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1 INTRODUCTION 3

1 Introduction

A range of single-site rainfall models are being compared for assessment in Workpackage 1.
Insofar as the selected fitting method is the generalised method of moments (Onof & Lekkas,
2003), mathematical expressions for each of these moments are required for input into the
objective function.

Many such expressions are already available in the literature. However, as the result of a
fairly high rate of typographical errors, they cannot be used without some form of checking,
which may involve the full derivation of the formula.

Other expressions are not readily available. This is either because their derivations are
unpublished, because the model in question has not yet been examined, or because the
statistic in question has not yet been used.

This report seeks to bring all the relevant expressions together for use within the model
comparison exercise. When useful or interesting, key elements of the derivations are given.
To avoid unnecessary length, the report focusses upon models driven by a Bartlett-Lewis
point process. The comparative exercise will in fact include one model driven by a Neyman-
Scott point process, for which the relevant analytical expressions will be found in a later
report.

2 Background: the Bartlett-Lewis Rectangular Pulse
Model

Since single-site models driven by a Bartlett-Lewis point process are all modifications of the
Barlett-Lewis Rectangular Pulse model (BLRPM), the key expressions for this model are
given here. First, we present the notation used throughout the report, as well as that specific
for this model.

2.1 Notation and model specification
2.1.1 Three levels of description

Single site models represent the continuous-time rainfall Y'(¢). They are calibrated and
validated by examining properties of one or both the following processes:

e discrete time aggregated process at time-scale h: Yi(h) = f(iilil)h Y(t)dt

e continuous-time moving average process at time-scale h: Y{)(t) = ¢ :_Jrhh/; Y(t)dt

Data sets of observed data at time-scale h can be considered as samples of the aggregated
process, but also as providing samples of the continuous-time moving average process.
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2.1.2 Model description

The main Bartlett-Lewis point process is a cluster Poisson process characterised by the arrival
of random clusters of points according to a Poisson process. In terms of the representation
of rainfall, the clusters are storms and the points correspond to the arrivals of cells.
Within each cluster, points arrive throughout a period of storm activity which is a random
variable.
To each cell arrival time is assigned a rainfall pulse of random duration and intensity.

2.1.3 Parameters

The following notation is used throughout:

e \: Poisson cluster (storm) arrival rate

e (3: Poisson point (cell) arrival rate activity

In the BLRPM, the storm and cell durations are standardly taken as exponentially dis-
tributed:

e ~: Exponential parameter of storm duration

e 7: Exponential parameter of cell duration
The cell intensity distribution is characterised by three parameters:

e /i,: Mean cell intensity
e 1,2: Mean of squares of cell intensities

e 1i,3: Mean of cubes of cell intensities

Three distributions are considered for the intensity: the exponential, Gamma and general
Pareto distributions. Details of the notation used and the main relevant properties of these
distributions are given in appendix A.

In the distributions considered here, one or two parameters are sufficient to fully charac-
terise the distribution. The BLRPM can therefore be characterised by the following set of
parameters:

{)\a Mgy tg2, 7], ﬁ? ’7}

These parameters do not, however, all have direct physical meaning. It is therefore useful
to re-parameterize the model in terms of a set of mechanistic parameters:

{A7 :U’wa UIE? 667 MC7 58}

defined by:
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Storm arrival rate A (hr™1)
Mean cell intensity o (mm.hr~)

Standard deviation of cell intensity 0, = /flgz — p2 (mm.hr=t)

Mean cell duration be =1/n (hr)
Mean number of cells per storm e =1+0/y
Mean duration of storm activity ds =1/y (hr)

For the sake of simplicity, the equations are given in terms of the original parameter set.
They can easily be re-expressed in terms of the mechanistic parameters using the following
relations:

Ha2 = 0920 + ui

n = 1/56
B = (ke —1)/0
o= 1/55

2.1.4 Properties of the aggregated process

(h)

The properties of the process Y, which are considered for model calibration and validation

are functions of the following:
e M(h): mean of the rainfall depth (in mm)
e V(h): variance of the rainfall depth (in mm?)
e C(k,h): autocovariance lag-k of the depth (in mm?)
o A(k,h): autocorrelation lag-k of the depth (in mm?)
e MP(h): non-centered moment of order p (p > 1) of the intensity (in mm?)
e P,(h): proportion of dry periods
e My(h): mean duration of a dry period (in hours)
e M,(h): mean duration of a wet period (in hours)

where all the properties are for time-scale A hours.
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2.1.5 Properties of the moving average process

Note that the properties below could also be expressed as properties of the aggregated
(h)
process, since var [Y(h) (t)] = var {Yih . The main property of interest is the variance of

the moving average process. This variance can be related to the variance of the underlying
continuous-time process Y (t) by defining a variance reduction factor called the variance
function and denoted w(h):

var [V (t)] = w(h)var[Y (t)]

The variance function can easily be calculated (VanMarcke, 1993) as:

w(h)—%/Oh/ohp(tl—tz)dtldtg—%/oh (1=7) otrydr (1)

where p(7) is the autocorrelation function at lag 7 of process Y (7).

Of particular interest is the behaviour of the variance function as the scale increases. If
this is not a long memory process, we must have:

lim w(h) =0

h—o0

For many processes, the convergence to 0 is in 1/h. Consequently, Vanmarcke (1993) defines
the scale of fluctuation as:
© = lim hw(h)

h—o0

w(h) = % Uohp(f) dr — %/Ohm(f) dT}

and since the scale of fluctuation only exists if

Since:

1 h
lim — [ 7p(7)dT =0

h—o0 0

we therefore obtain (Vanmarcke, 1993):

h—o0

© = lim hw(h) = 2/000 p(T)dr

The scale of fluctuation is so called since, when h is large, Y(;)(t) has a variance which is
approximately var[Y ()] ©/h. Y)(t) is therefore equivalent to the mean of /O independent
observations from the continuous-time process.

To summarize, the following moving average process properties can be used in the cali-
bration:

e w(h): Variance function at time-scale h

e O: Scale of fluctuation
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2.2 BLRPM Continuous-time properties

The two important properties for the calculation of the aggregated process properties are
the mean and covariance function. From Rodriguez-Iturbe et al. (1987), we have:

E[Y (t)] = Mcptz/n (2)

where p. =1+ g is the mean number of cells per storm, and

_ M

2 2
e () B }e—m e Bnpi o 3)

22+
{M V=P n =
2.3 BLRPM First- and second order aggregated depth moments

The first two moments of the marginal distribution of rainfall depths are obtained by inte-
gration:

M) = ENV"] = E[Y () (4)
h

vh) =  var[y\"] =2 /0 (h — w)ey (u) du (5)

Ckt) = ol Y] = [ (= ooy (kb +v) do (6)

The moments are given by (Rodriguez-Iturbe et al., 1987):

Mg fte
M(h) = 228 (7)
7
_2Mte [(pa2 + B /y)h | paBn(l —e ") ( Bl > 1-— 6”"}
vin = 7 { n - Y2 (v? —n?) ot 7?2 —n? n? ®)

The autocovariance of lag-k is given by:

Afte K ATl ) (1—e™)Zemn™ D 3 Bn(1l — e ")2e (DN
2 -
n ¥ —n? n? Y2 (% —n?)

C(k, h) = } (9)

2.4 BLRPM Wet-dry discrete-time properties

The expression for the proportion dry is (Rodriguez-Iturbe et al., 1987):
Py(h) = exp{=A(h+ pr) + AGH(0,0) (v + Be™PFM) /(8 + )} (10)

where pr is the mean storm duration, given by (Onof, 1992):

1 ! ! po(i—t)
MTI——i—lz/ vldv/ t%_l[l—(l—vt)e_ ?lvt]dt
7Y Jo 0
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and
BA—2)t

1
B(1l—=2) s
Go(z,8) =n""te” 5 / £ [1—(1—2)tle 7
0

Since these expressions are not easy to compute, the following approximations can be
used. They are valid if § << nand v << 7 (i.e. if there is enough cell overlap and cell
durations are much smaller than storm durations):

1 Y(B+7/2)  A(BYB+ 2 4+29%) | (467 + 3153%y + 9987* + 367°)
vl s 2 - 3 - 4
Y n 4n 72n

Hr ~

and

1 B4y | 3By +29°+ 5
G S
plas)~ 2 { o 2
as in Onof (1992).

However, if these requirements on small values of § and ~ are not fulfilled, we can
approximate these terms follows:

1 — 42 _
pr (1+¢Z ]ﬁl] ”B(j+17¢>+¢—1>

and

Gp(0,0) ~ n'me" (Z %B(j +¢,2) + Oae (1) )

Q

(M'+¢+1)(M'+ ¢+ 2)

j=0
with
M’ /<Lj
(SM/ (/i) = 6K—Z,—‘ (11)
=0 7°

where k = 3/n and ¢ = /1 and the values of M and M’ are to be chosen large enough so
as to reduce the error. For the LR model (discussed further), identical approximations are
required. Upper bounds for the errors involved are estimated in appendix E, together with
numerical investigations into their values for different values of k and ¢. Appendix E also
presents the derivation of these approximations.

The mean duration dry is then a function of the proportion dry (Onof et al., 1994):

Py(h)

Malh) = Bmy = Balh)

(12)

Note we can easily derive another useful statistic, namely the mean number of events at
time-scale h in a period of duration n(h) time-intervals of h hours. Since the probability of
the arrival of an event at time-scale h hours is given by:

pe(h) = Pr{event start in [(n — 1)h,nh)} = Pr{Yn(h) > ()|Yn(ﬁ)1 =0} PT{YT@l =0}
this yields:
pe<h) =

( | Pa2h)

) Pa) = Path) ~ a2
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If the mean storm duration is very small compared to the duration of the period, i.e.
(A2 +1) p.(h) << n(h) (the condition is, for instance, met if the period under consideration
is the month and the time-scale less than 6 hours), then the mean number of events is

approximately given by:
ne(h) ~ (FPy(h) — Py(2h)) n(h) (13)

since, as the event duration goes to zero, the distribution of the number of events is
approximately binomially distributed B(n(h), Py(h) — Pa(2h)).
2.5 BLRPM Third-order aggregated depth moment

The third-order moment yields information about the asymmetry of a distribution. Because
of the need to obtain a good fit for extreme values, it is useful to include this moment in the
fitting process. The main steps of the derivation are as follows.

2.5.1 General form of the integral

As a first step, we need to relate this moment to moments of the underlying continuous-time
process. In general, we can write that, if

then,

(h) y-(h)
B0y v -

(i+7)h (i+k)h
/ / / Y (0)Y (w) dudv dw
(i—1)h J(i+j—1)h J(i+k—1)h

r=uy=v—u—jh;z=w—u—kh

The change of variables:

yields the domain of integration shown in figure 1.
The sum of six integrals must then be computed:

E[y;(h)’y‘l(fj)’}/;iZ] =h+L+L+0L+1+ 15 (14)

where:
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yorz

(i-1)h ih X

Figure 1: Domain of integration in the (x,y) or (x,z) planes

I - / /_ / BIY@Y (0 () drdy d

I; = /h/y / s (@)Y ((x +y+ jh)Y((x + z + kh)] dx dy dz
z+h th—y

I = /_h/ /@ L BV RV (G424 k)] dedy

This corresponds to the subdivision of the domain of integration according to figure 2.

For the third-order moment, we have j = k = 0. The computation of the integrand,
E[Y (2)Y (x+y)Y (z+2)], requires that third-order properties of counts and of cell intensities
be computed.
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Figure 2: Domain of integration in the (y,z) plane

2.5.2 Third-order properties of counts

These are obtained for z; < x5 < x5 as follows:

E[ON(21)0N (22)0N (z3)] = (Mue)® doy day dvs
+)\,ucﬁ26_7(x3_“”1) dxy dxy dxs
+ (M) B [6_7(“_“) 4 e (@smm) 4 6_7(“_“)} dxy dxy drs

where the first term corresponds to 3 cells in different storms, the second to 3 cells in the
same storm and the third to 1 cell in one storm and two in another. This yields:

= L (O)? + A3 —y(w3—=1) Mie)? —(w3—z2) —y(z3—21) —y(z2—z1)
o s dos {(Ae)® + Apee + ()26 [e te te 1

(15)
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2.5.3 Third-order properties of cell intensities

The following expression is required in the computations:

E[th—m(ul)th-l—ﬁ—UQ(ul)Xt1+Tl+Tz—ug(u3)] = ,UJ:3€_77(U1+TI+72)

+Mzmux26—n(u1+u2+72)

+ L1 26777(u1+u2+7'1+7'2)
T T

L M2 e—n(u1+U3+T1)

+M3 —n(u1t+uz+us) (16)

where the terms correspond to the following respective 5 cases:

L th—w=ti+m—uy h—uy=t+711+7—us

2. uz3=1us+ 1 Ug?éul—l—ﬁ

3. U3 = Uy + 71+ To u27éul+7'1

4. Uy = Ul + T1 U37AUQ+TQ

5. Uy = U1 + T1 U37AU2+7'2 U37AU1+T1+T2

2.5.4 Third-order moment of continuous-time process

The main term to compute is the expected value of a product of three rainfall depths of the
continuous-time process. This is:

ch
EY@)Y(x+y)Y(r+2)] =
E[/O Xo—w(u)dN(x — u) /0 Xoty—v(v)dN(z +y —v)

[ et G+ 2 - ) .
This is evaluated as the following sum:
E[Y(2)Y (2 +y)Y (z + 2)] =
/ / / KXo u(u>]E[Xa:+y—v('U)]E[X;H_Z_w(w)] E[dN(g; — U)dN(:L‘ +y— U)dN(J] 4 w)]
u=0 Jv=0v#£u+y J w=0,wAu+tz,wtv+z—y
+/u 0 /u 0 v;éu+y | E[Xopy—o(0) Xory—o(v + 2 = y)] E[dN(x — u)dN(z +y — v)]
/ 0/ Oty Xo—u(u+ 2)|E[Xoryo(v)] EldN(z — u)dN(z +y — v)]
/ 0/ —0.0 + “ 93 U(u+y)]E[Xz+z_w(w>]E[dN(ZE—u)dN(x+Z_w)]
+ /:0 E[Xy—u(w) Xo—u(u + y) Xo—u(u + 2)] E[dN (v — u)]

The computation of this integral and the final form of its analytical expression are de-
tailled in appendix B.
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2.5.5 Third-order moment of discrete-time process

The six integrals in 14 can be rewritten as:

h 0 th—z
ho= /Zo/_,W/ oy FY @AY () =)V (w4 y) =y + 2)] dody dz

L = /: o /z B )Y (z+y)Y (2 + 2)|drdy dz
s = /zO /yz /ac(i—l)h EY (@)Y (2 +2)Y (2 + y)| dv dy dz
0 z ih
e /Z=h y=—h /xZ(il)hy EY (z +y)Y((x +y) + (= =y))Y((z +y) —y)dedy dz

I = / / L F G Y (42 = )Y (42 = ] dedy b

z+h zh Y
Iy = /_h/ / Y(+2)Y((x+2)—2)Y((x+2)+ (y—2))|dedydz

zl)hz

where the integrands have been written so as to contain products of Y (r)Y (r+s)Y (r+t)
with 0 < s <t. This involves the following transformations:

Forli:r=2+y s=—y t=z2z—vy
For Ir: r=x s=y t=z
For I3: r== s=2z t=y
Forly: r=x4y s=z—y t=—y
Forly: r=x4+2 s=y—2z t==z
Forlg:r=2+2 s=—=z t=y—=z

By introducing this change of variables, we find that all 6 integrals are identical to I so
that:

M3(h) = 61 = 6/ / / WY (r+s)Y(r+t)drdtds (18)
s=0 (i—1)h
The final expression for M3(h) = E [(Y( ))3] is given in appendix C.

2.6 BLRPM moving average properties

Since, for the continuous-time process Y (¢), we have:
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we have, for the variance function:

(ny2+Buz/v) | p2pn(l—e=") Bypz \ 1—e=h
hn Ty T \Me? g ) T

w(h) = 2[

19)
5 (
Ha2 + mﬂ%
The scale of fluctuation is therefore given by:
B2
0= 2 L}}’%Q (20)

Note that if v — oo, we find the scale of fluctuation of the simpler Poisson Rectangular
Pulse Model (Rodriguez-Iturbe et al., 1987), namely %

3 The Dependent Depth-Duration Model

3.1 Model specification

One way in which the above model can be altered so as to improve its wet-dry properties
is by introducing a dependence between cell intensity and cell duration distributions. This
option, the DD model, has been examined by Kakou (1997).

The model is characterised by the same parameters A, 3, vy, n for the storm and cell arrival
rates, storm activity and cell duration. But the cell intensities X are now specified through
the distribution of X conditional upon the cell duration L, i.e. X|L.

A first way of specifying the dependence is by choosing:
E[X|L =1 = fe

Kakou (1997) assumed an exponential distribution. More generally, we shall consider a
second-order moment specified as:

E[X?IL =1] = ge ¥

Note that this entails the following first- and second-order unconditional moments:

E[X?] = %

We shall refer to this as the DD1 model. Since the temporal structure is identical to that of
the BLRPM, we need only examine its depth properties.



3 THE DEPENDENT DEPTH-DURATION MODEL 15

3.1.1 Parameters

The proposed DD1 model has 8 parameters:

{>\’67d’f7g7n7/677}

Note that it is likely we may wish to simplify this and assume a relation between ¢ and d for
instance (in the exponential case considered by Kakou (1997) , d = 2c and g = 2f?).
The mechanistic parameters for this model are:

{)\a Mgy Oy |05 O |0, 667 e, 65}

defined by:
Storm arrival rate A
Mean cell intensity He = ijr_nn

2

Std. deviation of cell intensity Oy ﬁ"ﬂ — [i—”ﬂ]
Conditional mean cell intensity limit for 0 cell duration Moo = f
Conditional std. deviation of cell intensity limit for 0 cell duration ogz0 =+/g— f*
Mean cell duration ébe =1/n
Mean number of cells per storm e =14+0/y
Mean duration of storm activity ds =1/v

As before, the equations are given in terms of the original parameter set which can eas-
ily be re-expressed in terms of the mechanistic parameters using:

1 Hz)o
— | — -1
Oc ( Haz >

C

g (Tt
0c \ 02+ 2

f Hz)o

g 012:\0 + Mgzc|0

n 1/4.

6 (Mc - 1)/55

g 1/4s
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3.2 Continuous-time depth properties

As in Kakou (1997), we find that for the DD model, the mean depth is:
E[Y(t)] = AuE[X L]

For DD1, this yields:

nf
EY ()] = Mte——
(0] = e
The other important property is the covariance of lag 7, which we derive as:

/\ﬁuc

v(r) = e [ (=7 B fultya +
{2yD(0, 7,1+ 7,0) + 2yB(0,l + 7,00,0) — 2y7A(0, 7,1 4+ 7,0)
—e 7T A(0,0,00,0) 4+ 7" A(0, T, 00,7) — €T A(—7,l + T,00,7)
+e T A(7,0,00,0) — e TA(y,0,l 4+ 7, —7) + e T A(0,0, T, —’y)}

where:

o0

Ababe) = [ /bd BIX[1) f20) BIX|U] fo (1) e ¢!

B(#,a,b,§) = /0

D(0,a,b,&) = /Oodl /bd EIX|) fo() EX'|) fo() 1 e e

0

8

b
dl / dl' E[X|I) f.(1) B[X'|] fr(I") le %S

For DD1, this becomes:

Alucgne_(d"rn)T )\,ucfgﬁnQ |:(C + 77)6_77' _ fye_(c+77)7i|
(d+n)? (c+n)3 =72+ (c+n)?

Cy(T) =

3.3 Discrete-time depth properties

3.3.1 First- and second-order moments

16

(21)

(22)

(23)

(24)

The following relations (Rodriguez-Iturbe et al., 1987) are used to obtain first- and second-

order properties of the aggregated process:
M(h) = hE[Y(t)]
h
V(h) = 2/ (h—71)ey(T)dr
0

C(kh) — /_h (h— |7]) ey (kh + 7) dr
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For model DD1, we trivially find for the mean depth at time-scale h:
nf
M(h) = hApe—— 25
(1) = Wi (25)

The variance is derived as:

2 \uegn , _
V(kh) = (d+mh _ 1 4 (d 4+ n)h

2 e f2 6 [c + 17
(c+n)3llc+n)?2 =92 2

(e +yh—1)— i (7D 4 (c+m)h — 1)

and the covariance as:

AN (dm) (h—Dh —(d4+n)h) 2
C(k,h) = m@ (d+n)(k—1) (1—e (+n))

/\luC.f2ﬁ772 c+n (1 . e—wh)Qe—w(k—l)h
(c+n?llc+n)? =72

_( _g E (1 — 6—(C+n)h>2 6—(C+n)(k’—1)h} (27)
cTn

3.3.2 Wet-Dry properties

These properties are the same as for the BLRPM model, so that equations (10) and (12)

can be used, as well as the approximations (11), where, as above, k = 3/n and ¢ = /7.

3.3.3 Third-order moment

As with the BLRPM model, the calculation of M3(h) first requires the evaluation of
EY(x)Y(x+y)Y(x + 2)] withy >0z > v.

This integral involves more extensive calculations than for the BLRPM. It is the sum of
14 terms which are analytically derivable, but are not presented here because they are too
cumbersome. To illustrate this, the first term is shown in appendix D. The expressions for
all these terms are available in Maple.

The computation of the third-order moment of the discrete-time process involves a triple
integral of the sum of these 14 terms, as in the following expression in equation

h ph pih—z
M3(h) =61 = 6/ / / E[Y (2)Y (z +y)Y (x + 2)] dv dz dy (28)
y=0 Jz=y Jr=(i—1)h
which, since (as a result of stationarity) the integrand is not a function of x, reduces to:
ho b
M3(h) = 6 / / ElY (@)Y (z + )Y (z + 2)](h — ) de d= dy (29)
y=0 Jz=y

These integrals can be computed analytically for the DD1 model, and the results are
available in Maple.
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3.4 Moving average properties

Since, for the continuous-time process Y (t), we have, for the DD1 model:

Ahegn e f2 81

arlY Ol = e T e i et )

we have, for the variance function:

_ hE(d4n)?
w(h) = Mptegn e f28n?
(d+m? " (c+n)3(ctn+r)

2\ f2 80 c+n(,—vh —(c+n)h
P | +Ah = 1) — i (e e+ m)h — 1)

Abegn Apse 231
(d+n)? 7 (ctm)3(ctnty)
(30)
The scale of fluctuation is therefore given by:
94 f%ﬁfl
=29 (d+m) (c+m)ty (31)

9__ 4 f2ng
(d+m)?2 " (c+n)3(ctnt)

4 The N-Cell Model

4.1 Model specification

Since empirical observations confirm that rainfall produced by convective and frontal mech-
anisms have different features, and that many climates tend to experience both types, the
model can be transformed to generate n types of cells. These are characterised by:

e n random variables for the intensity distributions {X;,7 = 1,..,n}, with means {u,,,i =
1,..,n} and mean square intensities {p,2,7 =1,..,n}

e 1 duration distributions, with exponential parameters {n;,i = 1,..,n}
e 1 probabilities {¢;,7 = 1,..,n} for each cell type

This is a model defined by 4n + 3 parameters. Because of the constraint ., 1; =
there are in effect 4n + 2 parameters. In practice, it is likely that n = 2 will be used.
The parameters are:

Y

{A’/'L$17 ‘“muxn?l’bm%v "'7”%%7771) --~77n71/117 ~"a¢n76) ’Y}

For this model, the following mechanistic parameters can be used:

{>\7u$17 "‘/"Ll'n7o-$17 "'70--'157175017 "'76Cn7w17 "‘7¢7’L7/"LC7 53}
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defined by:
Storm arrival rate A (hr™1)
Mean cell intensities te, fori=1,...n (mm.hr=1)

Standard deviations of cell intensities 0, = \/p,2 — p2, fori=1,...n (mm.hr71)

Mean cell durations de; =1/mifori=1,...,n (hr)
Proportion of each rainfall type v, fori=1,...n

Mean number of cells per storm e =1+08/y

Mean duration of storm activity by =1/y (hr)

The original parameters, in terms of which the equations are written, are the following
functions of these mechanistic parameters:

n = 1/561'
B = (Mc - 1)/53
Y= 1/53

4.2 Continuous-time depth properties

We derive the following expressions for the mean and covariance of the continuous-time
process:

V(0] = ey P (32)
i=1 !

t ¢iﬂx2€_ni7
CY(T) = )\;LCZ -

i—1 i
_ " i, s
+)\Ncﬁ6 yT J
; ; Y)(n; +7)
B %Mm e T wz,ux
+2A ey ’ : (33)
; V= ;nﬁm

This can be re-expressed as:

= Z C,e ™" + De 77 (34)

i=1
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using the following notation:

c, Mie wi'ux 57%!@ Z %sz

i ’7 z 1 i + i
- wzl/}J/er Mz,
D = A\ A
Helo ; ; i — 7)1 +7)

4.3 Discrete-time properties
4.3.1 First- and second-order depth moments

The following first- and second-order properties are obtained by integration:

M(h) = s, 3 Vit (35)
=1 77
20, _ 2D _
V(h) = Z . L(ha + e — 1) + ?(’yh—i—e 1) (36)
L Chemmt=Dh De—V(k=1h
Clk,h) =" GTQ ey 4 GT(l — emh)?2 (37)

4.3.2 Wet-dry properties

The proportion of dry periods can easily be derived on the basis of the derivation of the
same property for BLRPM in Rodriguez-Iturbe et al. (1987). The two terms which depend
upon the cell duration parameter 7 in the exact expression of P;(h) (see equation (10))are
the mean duration of a storm ur and the term G%(0,0). Both these terms are functions of
the probabilities p,(t) and ¢,(t) defined as:

pr(t) = Pr{Storm live and r cells active at time t}

¢-(t) = Pr{Storm terminated and r cells active at time t}

which satisfy the following differential equations:
dp.(t)/dt = —(B+y+r Y wam)pe(t) + (r+ 1O vim) praa(t) + B (2)
i=1 i=1
dg(t)/dt = —(r Z Yini) ¢-(t) + v pe(t) + (r + 1)(2 Vini) Gria ()
i=1 i=1

so that, if we define n = > | ¥1;, we have the same differential system as for the RBLPM
(see Rodriguez-Iturbe et al., 1987, section 4.2).
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We therefore have:

Pa(h) = exp{=A(h + pr) + AGp(0,0) (v + Be” M) /(5 + )} (38)

=—+—/ _ldv/ tn 1—1—v) W'lzt]dt

B(—z) B—=z)t

Gz, s) = le ™5 / T (1 - 2)t)e™

Since these expressions are not easy to compute, the following approximations can be
used. They are valid if § << nand v << n (i.e. if there is enough cell overlap and cell
durations are much smaller than storm durations):

with:

and

1 { Y(B+7/2) BB+ BE+29%) (463 + 318%y + 99642 + 3673) }
pr =~ — g1+ - +

gl n? An? 2n*

and

2 2
Gi(z, 5) ~ 1{1_ Bty 31+ +5 }
gl U 2n?
as in Onof (1992).

As with previous models, we also require approximations when these conditions upon
and v are not fulfilled. Defining, as previously, k = 3/n and ¢ = v/n, ur and G3(0,0) can
be approximated as in equation (11).

4.3.3 Third-order moment

The evaluation of this moment involves very lengthy analytical developments. It will there-
fore not be computed for the purpose of this project.

4.4 Moving-average properties

The variance function is easily obtained as:

ST 2 (b + e — 1) + 2 (yh + e — 1)

w(h) = 39
(h) > L Ci + D (39)
The scale of fluctuation is therefore given by:
" Ci/ni + D
0—29 > Ci/n /Y (40)

Y. Ci+D
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5 The Linear Random Parameter Model

5.1 Model specification

An important modification of the original BLRPM was proposed by Rodriguez-Iturbe et al.
(1988). The observation that this model does not provide a satisfactory reproduction of the
proportion of dry periods suggested introducing a greater diversity of the internal wet-dry
structure of storms.

A first way in which this could be done would be to consider introducing a range of m types
of storms, such that each storm is characterised by one of 7;, 3; and v;, with i« = 1,..., M,
each type appearing with probability ¢;. To preserve the overall structure of storms, 3; and
v; would be chosen proportional to 7; according to:

Bi = K
Vi = o

so that the model parameters would be:

{)\7/'%7,“’332’771; ...7]77“61, vy €Emy Ky ¢}

thus yielding a 2m + 4 parameter model (since one ¢; can be calculated from the knowledge
of the others to satisfy the condition that these parameters add up to 1).

The observation that the above approach amounts to randomising parameter 7 by assign-
ing it a discrete distribution characterised by the m probabilities €;, /,i = 1, ..., m, suggests
the second approach which is adopted here. This consists in using a continuous distribu-
tion to randomise parameter 7. A flexible candidate is the Gamma distribution. Thus, 7 is
now sampled for each storm from the distribution I'(«, v), while $ and v are proportional
according to the relations:

B = kn
v o= on

As a consequence, we have a 7 parameter model characterised by the following set of param-
eters:

(At p2, 0, v, 15, 6}
The following mechanistic parameters can be used:
{\ b 0y Ocs ey fley 05}
defined by:
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Storm arrival rate A (hr™1)
Mean cell intensity Uz (mm.hr=1)
Standard deviation of cell intensity Or =tz — 2 (mm.hr™?)
Mean cell duration be =5 (hr)
Inter-Storm standard deviation of cell duration €. = m (hr)

Mean n° of cells/storm pe =1+%

Mean duration of storm activity 0y = Ty (hr)

The original parameters, which are used in the equations below, are expressed in terms
of the mechanistic parameters as follows:

He2 = 0+ [y

0z

[ 2+g
(52
v o= 56(1—!-—;)
EC
K= —(pe—1)

5.2 Continuous-time properties

The expressions below are obtained by derivation as for the BLRPM (see Rodriguez-Iturbe
et al., 1988). Note that they can also be obtained by integrating the equivalent expressions
for the BLRPM over the parameter 7.

E[Y(t>] = Mdefly

v

(41)

a—1

where p. =1+ g is the mean number of cells per storm, and

Ay ke S\ (v \T i v\ 4
CY(T)_Oz—l {Mz2+gb2—1%}(u+7) _¢2—1<V~|—¢7) (42)

Rodriguez-Iturbe et al. (1988) note that for 1 < o < 2, the integral

/0 " ey () dr

diverges, indicating asymptotic self-similarity over that range.
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5.3 Discrete-time depth properties
5.3.1 First- and second-order moments

The mean depth is (Onof, 1992):

14
M(h) = )‘h:uc/vba:a— (43)

-1
and the variance and co-variance are (Rodriguez-Iturbe et al., 1988):

V(h) =24, {(a — 3P =T (v + h)gfa}—QAg {gb((x — 3P =P+ (v + (bh)g’o‘}

(44)
and
C(k,h) = A {[v+ (k+ 1A = 2[v + kb= + [ + (k — )R>~}
— Ao {[v + (k+1)ph]*~* = 2[v + koh]>~* + [v + (k — 1)ph]*~*}  (45)
where:
_ Apter T
A G De-2a-3) {“x i ¢2—1}
Aptckipiar”

Ay = (g2 — 1)(a —1)(a — 2)(a — 3)

5.3.2 Wet-dry properties

As shown by Rodriguez-Iturbe et al. (1988), the proportion dry for the Linear Randomised
model is obtained by starting with the expression for this property in the BLRPM and
taking expectations over the term which is exponentiated. This leads to the following for
the proportion of dry periods (Onof, 1992):

Pa(h) = exp | =A(h+ i) +

a—1

wer o+ (k)

e He TR / 11— et | (46)
a—1 O+ kK 0

If Kk << 1 and ¢ << 1, which means that there is enough cell overlap and cell durations
are much smaller than storm durations, then the following approximation can be used (Onof,
1992):

exp {—/\h — L) [1 +¢ (/{ + ?> - ;lgb (50K + K* +2¢%) + iqs (4k® + 31K5%¢ + 99K¢” + 364°)

2 72

) N K ( v )al
d6+K d+r\v+(k+o)h

ola—1

3 1
‘I’m (1—li—¢+§ﬁ¢+¢2+§fi2>

(47)
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However, if these requirements on small values of k and ¢ are not fulfilled, we can
approximate the proportion dry as follows:

a—1
e OtH <V+(RV+¢)h> .

Py(h) = exp | =A(h+ piry,) + 1 X o I (48)
where
M ; 5
. B v (—k) Mk —35%2—7) ., . .
firy = a_1<1+¢j2_; G Bl+1,¢)+¢
and
M
~ o 7 . 6M’ (K)
e = jZOTB<j+¢’2)+ 6+ 1) (M +6+2)
with
M/ ,{‘/]
o (k) = e”—zﬁ
=0

where M and M’ are to be chosen large enough for a good approximation. Upper bounds
for the errors involved and numerical investigations into their values are presented, together
with the derivations for the approximations are found in Chandler (2003) and Onof (2003).
These two notes are reproduced in appendix E.

5.3.3 Third-order moment

The third-order moment is best obtained by integration of the corresponding expression for
the BLRPM multiplied by the density function of the gamma distribution I'(«,v). The
resulting expression can however not be integrated in a closed form. As a consequence, a
numerical integration is required.

A note about this numerical integration is useful. For the integral:

B[] = [ swan (19)

has the particularity that f(n) o 7%4 in the neighbourhood of 0. f(n) is therefore not

integrable at 0. However, practically, values of 7 close to 0 are not physically representative
(and their probability is very small). This would correspond to a storm with very long cells
only, which is hardly appropriate for the representation of fine-scale rainfall. It is therefore
realistic to neglect small values of 1. Calculations with a lower bound of 10~7 were found
to give results in line with the simulations. The upper bound does not have to be chosen as
particularly large since the integrand f(n) decreases very quickly. Thus we can approximate

the integral as follows:
100

3
Bl = | (50)
10—
and calculate it using Simpson’s rule.
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5.4 Moving-average properties

The variance function is easily obtained as:

w(h) =

241 {(a = 3)h* ™ — 137 + (v + h)¥ ) — 245 {p(a — 3)w* @ — 3% + (v + ph)>~°}

hz(a—2)(1a—3) (Al . ¢2A2)

Ve

The scale of fluctuation will then depend upon the value of a. If @ < 2, the scale is
infinite, in line with the observation of asymptotic self-similarity. Else, if a > 2 we find:

2v A1 — Aggb

@:O[—2XA1—A2¢2

(52)

6 The Quadratic Random Parameter Model

6.1 Model specification

The observation that the LR model is liable to underestimate extreme rainfall depths suggests
an alteration of the mechanism by which cells are produced in a storm. Rather than have
the random cell arrival rate 3 depend linearly upon the cell duration parameter n, this
dependence could include a power function. So as to facilitate the computations, let us
assume a quadratic dependence. We therefore assume that:

3 = Kan + ka1’ (53)
The model therefore has 8 parameters:
I\ s pa2, @, v, K, Ko, B}
The following mechanistic parameters can be used:
{N oy 0, Oy €cs ey O, O}

defined by:

(51)
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Storm arrival rate A (hr—1)
Mean cell intensity [ (mm.hrt)
Std. deviation of cell intensity O = \/lha? — 112 (mm.hr—1)
Mean cell duration de =5 (hr)

I.S. std. deviation of cell duration €. = m (hr)

Mean n° of cells/storm pe =147+ 22

Std. deviation of n° of cells/storm 0. = \/é [(FL% + K10) + (26162 + K20)2 + K3 a(zjl)]

Mean duration of storm activity Os = @ns (hr)

where '[.S.” stands for 'Inter-Storm’ and the calculation of the standard deviation of the
number of cells per storm is shown in appendix F.

The equations below are given in terms of the original parameters. These can be re-
expressed in terms of the mechanistic parameters using:

Hz2 = Ug + /%20
Oc
a = 2 + 6—2

K1 = ¢<uc—1—\/(1_“0>3<a+1)+U§O¢>

Ko =

6.2 Continuous-time properties

The expressions below are obtained by integrating the equivalent expressions for the BLRPM
over the parameter 7. The same integrals of functions of 1 are used which were computed
for the LR model. This yields:

E[Y ()] = Mia {ﬁ (1 + %) + %} (54)
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and
A (1 * %> v K1gH; v\
ev(m) = a—1 Ma:2+¢2_1 v+T
O (1 + %) Ko @2 N Ka N K12 v \*
$—1 o T 1) | \vr
AR v\ a2 K1 K1V Ko Ay
+(¢%—1)V V4T -1 1+E a1 " +E(,ﬁ+ﬁ2;> c

(55)

We note that for —1 < a < 2, the integral

/0 " ey () dr

diverges, indicating asymptotic self-similarity when o < 2.

6.3 Discrete-time properties

These properties can be obtained by using the general relations presented in equations (4)
applied to the equations (54) and (55). But since the integration over the values of 7 can
be performed last, they can also be obtained by directly integrating the properties of the
BLRPM.

6.3.1 First- and second-order moments of depths

For these properties, the derivation proceeds by integrating the expressions in equations (7),
(8) and (9). This yields:

M(h) = My, {ﬁ (1 + %) + %} (56)
and
_ 20hRBEE 20wk 2 2K [15 Ko Faft5¢

)\ 2 2
o [(1 ! E) " ("“2 *“3%) + T (1 ! 27) §(2.9)
2 :%QS 2
) (2 52 (122 )]

208 (1+2) 2,
(@ =1)(a = 2)(a =3) L?Q(W - 1)

+

0.0~ (e + S ) 00| 60
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where:

For the covariance, let us define:

MA@ = S5 <u+x<2—1>h>a_l_2(v+yxkh>a_l+(WZH)’JMI
o) = e eat) 2 ) )|
) = <a_1><alf2)<a—3) <u+x(2—1>h>a_3_2(v+yxkh>a_3+(m)a_sl

In terms of these expressions, the covariance is derived as:

Clk,h) = /\<1+%) [u +¢;¢“x},43()

, o1+ A
+AKo M(; +%Mi Ax(1) + /szzAl()

_gbz(;?_ﬂi_l) Kl ' %) 1 Ay(6) + (1 ; 2%) kaAa(0) + 2 4()| (59)

6.3.2 Wet-dry properties

For the proportion dry, a closed expression cannot be obtained since the following integrals
need to be evaluated:

a—2, «

/°° exp [— (k1 + Kou)(1 — t) — vu] u® v
0 (K1 + Kou + @)I'(c)
[T exp—(k1 + kou)(1 — 1) — (K1 + Kou® + Pu)h — vul u® 2
no = | (st O ()
[T exp[—(k1 + Kou)(1 —t) — (K1u + Kou® + pu)h — vulu* v
wo = (s L)

In terms of these integrals, and with the following expression for the mean storm duration:

1 1 a—1
- du | dtuto =Y |1 = (1 — ut)e e v pv
Hr ¢/0 u/(] u a—1 ( u)e V—i—/igu(l—t)

a—1
the proportion dry is:

du

du

du

+

Py(h) = exp [—A(h + pr) + /01 dtt?7 11 — N (11 (t) + ki Lo(t) + @Ig,(t))] (59)
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6.3.3 Third-order moment of depths

For the third-order moment of the Quadratic Randomised model, a similar numerical com-
putation is required as in the case of the Linear Randomised model.In other words, the
expression for the BLRPM multiplied by the density function of the gamma distribution
['(a, v). The final expression is then integrated numerically using Simpson’s rule. Because
of the non-convergence of the integral in the neighbourhood of 0, the domain of integration
is not [0, c0), but can, in practice, for instance be taken as [10~7, 100].

6.4 Moving-average properties

The variance function is given by:

w(h) = (60)

where the numerator and denominator are given in equations (57) and (55).
This leads to the following expression for the scale of fluctuation. If a < 2, it is infinite,
which reflects the asymptotic self-similarity. If a > 2 we find::

Ak3p? VK K V2 K K
ol ey [W + itz (1 + 27)] + e [(1 + i) (“x"’ + ﬁ‘i#)]

K ki1v+ra(a—1 Aeap2 (koo v K K
M2 (L5 ) R A (5 m) e |5 (1) + %]

0=2

(61)
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A Appendix: Cell intensity distributions

This appendix includes density and cumulative distribution functions for the three distribu-
tions considered for the cell intensity. Also included are the third-order moments.

A.1 Exponential distribution
The exponential distribution is a one-parameter distribution. The density function is defined
by:

1
fx(z) = —e /1= for & >0 (62)

Lz
and the cumulative distribution function (cdf) by:

Fx(z)=1—e %" for z >0 (63)
The following relations hold for the exponential distribution:

poz = 241 and pizs = 341, (64)

A.2 Gamma distribution

The Gamma distribution is a two-parameter distribution denoted I'(¢, ), where 1 is the
shape parameter and o the scale parameter. The density function is given by:

wawflefcr:v
fx(x) = ——————forxz >0 65
and the cdf is not available in a closed form:
T O,q,l;mqj;—le—crt
F x:/—dtforx>0 66
where: )
= M2 — ,ug% and o M2 — IUQQU (67)

The following relation holds for the Gamma distribution:

2 2

A.3 General Pareto distribution
The Pareto distribution is also a two parameter distribution, denoted P(1,c), where again
1) is the shape parameter and o the scale parameter. The density function is given by:

¥
fx(x) = ;ﬁl for & > o (69)
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and the cdf by:
o

Fy(x)=1— (=) forz >0

T

2 —1
b1+ L7 and o= 0D
[ha2 — 13 (G

The third-order moment is given by:

D@ =2)
" -3)

where:

Hox2 oo

Note that, in the above, the moment of order p is only defined for p < a.

32
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B Appendix: 3rd-order continuous-time BLRPM prop-
erties

The computation of the integrals described in the text require that the following expected
values of differential products be computed:

E[dN(x —u)dN(x+y —v)dN(z + z —w)] =
{(Apte)® + ApePe7M=m)
+()\,Mc)2ﬁ [ef'ylsznyrvl + e zmwtul + efvlyfwuq } du dv dw

and

E[dN(z —u)dN(z+y—v)] = cov[dN(x —u)dN(x+y—v)|+ E[dN(z —u)] E[dN(z+y —v)]
= M {0(y—v+u)+h(y —v+u) — M} dudv+ (Mpee)? dudvo
= Mich(y —v+u)dudv
Mt (Ape + Be =) du do

where: m = min(zx —u,z +y — v,z + 2z —w) and M = max(x —u,z +y —v,x+ 2z — w).
The computation of the integral then involves examining M — m which is:

M—-—m=max(y—v+u,z—w4u,z—w—y+v,—y+v—u,—2z2+w—u,—2z+w+y—"v)

for the different intervals of integration.
We find the following:

v €0,y + u and w € [0,z —y + ] =M-m=z—w+u
vell,y+ul andwez—y+v,z+u =M-m=y—v+u

v e [0,y + u and w € [z + u, 00) =M-m=—z+w+y—v
v € [y + u, o0 and w € [0, z + u| =M-m=z—w—y+v
velytuoo] andwe€z+u,z—y+v] =M-m=-y+v—u
velytuoo] andwe[z—y+v,00) =M-m=—-z+w-—u

Lengthy but standard computations of integrals of exponential functions then lead to the
following expression for y < 0 and z < y:

U 2)\2 efnzefnyﬁl}ﬂ ef'yzefnyﬁly
7e +92 _
n® 4P =53y 4yt n(n—v)(n+v)2n+7)
+€_ny/6ry)\uc e_nzenyﬁr}/)\ﬂc 6—7726(77—’7)3/627
—ntHPy? o St S2nt Py £ 20292 =P

nm—=7)m+v)2n+vy) (=n+v)n+v)n

EY(2)Y(z+9)Y(@+2)] = pe’Ape (
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+6‘“ﬁ (B + Ape) n e By A e A p )

7 —ny? -+ (=n+y)(n+)n

e_nze_nyﬁf}/ e—VZe—Uyﬁ e_ny)\ /’LC
i fha2 A e (—2 +
nm—=y)m+~y) =70+ U
MY\ e e ze(nﬂ)yﬁ e MY
+
n? =7+ M=) Om+)

+

e (Bny+ (v — ) Ae) [ A e e”T?
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C Appendix: 3rd-order moment of BLRPM aggregated
process

This is the final expression of the third-order moment of rainfall depths at a time-scale h
hours. If we define the following:
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D Appendix: 3rd-order continuous-time DD1 proper-
ties
We define:
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which yields the first of the 14 integrals as:

I, = N1/Dy (74)
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E Appendix: Probability dry approximation for LR
model

E.1 Mean duration of a storm
Derivation of the approximation

The theoretical expression for the mean storm duration which is required for the estimation
of the proportion of dry periods ur is (Onof, 1992):

/ dv/ dtv "1 — (1 — vt)e 0D 4 oy (75)

a—1

a—l

Since approximating this integral involves expanding the exponential term as the sum of
a series, a change of variable in the integral in ¢ would be preferable (the new variable is
1 —t). This yields:

/ dv/ dt v~ (1 — £)* 71 — (1 — v(1 — )" + a_”l (76)

a—l

By using the Taylor expansion of the exponential function, the double integral inside this
expression can be written as:
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which is the sum of three terms:

P (—x) o 1 .
L = —Z< ’T)/ I ldv/(l )*~ 1 dt
)7
I, = Z IT /vjdv/ ¢1t]dt
I; = Z /vjdv/ )OI dt
j=

Having thus separated the variables of integration, the expressions simplify in terms of
beta functions as in Richard’s note (Chandler, 2003):

S E P 119 (77)
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L = ), (f;!Bﬁl,@ (78)

JO‘7
[3: Z
jO

The sum I = I; + I + I3 can therefore be approximated by Iy, = I1,, + I»,, + I5,, where:

—

j+2,0) (79)

L, = Y B+ 1,0) (80)
by = ;é ff),BjH 9) (81)
I, = Z B(j +2,¢) (82)

Note that, with computational efficiency in mind, I, can be rewritten so as to minimise
the calls a program has to make to the Beta function. Thus:

L, = —Z(_.—/.i)jB(j—i- 1,9)

Ly, = Y <.:fi])!B(j+1,¢)

Iy, = —
this suggests we take the following as approximation:
M
/ o (_ )
Ly = =) B
j=1
which yields:

Iy = BLo)+ Y (—rp! (i S ]—1,) B(j+1,0)

e jit G+ 1)
or:
M
1 ) /f—] —J) s
B = 3 E = pG 1) (33)
7j=1
where I}, is related to I, by:
Iy=1I —ﬂB(MJrz ) (84)
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Error estimation

To analyse the error on the approximation of I, let us return to the expression in terms of
three integrals. The general term of the sequence which is being summed to compute [, is:

(—k)’ : s
uj=———"~(B(+1,0)+jB(j +2,9))
TG+
which is alternatively negative (for j even) and positive. The sequence has the property that
it is strictly decreasing in absolute value, therefore:

n
Uomi1 + Usmao >0 = Z uj > 0 for any n > 2m +1
j=2m+1

n
Uom + Ugpri1 <0 = Z u; < 0 for any n > 2m
j=2m

and therefore, the limit of the series (taking the sum from 0) is between Zjﬂio u; and Zj]\fgl U,
and upper bounds for the error made in approximating [ with I,; are:

(=r)"

M(M +1)!

(B(M+1,90)+ MB(M+2,¢))| < M (M+1,¢) (85)

1= Tyl < fursea] = | L

since B(M +2,¢) < B(M +1,¢).
Consequently, the error on the computationally more efficient approximation [}, can be
bounded as follows:

I -1y < |I—Iy|+ |1y — Iy

< %B(M +1,¢)+ %B(M +2,9)
< Q%B(M +1,0) (86)

from equation (84).

This is a coarse upper bound and in fact, more can be said about the errors involved in
approximating with I, or I},. In particular, we have the result:

Lemma 1 I}, is a better approzimation of I than Iy for k > 1.

This can easily be seen by observing that, assuming M even, we have:

M

/ —_
Iy, = [M+—(M+1)!

B(M +2,¢)

thus:
];\4 > IM
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and (M1
Iy =TIy +uy = IM+m(B<M:1,¢)+MB(M+27¢)>
_ o4 kM k(B(M=1,¢)+ MB(M +2,9))
- M T (M) M

1
> IM+/£(1+M>B(M+2,¢)
so that, if kK > 1,
IM+1 > I]/\/[

Therefore, assuming x > 1, we obtain:

Iy € (Ing, Ingi1)  for M even,
and similarly
Iy € (Ingy1, Iyy)  for M odd. (87)

This entails that
[ rr — Lol < [aisr — Il
and, more generally:
I — Tyl < [Inggp — Ing| for p odd

ey — Tl < [ Iargpsr — Ia| for p even
so that, taking limits as p — oo, we have:
VMI|I —Iy| < |I — 1y (88)

q.e.d.
On the contrary, for small values of x, the series which converges fastest is I,, if:

n+¢+1
K(—(n—i—Q)n —|—1> <1

which is true for n large enough (for given values of xk and ¢). However, as the numerical
experiments below show, small values of  in any case lead to fast convergence of I,.

Numerical investigation

Using Maple which calculates sums of terms with Beta functions in terms of the Generalised
Hypergeometric Function, we can however evaluate the exact relative error Al = [I—1},|/1
for a range of values of M, for given values of parameters x and ¢.

The results are shown in table 2 below.
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0] K I|| Aly: M =3 M = M = M=10 M=15| M=20| M =30
0.01 | 0.01 1.98 421077 [ 1.31072 [ 2510718 | 2,510~
0.10 | 0.01 1.00 3.81077 | 1.210712 | 2.11071® | 2.1107%
11]0.01 0.50 1.71077 | 4.01071 | 5.6107% | 4.2107%8
10 | 0.01 0.09 46107 | 1.9107%° | 6.31072% | 7.9107%2
0.01| 0.1 10.63 45107 | 1.5107% | 2.71071 | 2.7107 17
0.10 { 0.1 1.78 4.0107° | 1.3107% | 2.31071t | 2.210717
11 01 0.54 1.8107° | 4.3107° | 5910713 | 4.5107!8
101 0.1 0.09 481077 2.010719 | 6.6107*° | 8.3107%
0.01 1] 79.75 1.6107' | 571072 | 1.0107*| 1.1107°
0.10 1 8.05 1.41071 | 481073 | 8.7107° | 88107
1 1 0.86 471072 1.21073 | 1.7107° | 131077
10 1 0.10 9.3107% | 4.0107° | 1.31077 | 1.710712

0.01 5 || 217.81 1.4 1.8 0.9 0.1/90107*| 1.2107% | 7910713

0.10 5| 20.98 1.3 1.5 0.8 0.1]72107*| 9.610°7 | 6.01071*

1 5 1.66 0.6 0.5 0.2 211072 ]1.0107* | 1.01077 | 4.61071°

10 5 A1 0.0 271073 | 24107* | 4.0107° | 1.7107° | 2.610713 | 6.6 10722

0.01 10 || 286.74 2.1 20.3 50.0 64.0 14.9 0.7 4.7107°

0.10 10 || 27.64 1.9 17.5 42.0 52.3 11.7 0.5| 3.4107°

1 10 2.18 0.8 5.2 9.6 9.1 15| 511072 | 2.5107°

10 10 0.13 31072 21072 1107' | 1.4107% | 2.01075 | 1.110° 0.

Table 1: Relative errors on the estimation of up

Conclusion

In conclusion, we note that although I, (computed for instance as I, = I}, —

_)M
G B(M +

2,¢)) could be used as approximation,it is preferable to approximate I with I}, so that pr

can be approximated as:

T =

E.2 Integral term

v
a—1

(¢Ih +07)

(89)

For the random-parameter Bartlett-Lewis model, the exact probability that an arbitrary
interval is dry depends on an integral of the form

I(¢,K) = /01 t27 (1 —t) ertat (90)
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(see equation 46). This cannot be evaluated analytically, although it is (almost) a ‘standard’
integral, in the sense that it has a name, since (¢, k)/B(¢,2) is a confluent hypergeometric
function — M (¢, 2+ ¢, k) in the notation of Abramovvltz and Stegun (1965, equation 13.2.1).
B(a,b) here is the beta function. There appear not to be any nice ways of evaluating I (¢, ) or
relating it to other special functions that can be calculated easily — I've checked everything
in Abramowitz and Stegun (1965) and in Gradshteyn and Ryzhik (1980).

Rodriguez-Iturbe et al. (1987) approximated the integral using a third-order series ex-
pansion that is valid when ¢ and x are both small (i.e. substantially less than 1). This
approach runs through all subsequent developments of the Bartlett-Lewis model, and is still
used in our fitting programs. However, the requirement for x and ¢ to be small seems to
have gone largely unnoticed (or been forgotten) in our fitting work. Now that we’re thinking
about fitting models to lots of datasets, it may be worth examining. For example, some re-
cent problems with the SCE fitting code ‘blowing up’ for some datasets appear to be caused
solely by the failure of this approximation in a region of the parameter space that the al-
gorithm was exploring. Moreover, the exact magnitude of the approximation error for any
given k and ¢ is not known, which makes me feel a bit uncomfortable ...

In view of this, it may be worth exploring alternative means of evaluating the integral.
A possible solution is to use standard quadrature methods; however, since the integrand
becomes infinite at t = 0 for ¢ < 1, this may be delicate. Instead, consider expanding the
et term, to get

I(gb,/i):/ (1 —t i ]! = Zj|/ (1 — ) dt

j=0

= ,B(J+¢2)
30‘7

This suggests truncating the infinite sum at a suitably large value, say M, and approximating
the integral by

Zi, (+6.2) . (91)

The point about this is that standard algorlthms exist for calculating the Beta function to

a high degree of accuracy (it can be expressed in terms of gamma functions — B(a,b) =

['(a)'(b)/T'(a + b)), and these are readily available in both R and FORTRAN (there’s a

FORTRAN routine to evaluate gamma functions in file OURPROGS/rec_math.f on argos).
The error in approximating [ with Iy is

e}

[(¢,K)—fM(¢,H)_/O o7 (1 —t) [ Z ]] /Ot¢1(1—t) > (Z,t!)]dt.

j= 7t j=M+1
(92)

Each term in the infinite sum is non-negative and increasing in t. Therefore, over the range
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of the integral, it takes its maximum value at ¢ = 1. The maximum value of the sum is
Koo o
5M(/{)=}Z T2 (93)
which is, again, easily evaluated providing M is not too large. We therefore have

0 < (6, k) — Ini(d, %) < Oar (%) /0 7L (1— t)dt = 6y (k) B(6,2) . (94)

Therefore, for any value of M we can calculate an upper bound on the approximation error.
This enables us to find a value of M that will approximate the integral to any desired
accuracy. A pragmatic criterion, for example, may be to choose M such that dys (k) B(¢,2) <
0.01 x Ips (K, ®).

From equation (94), it is clear that Ij; will always underestimate I. It is natural to ask
whether a correction can be made for this, to improve the approximation. From equation
(92) we have

1(¢, k) — Ly (o, ) / Z j'tﬁ(f’ Ldt — / Z t9+¢dt

j=M+1 j= M+1

Each of the integrands here increases monotonically from 0 to d,/(k) as t ranges from 0 to 1.
Moreover, since t < 1 throughout the range of integration, the j = M + 1 term is the largest
in each sum. This suggests approximating the error by taking just the M + 1 term from
each sum and scaling it to match the correct value at each end of the range of integration.
This yields the approximation

L oMie | Mber1y g O (1)
5M(f€)/0(t o gt )dt_(M+¢+1)(M+¢+2)

which, in turn, suggests that

5M(li)
(M+¢+1)(M+¢+2)

In (¢, 5) = Iy (6, k) + (95)

will be an improved estimate of I (¢, k). Note that the improvement is obtained almost ‘free
of charge’ — it depends only on M (which is known) and upon & (k) (which has already
been calculated to determine the accuracy of Iy).

Numerical investigation

To assess the adequacy of these approximations, some numerical experiments have been
carried out for several values of k and ¢. It is of particular interest to determine how large
M needs to be to achieve a specified degree of accuracy. Define M, and M, to be the values
required to obtain a relative error of less than 100a% for particular values of x and ¢, using
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¢ K I(¢, k) || Moor | Moor | Myg-s | Myg-s
0.01 0 99.0099 0 0 0 0
0.10 0 9.0909 0 0 0 0
1 0 0.5000 0 0 0 0
10 0 0.0091 0 0 0 0
0.01 | 0.01 99.0148 0 0 1 0
0.10 | 0.01 9.0952 0 0 1 1
1] 0.01 0.5017 0 0 2 1
10 | 0.01 0.0092 0 0 2 1
0.01 | 0.10 99.0600 0 0 2 1
0.10 | 0.10 9.1350 0 0 3 2
11]0.10 0.5171 1 0 3 2

10 | 0.10 0.0099 1 0 4 2
0.01 1 99.6013 0 0 5) 4
0.10 1 9.6160 1 1 6 5
1 1 0.7183 3 2 7 6

10 1 0.0210 4 2 8 6
0.01 10 || 385.9201 15 13 26 23
0.10 10 || 288.2351 16 13 26 23
1 10 || 220.1547 16 13 26 23

10 10 56.3963 17 13 27 24

Table 2: Exact values of I(¢, k), together with values of M required to achieve relative errors
of less than 1072 and 107% respectively.
-

Iy and Iy, respectively. Table 2 shows the values of Mo.()l, MO_Ol, Mjp-s and Mlofs for
values of ¢ and k between 0 and 10. In all cases, the ‘exact’ expression was calculated as
1:100(<b, k). As a check on the adequacy of this (and on the overall accuracy of the theory
and programming!), the results for ¢ = 0.1,k = 0.1 and for ¢ = 0.1,k = 1 have also been
evaluated manually using Table 13.1 of Abramowitz and Stegun (1965).

Table 2 shows that for the values of ¢ and « likely to be encountered in rainfall modelling
applications, a small value of M yields very high accuracy. In such applications it would
be unusual to find values in excess of 1) For example, using I M, when ¢ = k = 1 a relative
error of less than 1% can be achieved with M = 2. Indeed, M = 6 is sufficient to ensure
a relative error of less than 107% in this case. As expected, Iy is more accurate than Iy
and hence is preferable (since it is no more expensive to compute). The magnitude of this
improvement can be illustrated by comparing Io(1,1) = 0.6667 and fo(L 1) = 0.7265 (not
shown in Table 2) with the actual value of I(1,1), which is 0.7183. In this case, I improves
considerably over I. The magnitude of the error here suggests that taking M as small as
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zero may adequate for some applications, if using I.
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F Appendix: Std. deviation of number of cells/storm

for QR model

Conditional upon 7, the mean number of cells N, in a storm is geometrically distributed
with mean E[N,|n] =1+ %;271 Let a =1 — E[N,|n]~'. The distribution is thus given by:

Pr{N.=n|n} = (1 —a)a™ ! for n > 0

The variance of N, is:
var[N,| = E[var[N.|n]]

Let us first calculate the conditional variance:

var[Neln] = E[NZ|n] — E[N|n?
and
EINZln) = (1—a)3 5l n*a"!
The following sums are useful:
Doy na ! = Sl
= o
Solin(n = 1am? = 53 a"
= T
Hence:
Yonta" Tt = ﬁ
thus,
E[NZn] = e
and:
var[Ne|n] = (13?1)2
= 2[(2)" - &
Therefore:

(96)
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or,

2
var[N,|n] = 2 (M) I B (97)
¢ ¢
From equation (96), the unconditional variance is:
2
var[N] = P (K] + K10) + (2K1K2 + K20) E[n] + w3 E[0°]]
Since:
El] = afv
Ely’] = (a+1)a/v?
we finally obtain:
2 +1
varlNJ = 25 | (s + m6) + (s + ra0) ) + e (98)
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