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Licence Agreement

The copyright in this user manual and the accompanying software, distributed in file momfit.zip (together ‘the Software’) is owned by University
College London of Gower Street, London, WC1E 6BT (‘UCL’). By proceeding to use the Software you (an individual or any other legal entity)
agree to be bound by the terms of this Agreement which will govern your use of the Software.

1. Licence

1.1 You are permitted:

(a) to load the Software into and use it on a single computer which is under your control;

(b) to transfer the Software from one computer to another provided it is used on only one computer at any one time; and

(c) to transfer the Software (complete with all its associated documentation) and the benefit of this Agreement to another
person provided they have agreed to accept the terms of this Agreement and you contemporaneously transfer all copies of
the Software you have made to that person or destroy all copies not transferred. If any transferee does not accept such
terms then this Agreement shall automatically terminate. The transferor does not retain any rights under this Agreement
in respect of the transferred Software.

(d) to use the software for academic use only. By academic use it is meant that you can only use the software within an
recognised academic institution and then only for the purposes of research and study. Any use of the software not in
accordance with the previous sentence and also if used, whether directly or indirectly, for any commercial activity shall
automatically terminate this Licence.

1.2 You are not permitted:

(a) to use or copy the Software other than as permitted by this Licence;

(b) to load the Software on to a network server for the purposes of distribution to one or more other computer(s) on that
network or to effect such distribution (such use requiring a separate licence);

(c) except as expressly permitted by this Agreement and save to the extent and in the circumstances expressly required to
be permitted by law, to rent, lease, sub-license, loan, copy, modify, adapt, merge, translate, reverse engineer, decompile,
disassemble or create derivative works based on the whole or any part of the Software or its associated documentation or
use, reproduce or deal in the Software or any part thereof in any way.

2. Duration

This Agreement is effective until you terminate it by destroying the Software and its documentation together with all copies. It will
also terminate if you fail to abide by its terms. Upon termination you agree to destroy all copies of the Software and its documentation
including any Software stored on the hard disk of any computer or floppy disk or other removable media under your control.

3. Exclusion of Warranties

3.1 You accept and acknowledge that this License does not set out any warranty in respect of the Software other than that save as
expressly provided for in this Agreement and any condition or warranty implied by law as to the quality or fitness for purpose of
the Software or as to any services provided hereunder in relation to the Software is hereby excluded to the fullest extent permitted
by law. For the avoidance of doubt, UCL gives no warranty, in respect of:

(a) Any failure of the Software to operate due to changes in the operating environment or in any operating system; or

(b) Any failure of the functions provided by the Software to meet your requirements or to operate in combination with any
hardware or other software which you may select for its use.

3.2 You acknowledge and accept:

(a) That the Software is still under development and will be for test and evaluation purposes only

(b) That UCL has not produced the Software to meet your own specification;

(c) That the Software cannot be tested in every possible combination and operating environment and that it is not possible to
produce economically (if at all) computer programs known to be error free or which operate in an uninterrupted manner
and that not all errors are necessarily capable of rectification.

3.3 UCL shall not be liable to you for any indirect or consequential loss, damage or expense of any kind whatsoever arising out of or
in connection with the Software whether arising in contract, tort, negligence, breach of statutory duty or otherwise.

3.4 Subject always to clause 3.3, UCL’s liability in contract, tort, negligence, breach of statutory duty or otherwise with respect to
any claim arising in respect of its acts or omissions under or in connection with this Agreement shall be limited to the sums
received by UCL at the date of the claim relating to such act or omission or UK £1,000,000 whichever is the lesser.

4. Intellectual Property

All copyright, trade marks and other intellectual property rights subsisting in or used in connection with the Software (including but not
limited to all images, animations, audio and other identifiable material relating to the Software) are and remain the sole property of UCL.

5. Law

This Agreement shall be governed by English law.
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1 Purpose

This software is designed to fit stochastic single-site rainfall models to data using a method
of moments. Specifically, given:

1. a vector T = (T1 . . . Tk)′ of observed rainfall summary statistics (means, variances,
autocorrelations etc.); and

2. a rainfall model, whose properties depend on a parameter vector θ,

let τ (θ) = (τ1 (θ) . . . τk (θ))′ be the expected value of T according to the model. The idea
behind the method of moments is to choose θ to minimise a quadratic form

S (θ) = [T− τ (θ)]′W [T− τ (θ)] (1)

where W is a k × k matrix of ‘weights’. Historically, in the rainfall modelling literature the
kinds of models considered here have been fitted by minimising a weighted sum of squares
between observed and expected properties:

S (θ) =
k∑

i=1

wi [Ti − τi (θ)]2 , (2)

where {wi : i = 1, . . . , k} is a collection of positive weights. This is a special case of (1), in
which the matrix W is diagonal with ith diagonal element wi.

Denoting by θ̂ the estimator obtained by minimising (1), it may be shown that in large
samples, the distribution of θ̂ is approximately multivariate normal. The mean of this
multivariate normal distribution is θ̂0 (the ‘target’ value, which is equal to the true value of
the parameter if the data were indeed generated from the model being fitted). The covariance
matrix is H−1JH−1, where J is the covariance matrix of the gradient vector ∂S/∂θ evaluated

at θ0 and H = E
(
∂2S/∂θ∂θ′|

θ=θ0

)
is the expected Hessian. This result can be used to

construct approximate standard errors and confidence intervals for the parameter estimates,
providing J and H can be estimated. An estimator of J can be constructed from the
covariance matrix of the vector T of summary statistics. The obvious way to estimate H
is by evaluating the Hessian of (1) at the minimum: Ĥ = ∂2S/∂θ∂θ′|

θ=θ̂
. An alternative

estimator, which can be shown to be asymptotically equivalent (although this is not at all
obvious!), is

H̃ = 2
[
∂τ/∂θ|

θ=θ̂

]′
W
[
∂τ/∂θ|

θ=θ̂

]
. (3)

The latter estimator seems to be more numerically stable in practice.

Minimisation of (1) must usually be done numerically, which can be nontrivial. This
software implements the minimisation and associated covariance matrix calculations for a
variety of single-site models, in what is hopefully a flexible, reliable and user-friendly manner.
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A rudimentary knowledge of the S language (as implemented in R and S-Plus, for example)
is required — in particular, an understanding of data structures such as lists, vectors and
data frames.

Further details on the models implemented in the software, including their parametrisa-
tion and properties, are given in DEFRA R&D project FD2105 report no. 8 Mathematical
expressions of generalised moments used in single-site rainfall models by Christian Onof. The
theory underlying the method of moments is summarised in FD2105 report no. 7 Moment-
based inference for stochastic-mechanistic models by Richard Chandler. PDF versions of both
reports are included in the software distribution. They will be referred to respectively as
‘Report no. 8’ and ‘Report no. 7’ below.1

2 Package contents and system requirements

The software is provided as a single R script, momfit.r. R version 1.7.0 or later is required
to run the routines. R is freely available from http://www.R-project.org/. Installations
are available for most operating systems, and most R code is completely portable between
systems. We have used the software on Windows and Linux platforms. The routines run
substantially faster (a factor of 2 or 3) under Linux, but otherwise we have not found any
differences between platforms.

In addition to momfit.r, the package contains the following files:

manual.pdf: This manual.

report7.pdf: PDF copy of FD2105 report no. 7 Moment-based inference for stochastic-
mechanistic models (see above).

Report8.pdf: PDF copy of FD2105 report no. 8 Mathematical expressions of generalised
moments used in single-site rainfall models (see above).

elmstats.dat: ASCII-format data file containing fitting statistics from an hourly raingauge
at Elmdon, near Birmingham in the UK. These data are used in Section 4 below.

doc_eg.r: R script containing the commands required to run the examples in Section 4.

fit_demo.r: Specimen script to fit models and save the results to file. See end of Section
4.

1Note, however, that there is an error on page 17 of Report no. 7: the claim that the weights should not
depend on the data is incorrect. This is because weights computed from the data are essentially estimates
of the weights corresponding to a single value of θ. We hope to produce a paper in the near future, setting
out the correct theory clearly and unambiguously . . .

http://www.R-project.org/
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3 Routines provided

The software consists of a suite of R functions. However, only two of the functions are
designed for user interaction, so only these are documented in detail here. The remainder
are summarised in Appendix A. The function headers in momfit.r give more details.

This section is primarily for reference use. Examples illustrating the use of the routines
can be found in Section 4 below.

3.1 auto.fit

This is the main fitting routine. It is designed to fit a rainfall model to a set of observed
rainfall properties, ‘automatically’ identifying and then exploring promising regions of the
parameter space in its search for a global minimum of (1). Optionally, it will then cal-
culate the approximate standard errors and correlation matrix of the parameter estimates,
along with objective function thresholds defining approximate confidence intervals for the
parameters. The user may impose constraints on the parameters, but this is not necessary.

3.1.1 The algorithm

Typically, the objective function (1) has a complicated structure. Experience has shown that
it often has local minima, and that poor starting values for an optimisation can result in the
failure of standard gradient-based methods. However, given good starting values, gradient
methods are usually more powerful than non-gradient methods. For this reason, the basic
idea implemented here is to start by using a robust optimisation algorithm (the Nelder-Mead
simplex method) to identify promising regions of the parameter space. Having done this,
the gradient-based method implemented in function nlm is used to refine the optimisation.
The structure is as follows:

1. Perform M separate Nelder-Mead optimisations of (1), each beginning from a different
initial value of θ. One of these initial values is supplied by the user; the remaining
M − 1 are generated via random perturbations about this user-supplied value.

2. Use a set of heuristics (described below) to update, if possible, the constraints on each
parameter, based on the ‘best’ m parameter sets found so far (i.e. those with smallest
objective function values).

3. Discard all but the m best parameter sets found so far. Take the single best set as a
new starting point for future optimisations.

4. Use the nlm function to perform N −m additional optimisations of (1), each begin-
ning from a different initial value of θ, generated via random perturbations about the
starting point identified in step 3.
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5. Discard any parameter sets for which the objective function exceeds 10Sm, where Sm

is the mth smallest of the objective function values found in step 2.

6. Repeat steps 2 to 5 a fixed number of times.

In implementing this scheme, the user needs to choose M in step 1, m in steps 2 and 3,
N in step 4, and the total number of iterations of steps 2–5. Larger values give an increased
chance of finding a global minimum but at the expense of increased computation time. Our
experience indicates that setting M = 100, m = M/5 and N = 5m/2, with 5 iterations
of steps 2–5, is sufficient to obtain a good estimate of the minimum. These settings are
implemented as default values in auto.fit, but can be changed by the user.

The heuristics in step 2 are designed to encapsulate the idea that if all of the best
parameter sets found so far have similar values of one or more parameters, subsequent
searches should be restricted to a neighbourhood of these values. At the same time this
neighbourhood should be defined in such a way as to avoid, as far as possible, becoming
trapped in a local minimum. The specific details are as follows:

• Define any parameter set that gives an objective function below 10Sm (defined above)
to be ‘promising’. Calculate the largest and smallest values of each parameter among
these promising sets. Also calculate the 10th and 90th percentiles of each parameter.

• For each parameter, let U and L be respectively the largest and smallest values among
the m best parameter sets found so far, and let Cu and C` be any existing constraints
on the parameter. Subject to the caveats below:

– If U is less than the 90th percentile just calculated and L is greater than the 10th,
constrain the next search to be between L− (U − L)/10 and U + (U − L)/10.

– Otherwise, if C` > −∞ redefine it to L − (Cu − C`)
2 /(1 + L − C`); similarly,

if Cu < ∞ redefine it to U + (Cu − C`)
2 /(1 + Cu − U). These constraints are

somewhat arbitrary, but have the effect of widening the interval (C`, Cu) if L and
U are close to its respective endpoints, and narrowing it otherwise (unless the
interval is currently infinite or semi-infinite, in which case it does not make sense
to narrow it since we presumably lack sufficient information about the location of
the minimum).

The caveats here are:

– Never go outside any user-supplied constraints on parameters.

– Do not make any adjustments to existing constraints, without at least 5 ‘promis-
ing’ parameter sets.

The R optimisation routines used here are for unconstrained minimisation. In this soft-
ware, constraints are incorporated by transforming each of the parameters prior to optimisa-
tion, so that an unconstrained optimisation can be carried out in the transformed parameter
space. The transformations used are:
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1. For constraints of the form θ > C`, θ
∗ = log [θ − C`]. The inverse transformation is

θ = C` + exp [θ∗].

2. For constraints of the form θ < Cu, θ∗ = log [Cu − θ]. The inverse transformation is
θ = Cu − exp [θ∗].

3. For constraints of the form C` < θ < Cu, θ∗ = log {log [Cu − C`]− log [θ − C`]}. The
inverse transformation is θ = C` + (Cu − C`) exp {− exp [θ∗]}.

Finally: in generating random perturbations about an initial parameter value, the distri-
bution used for each parameter depends on the nature of the constraints for that parameter.
For 1-sided constraints, an exponential distribution is used, with expectation equal to the ini-
tial parameter value. For 2-sided constraints, a uniform distribution is used. Unconstrained
parameters are currently not accommodated, since all parameters appearing in the models
considered here are subject to at least one constraint (almost all parameters are strictly
positive-valued, for example).

3.1.2 Arguments

The arguments to the function are as follows:

model.name: A character string identifying the model to fit. Possible values are:

"PO" Rectangular-pulse Poisson model (Rodriguez-Iturbe et al., 1987).

"BL0" Rectangular-pulse Bartlett-Lewis model (report 8, Section 2).

"BL1" Linear random-parameter Bartlett-Lewis model (report 8, Section 5).

"BL2" Bartlett-Lewis model with 2 cell types (report 8, Section 4).

"BL3" Bartlett-Lewis model with cell depth distribution dependent on duration. This
is the simplified version of the model considered in report 8, Section 3, with d = 2c
and g = 2f 2 in the notation of that report.

"QA" Quadratic random-parameter Bartlett-Lewis model (report 8, Section 6).

"NS0" Rectangular-pulse Neyman-Scott model (Rodriguez-Iturbe et al., 1987). The
number of cells in a storm, C say, is such that C − 1 has a Poisson distribution.
This follows Cowpertwait (1991).

"NS1" Random-parameter Neyman-Scott model. This is as defined in Entekhabi et al.
(1989), except that C − 1 has a Poisson distribution again.

theta: Initial guess at the value of θ minimising (1). The interpretation of theta will
vary between models. Table 1 gives details of the model parameterisations. NB
however: as originally written, the software did not accommodate the use of skewness
as a fitting property. In this case, the precise specification of cell intensity distribution
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Model Parameter vector

"PO" θ = (λ, µX , σX/µX , µL)′

"BL0" θ = (λ, µX , σX/µX , β, γ, η)′

"BL1" θ = (λ, µX , σX/µX , α, α/ν, κ, φ)′

"BL2" θ = (λ, µX1 , µX2 − µX1 , σX1 , σX2 , 1/η1, 1/η2, ψ1, µc, δs)
′

"BL3" θ =
(
λ, µX , µX|0/µX , δc, µc, δs

)′
"QA" θ = (λ, µX , µX2 , α, ν, κ1, κ2, φ)′

"NS0" θ = (λ, µX , σX/µX , µC , β, η)′

"NS1" θ = (λ, µX , σX/µX , α, α/ν, µC , β)′

Table 1: Model parameterisations used in auto.fit routine. See relevant sections of report
8 for parameter interpretation. The entries in the “Model” column correspond to values of
the function argument model.name; those in the “Parameter vector” column correspond to
values of the argument theta.

is unimportant: the mean µX and standard deviation σX are all that is required to
establish the first- and second-order properties of the model. The choice of distribution
makes a difference, however, if skewness is included. The inclusion of skewness is
currently incorporated only for the Poisson model P0: the expressions programmed
here are for a gamma cell intensity distribution.

timescales: A list, identifying the fitting properties to be used in the objective function
(i.e. the elements of T). The list may contain up to five named components, as follows:

Mean: A vector containing the time scales corresponding to any components of T that
are mean rainfall amounts.

Var: A vector containing the time scales corresponding to any components of T that
are variances of rainfall amounts.

Ac: A 2-dimensional array (or matrix, or data frame) identifying the time scales and
lags corresponding to any components of T that are autocorrelations of rainfall
amount time series. The first column contains the time scale and the second the
lag.

Ph: A vector containing the time scales corresponding to any components of T that
are proportions of wet intervals.
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Skew: A vector containing the time scales corresponding to any components of T that
are skewness coefficients of rainfall amounts.

observed: A vector of observed summary statistics (i.e. the observed value of T), at
the time scales defined in timescales. The first element(s) must correspond to the
mean(s); next variance(s), followed by autocorrelation(s), proportion(s) wet and finally
skewness.2 For example, if timescales$Mean is defined as c(1) and the time units
are hours, the first element of observed should be the mean hourly rainfall and the
second element should be the variance at a time scale corresponding to the first el-
ement of timescales$Var (if present — if not, the first element of timescales$Ac,
timescales$Ph or timescales$Skew). Note that the software does not check that the
ordering of observed is correct.

covmat: Optional: the estimated covariance matrix of the statistics in observed. This
is the matrix v̂ar (T) of report 7, page 15. If present, it can be used to calculate
approximate standard errors for the parameter estimates.

w: Either

• A k × k matrix corresponding to the matrix W in (1), where k is the number of
properties used in the fitting procedure (i.e. the length of the observed vector);
or

• A vector of length k. In this case, the matrix W in (1) is taken to be diagonal and
w gives the diagonal elements. Thus the parameters are estimated to minimise a
weighted sum of squares as in (2).

Defaults to a vector of ones, so that fitting is done by minimising a sum of squares
with each property receiving the same weight.

log.pars: A logical scalar or vector, indicating whether to optimise over the (natural) log-
arithms of some parameters. For parameters where this is TRUE, the routine transforms
the parameter constraints accordingly, computes standard errors etc. on the log scale
and produces all output on the log scale. The default is FALSE.

log.props: A logical scalar or vector, indicating which (if any) of the values in observed

are actually estimates of the logarithms of the corresponding properties. The default
is FALSE. NOTE: if a sample statistic T is unbiased for a property τ , then log T is not
unbiased for log τ — therefore you should not change the default setting here unless
you are absolutely sure of what you’re doing!

stderr: Logical scalar determining whether or not to calculate approximate standard errors
and confidence limits for the objective function. Defaults to TRUE if covmat is supplied
and FALSE otherwise.

2Given data x1, . . . , xn, the sample skewness is defined as s−3n−1
∑n

i=1 (xi − x̄)
3
, where x̄ is the sample

mean and s is the sample standard deviation.
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numeric.hess: Logical scalar used if stderr is TRUE. In this case, the calculation of stan-
dard errors etc. requires the expected Hessian of the objective function at the optimum.
If numeric.hess is TRUE, this Hessian will be computed numerically. Otherwise the
approximation (3) will be used. Since this approximation has slightly better numerical
properties, numeric.hess defaults to FALSE. Note, however, that numerical instabili-
ties can indicate that the optimisation algorithm has failed to converge to a well-defined
minimum. For debugging and tracing purposes therefore, it may be helpful to set this
argument to TRUE. Note also that the use of an analytical approximation does not
entirely eliminate the use of numerical differentiation: the gradient vector ∂τ/∂θ is
still evaluated numerically, for example.

conf.level: A vector of probabilities from which, if stderr=TRUE, objective function
thresholds will be calculated corresponding to approximate confidence regions for the
entire parameter vector. The default value of c(0.95,0.99) returns thresholds corre-
sponding to approximate 95% and 99% regions.

print.level: Controls the amount of output written to screen during fitting. A value of 0
causes the routine to work silently. A value of 1 (the default) will print a message each
time a new set of parameter constraints is calculated (i.e. at the end of step 2 of the
fitting algorithm above). Successively higher values yield successively more verbose
output.

lb: A vector of lower bounds on the parameters in theta. The default value is 10−6 for
every parameter, since most models are parameterised using non-negative quantities
(values of exactly zero should be avoided since they can cause pathological problems).

ub: A vector of upper bounds on the parameters in theta. The default value is∞ for every
parameter.

ninit: The number of initial Nelder-Mead optimisations to carry out in step 1 of the fitting
algorithm (i.e. the value of M). Default 100.

nkeep: The number of parameter sets to keep in step 3 of the algorithm (i.e. the value of
m). Defaults to max(1,0.2*ninit).

nsubseq: The total number of parameter sets required after step 4 of the algorithm (i.e.
the value of N). Defaults to 2.5*nkeep.

nsearches: The total number of times to repeat steps 2–5 of the algorithm. Default 5.

reltol: Relative tolerance: if the upper and lower limits on all parameters agree to a
relative tolerance of reltol, a solution is deemed to have been found and the algorithm
will terminate. Default 0.01.

plot.progress: A logical scalar indicating whether to plot the objective function values
versus the parameters each time the algorithm reaches the end of step 5. This can be
useful to monitor the progress of the fitting. Defaults to TRUE.
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The only arguments that are required are model.name, theta, timescales and observed.

3.1.3 Value

The function returns a list with the following components:

Theta: The optimal parameter vector found. For elements to which a log transformation
has been applied using log.pars, estimates are returned on a log scale, and this is
reflected in the names attribute of the result.

Std.err: If requested, a vector of approximate standard errors for each of the parameter
estimates.

Corr: If standard errors were requested, the approximate correlation matrix of the param-
eter estimates.

Cov: If standard errors were requested, the approximate covariance matrix of the parameter
estimates.

Obj: The value of the objective function at the optimal parameter vector.

Obj.thresh: If standard errors were requested, values of the objective function that define
an approximate confidence region for the parameter vector, at the levels specified in
conf.level.

Gradient: The gradient vector of the objective function at the optimal parameter vector
(obtained via numerical differentiation).

Hessian: The Hessian matrix (i.e. matrix of second derivatives) of the objective function
at the optimal parameter vector (obtained via numerical differentiation).

fits.table: A table containing the final points of other optimisations whose performance
is in some sense close to optimal. These are all the parameter sets remaining after
the final iteration of step 5 of the fitting algorithm above. The first 2p columns of the
table (where p is the number of parameters estimated) contain parameter estimates
and objective function gradients. The final 3 columns are Obj, the objective function,
Method, the minimisation method that gave rise to this parameter set (Nelder-Mead
or nlm) and Converge (a flag indicating the results of the internal convergence checks
in R).

Bounds: The final set of parameter constraints identified in step 2 of the algorithm.

Model: The value of model.name on input.

Timescales: The value of timescales on input.

Observed: The value of observed on input
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w: The weights used in the objective function

log.pars: A logical vector indicating the parameters to which a log transformation has
been applied.

log.props: A logical vector indicating the components of observed which estimate the
logarithms of the corresponding fitting properties.

3.2 obj.profile

This function calculates, and optionally plots, profile objective functions for selected pa-
rameters. These are obtained by holding the selected parameter fixed at each of a range of
values, and optimising over the remaining parameters.

3.2.1 Arguments

fit: The output of a call to auto.fit, with a non-null value of Cov. This will be the
case if standard errors were requested in the call to auto.fit (see documentation for
auto.fit for details).

params: Numeric vector of parameter for which profiles are required. For example, set-
ting params=c(1,3) would calculate profiles for the first and third parameters in
fit$Theta.

grids: An optional list of vectors containing, for each requested parameter, a grid of values
at which to evaluate the profile objective function. If NULL (the default), a regular
grid between loplim and upplim (see below) is used. NOTE that even if some of the
parameters in fits are on a log scale, all elements of grids should be on the original
scale.

loplim, upplim: Vectors of lower and upper plotting limits for each requested parame-
ter. Default to estimate ± 3 standard errors respectively. If supplied by the user,
these should be on the original (not logarithmic) scale for all parameters, regardless of
whether log.pars has been used. These are only used if grids is NULL.

lower, upper: Vectors of lower and upper bounds on all model parameters, to constrain
optimisation when calculating the objective function profiles. These should all be on
the original parameter scale. Defaults are the same as for auto.fit.

npoints: Scalar giving the number of intermediate points between loplim and loplim at
which to calculate the profile objective function. This is only used if grids is NULL.

conf.level: A vector of probabilities from which objective function thresholds will be
calculated corresponding to approximate confidence intervals for individual parameters.
The default value of c(0.95,0.99) returns thresholds corresponding to approximate
95% and 99% intervals.
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plot.it: Logical scalar, determining whether or not to plot the results as we go. Default
TRUE.

hlines: Numeric vector, selecting which of the thresholds calculated from conf.level to
plot as horizontal lines. Defaults to all of them.

lintyps: Numeric vector of line types for the various thresholds selected in hlines. De-
faults to 1+(1:length(hlines)).

print.level: Controls verbosity of output. The function works silently if print.level=0;
increasing values generate more detailed on-screen progress reports. Defaults to 1.

ninit, nsubseq, nsearches: Arguments to auto.fit, when it is called to minimise the
objective function at each stage. Default to 2, 10 and 1 respectively (NB these differ
from the default values in auto.fit itself, because when calculating profile objective
functions, at each stage we should have a reasonably good idea of where the optimum
is located). See auto.fit documentation for full details

3.2.2 Value

This function returns a list containing a component for each parameter over which
profile objective functions have been calculated. The names attribute of the list is
names(fit$Theta)[params]. Each component is a data frame containing, for each fixed
value of the parameter of interest, the optimum values of all the other parameters, the as-
sociated objective function values and the thresholds defining profile confidence intervals at
the levels specified in conf.level. These data frames can be used, for example, to explore
the relationships between parameters.

4 Using the software

In this section we illustrate the use of the software with a short demonstration session,
using data from an hourly raingauge at Elmdon, near Birmingham in the UK. The data are
supplied with the software, in file elmstats.dat.

Start up R and change the working directory, if necessary, to that containing the fitting
software and specimen data file. Then load the fitting software:

> source("momfit.r")

Windows users should press Ctrl-W at this point, to prevent R from using buffered output
(the default behaviour under Windows is to withhold output from the screen until a batch
of commands has finished processing — which is not very helpful if you want to watch what
is happening!).

Next, read the data into a data frame called elmdon.data:
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> elmdon.data <- read.table("elmstats.dat",header=TRUE)

The data consist of monthly time series of various summary statistics, starting in January
1950 and finishing in September 1997. The data are sorted by month, and within that by
year. Display the first line of the data frame:

> elmdon.data[1,]

Month Year Mean1 Var1 Var6 Var24 Ac1 Ac24 Pdry1 Pdry24

1 1 1950 0.019 0.012 0.199 1.366 0.579 0.09 0.941 0.645

The column headings are self-explanatory — after the month and year are mean hourly
rainfall , variances of 1-, 6- and 24-hourly rainfall, lag 1 autocorrelations of hourly and daily
rainfall, and proportions of dry hours and days. Except for the last two columns, these
summary statistics will be used to fit a rainfall model. Recall from page 10 that the software
uses the proportion of wet intervals as a fitting statistic rather than the proportion dry. It
is probably easiest simply to replace and rename the existing columns:

> elmdon.data[,9:10] <- 1-elmdon.data[,9:10]

> names(elmdon.data)[9:10] <- c("Pwet1","Pwet24")

> elmdon.data[1,]

Month Year Mean1 Var1 Var6 Var24 Ac1 Ac24 Pwet1 Pwet24

1 1 1950 0.019 0.012 0.199 1.366 0.579 0.09 0.059 0.355

To use the fitting routines, we need to make a single vector of summary statistics, and
to define these to the system using a timescales list. Let’s obtain summary statistics for
January:

> mean.stats <- colMeans(elmdon.data[elmdon.data$Month == 1,-c(1,2)],na.rm=TRUE)

> timescales <- list(Mean=1,Var=c(1,6,24),

+ Ac=matrix(c(1,24,1,1),nrow=2),Ph=c(1,24))

> mean.stats

Mean1 Var1 Var6 Var24 Ac1 Ac24

0.07993617 0.11353191 1.98474468 13.05380851 0.58904255 0.08402128

Pwet1 Pwet24

0.12617021 0.57576596

> timescales

$Mean

[1] 1

$Var

[1] 1 6 24
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$Ac

[,1] [,2]

[1,] 1 1

[2,] 24 1

$Ph

[1] 1 24

The calculation of mean.stats discards the first and second columns of elmdon.data

(which are Month and Year), and removes missing values. The elements of timescales

give, in order, the time scale of each of the summary statistics in mean.stats. For the Ac

component, the first column is the time scale and the second is the lag (both autocorrelations
are at lag 1 in this case).

If we want to calculate standard errors later, we will need to estimate the covariance
matrix of mean.stats. This can be done using

1

n (n− 1)

n∑
i=1

(
Ti −T

) (
Ti −T

)′
, (4)

where Ti is the vector of summary statistics for the ith January, T is the mean vector
(i.e. mean.stats) and n is the total number of Januaries in the dataset. The n − 1 in
the denominator is the standard divisor for estimating covariance matrices; the additional
factor of n appears because we are estimating the covariance matrix of the mean summary
statistics T, rather than those for an individual January. To implement this in R:

> nyears <- sum(!is.na(elmdon.data$Mean1[elmdon.data$Month == 1]))

> var.stats <- var(elmdon.data[elmdon.data$Month == 1,-c(1,2)],na.rm=TRUE)

> var.stats <- var.stats/nyears

Now we have some summary statistics and an estimate of their covariance matrix, and
can start fitting models. We’ll start with a simple 6-parameter Bartlett-Lewis model (report
8, Section 2). From table 1, the parameters for this model are λ (storm arrival rate), µX

(mean cell intensity), σX/µX (coefficient of variation of cell intensity distribution), β (cell
arrival rate within storms), γ (parameter of exponential storm duration distribution) and
η (parameter of exponential cell duration distribution). Based on historical experience,
together with some idea of how long storms are expected to last, we might expect that as a
rough order of magnitude, λ ≈ 0.01, µX ≈ 1, σX ≈ µX , β ≈ 10, γ ≈ 0.1 and η ≈ 10. Let’s
define these as starting values for optimisation:

> theta <- c(0.01,1,1,10,0.1,10)

> names(theta) <- c("lambda","mu[X]","sigma[X]/mu[X]","beta","gamma","eta")
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It is not necessary to name the parameters, but these names will be used to label the
output of fitting routines, which aids interpretation.

We’re almost ready to fit the model. By default, auto.fit produces plots as it works,
showing the best-performing values for each parameter. To see all of these in the same
window, set up a 2× 3 graphics array:

> par(mfrow=c(2,3))

Now we can fit the model and store the results in an object called fit1, say. Referring
to Section 3.1.2, we see that this model is coded as "BL0":

> fit1 <- auto.fit(model.name="BL0",theta=theta,timescales=timescales,

+ observed=mean.stats,covmat=var.stats)

Starting initial search

Initial bounds on parameters:

Lower Upper

lambda 1e-06 Inf

mu[X] 1e-06 Inf

sigma[X]/mu[X] 1e-06 Inf

beta 1e-06 Inf

gamma 1e-06 Inf

eta 1e-06 Inf

Subsequent search 1

Current optimum:

Theta Lower Upper

lambda 0.03042027 0.02782068 Inf

mu[X] 3.64670343 0.00000100 Inf

sigma[X]/mu[X] 0.16596079 0.00000100 2.9172520

beta 4.63641465 0.00000100 18.0280794

gamma 0.25517173 0.16946983 0.2666243

eta 21.51599021 0.00000100 Inf

Objective function value: 0.0005994

.

.

.

Warning message:

In auto.fit(model.name = "BL0", theta = theta, timescales = timescales, :

Hessian is singular - standard errors will be infinite

As the fitting routine progresses and the constraints on parameters are updated, progress
is written to screen and graphical displays are produced3. On completion (after Subsequent

3Windows users: if progress is not written to screen, R is probably buffering the output. You can check
this by clicking on the Misc menu.
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Figure 1: Specimen graphics output from auto.fit routine. Lines through the points indi-
cate the corresponding objective function gradients. Filled points are those for which the R
internal tests reported successful convergence; open points are those reported as convergence
failures.

search 5), the graphics window should look something like that in Figure 1. Note that
the results will not be exactly the same, because they depend on the randomly-generated
perturbations in steps 1 and 4 of the fitting algorithm. However, if all is well the plots
should show clusters of values in similar positions to those in Figure 1, and the objective
functions should be similar. The horizontal scales of these plots give some indication of how
well-identified the parameters are — for example, λ and γ are tightly constrained whereas
the remaining parameters are rather less so.

Warning messages at the end of (and, for some versions of R, during) the fitting are
normal. Some arise because the nlm routine, which is internal to R, occasionally generates
infinite candidate values at which to evaluate the objective function; these should not cause
concern. Others result from rounding errors that produce tiny negative results for quantities
that should be non-negative (although in general, this should not occur unless the argument
numeric.hess is explicitly set to TRUE). In the example above however, auto.fit itself has
issued a warning that the standard errors of the parameter estimates are probably infinite.
This is quite common for this particular example, and is discussed in more detail below.

The optimal parameter set is now held in the Theta component of fit1, and the corre-
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sponding objective function value is in the Obj component:

> fit1$Theta

lambda mu[X] sigma[X]/mu[X] beta gamma

0.0302466 0.2893516 15.2241771 1149.3796444 0.2567079

eta

407.6549382

> fit1$Obj

[1] 0.0005760354

Again, the exact values will probably be slightly different but the objective function
value, in particular, should be very close to that given above. In our experience, it is
common for different — and in some cases very different — parameter sets to yield almost
identical objective function values. Figure 1, for example, shows that there are near-optimal
objective function values for β throughout the range 200 to 1 200, and over a similarly large
range of values for η. This suggests that at the parameter estimate there are directions in
which the objective function is essentially flat: in this case there can be little information
in the objective function about particular parameters or combinations of parameters. A flat
objective function has a singular Hessian matrix; we have already seen that the software
warned of this. As promised, in this situation it returns infinite standard errors, indicating
that (to the accuracy of the numerical optimisation, at least), the full parameter set is not
identifiable:

> fit1$Std.err

[1] Inf Inf Inf Inf Inf Inf

How well does the fitted model reproduce the observed summary statistics? From Ap-
pendix A, the function props.BL0 calculates the expected properties for this model. To find
the arguments to this function:

> args(props.BL0)

function (theta, timescales)

NULL

The function simply requires a parameter vector and a timescales object. So, to find
the expected properties for the model fitted here:

> props.BL0(fit1$Theta,timescales)

$Mean

[1] 0.09614596

$Var
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[1] 0.1038288 1.9868603 13.0534991

$Ac

[1] 0.58800947 0.09080338

$Ph

[1] 0.1377335 0.5699538

$Skew

NULL

A comparison of these expected properties with those observed in mean.stats reveals
a problem. The 24-hour variance is reproduced well by the fitted model, but the 1-hour
mean, which is arguably the most important property, is reproduced much less well, with an
error in excess of 15%. The problem is partly due to the fact that larger values (such as the
24-hour variance) dominate the objective function. In the rainfall modelling literature, it
has become accepted practice therefore to downweight the larger properties so as to reduce
their impact on the final result.

In statistical terms however, the relevant consideration is the precision, rather than the
magnitude, of the contributions to the objective function. From this point of view, the
argument for downweighting the 24-hour variance is not that it dominates the objective
function: rather, it is typically estimated much less precisely than (say) the 1-hour mean
and therefore, in some sense, carries relatively little information. In general, it may be
shown using an extension of the arguments in Hansen (1982) that in large samples, there is
an optimal choice of weighting matrix W in (1): this optimal choice is W = Σ−1, where Σ
is the covariance matrix of the fitting properties T. Asymptotically, any linear combination
of the model parameters is estimated at least as precisely for this choice of W as for any
other. This suggests that problems of parameter identifiability can be reduced as far as
possible by using this choice of W. The problem, of course, is that Σ is unknown. It can
be estimated from the data, however, using an expression such as (4). We have conducted
some simulations to determine how well the resulting estimation procedure works in practice.
The results are encouraging and indicate that in general, parameters are indeed much better
identified than using other weighting schemes that have been suggested in the literature.
Unfortunately however, the standard errors reported by the software for this particular choice
of W tend to be extremely inaccurate. The reason for this is essentially that (4) estimates
the k(k+1)/2 unique elements of Σ separately, and the individual estimation errors cumulate
to swamp the inference about θ (which typically has far fewer than k(k + 1)/2 elements).

Work is in progress to alleviate the problem of estimating Σ by way of obtaining an
optimal weighting scheme. In the interim however, a reasonable alternative is just to take
the diagonal elements of Σ and to minimise a weighted sum of squares of the form (2), with
wi = 1/V̂ar (Ti). If the fitting properties were known to be mutually uncorrelated, this would
provide an estimate of Σ−1 and hence would deliver asymptotically optimal estimators. Our
simulation experiments indicate that this particular choice of weights can deliver performance



4 USING THE SOFTWARE 22

that is almost as good as the optimal choice, but that the standard errors and confidence
intervals reported by the software are much more accurate. To calculate this choice of weights
therefore:

> prop.wt <- 1 / diag(var.stats)

> prop.wt

Mean1 Var1 Var6 Var24 Ac1 Ac24

3.756028e+04 8.955952e+03 2.494121e+01 3.125249e-01 4.994064e+03 1.819588e+03

Pwet1 Pwet24

2.761717e+04 2.014010e+03

>

Notice that the 24-hour variance now has a very small weight compared to the other
properties. This reflects the fact that it is estimated imprecisely, and hence it is inappropriate
to try and force too close a match to this property.

Now let’s refit the model. This time, we will use the parameter set we have already found
as a starting value, and will carry out the optimisation on a log scale:

> par(mfrow=c(2,3))

> fit2 <- auto.fit(model.name="BL0",theta=fit1$Theta,timescales=timescales,

+ observed=mean.stats,covmat=var.stats,w=prop.wt,log.pars=TRUE)

Starting initial search

Initial bounds on parameters:

Lower Upper

log(lambda) -13.81551 Inf

log(mu[X]) -13.81551 Inf

log(sigma[X]/mu[X]) -13.81551 Inf

log(beta) -13.81551 Inf

log(gamma) -13.81551 Inf

log(eta) -13.81551 Inf

.

.

.

Notice now that the fitting, parameter constraints and graphics for all parameters are on a
log scale. You may also notice that the fitting is much quicker — this appears to be true
in general for log-transformed parameters. To find the optimal parameter estimates and
objective function:

> fit2$Theta

log(lambda) log(mu[X]) log(sigma[X]/mu[X]) log(beta)

-3.53043123 -0.07371271 -0.12579069 -0.78523377

log(gamma) log(eta)
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-1.68594283 0.14719832

> fit2$Obj

[1] 1.527799

The estimates are given on a log scale. The objective function is not comparable with that
obtained previously, because the fitting properties have been reweighted. Let’s translate the
parameter estimates back to their original scale:

> exp(fit2$Theta)

log(lambda) log(mu[X]) log(sigma[X]/mu[X]) log(beta)

0.02929228 0.92893853 0.88179939 0.45601309

log(gamma) log(eta)

0.18526967 1.15858371

Ignoring the incorrect variable names here, the estimates of λ and γ are similar to those
obtained previously. Those for the other three parameters, however, are rather different.
It seems that reweighting the fitting properties has made a substantial difference to the
characteristics of the objective function. Nonetheless, the motivation behind the reweighting
was to improve the precision of the fit and, since the standard errors under the previous fit
were reported as infinite, the new estimates must be consistent with the old ones!

Let’s compare the observed and expected properties under the new fit:

> props.BL0(exp(fit2$Theta),timescales)

$Mean

[1] 0.0812939

$Var

[1] 0.1197759 1.9304441 11.3129133

$Ac

[1] 0.59091670 0.08524093

$Ph

[1] 0.1267480 0.5703441

$Skew

NULL

In terms of agreement between observed and expected properties, this is clearly an improve-
ment upon the original fit; unsurprisingly, the match between observed and expected 24-hour
variances is less good now, but given that the standard error of the sample 24-hour variance
is about 1.8 (this can be seen from the square roots of the diagonal elements of var.stats),
the fitted value of 11.3 is easily consistent with the observed value of 13.1.
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For this particular choice of weights, the software does not usually issue a warning message
about singular Hessians. This suggests that the parameters are now much better identified.
To check this we can look at the standard errors:

> fit2$Std.err

[1] 0.07704442 0.09085994 0.05373905 0.52816406 0.34058291 0.11053392

Note that these standard errors correspond to the log-transformed parameters since the
fitting was done on a log scale. The standard errors for the fourth and fifth parameters
(log β and log γ) therefore correspond to quite large relative uncertainties on the original
scale. Overall however, these standard errors are modest in size; this gives some confidence
that the revised weights do indeed improve the identifiability of the parameters. A by-product
of this is increased numerical stability: the numerical optimisation problem becomes easier,
and hence different fitting runs tend to give similar results.

Another way to investigate parameter uncertainty or identifiability is to plot profile ob-
jective functions showing the optimum achievable objective function for each value of a
particular parameter. The function obj.func can be used to produce such plots, and store
the results. To plot profiles for λ and µX , over the ranges (0.015, 0.05) and (0.04, 1.5) re-
spectively:

> par(mfrow=c(1,2))

> prf.tabs <- obj.profile(fit2,params=c(1,2),

+ loplim=c(0.015,0.04),upplim=c(0.05,1.5),npoints=20)

Calculating profile objective function for log(lambda) ...

log(lambda) = -3.5375 Objective function = 1.5378

.

.

.

The results will be similar to those shown in Figure 2. The profiles are produced on a
log scale, corresponding to the estimates in fit2. The horizontal lines on the plots define
approximate 95% and 99% confidence intervals for each parameter, as described in report
7. The lines are at different levels for the two parameters — this is to be expected from
the theory. λ appears better identified than µX — approximate 95% confidence intervals for
log λ and log µX are around (−3.7,−3.4) and (−0.7, 0.0) respectively (this can be verified
from the profile objective function values stored in prf.tabs), corresponding to intervals
of (0.025, 0.033) and (0.50, 1.0) for λ and µX themselves. Notice that the profile for µX

flattens out so that at the 99% level the confidence interval for this parameter is much wider
(although the upper end of the interval does not change much).

These examples are intended to give an overview of what can be achieved using this
software, with most of its default settings. In practice, users will probably want to write
scripts to fit models and save the results to file. An example of such a script is provided in
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Figure 2: Profile objective functions for lnλ and lnµX , obtained using obj.profile. Hori-
zontal lines define approximate confidence intervals at the levels indicated.

file fit_demo.r, which is included with the software distribution. This fits separate random-
parameter Bartlett-Lewis models to each month of the year at Elmdon, stores the parameter
estimates and standard errors, and uses these to produce plots of the seasonal variation in
each parameter. See the comments in the script for further details.

5 Bugs and problems

This software is still undergoing development and, in places, should still be regarded as
‘experimental’. We are aware of the following problems:

1. The numerical differentiation required to calculate standard errors can be unstable.
This may give rise to problems in matrix inversions, or more generally to inaccurate
calculation of the standard errors themselves. Our experience is that such problems
can be reduced, if not entirely eliminated, by using weights in the objective function
that ensure reasonable parameter identifiability as in the fit2 example above.

2. For some models, the algebraic expressions for certain properties are undefined at
specific parameter values. For example, for the linear random-parameter Bartlett-
Lewis model BL1, a key quantity involves expressions that are undefined at α = 3 and
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need to be evaluated via an appropriate limiting operation. Such special cases have
not been implemented in the code provided here.

3. Neither the derivation of properties, or the coding implementation, for the quadratic
random parameter model (QA in Section 3.1.2) have been checked yet.

4. For the random-parameter Neyman-Scott model "NS1", expressions for second-order
properties are taken from Entekhabi et al. (1989). These appear to be based on series
expansions that are valid only when β2 � η2 (which may cause problems as the
optimisation algorithm explores the parameter space). Further, the approximations
are undefined when the shape parameter, α, of the randomisation distribution takes

values 1, 2, 3, 4 or 5. Finally, the expression for Var
[
Y

(h)
t

]
given in Entekhabi et al.

(1989) looks suspiciously as though it is in fact the expression for E

[(
Y

(h)
t

)2]
. The

code implements the expression that is given in the paper (and reproduces the results
reported in that paper), but the results should be checked via simulation.

5. At present, we have programmed the theoretical skewness coefficients only for the
Poisson model P0. Skewness for other models will be added as and when we have a
few days spare to write and check the necessary code. Or if any users of these routines
feel like sending us (checked and readable!) R code for skewness, that is suitable for
incorporating into these routines with due acknowledgement.

Any other problems should be reported to Richard Chandler (r.chandler@ucl.ac.uk).
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Appendices

A Summary of R functions in file momfit.r

Function Purpose

auto.fit See Section 3.1.

grad.fn
Utility function, enabling numerical differentiation of expected proper-
ties with respect to parameters.

grad.trans
Utility function, used to deal with parameter transformations when
calculating property:parameter derivatives.

I.NS1

Computationally efficient evaluation of the expression Γ(α − x)/Γ(α),
which appears in properties of random-parameter Neyman-Scott model
(Entekhabi et al., 1989).

inter

Approximation to the integral required for the proportion of dry periods
in the random-parameter Bartlett-Lewis model (report 8, equations 46
and 48).

inter2
Approximation to the integral required for the mean storm duration in
a Bartlett-Lewis model (report 8, Section 2.4).

model.select
Call the appropriate props.??? routine to calculate expected proper-
ties for a particular model.

moment.fit

Optimisation routine, with options controlling, for example, the opti-
misation method used. auto.fit calls this routine with options that
have been found to work well in practice.

num.deriv

Numerical differentiation (R doesn’t have a routine that does this di-
rectly). This is an implementation of Ridders’ method, closely following
Press et al. (1992, §5.7).

num.hess Numerical evaluation of a Hessian matrix.

objfunc
Compute the weighted sum of squared differences between observed
and expected properties, for a particular model and parameter value.

obj.profile See Section 3.2.

par.trans Utility function to transform parameters for optimisation.

plot.mmfit
Plot the table of results from a call to moment.fit. This is called
automatically by moment.fit and auto.fit, if plots are requested.

props.PO
Calculate expected properties for the rectangular pulse Poisson model
(Rodriguez-Iturbe et al., 1987).

props.BL0
Calculate expected properties for the rectangular pulse Bartlett-Lewis
model (report 8, §2).
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Function Purpose

props.BL1
Calculate expected properties for the linear random-parameter
Bartlett-Lewis model (report 8, §5).

props.BL2
Calculate expected properties for the 2-cell Bartlett-Lewis model (re-
port 8, §4 with N = 2).

props.BL3
Calculate expected properties for the dependent depth-duration
Bartlett-Lewis model (report 8, §3).

props.QA
Calculate expected properties for the quadratic random-parameter
Bartlett-Lewis model (report 8, §6).

props.NS0
Calculate expected properties for the rectangular pulse Neyman-Scott
model (Rodriguez-Iturbe et al., 1987).

props.NS1
Calculate expected properties for the random-parameter Neyman-Scott
model (Entekhabi et al., 1989).

pt.ns0

Integrand in expression for the probability that an interval of length
h is dry in the rectangular pulse Neyman Scott model (Cowpertwait,
1991).
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