈ T m
Tm . The amount

of energy that is stored in a given energy-storage technology at the start of a given

short-term period.

rav
i,k Sum of energy stored at the beginning of short-term periods (kWh). i ∈ ISto , k ∈ Ki

Po ,

v ∈ V .

rcvi,k Total storage operational cost at a node (kWh). i ∈ ISto , k ∈ Ki
Po , v ∈ V .

riv,m,t
i,k Energy input to storage (kWh). i ∈ ISto , k ∈ Ki

Po , v ∈ V , m ∈ M, t ∈ T m
Tm . Amount

of energy charged into a given energy-storage technology during a given short-term pe-

riod.

rnv
i,k Total energy input to storage at a node (kWh). i ∈ ISto , k ∈ Ki

Po , v ∈ V .

rov,m,t
i,k Energy output from storage (kWh). i ∈ ISto , k ∈ Ki

Po , v ∈ V , m ∈ M, t ∈ T m
Tm .

Amount of energy discharged from a given energy-storage technology during a given

short-term period.
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rpv
i,k Total energy output from storage at a node (kWh). i ∈ ISto , k ∈ Ki

Po , v ∈ V .

rt Risk term (CVaR) (e/kg/kWh). Average cost/primary energy consumed/pollution emis-

sions of (1− AL)× 100% worst scenarios.

sd v
i Decommissioning cost at a node per technology (e/kW). i ∈ I, v ∈ V .

snv
i Strategic (investment) installation cost at a node for a technology (e). i ∈ I, v ∈ V .

sr s Auxiliary variable to calculate CVaR (e/kg/kWh). s ∈ S.

uv,m,t
k,n Energy to purchase under a given tariff (kWh). k ∈ KEpur , n ∈ N k

Pur , v ∈ V , m ∈ M,

t ∈ T m
Tm . Amount of energy purchased in the market, to be delivered during each oper-

ational period.

ucvk,n Total energy purchasing costs at a node for each energy type and contract (e). k ∈
KEpur , n ∈ N k

Pur , v ∈ V .

unv
k,n Total energy purchases at a node for each energy type and contract (kWh). k ∈ KEpur ,

n ∈ N k
Pur , v ∈ V .

vr VaR at confidence level AL (e/kg/kWh). The lowest cost that ensures that the proba-

bility that the loss exceeds this value is at most (1− AL).

w v,m,t
k,n Energy to sell under a given tariff (kWh). k ∈ KES , n ∈ N k

Sal , v ∈ V , m ∈ M,

t ∈ T m
Tm . Amount of energy to be sold in the market during a given operational period.

wcvk,n Total energy sales revenue at a node for each energy type and contract (e). k ∈ KES ,

n ∈ N k
Sal , v ∈ V .

wnv
k,n Total energy sales at a node for each energy type and contract (kWh). k ∈ KES ,

n ∈ N k
Sal , v ∈ V .
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x v,a
i Installed units of a given age for each technology and node (Devices/kW/kWh). i ∈ I,

v ∈ V , a ∈ Ai,v
Ages .

xcvi Available capacity of a technology at each node (kW or kWh (storage)). i ∈ I, v ∈ V .

xd v,a
i Number of units of a technology to be decommissioned (Devices or kW). Integer for

i ∈ IDs , v ∈ V , a ∈ AOld ∩Ai,v
Ages ; continuous for i ∈ ICon , v ∈ V , a ∈ AOld ∩Ai,v

Ages . For

continuously-sized technologies, this is the total capacity to be decommissioned. For

discretely-sized technologies, it denotes the number of devices to decommission.

xivi Number of units of a technology to be installed (Devices or kW). Integer for i ∈ IDs ,

v ∈ V ; continuous for i ∈ ICon , v ∈ V . For discretely-sized technologies, this is an

integer variable, whilst for continuously-sized technologies, it is a continuous one.

yv,m,t
i,k Energy generator input (kWh). i ∈ IGen , k ∈ Ki

In , v ∈ V , m ∈ M, t ∈ T m
Tm . Amount

of energy used as input to an energy-creating technology, for each type of energy, oper-

ational profile and period.

ynv
i,k Total energy input at a node for each technology and type of energy (kWh). i ∈ IGen ,

k ∈ Ki
In , v ∈ V .

z v,m,t
i,k Energy generator output (kWh). i ∈ IGen , k ∈ Ki

Out , v ∈ V , m ∈ M, t ∈ T m
Tm .

Amount of energy generated by an energy-creating technology for each type of energy,

operational profile and short-term period.

zcvi,k Total energy generation (operation) costs at a node for each technology and principal

output energy type (e). i ∈ IGen , k ∈ Ki
Out , v ∈ V .

znv
i,k Total energy generated at a node for each technology and energy type (kWh). i ∈ IGen ,

k ∈ Ki
Out , v ∈ V .
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A.2 Strategic Model

A.2.1 Strategic Constraints

Available new technologies (devices) at each node

The number of available new devices (i.e., whose age is zero) of a technology is equal

to the number of devices installed at each node:

x v,a
i = xivi ∀ v ∈ V , a ∈ ANew , i ∈ IInv . (1)

Available old technologies (devices) at future nodes

The number of available devices whose age is not zero is equal to the number of available

devices at the preceding node less the number of decommissioned devices:

x v,a
i = x

Pa(v),a−1
i − xd v,a

i ∀ i ∈ I, a ∈ AOld ∩ Ai,v
Ages , v ∈ VFut . (2)

Available old technologies (devices) at root node

The number of devices available at the root node is equal to the number of existing

devices at the start of the optimisation horizon minus the number of devices decommis-

sioned at the root node:

x v,a
i = XZ a

i − xd v,a
i ∀ i ∈ I, a ∈ AOld ∩ Ai,v

Ages , v ∈ VRoot . (3)

Technology capacity calculation

The total capacity of a technology is equal to the sum of the number of installed devices,

corrected by their respective aging factor and nominal capacity:

xcvi = Gi ·
∑

a∈Ai,v
Ages

AGa
i · x

v,a
i ∀ i ∈ I, v ∈ V . (4)

Investment limit

An upper limit may be imposed on the total installation and decommissioning cost at

each node: ∑
i∈IInv

snv
i +

∑
i∈I

sd v
i ≤ ILv ∀ v ∈ V . (5)
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Purchasing tariff choice

Only one purchasing tariff is allowed per node:∑
n∈N k

Pur

hv
k,n = 1 ∀ v ∈ V , k ∈ KEpur . (6)

Sales tariff choice

Only one sales tariff is allowed per node:∑
n∈N k

Sal

hv
k,n = 1 ∀ v ∈ V , k ∈ KES . (7)

Physical limit

Typically, there is a limit for installing technologies, which usually depends on the space

available at the site. Note that within the optimiser, it can be implemented as a variable

upper limit rather than a constraint:∑
a∈Ai,v

Ages

x v,a
i ≤ LPv

i ∀ i ∈ I, v ∈ V . (8)

Emissions limit

The total emissions of a given pollutant may not exceed a specified limit:

pnv
ℓ ≤ PLv

ℓ ∀ ℓ ∈ L, v ∈ V . (9)

A.2.2 Operational Constraints

Storage available

The energy available in storage at the start of a given short-term period is equal to

the energy stored at the start of the previous short-term period plus the energy sent to

storage minus the energy removed from storage during this period. Each type of energy

flow is corrected by its respective loss ratio parameter:

r v,m,t+1
i,k = OS i,k · r

v,m,t
i,k +OI vi,k · ri

v,m,t
i,k −OOv

i,k · ro
v,m,t
i,k (10)

∀ v ∈ V , m ∈ M, i ∈ ISto , t ∈ T m
Tm , k ∈ Ki

Po .

Storage level between periods

The storage level at the start of the first short-term period must be equal to the storage
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level at the end of the last short-term period in the same operational profile and node:

r v,m,t
i,k = OS i,k · r

v,m,t ′

i,k +OI vi,k · ri
v,m,t ′

i,k −OOv
i,k · ro

v,m,t ′

i,k (11)

∀ v ∈ V , m ∈ M, i ∈ ISto , k ∈ Ki
Po , t ∈ T m

First , t
′ ∈ T m

Last .

Energy balance

For each energy type, the net energy supply must meet the net energy demand in each

time period. The latter consists of the energy demand less the energy saved due to

passive technologies, whereas the former consists of the energy produced by energy-

creating technologies plus the energy discharged from storage and the energy purchases

in the energy market less the energy used for production or charging storage devices

and the energy sold:∑
i∈IGen

z v,m,t
i,k −

∑
i∈IGen

yv,m,t
i,k +

∑
n∈N k

Pur

uv,m,t
k,n −

∑
n∈N k

Sal

w v,m,t
k,n (12)

+
∑
i∈ISto

(
rov,m,t

i,k − riv,m,t
i,k

)
= Dv,m,t

k ·

(
1−

∑
i∈IPU

ODv
i,k · xcvi

)
∀ k ∈ K, v ∈ V , m ∈ M, t ∈ T m

Tm .

Sales limit by generation capacity

The amount of energy to be sold cannot exceed the amount of energy produced on site:∑
n∈N k

Sal

w v,m,t
k,n ≤

∑
i∈IGen

z v,m,t
i,k ∀ v ∈ V , m ∈ M, k ∈ KES , t ∈ T m

Tm . (13)

A.2.3 Strategic-Operational Link Constraints

Technology output limit

The amount of energy that can be produced by a technology is constrained by the

technology’s availability and capacity:

z v,m,t
i,k ≤ DTm · AF v,m,t

i · xcvi ∀ v ∈ V , m ∈ M, i ∈ IGen , k ∈ Ki
Po , t ∈ T m

Tm . (14)

Storage discharge limit

The amount of energy that can be discharged from any energy-storage technology is

limited by the technology’s installed capacity and maximum discharge rate:

rov,m,t
i,k ≤ OX v

i,k · DTm · xcvi ∀ v ∈ V , m ∈ M, i ∈ ISto , t ∈ T m
Tm , k ∈ Ki

Po . (15)
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Storage charge limit

The amount of energy that can be charged to a given energy-storage technology is

limited by the technology’s installed capacity and maximum charge rate:

riv,m,t
i,k ≤ OY v

i,k · DTm · xcvi ∀ v ∈ V , m ∈ M, i ∈ ISto , t ∈ T m
Tm , k ∈ Ki

Po . (16)

Lower storage limit

The amount of energy that can be stored in any energy-storage technology must be

greater than the capacity installed corrected by the respective minimum charge ratio:

r v,m,t
i,k ≥ OAv

i,k · xcvi ∀ v ∈ V , m ∈ M, i ∈ ISto , t ∈ T m
Tm , k ∈ Ki

Po . (17)

Upper storage limit

The amount of energy that can be stored in any energy-storage technology must be

lower than the capacity installed corrected by the respective maximum charge ratio:

r v,m,t
i,k ≤ OBv

i,k · xcvi ∀ v ∈ V , m ∈ M, i ∈ ISto , t ∈ T m
Tm , k ∈ Ki

Po . (18)

Purchasing limit by contract

The amount of energy that can be purchased at a given node must not exceed the

amount stipulated in the signed purchase contract:

uv,m,t
k,n ≤ hv

k,n ·ME k,n · DTm (19)

∀ v ∈ V , m ∈ M, k ∈ KEpur , n ∈ NLim ∩N k
Pur , t ∈ T m

Tm .

Sales limit by contract

The amount of energy that can be sold at a given node must not exceed the amount

agreed in the signed sales contract:

w v,m,t
k,n ≤ hv

k,n ·ME k,n · DTm (20)

∀ v ∈ V , m ∈ M, k ∈ KES , n ∈ NLim ∩N k
Sal , t ∈ T m

Tm .

Required efficiency

The amount of energy consumed and sold must be larger than the amount of primary

energy consumed corrected by the efficiency parameter:

epv ≥ EF v · env ∀ v ∈ V . (21)
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A.2.4 Computation Constraints

Installation cost of a technology

The net installation cost of a given technology is equal to the technology’s installation

cost less subsidies.

snv
i = (CI vi − SU v

i ) ·Gi · xivi ∀ v ∈ V , i ∈ IInv . (22)

Decommissioning cost of a technology

The decommissioning cost of a technology depends on the age and capacity of the

devices to be decommissioned:

sd v
i =

∑
a∈Ai,v

Ages

CDv,a
i ·Gi · xd

v,a
i ∀ i ∈ I, v ∈ V . (23)

Output energy production

The amount of output energy produced by an energy-generating technology is calculated

from the input energy and the technology’s energy-conversion factor:

z v,m,t
i,k ′ =

∑
k∈Ki

In

EC v
i,k,k′ · y

v,m,t
i,k ∀ v ∈ V , m ∈ M, i ∈ IGen , k

′ ∈ Ki
Out , t ∈ T m

Tm . (24)

Primary energy consumption

The primary energy consumed is equal to the sum of the amount of energy purchased

of each type adjusted by the respective off-site energy-conversion factor.

ev,m,t =
∑

KEpur ,n∈N k
Pur

Bk,n · u
v,m,t
k,n ∀ v ∈ V , m ∈ M, t ∈ T m

Tm . (25)

Total cost

The total cost is composed of the net investment, decommissioning, maintenance, energy

trading, and technology operation costs.

cnv =
∑
i∈IInv

snv
i +

∑
i∈I

sd v
i +

∑
i∈I

mnv
i (26)

+
∑

k∈KEpur ,n∈N k
Pur

ucvk,n −
∑

k∈KES ,n∈N k
Sal

wcvk,n

+
∑

i∈IGen

zcvi,k +
∑
i∈ISto

rcvi,k ∀ v ∈ V .

Total discounted expected cost
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c =
∑
v∈V

(1 +DR)−PTv

· PRv · cnv. (27)

Total primary energy consumption

env =
∑
m∈M

DMm ·
∑
t∈T m

Tm

ev,m,t ∀ v ∈ V . (28)

Total average primary energy consumption

et =
∑
v∈V

PRv · env. (29)

Energy consumed and sold

epv =
∑
m∈M

DMm ·
∑

k∈K,t∈T m
Tm

Dv,m,t
k +

∑
n∈N k

Sal

w v,m,t
k,n

 ∀ v ∈ V . (30)

Total emissions of a pollutant

The total pollution emissions consist of the pollution emissions by energy purchases and

energy-generating technologies.

pnv
ℓ =

∑
m∈M

DMm ·
∑
t∈T m

Tm

 ∑
i∈IGen ,k∈Ki

In

LH v
k,ℓ · y

v,m,t
i,k +

∑
k∈KEpur ,n∈N k

Pur

LC v
k,ℓ,n · u

v,m,t
k,n


(31)

∀ ℓ ∈ L, v ∈ V .

Total average emissions

p =
∑
v∈V

PRv ·
∑
ℓ∈L

pnv
ℓ . (32)
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A.2.5 Aggregation Constraints

Aggregated maintenance cost

mnv
i = CM v

i ·Gi ·
∑

a∈Ai,v
Ages

x v,a
i ∀ i ∈ I, v ∈ V . (33)

Aggregated energy purchases

unv
k,n =

∑
m∈M

DMm ·
∑
t∈T m

Tm

uv,m,t
k,n ∀ k ∈ KEpur , v ∈ V , n ∈ N k

Pur . (34)

Aggregated energy purchases cost

ucvk,n =
∑
m∈M

DMm ·
∑
t∈T m

Tm

PP v,m,t
k,n · uv,m,t

k,n ∀ k ∈ KEpur , v ∈ V , n ∈ N k
Pur . (35)

Aggregated energy sales for each type of energy

wnv
k,n =

∑
m∈M

DMm ·
∑
t∈T m

Tm

w v,m,t
k,n ∀ k ∈ KES , v ∈ V , n ∈ N k

Sal . (36)

Aggregated energy sales revenue

wcvk,n =
∑
m∈M

DMm ·
∑
t∈T m

Tm

SPv,m,t
k,n · w v,m,t

k,n ∀ k ∈ KES , v ∈ V , n ∈ N k
Sal . (37)

Aggregated energy generated

znv
i,k =

∑
m∈M

DMm ·
∑
t∈T m

Tm

z v,m,t
i,k ∀ v ∈ V , i ∈ IGen , k ∈ Ki

Out . (38)
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Aggregated energy generation cost

zcvi,k =
∑
m∈M

DMm ·
∑
t∈T m

Tm

COv
i,k · z

v,m,t
i,k ∀ v ∈ V , i ∈ IGen , k ∈ Ki

Po . (39)

Aggregated energy storage cost

rcvi,k =
∑
m∈M

DMm ·
∑
t∈T m

Tm

COv
i,k · ro

v,m,t
i,k ∀ v ∈ V , i ∈ ISto , k ∈ Ki

Po . (40)

Aggregated input energy to each technology

ynv
i,k =

∑
m∈M

DMm ·
∑
t∈T m

Tm

yv,m,t
i,k ∀ v ∈ V , i ∈ IGen , k ∈ Ki

In . (41)

Aggregated energy stored

rav
i,k =

∑
m∈M

DMm ·
∑
t∈T m

Tm

r v,m,t
i,k ∀ v ∈ V , i ∈ ISto , k ∈ Ki

Po . (42)

Aggregated energy input to storage

rnv
i,k =

∑
m∈M

DMm ·
∑
t∈T m

Tm

riv,m,t
i,k ∀ v ∈ V , i ∈ ISto , k ∈ Ki

Po . (43)

Aggregated energy output from storage

rpv
i,k =

∑
m∈M

DMm ·
∑
t∈T m

Tm

rov,m,t
i,k ∀ v ∈ V , i ∈ ISto , k ∈ Ki

Po . (44)

Total nodal demand

dnv
k =

∑
m∈M

DMm ·
∑
t∈T m

Tm

Dv,m,t
k ∀ k ∈ K, v ∈ V . (45)
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A.2.6 Risk Constraints

Risk term calculation

Eq. (46) calculates the CVaR at a confidence level of AL× 100%, that is, the expected

value of the selected metric in the worst (1− AL)× 100% cases.

rt = vr + (1− AL)−1 ·
∑
s∈S

PRLeaf (s) · sr s. (46)

Risk constraints for cost minimisation

Eq. (47) is necessary for calculating the CVaR of the total discounted costs.∑
v∈Vs

Path

(1 +DR)−PTv

· cnv − vr ≤ sr s ∀ s ∈ S. (47)

Risk constraints for emissions minimisation

Eq. (48) is necessary for calculating the CVaR of the total pollution emissions.∑
ℓ∈L,v∈Vs

Path

pnv
ℓ − vr ≤ sr s ∀ s ∈ S. (48)

Risk constraints for consumed energy minimisation

Eq. (49) is necessary for calculating the CVaR of the overall primary energy consump-

tion. ∑
v∈Vs

Path

env − vr ≤ sr s ∀ s ∈ S. (49)

A.2.7 Mean-Risk Constraints

Weighted cost and risk objective

Eq. (50) calculates a weighted average of the expected value and CVaR of the total

discounted costs.

oc = (1−BE) · c +BE · rt . (50)

Weighted emissions and risk objective

Eq. (51) calculates a weighted average of the expected value and CVaR of the overall

pollution emissions.

op = (1−BE) · p +BE · rt . (51)
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Weighted energy and risk objective

Eq. (52) computes a weighted average of the expected value and CVaR of the overall

primary energy consumption.

oe = (1−BE) · et +BE · rt . (52)

A.2.8 Objective Function

In our strategic optimisation model, we consider a mean-risk objective function of either the

total discounted cost, the total pollution emissions, or the total primary energy consumed.

The risk and mean-risk constraints of the metrics that are not comprised in the objective

function are excluded from the optimisation model. For instance, if the total discounted cost

is selected, then the goal is to

Minimise oc (53)

subject to constraints (1)–(47) and (50). Thus, the risk and mean-risk constraints involving

pollution emissions and primary energy consumption are excluded from the model in this

setting.
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Appendix B Input Parameters of Numerical Examples

In this appendix, we describe the input parameters used in Section 4. Unless otherwise

indicated, these are valid for every regulatory setting of a given site; see Section 2 for a

description of the regulatory settings. The input parameters are calibrated in order to yield

the same energy balances as those observed for the test buildings in the current year, cf.

Deliverables D1.1 (HCE et al., 2011) and D2.2 (UCL et al., 2012). For FASAD, the parameter

values for new equipment were collected from energy-industry catalogues, whereas the values

reported in Groissböck et al. (2011) were used for Pinkafeld.

B.1 FASAD

Table 7: Energy-Generation Technology Parameters for FASAD
i KIn KOut CI0 CM EC G LH

(e/kW) (e/kW) (kW) (kg/kWh)
boiler 1 natural gas heat 9.3167 0 0.925 1279.1 0.1836
boiler 2 natural gas heat 14.1359 0 0.92 232.6 0.1836
boiler 3 natural gas heat 27.2172 0 0.93 290.0 0.1836
CHP natural gas electricity 5255.4550 0 0.2683 5.5 0.1836

heat 0.6098
PV solar radiation electricity 1371.4286 0 0.1461 0.245 0
ST solar radiation heat 341.0645 0 0.795 2.011 0

Table 8: Thermal Storage Parameters for FASAD
parameter value
CI0 (e/kWh) 100.0
OA 0.00
OB 1.00
OI 0.90
OO 1.00
OS 0.99
OX (kW/kWh) 0.25
OY (kW/kWh) 0.25

Table 9: Energy Tariff Parameters for FASAD
k n type B LC ME PP 0 SP 0

(kg/kWh) (kW) (e/kWh) (e/kWh)
electricity flat tariff purchase 2.0624 0.37 100.0 0.14263
electricity feed-in tariff sale 5.5 0.17215
natural gas flat tariff purchase 1.0 0.0 1426.3 0.05227
solar radiation purchase 0 0 0
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Table 10: Annual Growth Rate of FASAD’s Random Parameters
parameter mean volatility
electricity prices 7.6% 4.3%
installation costs 0.0% 1.0%
natural gas prices 9.6% 6.9%

B.2 Pinkafeld

Table 11: Energy-Generation Technology Parameters for Pinkafeld
i KIn KOut CI0 CM EC G LH

(e/kW) (e/kW) (kW) (kg/kWh)
HVAC electricity cooling 1000.0 0.0139 3.5 79.80 0
PV solar radiation electricity 2331.1 0.1740 0.125 1.28 0
ST solar radiation heat 358.0 0.107 0.5 1.00 0

Table 12: Thermal Storage Parameters for Pinkafeld
parameter value
CI0 (e/kWh) 71.62
OA 0.00
OB 1.00
OI 0.90
OO 1.00
OS 0.99
OX (kW/kWh) 0.25
OY (kW/kWh) 0.25

Table 13: Energy Tariff Parameters for Pinkafeld
k n type B LC ME PP 0 SP 0

(kg/kWh) (kW) (e/kWh) (e/kWh)
district heating flat tariff purchase 2.0 0.03 120.0 0.08028
electricity flat tariff purchase 1.089 0.03 100.0 0.15
electricity flat tariff sale 100.0 0.0759
solar radiation purchase 0 0 0

Table 14: Annual Growth Rate of Pinkafeld’s Random Parameters
parameter mean volatility
district heating prices 3.4% 6.1%
electricity prices 5.3% 7.8%
installation costs 0.0% 1.0%
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Appendix C Epidemic Model for Technology Diffusion

In order for the EnRiMa strategic DSS to become commercially viable, preliminary market

analysis is required. Using the results of our strategic model, an epidemic model for tech-

nology diffusion applied to DER in the U.S. (Maribu et al., 2007), and supplementary data

on available floor space for DSS adoption in EU15 countries (Petersdorff et al., 2005), we

forecast patterns for successful DSS adoption for EU15 countries from the project’s end to

2025.

Based on Maribu et al. (2007), the incremental building floor space adopting the DSS

each year depends on three factors:

1. Propagation of knowledge;

2. Propensity for adoption as a function of economic benefits;

3. Residual floor space suitable for adoption.

Thus, mathematically, we have the following expressions that forecast DSS adoption:

Am = (α + βXm−1) fm (sm) (Tm −Dm) (54)

fm (sm) =
c

(1 + ae−bsm)
− c

(1 + a)
(55)

Dm = Dm−1 + Am (56)

Xm =
Dm

Tm

(57)

Here, Am (in m2) is the floor space that adopts the DSS in year m, Tm (in m2) is the total

available floor space for DSS adoption in year m, Dm (in m2) is the cumulative floor space

with DSS in year m, sm is the percentage saving on the energy bill with DSS in year m,

fm(sm) is a logistic function that models the adoption propensity in year m, and Xm is

the fraction of floor space with DSS adopted by year m. The parameters for the logistic

function are a, b, and c, which are estimated in Maribu et al. (2007) to be 200, 0.4, and 60,

respectively. Similarly, α and β are parameters for the knowledge diffusion function. They

vary depending on whether or not there is a government program in place to encourage

diffusion. Thus, they are 0.02 and 0.98, respectively, in the baseline setting (and 0.1 and 0.9,

respectively, in the program setting).

Using data from Petersdorff et al. (2005), we note that a conservative estimate of available

floor space in EU15 countries with potential for DSS adoption is 797 million m2. This consists
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only of non-residential buildings larger than 1000 m2 constructed between 1975 and 1990.

The rationale for this selection is that buildings of older (newer) vintage will have already

been refurbished (will be relatively energy efficient). Hence, they may not be ideal candidates

for a strategic DSS.

In Fig. 5, we plot the adoption propensity function with respect to percentage savings

on the energy bill. It has the characteristic S-shape of a logistic function and reaches an

asymptote for large sm at about 60. This means that increasing the percentage saving in

the energy bill beyond 30% is unlikely to make much difference to the adoption propensity.
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Figure 5: Adoption Propensity as a Function of Percentage Savings on the Energy Bill

Using the adoption propensity for sm = 10% and sm = 20%, we plot the cumulative (Dm)

and incremental (Am) floor space that adopts the DSS in Figs. 6 and 7, respectively. Note

that each figure includes curves with and without the effects of an outreach program. For

example, for sm = 10%, the cumulative floor space adopting our DSS in EU15 countries

reaches only 40 million m2 by 2025, which is 5% of the area available in existing buildings.

However, with an outreach program, this number quadruples to reach 20% of the available

floor space. Hence, it is essential to have EU- and national-level dissemination events and

awareness-raising programs.

The impact of the expected savings on the energy bill is also important. For example,

with 20% expected savings (like at FASAD), it is possible for the DSS to be adopted by 85%

of available floor space (Fig. 7) even without any special outreach efforts. The reason for

this difference can be seen from the adoption propensity curve in Fig. 5: a doubling of the

percentage savings from 10% to 20% more than quadruples the adoption propensity.
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Figure 6: Cumulative and Incremental Floor Space Adoption of DSS in EU15 with 10% Energy Bill Savings
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Figure 7: Cumulative and Incremental Floor Space Adoption of DSS in EU15 with 20% Energy Bill Savings
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