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1 INTRODUCTION 3

1 Introduction

A range of single-site rainfall models are being compared for assessment in Workpackage 1.
Insofar as the selected fitting method is the generalised method of moments (Onof & Lekkas,
2003), mathematical expressions for each of these moments are required for input into the
objective function.

Many such expressions are already available in the literature. However, as the result of a
fairly high rate of typographical errors, they cannot be used without some form of checking,
which may involve the full derivation of the formula.

Other expressions are not readily available. This is either because their derivations are
unpublished, because the model in question has not yet been examined, or because the
statistic in question has not yet been used.

This report seeks to bring all the relevant expressions together for use within the model
comparison exercise. When useful or interesting, key elements of the derivations are given.
To avoid unnecessary length, the report focusses upon models driven by a Bartlett-Lewis
point process. The comparative exercise will in fact include one model driven by a Neyman-
Scott point process, for which the relevant analytical expressions will be found in a later
report.

2 Background: the Bartlett-Lewis Rectangular Pulse

Model

Since single-site models driven by a Bartlett-Lewis point process are all modifications of the
Barlett-Lewis Rectangular Pulse model (BLRPM), the key expressions for this model are
given here. First, we present the notation used throughout the report, as well as that specific
for this model.

2.1 Notation and model specification

2.1.1 Three levels of description

Single site models represent the continuous-time rainfall Y (t). They are calibrated and
validated by examining properties of one or both the following processes:

• discrete time aggregated process at time-scale h: Y
(h)
i =

∫ ih

(i−1)h
Y (t) dt

• continuous-time moving average process at time-scale h: Y(h)(t) = 1
h

∫ t+h/2

t−h/2
Y (t) dt

Data sets of observed data at time-scale h can be considered as samples of the aggregated
process, but also as providing samples of the continuous-time moving average process.
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2.1.2 Model description

The main Bartlett-Lewis point process is a cluster Poisson process characterised by the arrival
of random clusters of points according to a Poisson process. In terms of the representation
of rainfall, the clusters are storms and the points correspond to the arrivals of cells.

Within each cluster, points arrive throughout a period of storm activity which is a random
variable.

To each cell arrival time is assigned a rainfall pulse of random duration and intensity.

2.1.3 Parameters

The following notation is used throughout:

• λ: Poisson cluster (storm) arrival rate

• β: Poisson point (cell) arrival rate activity

In the BLRPM, the storm and cell durations are standardly taken as exponentially dis-
tributed:

• γ: Exponential parameter of storm duration

• η: Exponential parameter of cell duration

The cell intensity distribution is characterised by three parameters:

• µx: Mean cell intensity

• µx2 : Mean of squares of cell intensities

• µx3 : Mean of cubes of cell intensities

Three distributions are considered for the intensity: the exponential, Gamma and general
Pareto distributions. Details of the notation used and the main relevant properties of these
distributions are given in appendix A.

In the distributions considered here, one or two parameters are sufficient to fully charac-
terise the distribution. The BLRPM can therefore be characterised by the following set of
parameters:

{λ, µx, µx2 , η, β, γ}
These parameters do not, however, all have direct physical meaning. It is therefore useful

to re-parameterize the model in terms of a set of mechanistic parameters:

{λ, µx, σx, δc, µc, δs}

defined by:
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Storm arrival rate λ (hr−1)

Mean cell intensity µx (mm.hr−1)

Standard deviation of cell intensity σx =
√

µx2 − µ2
x (mm.hr−1)

Mean cell duration δc = 1/η (hr)

Mean number of cells per storm µc = 1 + β/γ

Mean duration of storm activity δs = 1/γ (hr)

For the sake of simplicity, the equations are given in terms of the original parameter set.
They can easily be re-expressed in terms of the mechanistic parameters using the following
relations:

µx2 = σ2
x + µ2

x

η = 1/δc

β = (µc − 1)/δs

γ = 1/δs

2.1.4 Properties of the aggregated process

The properties of the process Y
(h)
i which are considered for model calibration and validation

are functions of the following:

• M(h): mean of the rainfall depth (in mm)

• V (h): variance of the rainfall depth (in mm2)

• C(k, h): autocovariance lag-k of the depth (in mm2)

• A(k, h): autocorrelation lag-k of the depth (in mm2)

• Mp(h): non-centered moment of order p (p > 1) of the intensity (in mmp)

• Pd(h): proportion of dry periods

• Md(h): mean duration of a dry period (in hours)

• Mw(h): mean duration of a wet period (in hours)

where all the properties are for time-scale h hours.
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2.1.5 Properties of the moving average process

Note that the properties below could also be expressed as properties of the aggregated

process, since var
[
Y(h)(t)

]
= var

[
Y

(h)
i

h

]
. The main property of interest is the variance of

the moving average process. This variance can be related to the variance of the underlying
continuous-time process Y (t) by defining a variance reduction factor called the variance
function and denoted ω(h):

var
[
Y(h)(t)

]
= ω(h)var[Y (t)]

The variance function can easily be calculated (VanMarcke, 1993) as:

ω(h) =
1

h2

∫ h

0

∫ h

0

ρ(t1 − t2) dt1 dt2 =
2

h

∫ h

0

(
1− τ

h

)
ρ(τ) dτ (1)

where ρ(τ) is the autocorrelation function at lag τ of process Y (t).

Of particular interest is the behaviour of the variance function as the scale increases. If
this is not a long memory process, we must have:

lim
h→∞

ω(h) = 0

For many processes, the convergence to 0 is in 1/h. Consequently, Vanmarcke (1993) defines
the scale of fluctuation as:

Θ = lim
h→∞

hω(h)

Since:

ω(h) =
1

2h

[∫ h

0

ρ(τ) dτ − 1

h

∫ h

0

τρ(τ) dτ

]

and since the scale of fluctuation only exists if

lim
h→∞

1

h

∫ h

0

τρ(τ) dτ = 0

we therefore obtain (Vanmarcke, 1993):

Θ = lim
h→∞

hω(h) = 2

∫ ∞

0

ρ(τ) dτ

The scale of fluctuation is so called since, when h is large, Y(h)(t) has a variance which is
approximately var[Y (t)] Θ/h. Y(h)(t) is therefore equivalent to the mean of h/Θ independent
observations from the continuous-time process.

To summarize, the following moving average process properties can be used in the cali-
bration:

• ω(h): Variance function at time-scale h

• Θ: Scale of fluctuation
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2.2 BLRPM Continuous-time properties

The two important properties for the calculation of the aggregated process properties are
the mean and covariance function. From Rodriguez-Iturbe et al. (1987), we have:

E[Y (t)] = λµcµx/η (2)

where µc = 1 + β
γ

is the mean number of cells per storm, and

cY (τ) =
λµc

η

[
µx2 +

βγµ2
x

γ2 − η2

]
e−ητ − λµc

η

βηµ2
x

γ2 − η2
e−γτ (3)

2.3 BLRPM First- and second order aggregated depth moments

The first two moments of the marginal distribution of rainfall depths are obtained by inte-
gration:

M(h) = E[Y
(h)
i ] = E[Y (t)] (4)

V (h) = var[Y
(h)
i ] = 2

∫ h

0

(h− u)cY (u) du (5)

C(k, h) = cov[Y
(h)
i , Y

(h)
i+k] =

∫ h

−h

(h− |v|)cY (kh + v) dv (6)

The moments are given by (Rodriguez-Iturbe et al., 1987):

M(h) =
λhµxµc

η
(7)

V (h) =
2λµc

η

[
(µx2 + βµ2

x/γ)h

η
+

µ2
xβη(1− e−γh)

γ2(γ2 − η2)
−

(
µx2 +

βγµ2
x

γ2 − η2

)
1− e−ηh

η2

]
(8)

The autocovariance of lag-k is given by:

C(k, h) =
λµc

η

[(
µx2 +

βγµ2
x

γ2 − η2

)
(1− e−ηh)2e−η(k−1)h

η2
− µ2

xβη(1− e−γh)2e−γ(k−1)h

γ2(γ2 − η2)

]
(9)

2.4 BLRPM Wet-dry discrete-time properties

The expression for the proportion dry is (Rodriguez-Iturbe et al., 1987):

Pd(h) = exp{−λ(h + µT ) + λG∗
P (0, 0)(γ + βe−(β+γ)h)/(β + γ)} (10)

where µT is the mean storm duration, given by (Onof, 1992):

µT =
1

γ
+

γ

η2

∫ 1

0

v−1 dv

∫ 1

0

t
γ
η
−1

[
1− (1− vt)e−

βv(1−t)
η

]
dt
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and

G∗
P (z, s) = η−1e−

β(1−z)
η

∫ 1

0

t
γ+s

η
−1 [1− (1− z)t]e

β(1−z)t
η dt

Since these expressions are not easy to compute, the following approximations can be
used. They are valid if β << η and γ << η (i.e. if there is enough cell overlap and cell
durations are much smaller than storm durations):

µT ≈ 1

γ

{
1 +

γ(β + γ/2)

η2
− γ(5γβ + β2 + 2γ2)

4η3
+

γ(4β3 + 31β2γ + 99βγ2 + 36γ3)

72η4

}

and

G∗
P (z, s) ≈ 1

γ

{
1− β + γ

η
+

3βγ + 2γ2 + β2

2η2

}

as in Onof (1992).

However, if these requirements on small values of β and γ are not fulfilled, we can
approximate these terms follows:

µT ≈ η−1

(
1 + φ

M∑
j=1

(−κ)j−1(κ− j2 − j)

j(j + 1)!
B(j + 1, φ) + φ−1

)

and

G∗
P (0, 0) ≈ η1−e−κ

(
M ′∑
j=0

κj

j!
B(j + φ, 2) +

δM ′ (κ)

(M ′ + φ + 1) (M ′ + φ + 2)

)

with

δM ′ (κ) = eκ −
M ′∑
j=0

κj

j!
(11)

where κ = β/η and φ = γ/η and the values of M and M’ are to be chosen large enough so
as to reduce the error. For the LR model (discussed further), identical approximations are
required. Upper bounds for the errors involved are estimated in appendix E, together with
numerical investigations into their values for different values of κ and φ. Appendix E also
presents the derivation of these approximations.

The mean duration dry is then a function of the proportion dry (Onof et al., 1994):

Md(h) =
Pd(h)

Pd(h)− Pd(2h)
(12)

Note we can easily derive another useful statistic, namely the mean number of events at
time-scale h in a period of duration n(h) time-intervals of h hours. Since the probability of
the arrival of an event at time-scale h hours is given by:

pe(h) = Pr{event start in [(n− 1)h, nh)} = Pr{Y (h)
n > 0|Y (h)

n−1 = 0}Pr{Y (h)
n−1 = 0}

this yields:

pe(h) =

(
1− Pd(2h)

Pd(h)

)
Pd(h) = Pd(h)− Pd(2h)
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If the mean storm duration is very small compared to the duration of the period, i.e.(
µT

h
+ 1

)
pe(h) << n(h) (the condition is, for instance, met if the period under consideration

is the month and the time-scale less than 6 hours), then the mean number of events is
approximately given by:

ne(h) ≈ (Pd(h)− Pd(2h)) n(h) (13)

since, as the event duration goes to zero, the distribution of the number of events is
approximately binomially distributed B(n(h), Pd(h)− Pd(2h)).

2.5 BLRPM Third-order aggregated depth moment

The third-order moment yields information about the asymmetry of a distribution. Because
of the need to obtain a good fit for extreme values, it is useful to include this moment in the
fitting process. The main steps of the derivation are as follows.

2.5.1 General form of the integral

As a first step, we need to relate this moment to moments of the underlying continuous-time
process. In general, we can write that, if

Y
(h)
i =

∫ ih

(i−1)h

Y (u) du

then,

E
[
Y

(h)
i , Y

(h)
i+j , Y

(h)
i+k

]
= E

[∫ ih

(i−1)h

∫ (i+j)h

(i+j−1)h

∫ (i+k)h

(i+k−1)h

Y (u)Y (v)Y (w) du dv dw

]

The change of variables:

x = u; y = v − u− jh; z = w − u− kh

yields the domain of integration shown in figure 1.

The sum of six integrals must then be computed:

E
[
Y

(h)
i , Y

(h)
i+j , Y

(h)
i+k

]
= I1 + I2 + I3 + I4 + I5 + I6 (14)

where:

I1 =

∫ h

z=0

∫ 0

y=−h+z

∫ ih−z

x=(i−1)h−y

E[Y (x)Y ((x + y + jh)Y ((x + z + kh)] dx dy dz

I2 =

∫ h

z=0

∫ z

y=0

∫ ih−z

x=(i−1)h

E[Y (x)Y ((x + y + jh)Y ((x + z + kh)] dx dy dz

I3 =

∫ h

z=0

∫ h

y=z

∫ ih−y

x=(i−1)h

E[Y (x)Y ((x + y + jh)Y ((x + z + kh)] dx dy dz
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h

y or z

xih(i–1)h

Figure 1: Domain of integration in the (x,y) or (x,z) planes

I4 =

∫ 0

z=−h

∫ z

y=−h

∫ ih

x=(i−1)h−y

E[Y (x)Y ((x + y + jh)Y ((x + z + kh)] dx dy dz

I5 =

∫ 0

z=−h

∫ 0

y=z

∫ ih

x=(i−1)h−z

E[Y (x)Y ((x + y + jh)Y ((x + z + kh)] dx dy dz

I6 =

∫ 0

z=−h

∫ z+h

y=0

∫ ih−y

x=(i−1)h−z

E[Y (x)Y ((x + y + jh)Y ((x + z + kh)] dx dy dz

This corresponds to the subdivision of the domain of integration according to figure 2.

For the third-order moment, we have j = k = 0. The computation of the integrand,
E[Y (x)Y (x+y)Y (x+z)], requires that third-order properties of counts and of cell intensities
be computed.
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6

5

4

1

2

3

h-h

h

-h

z

y

Figure 2: Domain of integration in the (y,z) plane

2.5.2 Third-order properties of counts

These are obtained for x1 < x2 < x3 as follows:

E [δN(x1)δN(x2)δN(x3)] = (λµc)
3 dx1 dx2 dx3

+λµcβ
2e−γ(x3−x1) dx1 dx2 dx3

+(λµc)
2β

[
e−γ(x3−x2) + e−γ(x3−x1) + e−γ(x2−x1)

]
dx1 dx2 dx3

where the first term corresponds to 3 cells in different storms, the second to 3 cells in the
same storm and the third to 1 cell in one storm and two in another. This yields:

E [δN(x1)δN(x2)δN(x3)]

dx1 dx2 dx3

=
{
(λµc)

3 + λµcβ
2e−γ(x3−x1) + (λµc)

2β
[
e−γ(x3−x2) + e−γ(x3−x1) + e−γ(x2−x1)

]}

(15)
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2.5.3 Third-order properties of cell intensities

The following expression is required in the computations:

E [Xt1−u1(u1)Xt1+τ1−u2(u1)Xt1+τ1+τ2−u3(u3)] = µx3e−η(u1+τ1+τ2)

+µxmux2e−η(u1+u2+τ2)

+µxmux2e−η(u1+u2+τ1+τ2)

+µxmux2e−η(u1+u3+τ1)

+µ3
xe
−η(u1+u2+u3) (16)

where the terms correspond to the following respective 5 cases:
1. t1 − u1 = t1 + τ1 − u2 t1 − u1 = t1 + τ1 + τ2 − u3

2. u3 = u2 + τ2 u2 6= u1 + τ1

3. u3 = u1 + τ1 + τ2 u2 6= u1 + τ1

4. u2 = u1 + τ1 u3 6= u2 + τ2

5. u2 = u1 + τ1 u3 6= u2 + τ2 u3 6= u1 + τ1 + τ2

2.5.4 Third-order moment of continuous-time process

The main term to compute is the expected value of a product of three rainfall depths of the
continuous-time process. This is:

ch

E [Y (x)Y (x + y)Y (x + z)] =

E[

∫ ∞

0

Xx−u(u) dN(x− u)

∫ ∞

0

Xx+y−v(v) dN(x + y − v)

∫ ∞

0

Xx+z−w(w) dN(x + z − w)] (17)

This is evaluated as the following sum:

E [Y (x)Y (x + y)Y (x + z)] =∫ ∞

u=0

∫ ∞

v=0,v 6=u+y

∫ ∞

w=0,w 6=u+z,w 6=v+z−y

E[Xx−u(u)]E[Xx+y−v(v)]E[Xx+z−w(w)] E[dN(x− u)dN(x + y − v)dN(x + z − w)]

+

∫ ∞

u=0

∫ ∞

v=0,v 6=u+y

E[Xx−u(u)]E[Xx+y−v(v)Xx+y−v(v + z − y)] E[dN(x− u)dN(x + y − v)]

+

∫ ∞

u=0

∫ ∞

v=0,v 6=u+y

E[Xx−u(u)Xx−u(u + z)]E[Xx+y−v(v)] E[dN(x− u)dN(x + y − v)]

+

∫ ∞

u=0

∫ ∞

w=0,v 6=u+z

E[Xx−u(u)Xx−u(u + y)]E[Xx+z−w(w)] E[dN(x− u)dN(x + z − w)]

+

∫ ∞

u=0

E[Xx−u(u)Xx−u(u + y)Xx−u(u + z)] E[dN(x− u)]

The computation of this integral and the final form of its analytical expression are de-
tailled in appendix B.
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2.5.5 Third-order moment of discrete-time process

The six integrals in 14 can be rewritten as:

I1 =

∫ h

z=0

∫ 0

y=−h+z

∫ ih−z

x=(i−1)h−y

E[Y (x + y)Y ((x + y)− y)Y ((x + y)− y + z)] dx dy dz

I2 =

∫ h

z=0

∫ z

y=0

∫ ih−z

x=(i−1)h

E[Y (x)Y (x + y)Y (x + z)] dx dy dz

I3 =

∫ h

z=0

∫ h

y=z

∫ ih−y

x=(i−1)h

E[Y (x)Y (x + z)Y (x + y)] dx dy dz

I4 =

∫ 0

z=−h

∫ z

y=−h

∫ ih

x=(i−1)h−y

E[Y (x + y)Y ((x + y) + (z − y))Y ((x + y)− y)] dx dy dz

I5 =

∫ 0

z=−h

∫ 0

y=z

∫ ih

x=(i−1)h−z

E[Y (x + z)Y ((x + z) + (y − z))Y ((x + z)− z)] dx dy dz

I6 =

∫ 0

z=−h

∫ z+h

y=0

∫ ih−y

x=(i−1)h−z

E[Y (x + z)Y ((x + z)− z)Y ((x + z) + (y − z))] dx dy dz

where the integrands have been written so as to contain products of Y (r)Y (r+s)Y (r+ t)
with 0 ≤ s ≤ t. This involves the following transformations:

For I1: r = x + y s = −y t = z − y
For I2: r = x s = y t = z
For I3: r = x s = z t = y
For I4: r = x + y s = z − y t = −y
For I5: r = x + z s = y − z t = z
For I6: r = x + z s = −z t = y − z

By introducing this change of variables, we find that all 6 integrals are identical to I so
that:

M3(h) = 6I = 6

∫ h

s=0

∫ h

t=s

∫ ih−t

r=(i−1)h

E[Y (r)Y (r + s)Y (r + t)] dr dt ds (18)

The final expression for M3(h) = E[(Y
(h)
i )3] is given in appendix C.

2.6 BLRPM moving average properties

Since, for the continuous-time process Y (t), we have:

var[Y (t)] =
λµc

η

[
µx2 +

β

γ + η
µ2

x

]
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we have, for the variance function:

ω(h) =
2
[

(µx2+βµ2
x/γ)

hη
+ µ2

xβη(1−e−γh)
h2γ2(γ2−η2)

−
(
µx2 + βγµ2

x

γ2−η2

)
1−e−ηh

h2η2

]

µx2 + β
γ+η

µ2
x

(19)

The scale of fluctuation is therefore given by:

Θ =
2

η

µx2 + β
γ
µ2

x

µx2 + β
γ+η

µ2
x

(20)

Note that if γ → ∞, we find the scale of fluctuation of the simpler Poisson Rectangular
Pulse Model (Rodriguez-Iturbe et al., 1987), namely 2

η
.

3 The Dependent Depth-Duration Model

3.1 Model specification

One way in which the above model can be altered so as to improve its wet-dry properties
is by introducing a dependence between cell intensity and cell duration distributions. This
option, the DD model, has been examined by Kakou (1997).

The model is characterised by the same parameters λ, β, γ, η for the storm and cell arrival
rates, storm activity and cell duration. But the cell intensities X are now specified through
the distribution of X conditional upon the cell duration L, i.e. X|L.

A first way of specifying the dependence is by choosing:

E[X|L = l] = fe−cl

Kakou (1997) assumed an exponential distribution. More generally, we shall consider a
second-order moment specified as:

E[X2|L = l] = ge−dl

Note that this entails the following first- and second-order unconditional moments:

E[X] =
fη

c + η

E[X2] =
gη

d + η

We shall refer to this as the DD1 model. Since the temporal structure is identical to that of
the BLRPM, we need only examine its depth properties.
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3.1.1 Parameters

The proposed DD1 model has 8 parameters:

{λ, c, d, f, g, η, β, γ}

Note that it is likely we may wish to simplify this and assume a relation between c and d for
instance (in the exponential case considered by Kakou (1997) , d = 2c and g = 2f 2).

The mechanistic parameters for this model are:

{λ, µx, σx, µx|0, σx|0, δc, µc, δs}

defined by:

Storm arrival rate λ (hr−1)

Mean cell intensity µx = fη
c+η

(mm.hr−1)

Std. deviation of cell intensity σx = gη
d+η

−
[

fη
c+η

]2

(mm.hr−1)

Conditional mean cell intensity limit for 0 cell duration µx|0 = f (mm.hr−1)

Conditional std. deviation of cell intensity limit for 0 cell duration σx|0 =
√

g − f 2 (mm.hr−1)

Mean cell duration δc = 1/η (hr)

Mean number of cells per storm µc = 1 + β/γ

Mean duration of storm activity δs = 1/γ (hr)

As before, the equations are given in terms of the original parameter set which can eas-
ily be re-expressed in terms of the mechanistic parameters using:

c =
1

δc

(
µx|0
µx

− 1

)

d =
1

δc

(
σ2

x|0 + µ2
x|0

σ2
x + µ2

x

− 1

)

f = µx|0
g = σ2

x|0 + µ2
x|0

η = 1/δc

β = (µc − 1)/δs

γ = 1/δs
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3.2 Continuous-time depth properties

As in Kakou (1997), we find that for the DD model, the mean depth is:

E[Y (t)] = λµcE[XL] (21)

For DD1, this yields:

E[Y (t)] = λµc
ηf

(η + c)2
(22)

The other important property is the covariance of lag τ , which we derive as:

cY (τ) = λµc

∫ ∞

τ

(l − τ) E[X2|l] fL(l) dl +
λβµc

γ2

{2γD(0, τ, l + τ, 0) + 2γB(0, l + τ,∞, 0)− 2γτA(0, τ, l + τ, 0)

−e−γτA(0, 0,∞, 0) + eγτA(0, τ,∞, γ)− eγτA(−γ, l + τ,∞, γ)

+e−γτA(γ, 0,∞, 0)− e−γτA(γ, 0, l + τ,−γ) + e−γτA(0, 0, τ,−γ)
}

(23)

where:

A(θ, a, b, ξ) =

∫ ∞

0

dl

∫ b

a

dl′ E[X|l] fL(l) E[X ′|l′] fL(l′) e−θle−ξl′

B(θ, a, b, ξ) =

∫ ∞

0

dl

∫ b

a

dl′ E[X|l] fL(l) E[X ′|l′] fL(l′) l e−θle−ξl′

D(θ, a, b, ξ) =

∫ ∞

0

dl

∫ b

a

dl′ E[X|l] fL(l) E[X ′|l′] fL(l′) l′ e−θle−ξl′

For DD1, this becomes:

cY (τ) =
λµcgηe−(d+η)τ

(d + η)2
+

λµcf
2βη2

[
(c + η)e−γτ − γe−(c+η)τ

]

(c + η)3 [−γ2 + (c + η)2]
(24)

3.3 Discrete-time depth properties

3.3.1 First- and second-order moments

The following relations (Rodriguez-Iturbe et al., 1987) are used to obtain first- and second-
order properties of the aggregated process:

M(h) = hE[Y (t)]

V (h) = 2

∫ h

0

(h− τ) cY (τ) dτ

C(k, h) =

∫ +h

−h

(h− |τ |) cY (kh + τ) dτ
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For model DD1, we trivially find for the mean depth at time-scale h:

M(h) = hλµc
ηf

(c + η)2
(25)

The variance is derived as:

V (h) =
2λµcgη

(d + η)4

(
e−(d+η)h − 1 + (d + η)h

)

+
2λµcf

2βη2

(c + η)3 [(c + η)2 − γ2]

[
c + η

γ2
(e−γh + γh− 1)− γ

(c + η)2

(
e−(c+η)h + (c + η)h− 1

)]

(26)

and the covariance as:

C(k, h) =
λµcgη

(d + η)4
e−(d+η)(k−1)h

(
1− e−(d+η)h

)2

+
λµcf

2βη2

(c + η)3 [(c + η)2 − γ2]

[
c + η

γ2
(1− e−γh)2e−γ(k−1)h

− γ

(c + η)2

(
1− e−(c+η)h

)2
e−(c+η)(k−1)h

]
(27)

3.3.2 Wet-Dry properties

These properties are the same as for the BLRPM model, so that equations (10) and (12)
can be used, as well as the approximations (11), where, as above, κ = β/η and φ = γ/η.

3.3.3 Third-order moment

As with the BLRPM model, the calculation of M3(h) first requires the evaluation of

E[Y (x)Y (x + y)Y (x + z)] with y > 0 z > y.

This integral involves more extensive calculations than for the BLRPM. It is the sum of
14 terms which are analytically derivable, but are not presented here because they are too
cumbersome. To illustrate this, the first term is shown in appendix D. The expressions for
all these terms are available in Maple.

The computation of the third-order moment of the discrete-time process involves a triple
integral of the sum of these 14 terms, as in the following expression in equation

M3(h) = 6I = 6

∫ h

y=0

∫ h

z=y

∫ ih−z

r=(i−1)h

E[Y (x)Y (x + y)Y (x + z)] dx dz dy (28)

which, since (as a result of stationarity) the integrand is not a function of x, reduces to:

M3(h) = 6

∫ h

y=0

∫ h

z=y

E[Y (x)Y (x + y)Y (x + z)](h− z) dx dz dy (29)

These integrals can be computed analytically for the DD1 model, and the results are
available in Maple.
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3.4 Moving average properties

Since, for the continuous-time process Y (t), we have, for the DD1 model:

var[Y (t)] =
λµcgη

(d + η)2
+

λµcf
2βη2

(c + η)3(c + η + γ)

we have, for the variance function:

ω(h) =

2λµcgη
h2(d+η)4

(
e−(d+η)h − 1 + (d + η)h

)
λµcgη
(d+η)2

+ λµcf2βη2

(c+η)3(c+η+γ)

+

2λµcf2βη2

h2(c+η)3[(c+η)2−γ2]

[
c+η
γ2 (e−γh + γh− 1)− γ

(c+η)2

(
e−(c+η)h + (c + η)h− 1

)]

λµcgη
(d+η)2

+ λµcf2βη2

(c+η)3(c+η+γ)

(30)

The scale of fluctuation is therefore given by:

Θ = 2

g
(d+η)3

+ f2ηβ
(c+η)4γ

g
(d+η)2

+ f2ηβ
(c+η)3(c+η+γ)

(31)

4 The N-Cell Model

4.1 Model specification

Since empirical observations confirm that rainfall produced by convective and frontal mech-
anisms have different features, and that many climates tend to experience both types, the
model can be transformed to generate n types of cells. These are characterised by:

• n random variables for the intensity distributions {Xi, i = 1, .., n}, with means {µxi
, i =

1, .., n} and mean square intensities {µx2
i
, i = 1, .., n}

• n duration distributions, with exponential parameters {ηi, i = 1, .., n}
• n probabilities {ψi, i = 1, .., n} for each cell type

This is a model defined by 4n + 3 parameters. Because of the constraint
∑n

i=1 ψi = 1,
there are in effect 4n + 2 parameters. In practice, it is likely that n = 2 will be used.

The parameters are:

{λ, µx1 , ..., µxn , µx2
1
, ..., µx2

n
, η1, ...ηn, ψ1, ..., ψn, β, γ}

For this model, the following mechanistic parameters can be used:

{λ, µx1 , ...µxn , σx1 , ..., σxn , δc1 , ..., δcn , ψ1, ..., ψn, µc, δs}
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defined by:

Storm arrival rate λ (hr−1)

Mean cell intensities µxi
for i = 1, ..., n (mm.hr−1)

Standard deviations of cell intensities σxi
=

√
µx2

i
− µ2

xi
for i = 1, ..., n (mm.hr−1)

Mean cell durations δci
= 1/ηi for i = 1, ..., n (hr)

Proportion of each rainfall type ψi for i = 1, ..., n

Mean number of cells per storm µc = 1 + β/γ

Mean duration of storm activity δs = 1/γ (hr)

The original parameters, in terms of which the equations are written, are the following
functions of these mechanistic parameters:

µx2
i

= σ2
xi

+ µ2
xi

ηi = 1/δci

β = (µc − 1)/δs

γ = 1/δs

4.2 Continuous-time depth properties

We derive the following expressions for the mean and covariance of the continuous-time
process:

E[Y (t)] = λµc

n∑
i=1

ψiµxi

ηi

(32)

cY (τ) = λµc

n∑
i=1

ψiµx2
i
e−ηiτ

ηi

+λµcβe−γτ

n∑
i=1

n∑
j=1

ψiψjµxi
µxj

(ηi − γ)(ηj + γ)

+2λµcβγ

n∑
j=1

ψjµxj
e−ηjτ

γ2 − η2
j

n∑
i=1

ψiµxi

ηi + ηj

(33)

This can be re-expressed as:

cY (τ) =
n∑

i=1

Cie
−ηiτ + De−γτ (34)
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using the following notation:

Ci = λµc

[
ψiµx2

i

ηi

+ 2
βγψiµxi

γ2 − η2
i

n∑
j=1

ψiµxi

ηj + ηi

]

D = λµcβ

n∑
i=1

n∑
j=1

ψiψjµxi
µxj

(ηi − γ)(ηj + γ)

4.3 Discrete-time properties

4.3.1 First- and second-order depth moments

The following first- and second-order properties are obtained by integration:

M(h) = hλµc

n∑
i=1

ψiµxi

ηi

(35)

V (h) =
n∑
i

2Ci

η2
i

(hηi + e−ηih − 1) +
2D

γ2
(γh + e−γh − 1) (36)

C(k, h) =
n∑
i

Cie
−ηi(k−1)h

η2
i

(1− e−ηih)2 +
De−γ(k−1)h

γ2
(1− e−γh)2 (37)

4.3.2 Wet-dry properties

The proportion of dry periods can easily be derived on the basis of the derivation of the
same property for BLRPM in Rodriguez-Iturbe et al. (1987). The two terms which depend
upon the cell duration parameter η in the exact expression of Pd(h) (see equation (10))are
the mean duration of a storm µT and the term G∗

P (0, 0). Both these terms are functions of
the probabilities pr(t) and qr(t) defined as:

pr(t) = Pr{Storm live and r cells active at time t}
qr(t) = Pr{Storm terminated and r cells active at time t}

which satisfy the following differential equations:

dpr(t)/dt = −(β + γ + r

n∑
i=1

ψiηi) pr(t) + (r + 1)(
n∑

i=1

ψiηi) pr+1(t) + β pr−1(t)

dqr(t)/dt = −(r
n∑

i=1

ψiηi) qr(t) + γ pr(t) + (r + 1)(
n∑

i=1

ψiηi) qr+1(t)

so that, if we define η =
∑n

i=1 ψiηi, we have the same differential system as for the RBLPM
(see Rodriguez-Iturbe et al., 1987, section 4.2).
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We therefore have:

Pd(h) = exp{−λ(h + µT ) + λG∗
P (0, 0)(γ + βe−(β+γ)h)/(β + γ)} (38)

with:

µT =
1

γ
+

γ

η2

∫ 1

0

v−1 dv

∫ 1

0

t
γ
η
−1

[
1− (1− vt)e−

βv(1−t)
η

]
dt

and

G∗
P (z, s) = η−1e−

β(1−z)
η

∫ 1

0

t
γ+s

η
−1 [1− (1− z)t]e

β(1−z)t
η dt

Since these expressions are not easy to compute, the following approximations can be
used. They are valid if β << η and γ << η (i.e. if there is enough cell overlap and cell
durations are much smaller than storm durations):

µT ≈ 1

γ

{
1 +

γ(β + γ/2)

η2
− γ(5γβ + β2 + 2γ2)

4η3
+

γ(4β3 + 31β2γ + 99βγ2 + 36γ3)

72η4

}

and

G∗
P (z, s) ≈ 1

γ

{
1− β + γ

η
+

3βγ + 2γ2 + β2

2η2

}

as in Onof (1992).

As with previous models, we also require approximations when these conditions upon β
and γ are not fulfilled. Defining, as previously, κ = β/η and φ = γ/η, µT and G∗

P (0, 0) can
be approximated as in equation (11).

4.3.3 Third-order moment

The evaluation of this moment involves very lengthy analytical developments. It will there-
fore not be computed for the purpose of this project.

4.4 Moving-average properties

The variance function is easily obtained as:

ω(h) =

∑n
i

2Ci

η2
i h2 (hηi + e−ηih − 1) + 2D

γ2h2 (γh + e−γh − 1)
∑n

i Ci + D
(39)

The scale of fluctuation is therefore given by:

Θ = 2

∑n
i Ci/ηi + D/γ∑n

i Ci + D
(40)
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5 The Linear Random Parameter Model

5.1 Model specification

An important modification of the original BLRPM was proposed by Rodriguez-Iturbe et al.
(1988). The observation that this model does not provide a satisfactory reproduction of the
proportion of dry periods suggested introducing a greater diversity of the internal wet-dry
structure of storms.

A first way in which this could be done would be to consider introducing a range of m types
of storms, such that each storm is characterised by one of ηi, βi and γi, with i = 1, ..., M ,
each type appearing with probability ε1. To preserve the overall structure of storms, β1 and
γi would be chosen proportional to ηi according to:

βi = κηi

γi = φηi

so that the model parameters would be:

{λ, µx, µx2 , η1, ...ηm, ε1, ..., εm, κ, φ}

thus yielding a 2m + 4 parameter model (since one εi can be calculated from the knowledge
of the others to satisfy the condition that these parameters add up to 1).

The observation that the above approach amounts to randomising parameter η by assign-
ing it a discrete distribution characterised by the m probabilities εi, /, i = 1, ...,m, suggests
the second approach which is adopted here. This consists in using a continuous distribu-
tion to randomise parameter η. A flexible candidate is the Gamma distribution. Thus, η is
now sampled for each storm from the distribution Γ(α, ν), while β and γ are proportional
according to the relations:

β = κη

γ = φη

As a consequence, we have a 7 parameter model characterised by the following set of param-
eters:

{λ, µx, µx2 , α, ν, κ, φ}
The following mechanistic parameters can be used:

{λ, µx, σx, δc, σc, µc, δs}

defined by:
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Storm arrival rate λ (hr−1)

Mean cell intensity µx (mm.hr−1)

Standard deviation of cell intensity σx =
√

µx2 − µ2
x (mm.hr−1)

Mean cell duration δc = ν
α−1

(hr)

Inter-Storm standard deviation of cell duration εc = ν√
(α−1)2(α−2)

(hr)

Mean no of cells/storm µc = 1 + κ
φ

Mean duration of storm activity δs = ν
(α−1)φ

(hr)

The original parameters, which are used in the equations below, are expressed in terms
of the mechanistic parameters as follows:

µx2 = σ2
x + µ2

x

α = 2 +
δ2
c

ε2
c

ν = δc

(
1 +

δ2
c

ε2
c

)

κ =
δc

δs

(µc − 1)

φ =
δc

δs

5.2 Continuous-time properties

The expressions below are obtained by derivation as for the BLRPM (see Rodriguez-Iturbe
et al., 1988). Note that they can also be obtained by integrating the equivalent expressions
for the BLRPM over the parameter η.

E[Y (t)] = λµcµx
ν

α− 1
(41)

where µc = 1 + κ
φ

is the mean number of cells per storm, and

cY (τ) =
λµcν

α− 1

[{
µx2 +

κφ

φ2 − 1
µ2

x

}(
ν

ν + τ

)α−1

− κµ2
x

φ2 − 1

(
ν

ν + φτ

)α−1
]

(42)

Rodriguez-Iturbe et al. (1988) note that for 1 < α < 2, the integral
∫ ∞

0

cY (τ) dτ

diverges, indicating asymptotic self-similarity over that range.
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5.3 Discrete-time depth properties

5.3.1 First- and second-order moments

The mean depth is (Onof, 1992):

M(h) = λhµcµx
ν

α− 1
(43)

and the variance and co-variance are (Rodriguez-Iturbe et al., 1988):

V (h) = 2A1

{
(α− 3)hν2−α − ν3−α + (ν + h)3−α

}−2A2

{
φ(α− 3)hν2−α − ν3−α + (ν + φh)3−α

}
(44)

and

C(k, h) = A1

{
[ν + (k + 1)h]3−α − 2[ν + kh]3−α + [ν + (k − 1)h]3−α

}

−A2

{
[ν + (k + 1)φh]3−α − 2[ν + kφh]3−α + [ν + (k − 1)φh]3−α

}
(45)

where:

A1 =
λµcν

α

(α− 1)(α− 2)(α− 3)

{
µx2 +

κφµ2
x

φ2 − 1

}

A2 =
λµcκµ2

xν
α

φ2(φ2 − 1)(α− 1)(α− 2)(α− 3)

5.3.2 Wet-dry properties

As shown by Rodriguez-Iturbe et al. (1988), the proportion dry for the Linear Randomised
model is obtained by starting with the expression for this property in the BLRPM and
taking expectations over the term which is exponentiated. This leads to the following for
the proportion of dry periods (Onof, 1992):

Pd(h) = exp


−λ(h + µT ) +

λνe−κ

α− 1
×

φ + κ
(

ν
ν+(κ+φ)h

)α−1

φ + κ

∫ 1

0

dt tφ−1(1− t)eκt


 (46)

If κ << 1 and φ << 1, which means that there is enough cell overlap and cell durations
are much smaller than storm durations, then the following approximation can be used (Onof,
1992):

Pd(h) ≈
exp

{
−λh− λν

φ(α− 1)

[
1 + φ

(
κ +

φ

2

)
− 1

4
φ

(
5φκ + κ2 + 2φ2

)
+

1

72
φ

(
4κ3 + 31κ2φ + 99κφ2 + 36φ3

)]

+
λν

φ(α− 1)

(
1− κ− φ +

3

2
κφ + φ2 +

1

2
κ2

) [
φ

φ + κ
+

κ

φ + κ

(
ν

ν + (κ + φ)h

)α−1
]}

(47)
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However, if these requirements on small values of κ and φ are not fulfilled, we can
approximate the proportion dry as follows:

Pd(h) ≈ exp


−λ(h + µ̂T M) +

λνe−κ

α− 1
×

φ + κ
(

ν
ν+(κ+φ)h

)α−1

φ + κ
ÎM ′


 (48)

where

µ̂T M =
ν

α− 1

(
1 + φ

M∑
j=1

(−κ)j−1(κ− j2 − j)

j(j + 1)!
B(j + 1, φ) + φ−1

)

and

ÎM ′ =
M ′∑
j=0

κj

j!
B(j + φ, 2) +

δM ′ (κ)

(M ′ + φ + 1) (M ′ + φ + 2)

with

δM ′ (κ) = eκ −
M ′∑
j=0

κj

j!

where M and M’ are to be chosen large enough for a good approximation. Upper bounds
for the errors involved and numerical investigations into their values are presented, together
with the derivations for the approximations are found in Chandler (2003) and Onof (2003).
These two notes are reproduced in appendix E.

5.3.3 Third-order moment

The third-order moment is best obtained by integration of the corresponding expression for
the BLRPM multiplied by the density function of the gamma distribution Γ(α, ν). The
resulting expression can however not be integrated in a closed form. As a consequence, a
numerical integration is required.

A note about this numerical integration is useful. For the integral:

E
[
(Y

(h)
i )

3
]

=

∫ ∞

0

f(η) dη (49)

has the particularity that f(η) ∝ 1
η4 in the neighbourhood of 0. f(η) is therefore not

integrable at 0. However, practically, values of η close to 0 are not physically representative
(and their probability is very small). This would correspond to a storm with very long cells
only, which is hardly appropriate for the representation of fine-scale rainfall. It is therefore
realistic to neglect small values of η. Calculations with a lower bound of 10−7 were found
to give results in line with the simulations. The upper bound does not have to be chosen as
particularly large since the integrand f(η) decreases very quickly. Thus we can approximate
the integral as follows:

E
[
(Y

(h)
i )

3
]

=

∫ 100

10−7

f(η) dη (50)

and calculate it using Simpson’s rule.
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5.4 Moving-average properties

The variance function is easily obtained as:

ω(h) =
2A1 {(α− 3)hν2−α − ν3−α + (ν + h)3−α} − 2A2 {φ(α− 3)hν2−α − ν3−α + (ν + φh)3−α}

h2(α−2)(α−3)
να−1 (A1 − φ2A2)

(51)

The scale of fluctuation will then depend upon the value of α. If α < 2, the scale is
infinite, in line with the observation of asymptotic self-similarity. Else, if α > 2 we find:

Θ =
2ν

α− 2
× A1 − A2φ

A1 − A2φ2
(52)

6 The Quadratic Random Parameter Model

6.1 Model specification

The observation that the LR model is liable to underestimate extreme rainfall depths suggests
an alteration of the mechanism by which cells are produced in a storm. Rather than have
the random cell arrival rate β depend linearly upon the cell duration parameter η, this
dependence could include a power function. So as to facilitate the computations, let us
assume a quadratic dependence. We therefore assume that:

β = κ1η + κ2η
2 (53)

The model therefore has 8 parameters:

{λ, µx, µx2 , α, ν, κ1, κ2, φ}

The following mechanistic parameters can be used:

{λ, µx, σx, δc, εc, µc, σc, δs}

defined by:
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Storm arrival rate λ (hr−1)

Mean cell intensity µx (mm.hr−1)

Std. deviation of cell intensity σx =
√

µx2 − µ2
x (mm.hr−1)

Mean cell duration δc = ν
α−1

(hr)

I.S. std. deviation of cell duration εc = ν√
(α−1)2(α−2)

(hr)

Mean no of cells/storm µc = 1 + κ1

φ
+ κ2α

φν

Std. deviation of no of cells/storm σc =

√
2
φ2

[
(κ2

1 + κ1φ) + (2κ1κ2 + κ2φ)α
ν

+ κ2
2

α(α+1)
ν2 ]

]

Mean duration of storm activity δs = ν
(α−1)φ

(hr)

where ’I.S.’ stands for ’Inter-Storm’ and the calculation of the standard deviation of the
number of cells per storm is shown in appendix F.

The equations below are given in terms of the original parameters. These can be re-
expressed in terms of the mechanistic parameters using:

µx2 = σ2
x + µ2

x

α = 2 +
δ2
c

ε2
c

ν = δc

(
1 +

δ2
c

ε2
c

)

κ1 = φ

(
µc − 1−

√
(1− µc)3(α + 1)

α
+

σ2
cα

2

)

κ2 =
νφ

α

√
(1− µc)3(α + 1)

α
+

σ2
cα

2

φ =
δc

δs

6.2 Continuous-time properties

The expressions below are obtained by integrating the equivalent expressions for the BLRPM
over the parameter η. The same integrals of functions of η are used which were computed
for the LR model. This yields:

E[Y (t)] = λµx

[
ν

α− 1

(
1 +

κ1

φ

)
+

κ2

φ

]
(54)
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and

cY (τ) =
λ

(
1 + κ1

φ

)
ν

α− 1

[
µx2 +

κ1φµ2
x

φ2 − 1

](
ν

ν + τ

)α−1

+λ




(
1 + κ1

φ

)
κ2φµ2

x

φ2 − 1
+

κ2

φ

(
µx2 +

κ1φµ2
x

φ2 − 1

)


(
ν

ν + τ

)α

+
λκ2

2µ
2
xα

(φ2
2 − 1)ν

(
ν

ν + τ

)α+1

− λµ2
x

φ2 − 1

[(
1 +

κ1

φ

)(
κ1ν

α− 1
+ κ2

)
+

κ2

φ

(
κ1 + κ2

α

ν

)]
e−γτ

(55)

We note that for −1 < α < 2, the integral

∫ ∞

0

cY (τ) dτ

diverges, indicating asymptotic self-similarity when α < 2.

6.3 Discrete-time properties

These properties can be obtained by using the general relations presented in equations (4)
applied to the equations (54) and (55). But since the integration over the values of η can
be performed last, they can also be obtained by directly integrating the properties of the
BLRPM.

6.3.1 First- and second-order moments of depths

For these properties, the derivation proceeds by integrating the expressions in equations (7),
(8) and (9). This yields:

M(h) = λhµx

[
ν

α− 1

(
1 +

κ1

φ

)
+

κ2

φ

]
(56)

and

V (h) =
2λhκ2

2µ
2
x

φ2
+

2λνκ2

(α− 1)φ

[
hµx2 + hµ2

x

(
1 +

2κ1

φ

)
+

µ2
xκ2

φ2(φ2 − 1)
ξ(1, φ)− κ2µ

2
xφ

φ2 − 1
ξ(1, 1)

]

+
2λν2

(α− 1)(α− 2)

[(
1 +

κ1

φ

)
h

(
µx2 + µ2

x

κ1

φ

)
+

κ2µ
2
x

φ2(φ2 − 1)

(
1 +

2κ1

φ

)
ξ(2, φ)

−κ2ξ(2, 1)

(
µx2

φ
+

µ2
xφ

φ2 − 1

(
1 +

2κ1

φ

))]

+
2λν3

(
1 + κ1

φ

)

(α− 1)(α− 2)(α− 3)

[
µ2

xκ1

φ2(φ2 − 1)
ξ(3, φ)−

(
µx2 +

µ2
xφ

φ2 − 1
κ1

)
ξ(3, 1)

]
(57)



6 THE QUADRATIC RANDOM PARAMETER MODEL 29

where:

ξ(k, l) = 1−
(

ν

ν + lh

)α−k

For the covariance, let us define:

A1(x) =
ν

α− 1

[(
ν

ν + x(k − 1)h

)α−1

− 2

(
ν

ν + xkh

)α−1

+

(
ν

ν + x(k + 1)h

)α−1
]

A2(x) =
ν2

(α− 1)(α− 2)

[(
ν

ν + x(k − 1)h

)α−2

− 2

(
ν

ν + xkh

)α−2

+

(
ν

ν + x(k + 1)h

)α−2
]

A3(x) =
ν3

(α− 1)(α− 2)(α− 3)

[(
ν

ν + x(k − 1)h

)α−3

− 2

(
ν

ν + xkh

)α−3

+

(
ν

ν + x(k + 1)h

)α−3
]

In terms of these expressions, the covariance is derived as:

C(k, h) = λ

(
1 +

κ1

φ

)[
µx2 +

κ1φµ2
x

φ2 − 1

]
A3(1)

+λκ2


µx2

φ
+

φ
(
1 + 2κ1

φ

)

φ2 − 1
µ2

x


 A2(1) +

λκ2
2µ

2
x

φ2 − 1
A1(1)

− λµ2
x

φ2(φ2 − 1)

[(
1 +

κ1

φ

)
κ1A3(φ) +

(
1 + 2

κ1

φ

)
κ2A2(φ) +

κ2
2

φ
A1(φ)

]
(58)

6.3.2 Wet-dry properties

For the proportion dry, a closed expression cannot be obtained since the following integrals
need to be evaluated:

I1(t) =

∫ ∞

0

exp [−(κ1 + κ2u)(1− t)− νu] uα−2να

(κ1 + κ2u + φ)Γ(α)
du

I2(t) =

∫ ∞

0

exp [−(κ1 + κ2u)(1− t)− (κ1u + κ2u
2 + φu)h− νu] uα−2να

(κ1 + κ2u + φ)Γ(α)
du

I3(t) =

∫ ∞

0

exp [−(κ1 + κ2u)(1− t)− (κ1u + κ2u
2 + φu)h− νu] uα−1να

(κ1 + κ2u + φ)Γ(α)
du

In terms of these integrals, and with the following expression for the mean storm duration:

µT = φ

∫ 1

0

du

∫ 1

0

dt u−1tφ−1 ν

α− 1

[
1− (1− ut)e−κ1u(1−t)

(
ν

ν + κ2u(1− t)

)α−1
]

+
φν

α− 1

the proportion dry is:

Pd(h) = exp

[
−λ(h + µT ) +

∫ 1

0

dt tφ−1(1− t)λ (φI1(t) + κ1I2(t) + κ2I3(t))

]
(59)
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6.3.3 Third-order moment of depths

For the third-order moment of the Quadratic Randomised model, a similar numerical com-
putation is required as in the case of the Linear Randomised model.In other words, the
expression for the BLRPM multiplied by the density function of the gamma distribution
Γ(α, ν). The final expression is then integrated numerically using Simpson’s rule. Because
of the non-convergence of the integral in the neighbourhood of 0, the domain of integration
is not [0,∞), but can, in practice, for instance be taken as [10−7, 100].

6.4 Moving-average properties

The variance function is given by:

ω(h) =
V (h)

cY (0)h2
(60)

where the numerator and denominator are given in equations (57) and (55).

This leads to the following expression for the scale of fluctuation. If α < 2, it is infinite,
which reflects the asymptotic self-similarity. If α > 2 we find::

Θ = 2

λκ2
2µ2

x

φ2 + λνκ2

(α−1)φ

[
µx2 + µ2

x

(
1 + 2κ1

φ

)]
+ λν2

(α−1)(α−2)

[(
1 + κ1

φ

)(
µx2 + µ2

x
κ1

φ

)]

λµ2
x

(
1 + κ1

φ

)
κ1ν+κ2(α−1)
(α−1)(φ+1)

+ λκ2µ2
x

φ(φ+1)

(
κ2α
ν

+ κ1

)
+ λµx2

[
ν

α−1

(
1 + κ1

φ

)
+ κ2

φ

] (61)
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A Appendix: Cell intensity distributions

This appendix includes density and cumulative distribution functions for the three distribu-
tions considered for the cell intensity. Also included are the third-order moments.

A.1 Exponential distribution

The exponential distribution is a one-parameter distribution. The density function is defined
by:

fX(x) =
1

µx

e−x/µx for x > 0 (62)

and the cumulative distribution function (cdf) by:

FX(x) = 1− e−x/µx for x > 0 (63)

The following relations hold for the exponential distribution:

µx2 = 2µ2
x and µx3 = 3µ3

x (64)

A.2 Gamma distribution

The Gamma distribution is a two-parameter distribution denoted Γ(ψ, σ), where ψ is the
shape parameter and σ the scale parameter. The density function is given by:

fX(x) =
σψxψ−1e−σx

Γ(ψ)
for x > 0 (65)

and the cdf is not available in a closed form:

FX(x) =

∫ x

0

σψxψ−1e−σt

Γ(ψ)
dt for x > 0 (66)

where:

ψ =
µ2

x

µx2 − µ2
x

and σ =
µx

µx2 − µ2
x

(67)

The following relation holds for the Gamma distribution:

µx3 =
(2µx2 − µ2

x)µx2

µx

(68)

A.3 General Pareto distribution

The Pareto distribution is also a two parameter distribution, denoted P (ψ, σ), where again
ψ is the shape parameter and σ the scale parameter. The density function is given by:

fX(x) =
ψσψ

xψ+1
for x > σ (69)
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and the cdf by:

FX(x) = 1− (
σ

x
)ψ for x > σ (70)

where:

ψ = 1 +

√
µx2

µx2 − µ2
x

and σ =
µx(ψ − 1)

ψ
(71)

The third-order moment is given by:

µx3 =
(ψ − 1)(ψ − 2)

ψ(ψ − 3)
µx2µx (72)

Note that, in the above, the moment of order p is only defined for p < α.
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B Appendix: 3rd-order continuous-time BLRPM prop-

erties

The computation of the integrals described in the text require that the following expected
values of differential products be computed:

E [dN(x− u) dN(x + y − v) dN(x + z − w)] ={
(λµc)

3 + λµcβ
2e−γ(M−m)

+(λµc)
2β

[
e−γ|z−w−y+v| + e−γ|z−w+u| + e−γ|y−v+u|]} du dv dw

and

E [dN(x− u) dN(x + y − v)] = cov [dN(x− u) dN(x + y − v)] + E [dN(x− u)] E [dN(x + y − v)]

= λµc {δ(y − v + u) + h(y − v + u)− λµc} du dv + (λµc)
2 du dv

= λµch(y − v + u) du dv

= λµc

(
λµc + βe−γ|y−v+u|) du dv

where: m = min(x− u, x + y − v, x + z − w) and M = max(x− u, x + y − v, x + z − w).

The computation of the integral then involves examining M −m which is:

M −m = max(y − v + u, z −w + u, z −w− y + v,−y + v − u,−z + w− u,−z + w + y − v)

for the different intervals of integration.

We find the following:

v ∈ [0, y + u] and w ∈ [0, z − y + v] ⇒ M −m = z − w + u

v ∈ [0, y + u] and w ∈ [z − y + v, z + u] ⇒ M −m = y − v + u

v ∈ [0, y + u] and w ∈ [z + u,∞) ⇒ M −m = −z + w + y − v

v ∈ [y + u,∞] and w ∈ [0, z + u] ⇒ M −m = z − w − y + v

v ∈ [y + u,∞] and w ∈ [z + u, z − y + v] ⇒ M −m = −y + v − u

v ∈ [y + u,∞] and w ∈ [z − y + v,∞) ⇒ M −m = −z + w − u

Lengthy but standard computations of integrals of exponential functions then lead to the
following expression for y ≤ 0 and z ≤ y :

E[Y (x)Y (x + y)Y (x + z)] = µx
3λµc

(
µc

2λ2

η3
+ 2

e−η ze−η yβ2γ2

4 η5 − 5 η3γ2 + η γ4
− e−γ ze−η yβ2γ

η (η − γ) (η + γ) (2 η + γ)

+
e−η yβ γ λ µc

−η4 + η2γ2
+

e−η zeη yβ γ λ µc

−η4 + η2γ2
+

e−η ze(η−γ)yβ2γ

−2 η4 + η3γ + 2 η2γ2 − η γ3

− e−η ze−γ yβ2γ

η (η − γ) (η + γ) (2 η + γ)
− e−γ zeγ yλµc β

(−η + γ) (η + γ) η



B APPENDIX: 3RD-ORDER CONTINUOUS-TIME BLRPM PROPERTIES 34

+
e−γ zβ (β + λµc)

η3 − η γ2
+

e−η zβ γ λ µc

−η4 + η2γ2
− e−γ yλµc β

(−η + γ) (η + γ) η

)

+µx µx2 λµc

(
−2

e−η ze−η yβ γ

η (η − γ) (η + γ)
+

e−γ ze−η yβ

(η − γ) (η + γ)
+

e−η yλµc

η2

+
e−η zeη yλµc

η2
+

e−η ze(η−γ)yβ

(η − γ) (η + γ)
+

e−η ze−γ yβ

(η − γ) (η + γ)

+
e−η z (β η γ + (γ2 − η2) λµc)

−η4 + η2γ2

)
+

µx3 λµc e−η z

η
(73)
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C Appendix: 3rd-order moment of BLRPM aggregated

process

This is the final expression of the third-order moment of rainfall depths at a time-scale h
hours. If we define the following:

T1 = 12 γ7µx
3β2eh(η+γ)−48 µx

3e2 hηη7β2+72 γ7eh(2 η+γ)µx3 η2+48 γ µx µx2 eh(2 η+γ)β η7+24 γ hµx
3eh(2 η+γ)β λ η7µc−

36 µx µx2 γ7h2eh(2 η+γ)λµc η3−24 γ hµx
3eh(2 η+γ)η7β2+24 µx µx2 γ4heh(η+γ)β η5+24 µx µx2 γ2eh(2 η+γ)β η6−

36 µx µx2 γ3eh(2 η+γ)β η5−6 γ8hµx
3eh(2 η+γ)β λ µc−30 γ3hµx

3eh(2 η+γ)β λ η5µc−72 µx µx2 γ6heh(2 η+γ)β η3+
6 γ5hµx

3eh(2 η+γ)β λµc η3−54 µx µx2 γ5heh(2 η+γ)λµc η4−84 γ2µx
3eh(2 η+γ)η5β2+30 γ6hµx

3eh(2 η+γ)β λµc η2−
36 γ5hµx

3eh(2 η+γ)β2η3+24 µx µx2 γ3heh(2 η+γ)λ η6µc+54 γ3hµx
3eh(2 η+γ)η5β2+36 µx µx2 γ7heh(2 η+γ)λµc η2+

6 µx µx2 γ5eh(2 η+γ)β η3+6 γ7hµx
3eh(2 η+γ)η β2−24 µx µx2 γ2eh(η+γ)β η6+117 µx µx2 γ6eh(2 η+γ)β η2−

18 γ4µx
3eh(η+γ)β2η3−30 γ6hµx

3eh(η+γ)β λ µc η2+54 γ5eh(2 η+γ)hµx3 η5+39 γ5µx
3eh(2 η+γ)β2η2−

36 γ7eh(2 η+γ)hµx3 η3 − 24 γ3eh(2 η+γ)hµx3 η7 − 12 γ9eh(2 η+γ)µx3 + 6 η γ9hµx3 eh(η+γ)

T2 = −24 γ4hµx
3eh(2 η+γ)β λµc η4+6 µx µx2 γ4e2 hηβ η4−30 µx µx2 γ6heh(η+γ)β η3−48 µx µx2 γ2heh(2 η+γ)β η7−

48 γ µx µx2 e2 hηβ η7−24 γ hµx
3e2 hηη7β2+30 γ3hµx

3e2 hηβ λ η5µc+54 γ4µx
3h2eh(2 η+γ)β λ η5µc+

6 γ5µx
3e2 hηβ2η2+6 µx µx2 γ8heh(η+γ)β η−36 µx µx2 γ7heh(η+γ)λµc η2−138 µx µx2 γ4eh(2 η+γ)β η4+

6 µx µx2 γ9heh(η+γ)λµc+48 µx
3eh(2 η+γ)η7β2+30 γ3hµx

3e2 hηη5β2+54 µx µx2 γ5h2eh(2 η+γ)λ η5µc−
24 µx µx2 γ2e2 hηβ η6+9 γ5µx

3h3eh(2 η+γ)λ2η5µc
2+36 µx µx2 γ3e2 hηβ η5+24 µx µx2 γ3eh(η+γ)β η5+

6 µx µx2 γ9h2eh(2 η+γ)λ η µc+24 γ4hµx
3eh(η+γ)β λ µc η4−24 µx µx2 γ3heh(η+γ)λ η6µc−132 µx µx2 γ6eh(η+γ)β η2−

6 µx µx2 γ5e2 hηβ η3−6 γ5hµx
3e2 hηβ λ µc η3+54 µx µx2 γ5heh(η+γ)λµc η4−24 γ hµx

3e2 hηβ λ η7µc+
150 µx µx2 γ4eh(η+γ)β η4−42 γ5µx

3eh(η+γ)β2η2−6 γ7µx
3h3eh(2 η+γ)λ2µc

2η3+γ9µx
3h3eh(2 η+γ)λ2µc

2η+
6 γ8µx

3h2eh(2 η+γ)β λ η µc−6 γ5hµx
3e2 hηβ2η3+12 µx µx2 γ8heh(2 η+γ)β η−6 µx µx2 γ9heh(2 η+γ)λµc−

6 µx µx2 γ5eh(η+γ)β η3−24 η5µx2 µx β γ3ehη−12 η4µx2 µx γ4β ehγ−6 η4µx2 µx γ4β ehη+6 η3γ5µx2 µx β ehη−
3 µx2 µx γ8β ehγ + 24 η6µx2 µx β γ2ehη + 15 η2µx2 µx γ6β ehγ − 3 γ7µx

3β2ehγ

T3 = 18 η3γ4µx
3β2ehη − 12 η4γ3µx

3β2ehη − 6 η2γ5µx
3β2ehη + 3 η2γ5µx

3β2ehγ − 9 γ7eh(2 η+γ)µx
3β2 +

108 η4γ5µx3 eh(η+γ)+48 γ3eh(2 η+γ)µx3 η6−72 η2γ7µx3 eh(η+γ)−48 η6µx3 γ3eh(η+γ)+84 γ2µx
3e2 hηη5β2+

18 γ4µx
3eh(2 η+γ)β2η3+24 µx2 µx γ8β eh(η+γ)+54 η5γ5hµx3 eh(η+γ)−24 η7hµx3 γ3eh(η+γ)−36 η3γ7hµx3 eh(η+γ)−

21 γ8eh(2 η+γ)µx2 µx β+6 γ9eh(2 η+γ)hµx3 η+12 γ3µx
3eh(η+γ)β2η4+12 γ3µx

3e2 hηβ2η4−18 γ4µx
3e2 hηβ2η3−

24 γ2µx
3h2eh(2 η+γ)β λ η7µc−12 γ3µx

3eh(2 η+γ)β2η4−108 γ5eh(2 η+γ)µx3 η4+6 γ8hµx
3eh(η+γ)β λ µc−

4 γ3µx
3h3eh(2 η+γ)λ2η7µc

2+108 µx µx2 γ4heh(2 η+γ)β η5+12 γ9µx3 eh(η+γ)−24 µx µx2 γ3h2eh(2 η+γ)λ η7µc−
36 γ6µx

3h2eh(2 η+γ)β λµc η3

and

χ = λ µc e−h(2 η+γ)

(η2+2 γ η+γ2)(γ4−2 η γ3−3 η2γ2+8 η3γ−4 η4)γ3η4

the third order moment is:

E
[
(Y

(h)
i )

3
]

= χ(T1 + T2 + T3)
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D Appendix: 3rd-order continuous-time DD1 proper-

ties

We define:

N1 = 1/6 µ λF 3η3
(
−18 η

(
eCy

)2
(eη y)2 γ C2β2eγ z

+96 η C3β2eCzeη zeγ yeCyeη y − 48 µ2λ2η3
(
eCy

)2
(eη y)2 Ceγ yeγ z

−12 C4β2eCzeη zeγ y + 16 η C3β2eγ yeγ z

−12 µ2λ2η4
(
eCy

)2
(eη y)2 eγ yeγ z − 12 η4

(
eCy

)2

(eη y)2 β2eγ z − 24 µλ η4
(
eCy

)2
(eη y)2 β eγ z − 12 µ2λ2η4eCzeη zeγ yeγ z

−5 µ2λ2γ2C2eγ yeγ z + 18 η2γ Cβ2eγ yeγ z + 6 γ2C2β2eCzeη zeγ y

−24 µλ
(
eCy

)2
(eη y)2 β C4eγ z + 16 µ2λ2η3Ceγ yeγ z

−96 µλ η
(
eCy

)2
(eη y)2 β C3eγ z

−48 µ2λ2η3CeCzeη zeγ yeγ z − 12 µλ
(
eCy

)2
(eη y)2 β C4eγ yeγ z

−12 µλ η4
(
eCy

)2
(eη y)2 β eγ yeγ z − 3 µ2λ2

(
eCy

)2

(eη y)2 γ4eγ yeγ z − 48 µλ η β C3eCzeη zeγ yeγ z + 144 η2β2C2eCzeη zeγ yeCyeη y

+96 µλ η3β CeCzeη zeCyeη yeγ z + 96 µλ η β C3eCzeη zeCyeη yeγ z

−48 µλ η
(
eCy

)2
(eη y)2 β C3eγ yeγ z − 6 µ λ γ2β C2eCzeη zeCyeη yeγ z

−36 µλ η2
(
eCy

)2
(eη y)2 γ β Ceγ yeγ z + 24 µλ (eγ y)2 β C4eCzeη zeCyeη y

−48 µλ η3β CeCzeη zeγ yeγ z − 12 µλ γ C3β eCzeη zeγ yeγ z

+24 µλβ C4eCzeη zeCyeη yeγ z + 96 µλ η β C3eCzeη zeγ yeCyeη y

−72 µλ η2
(
eCy

)2
(eη y)2 β C2eγ yeγ z + 2 γ2C2β2eγ yeγ z

−12 µλ η3γ β eCzeη zeγ yeγ z − 12 µλ η3
(
eCy

)2
(eη y)2 γ β eγ yeγ z

−12 η γ2Cβ2eCzeη zeγ yeCyeη y + 24 µλ η4 (eγ y)2 β eCzeη zeCyeη y

−12 µλ
(
eCy

)2
(eη y)2 γ C3β eγ yeγ z

+24 µλ η4β eCzeη zeCyeη yeγ z

+30 µ2λ2η γ2CeCzeη zeγ yeγ z − 6 η2γ2β2eCzeη zeγ yeCyeη y

+96 µλ η (eγ y)2 β C3eCzeη zeCyeη y − 72 µ2λ2η2
(
eCy

)2
(eη y)2 C2eγ yeγ z

−36 µλ η2γ β CeCzeη zeγ yeγ z + 3 µλ η2γ2β eCzeη zeγ yeγ z

+24 η4β2eCzeη zeγ yeCyeη y + 144 µλ η2β C2eCzeη zeγ yeCyeη y

+144 µλ η2 (eγ y)2 β C2eCzeη zeCyeη y + 12 µλ η γ2β CeCzeη zeγ y

−6 µλ γ2β C2eCzeη zeγ yeCyeη y − 12 µλ η γ2β CeCzeη zeCyeη yeγ z

−6 µλ η γ2β Ceγ yeγ z + 3 µλ η γ3β eCzeη zeγ yeγ z + 3 µ λ γ3β CeCzeη zeγ yeγ z
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+3 µλ η2
(
eCy

)2
(eη y)2 γ2β eγ yeγ z + 3 µλ γ2β C2eCzeη zeγ yeγ z

−12 µλ η (eγ y)2 γ2β CeCzeη zeCyeη y − 96 µλ η β C3eCzeη zeγ y

+6 µλ
(
eCy

)2
(eη y)2 γ2β C2eγ z + 36 µλ η2γ β Ceγ yeγ z

−96 µλ η3
(
eCy

)2
(eη y)2 β Ceγ z − 12

(
eCy

)2
(eη y)2 C4β2eγ z

−6 η3
(
eCy

)2
(eη y)2 γ β2eγ z + 36 µλ η γ β C2eγ yeγ z

+15 µ2λ2η2γ2eCzeη zeγ yeγ z + 6 µλ η2γ2β eCzeη zeγ y

+6 µ2λ2γ4eCzeη zeγ yeCyeη yeγ z − 6 µ λ η2γ2β eCzeη zeγ yeCyeη y

−72 η2
(
eCy

)2
(eη y)2 β2C2eγ z + 15 µ2λ2γ2C2eCzeη zeγ yeγ z

+16 η3Cβ2eγ yeγ z − 6 µλ η2γ2β eCzeη zeCyeη yeγ z

+3 µλ
(
eCy

)2
(eη y)2 γ2β C2eγ yeγ z

+6 µλ η
(
eCy

)2
(eη y)2 γ2β Ceγ yeγ z

+6 µλ η γ2β CeCzeη zeγ yeγ z + 4 µ2λ2C4eγ yeγ z

−6 µλ (eγ y)2 γ2β C2eCzeη zeCyeη y + 30 µ2λ2η
(
eCy

)2
(eη y)2 γ2Ceγ yeγ z

−6 γ2C2β2eCzeη zeγ yeCyeη y

+12 µλ η
(
eCy

)2
(eη y)2 γ2β Ceγ z − 12 µλ η γ2β CeCzeη zeγ yeCyeη y

−36 µλ η γ β C2eCzeη zeγ yeγ z

−48 η3
(
eCy

)2
(eη y)2 Cβ2eγ z + 24 µλ β C4eCzeη zeγ yeCyeη y

+24 µ2λ2η4eCzeη zeγ yeCyeη yeγ z

+24 µλ η4β eCzeη zeγ yeCyeη y + 15 µ2λ2η2
(
eCy

)2
(eη y)2 γ2eγ yeγ z

−30 µ2λ2η2γ2eCzeη zeγ yeCyeη yeγ z − 12 η4β2eCzeη zeγ y

−30 µ2λ2γ2C2eCzeη zeγ yeCyeη yeγ z

−60 µ2λ2η γ2CeCzeη zeγ yeCyeη yeγ z

−36 µλ η
(
eCy

)2
(eη y)2 γ β C2eγ yeγ z

+6 η2γ2β2eCzeη zeγ y + 96 µλ η3β CeCzeη zeγ yeCyeη y

−48 η C3β2eCzeη zeγ y − 72 η2β2C2eCzeη zeγ y

−6 µλ η2 (eγ y)2 γ2β eCzeη zeCyeη y

+15 µ2λ2
(
eCy

)2
(eη y)2 γ2C2eγ yeγ z

−48 µλ η3
(
eCy

)2
(eη y)2 β Ceγ yeγ z − 6 η3γ β2eCzeη zeγ y − 6 γ C3β2eCzeη zeγ y

+18 η γ C2β2eγ yeγ z + 48 µλ η β C3eγ yeγ z

−12 µ2λ2C4eCzeη zeγ yeγ z + 6 µ λ γ2β C2eCzeη zeγ y

+96 µ λ η3 (eγ y)2 β CeCzeη zeCyeη y − 12 µλ η4β eCzeη zeγ yeγ z

+24 C4β2eCzeη zeγ yeCyeη y − 6
(
eCy

)2
(eη y)2 γ C3β2eγ z
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−18 η2γ Cβ2eCzeη zeγ y + 12 η γ2Cβ2eCzeη zeγ y

+12 µ λβ C4eγ yeγ z + 6 µλ η2
(
eCy

)2
(eη y)2 γ2β eγ z

+96 µ2λ2η3CeCzeη zeγ yeCyeη yeγ z

−48 η3Cβ2eCzeη zeγ y + 3 µλ η
(
eCy

)2
(eη y)2 γ3β eγ yeγ z

+96 µ2λ2η C3eCzeη zeγ yeCyeη yeγ z + 144 µ2λ2η2C2eCzeη zeγ yeCyeη yeγ z

+24 µ2λ2η2C2eγ yeγ z + 24 µ2λ2C4eCzeη zeγ yeCyeη yeγ z

+144 µλ η2β C2eCzeη zeCyeη yeγ z − 48 η
(
eCy

)2
(eη y)2 C3β2eγ z

−3 µλ γ3β Ceγ yeγ z − 48 µ2λ2η C3eCzeη zeγ yeγ z

−144 µλ η2β C2eCzeη zeγ y − 12 µ2λ2
(
eCy

)2
(eη y)2 C4eγ yeγ z

+24 η2β2C2eγ yeγ z − 3 µ2λ2γ4eCzeη zeγ yeγ z

−24 µλ β C4eCzeη zeγ y + 4 η γ2Cβ2eγ yeγ z

−72 µ2λ2η2C2eCzeη zeγ yeγ z − 10 µ2λ2η γ2Ceγ yeγ z

+96 η3Cβ2eCzeη zeγ yeCyeη y − 12 µλ β C4eCzeη zeγ yeγ z

+3 µλ
(
eCy

)2
(eη y)2 γ3β Ceγ yeγ z + 16 µ2λ2η C3eγ yeγ z

−18 η2
(
eCy

)2
(eη y)2 γ Cβ2eγ z − 18 η γ C2β2eCzeη zeγ y

+48 µ λ η3β Ceγ yeγ z + 6 γ C3β2eγ yeγ z + 12 µλ γ C3β eγ yeγ z

−3 µλ γ2β C2eγ yeγ z − 24 µλ η4β eCzeη zeγ y + 72 µλ η2β C2eγ yeγ z

−48 µ2λ2η
(
eCy

)2
(eη y)2 C3eγ yeγ z − 144 µλ η2

(
eCy

)2
(eη y)2 β C2eγ z

−72 µλ η2β C2eCzeη zeγ yeγ z − 96 µλ η3β CeCzeη zeγ y + 4 C4β2eγ yeγ z

+4 η4β2eγ yeγ z + 6 η3γ β2eγ yeγ z + 2 η2γ2β2eγ yeγ z

+4 µ2λ2η4eγ yeγ z − 5 µ2λ2η2γ2eγ yeγ z + µ2λ2γ4eγ yeγ z + 12 µλ η4β eγ yeγ z

−3 µλ η2γ2β eγ yeγ z − 3 µλ η γ3β eγ yeγ z + 12 µλ η3γ β eγ yeγ z
)

and

D1 = eCyeη yeCzeη zeγ zeγ y
(−280 C5η3γ2 + 6 γ4C5η

−40 η7γ2C − 40 γ2C7η + 15 γ4C4η2 + 6 γ4Cη5 − 350 C4η4γ2

+15 γ4C2η4 − 280 C3η5γ2 − 140 C2η6γ2 − 140 γ2C6η2

+40 η9C + 180 C2η8 − 5 C8γ2 + γ4C6 + 840 C6η4 + 40 C9η + 480 C7η3 + 4 C10 + 480 C3η7

+1008 C5η5 + 20 γ4C3η3 + 840 C4η6 + 180 C8η2 + γ4η6 − 5 η8γ2 + 4 η10
)

which yields the first of the 14 integrals as:

I1 = N1/D1 (74)
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E Appendix: Probability dry approximation for LR

model

E.1 Mean duration of a storm

Derivation of the approximation

The theoretical expression for the mean storm duration which is required for the estimation
of the proportion of dry periods µT is (Onof, 1992):

µT =
φν

α− 1

∫ 1

0

dv

∫ 1

0

dt v−1tφ−1[1− (1− vt)e−κv(1−t)] +
φ−1ν

α− 1
(75)

Since approximating this integral involves expanding the exponential term as the sum of
a series, a change of variable in the integral in t would be preferable (the new variable is
1− t). This yields:

µT =
φν

α− 1

∫ 1

0

dv

∫ 1

0

dt v−1(1− t)φ−1[1− (1− v(1− t))e−κvt] +
φ−1ν

α− 1
(76)

By using the Taylor expansion of the exponential function, the double integral inside this
expression can be written as:

I =

∫ 1

0

dv

∫ 1

0

dt v−1(1− t)φ−1

[
−

∑∞
j=1(−κvt)j

j!
+ v

∑∞
j=0(−κvt)j

j!
− vt

∑∞
j=0(−κvt)j

j!

]

=

∫ 1

0

dv

∫ 1

0

dt (1− t)φ−1

[
−

∑∞
j=1(−κvt)j

vj!
+

∑∞
j=0(−κvt)j

j!
− t

∑∞
j=0(−κvt)j

j!

]

which is the sum of three terms:

I1 = −
∞∑

j=1

(−κ)j

j!

∫ 1

0

vj−1 dv

∫ 1

0

(1− t)φ−1tj dt

I2 =
∞∑

j=0

(−κ)j

j!

∫ 1

0

vj dv

∫ 1

0

(1− t)φ−1tj dt

I3 = −
∞∑

j=0

(−κ)j

j!

∫ 1

0

vj dv

∫ 1

0

(1− t)φ−1tj+1 dt

Having thus separated the variables of integration, the expressions simplify in terms of
beta functions as in Richard’s note (Chandler, 2003):

I1 = −
∞∑

j=1

(−κ)j

jj!
B(j + 1, φ) (77)
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I2 =
∞∑

j=0

(−κ)j

(j + 1)!
B(j + 1, φ) (78)

I3 = −
∞∑

j=0

(−κ)j

(j + 1)!
B(j + 2, φ) (79)

The sum I = I1 + I2 + I3 can therefore be approximated by IM = I1M
+ I2M

+ I3M
where:

I1M
= −

M∑
j=1

(−κ)j

jj!
B(j + 1, φ) (80)

I2M
=

M∑
j=0

(−κ)j

(j + 1)!
B(j + 1, φ) (81)

I3M
= −

M∑
j=0

(−κ)j

(j + 1)!
B(j + 2, φ) (82)

Note that, with computational efficiency in mind, IM can be rewritten so as to minimise
the calls a program has to make to the Beta function. Thus:

I1M
= −

M∑
j=1

(−κ)j

jj!
B(j + 1, φ)

I2M
=

M∑
j=0

(−κ)j

(j + 1)!
B(j + 1, φ)

I3M
= −

M+1∑
j=1

(−κ)j−1

j!
B(j + 1, φ)

this suggests we take the following as approximation:

I ′M = −
M∑

j=1

(−κ)j

jj!
B(j + 1, φ) +

M∑
j=0

(−κ)j

(j + 1)!
B(j + 1, φ)−

M∑
j=1

(−κ)j−1

j!
B(j + 1, φ)

which yields:

I ′M = B(1, φ) +
M∑

j=1

(−κ)j−1

(
κ

jj!
− κ

(j + 1)!
− 1

j!

)
B(j + 1, φ)

or:

I ′M =
1

φ
+

M∑
j=1

(−κ)j−1(κ− j2 − j)

j(j + 1)!
B(j + 1, φ) (83)

where I ′M is related to IM by:

IM = I ′M − (−κ)M

(M + 1)!
B(M + 2, φ) (84)
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Error estimation

To analyse the error on the approximation of I, let us return to the expression in terms of
three integrals. The general term of the sequence which is being summed to compute IM is:

uj = − (−κ)j

j(j + 1)!
(B(j + 1, φ) + jB(j + 2, φ))

which is alternatively negative (for j even) and positive. The sequence has the property that
it is strictly decreasing in absolute value, therefore:

u2m+1 + u2m+2 > 0 ⇒
n∑

j=2m+1

uj > 0 for any n ≥ 2m + 1

u2m + u2m+1 < 0 ⇒
n∑

j=2m

uj < 0 for any n ≥ 2m

and therefore, the limit of the series (taking the sum from 0) is between
∑M

j=0 uj and
∑M+1

j=0 uj

and upper bounds for the error made in approximating I with IM are:

|I−IM | < |uM+1| = | (−κ)M

M(M + 1)!
(B(M +1, φ)+MB(M +2, φ))| < (κ)M

MM !
B(M +1, φ) (85)

since B(M + 2, φ) < B(M + 1, φ).

Consequently, the error on the computationally more efficient approximation I ′M can be
bounded as follows:

|I − I ′M | < |I − IM |+ |IM − I ′M |
<

(κ)M

MM !
B(M + 1, φ) +

(κ)M

(M + 1)!
B(M + 2, φ)

< 2
(κ)M

MM !
B(M + 1, φ) (86)

from equation (84).

This is a coarse upper bound and in fact, more can be said about the errors involved in
approximating with IM or I ′M . In particular, we have the result:

Lemma 1 I ′M is a better approximation of I than IM for κ > 1.

This can easily be seen by observing that, assuming M even, we have:

I ′M = IM +
κM

(M + 1)!
B(M + 2, φ)

thus:

I ′M > IM
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and

IM+1 = IM + uM = IM +
κM+1

M(M + 1)!
(B(M = 1, φ) + MB(M + 2, φ))

= IM +
κM

(M + 1)!

κ (B(M = 1, φ) + MB(M + 2, φ))

M

> IM + κ

(
1 +

1

M

)
B(M + 2, φ)

so that, if κ > 1,

IM+1 > I ′M

Therefore, assuming κ > 1, we obtain:

I ′M ∈ (IM , IM+1) for M even,

and similarly

I ′M ∈ (IM+1, IM) for M odd. (87)

This entails that
|I ′M+1 − I ′M | < |IM+1 − IM |

and, more generally:

|I ′M+p − I ′M | < |IM+p − IM | for p odd

|I ′M+p − I ′M | < |IM+p+1 − IM | for p even

so that, taking limits as p →∞, we have:

∀M |I − I ′M | < |I − IM | (88)

q.e.d.

On the contrary, for small values of κ, the series which converges fastest is In if:

κ

(
n + φ + 1

(n + 2)n
+ 1

)
< 1

which is true for n large enough (for given values of κ and φ). However, as the numerical
experiments below show, small values of κ in any case lead to fast convergence of I ′n.

Numerical investigation

Using Maple which calculates sums of terms with Beta functions in terms of the Generalised
Hypergeometric Function, we can however evaluate the exact relative error ∆IM = |I−I ′M |/I
for a range of values of M, for given values of parameters κ and φ.

The results are shown in table 2 below.
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φ κ I ∆IM : M = 3 M = 5 M = 7 M = 10 M = 15 M = 20 M = 30

0.01 0.01 1.98 4.2 10−7 1.3 10−12 2.5 10−18 2.5 10−27

0.10 0.01 1.00 3.8 10−7 1.2 10−12 2.1 10−18 2.1 10−27

1 0.01 0.50 1.7 10−7 4.0 10−13 5.6 10−19 4.2 10−28

10 0.01 0.09 4.6 10−9 1.9 10−15 6.3 10−22 7.9 10−32

0.01 0.1 10.63 4.5 10−5 1.5 10−8 2.7 10−11 2.7 10−17

0.10 0.1 1.78 4.0 10−5 1.3 10−8 2.3 10−11 2.2 10−17

1 0.1 0.54 1.8 10−5 4.3 10−9 5.9 10−13 4.5 10−18

10 0.1 0.09 4.8 10−7 2.0 10−10 6.6 10−15 8.3 10−23

0.01 1 79.75 1.6 10−1 5.7 10−3 1.0 10−4 1.1 10−6

0.10 1 8.05 1.4 10−1 4.8 10−3 8.7 10−5 8.8 10−7

1 1 0.86 4.7 10−2 1.2 10−3 1.7 10−5 1.3 10−7

10 1 0.10 9.3 10−4 4.0 10−5 1.3 10−7 1.7 10−12

0.01 5 217.81 1.4 1.8 0.9 0.1 9.0 10−4 1.2 10−6 7.9 10−13

0.10 5 20.98 1.3 1.5 0.8 0.1 7.2 10−4 9.6 10−7 6.0 10−14

1 5 1.66 0.6 0.5 0.2 2.1 10−2 1.0 10−4 1.0 10−7 4.6 10−15

10 5 .11 0.0 2.7 10−3 2.4 10−4 4.0 10−6 1.7 10−9 2.6 10−13 6.6 10−22

0.01 10 286.74 2.1 20.3 50.0 64.0 14.9 0.7 4.7 10−5

0.10 10 27.64 1.9 17.5 42.0 52.3 11.7 0.5 3.4 10−5

1 10 2.18 0.8 5.2 9.6 9.1 1.5 5.1 10−2 2.5 10−5

10 10 0.13 3 10−2 2 10−2 1 10−1 1.4 10−3 2.0 10−5 1.1 10−6 0.

Table 1: Relative errors on the estimation of µT

Conclusion

In conclusion, we note that although IM (computed for instance as IM = I ′M − (−κ)M

(M+1)!
B(M +

2, φ)) could be used as approximation,it is preferable to approximate I with I ′M , so that µT

can be approximated as:

µT ≈ ν

α− 1

(
φI ′M + φ−1

)
(89)

E.2 Integral term

For the random-parameter Bartlett-Lewis model, the exact probability that an arbitrary
interval is dry depends on an integral of the form

I(φ, κ) =

∫ 1

0

tφ−1 (1− t) eκtdt (90)
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(see equation 46). This cannot be evaluated analytically, although it is (almost) a ‘standard’
integral, in the sense that it has a name, since I(φ, κ)/B(φ, 2) is a confluent hypergeometric
function — M(φ, 2+φ, κ) in the notation of Abramowitz and Stegun (1965, equation 13.2.1).
B(a, b) here is the beta function. There appear not to be any nice ways of evaluating I(φ, κ) or
relating it to other special functions that can be calculated easily — I’ve checked everything
in Abramowitz and Stegun (1965) and in Gradshteyn and Ryzhik (1980).

Rodriguez-Iturbe et al. (1987) approximated the integral using a third-order series ex-
pansion that is valid when φ and κ are both small (i.e. substantially less than 1). This
approach runs through all subsequent developments of the Bartlett-Lewis model, and is still
used in our fitting programs. However, the requirement for κ and φ to be small seems to
have gone largely unnoticed (or been forgotten) in our fitting work. Now that we’re thinking
about fitting models to lots of datasets, it may be worth examining. For example, some re-
cent problems with the SCE fitting code ‘blowing up’ for some datasets appear to be caused
solely by the failure of this approximation in a region of the parameter space that the al-
gorithm was exploring. Moreover, the exact magnitude of the approximation error for any
given κ and φ is not known, which makes me feel a bit uncomfortable . . .

In view of this, it may be worth exploring alternative means of evaluating the integral.
A possible solution is to use standard quadrature methods; however, since the integrand
becomes infinite at t = 0 for φ < 1, this may be delicate. Instead, consider expanding the
eκt term, to get

I(φ, κ) =

∫ 1

0

tφ−1 (1− t)
∞∑

j=0

(κt)j

j!
dt =

∞∑
j=0

κj

j!

∫ 1

0

tj+φ−1 (1− t) dt

=
∞∑

j=0

κj

j!
B(j + φ, 2) .

This suggests truncating the infinite sum at a suitably large value, say M , and approximating
the integral by

ĨM(φ, κ) =
M∑

j=0

κj

j!
B(j + φ, 2) . (91)

The point about this is that standard algorithms exist for calculating the Beta function to
a high degree of accuracy (it can be expressed in terms of gamma functions — B(a, b) =
Γ(a)Γ(b)/Γ(a + b)), and these are readily available in both R and FORTRAN (there’s a
FORTRAN routine to evaluate gamma functions in file OURPROGS/rec_math.f on argos).

The error in approximating I with ĨM is

I(φ, κ)− ĨM(φ, κ) =

∫ 1

0

tφ−1 (1− t)

[
eκt −

M∑
j=0

(κt)j

j!

]
dt =

∫ 1

0

tφ−1 (1− t)
∞∑

j=M+1

(κt)j

j!
dt .

(92)
Each term in the infinite sum is non-negative and increasing in t. Therefore, over the range



E APPENDIX: PROBABILITY DRY APPROXIMATION FOR LR MODEL 45

of the integral, it takes its maximum value at t = 1. The maximum value of the sum is

δM (κ) =
∞∑

j=M+1

κj

j!
= eκ −

M∑
j=0

κj

j!
(93)

which is, again, easily evaluated providing M is not too large. We therefore have

0 < I(φ, κ)− ĨM(φ, κ) < δM (κ)

∫ 1

0

tφ−1 (1− t) dt = δM (κ) B(φ, 2) . (94)

Therefore, for any value of M we can calculate an upper bound on the approximation error.
This enables us to find a value of M that will approximate the integral to any desired
accuracy. A pragmatic criterion, for example, may be to choose M such that δM (κ) B(φ, 2) <
0.01× ĨM (κ, φ).

From equation (94), it is clear that ĨM will always underestimate I. It is natural to ask
whether a correction can be made for this, to improve the approximation. From equation
(92) we have

I (φ, κ)− ĨM(φ, κ) =

∫ 1

0

∞∑
j=M+1

κj

j!
tj+φ−1dt −

∫ 1

0

∞∑
j=M+1

κj

j!
tj+φdt .

Each of the integrands here increases monotonically from 0 to δM(κ) as t ranges from 0 to 1.
Moreover, since t < 1 throughout the range of integration, the j = M +1 term is the largest
in each sum. This suggests approximating the error by taking just the M + 1 term from
each sum and scaling it to match the correct value at each end of the range of integration.
This yields the approximation

δM (κ)

∫ 1

0

(
tM+φ − tM+φ+1

)
dt =

δM (κ)

(M + φ + 1) (M + φ + 2)

which, in turn, suggests that

ÎM (φ, κ) = ĨM (φ, κ) +
δM (κ)

(M + φ + 1) (M + φ + 2)
(95)

will be an improved estimate of I (φ, κ). Note that the improvement is obtained almost ‘free
of charge’ — it depends only on M (which is known) and upon δM (κ) (which has already
been calculated to determine the accuracy of ĨM).

Numerical investigation

To assess the adequacy of these approximations, some numerical experiments have been
carried out for several values of κ and φ. It is of particular interest to determine how large
M needs to be to achieve a specified degree of accuracy. Define M̃α and M̂α to be the values
required to obtain a relative error of less than 100α% for particular values of κ and φ, using
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φ κ I(φ, κ) M̃0.01 M̂0.01 M̃10−6 M̂10−6

0.01 0 99.0099 0 0 0 0
0.10 0 9.0909 0 0 0 0

1 0 0.5000 0 0 0 0
10 0 0.0091 0 0 0 0

0.01 0.01 99.0148 0 0 1 0
0.10 0.01 9.0952 0 0 1 1

1 0.01 0.5017 0 0 2 1
10 0.01 0.0092 0 0 2 1

0.01 0.10 99.0600 0 0 2 1
0.10 0.10 9.1350 0 0 3 2

1 0.10 0.5171 1 0 3 2
10 0.10 0.0099 1 0 4 2

0.01 1 99.6013 0 0 5 4
0.10 1 9.6160 1 1 6 5

1 1 0.7183 3 2 7 6
10 1 0.0210 4 2 8 6

0.01 10 385.9201 15 13 26 23
0.10 10 288.2351 16 13 26 23

1 10 220.1547 16 13 26 23
10 10 56.3963 17 13 27 24

Table 2: Exact values of I(φ, κ), together with values of M required to achieve relative errors
of less than 10−2 and 10−6 respectively.

ĨM and ÎM respectively. Table 2 shows the values of M̃0.01, M̂0.01, M̃10−6 and M̂10−6 for
values of φ and κ between 0 and 10. In all cases, the ‘exact’ expression was calculated as
Ĩ100(φ, κ). As a check on the adequacy of this (and on the overall accuracy of the theory
and programming!), the results for φ = 0.1, κ = 0.1 and for φ = 0.1, κ = 1 have also been
evaluated manually using Table 13.1 of Abramowitz and Stegun (1965).

Table 2 shows that for the values of φ and κ likely to be encountered in rainfall modelling
applications, a small value of M yields very high accuracy. In such applications it would
be unusual to find values in excess of 1) For example, using ÎM , when φ = κ = 1 a relative
error of less than 1% can be achieved with M = 2. Indeed, M = 6 is sufficient to ensure
a relative error of less than 10−6 in this case. As expected, ÎM is more accurate than ĨM

and hence is preferable (since it is no more expensive to compute). The magnitude of this
improvement can be illustrated by comparing Ĩ0(1, 1) = 0.6667 and Î0(1, 1) = 0.7265 (not
shown in Table 2) with the actual value of I(1, 1), which is 0.7183. In this case, Î improves
considerably over Ĩ. The magnitude of the error here suggests that taking M as small as
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zero may adequate for some applications, if using Î.
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F Appendix: Std. deviation of number of cells/storm

for QR model

Conditional upon η, the mean number of cells Nc in a storm is geometrically distributed
with mean E[Nc|η] = 1 + κ1+κ2η

φ
. Let a = 1− E[Nc|η]−1. The distribution is thus given by:

Pr{Nc = n|η} = (1− a)an−1 for n > 0

The variance of Nc is:
var[Nc] = E[var[Nc|η]] (96)

Let us first calculate the conditional variance:

var[Nc|η] = E[N2
c |η]− E[Nc|η]2

and

E[N2
c |η] = (1− a)

∑∞
n=1 n2an−1

The following sums are useful:

∑∞
n=1 nan−1 = ∂

∂a

∑∞
n=0 an

= 1
(1−a)2

∑∞
n=1 n(n− 1)an−2 = ∂2

∂a2

∑∞
n=0 an

= 2
(1−a)3

Hence:

∑∞
n=1 n2an−1 = a+1

(1−a)3

thus,

E[N2
c |η] = a+1

(1−a)2

and:

var[Nc|η] = 2a
(1−a)2

= 2
[(

1
1−a

)2 − 1
1−a

]

Therefore:

var[Nc|η] = 2

[(
1 +

κ1 + κ2η

φ

)2

− 1− κ1 + κ2η

φ

]
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or,

var[Nc|η] = 2

[(
κ1 + κ2η

φ

)2

+
κ1 + κ2η

φ

]
(97)

From equation (96), the unconditional variance is:

var[Nc] =
2

φ2

[
(κ2

1 + κ1φ) + (2κ1κ2 + κ2φ)E[η] + κ2
2E[η2]

]

Since:

E[η] = α/ν

E[η2] = (α + 1)α/ν2

we finally obtain:

var[Nc] =
2

φ2

[
(κ2

1 + κ1φ) + (2κ1κ2 + κ2φ)
α

ν
+ κ2

2

α(α + 1)

ν2
]

]
(98)
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