
DEFRA Project:

Improved Methods for

National Spatial-Temporal Rainfall

and Evaporation Modelling for

BSM

Department of Civil and Environmental Engineering, IC

and

Department of Statistical Science, UCL

in collaboration with

CEH Wallingford

Internal report, no. 7

Moment-based inference for stochastic-mechanistic

models

August 29, 2004

Richard Chandler



Moment-based inference 1

Contents

1 Introduction 2

2 Inference in a likelihood-based setting 3

2.1 Properties of the score . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Large-sample properties of the MLE . . . . . . . . . . . . . . . . . . . . . . 4

2.3 More than one parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.4 Profile likelihood . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Estimating equations 10

4 Estimating equations for the method of moments 12

4.1 Zero mean . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.1.1 θ-dependent weights — a cunning plan . . . . . . . . . . . . . . . . . 14

4.2 Asymptotic normality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.3 Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.4 Variance calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.4.1 Variance calculation using the Hessian . . . . . . . . . . . . . . . . . 16

5 Summary, and implications 17



1 INTRODUCTION 2

1 Introduction

Within the current DEFRA project, a substantial portion of the research is devoted to the
development and application of models for rainfall based on point processes. These models
are ‘stochastic-mechanistic’, in the sense that they attempt to provide a simplified stochastic
representation of the mechanics of the rainfall process. They are parameterised in terms of
physically interpretable quantities (e.g. storm arrival rate and mean cell intensity). However,
estimation of the parameters is difficult, mainly because they are related rather indirectly to
observable properties of rainfall sequences. Likelihood-based inference is generally infeasible,
owing to the difficulty in formulating a likelihood function (this is a consequence of the
complex dependencies induced by the model specification). Moreover, it has been argued by
Rodriguez-Iturbe et al. (1988, Section 3) that likelihood-based inference is not necessarily
appropriate in any case, because the models are necessarily over-simplified so that the joint
distribution of an observed rainfall sequence differs substantially in some respects from that
implied by the models. For example, the rectangular profile of rain cells in a single-site
model leads to short-term deterministic features in model realisations; these are not present
in real rainfall. This argument is to some extent supported by experience with the ‘spectral
likelihood’ approach, which attempts to formulate an approximate Gaussian likelihood based
on collections of sample Fourier coefficients. This approximate likelihood only involves the
second-order moment properties of the data (mean, variance and autocorrelations); models
fitted using this method are very good at reproducing these properties of observed rainfall
sequences, but poor when it comes to other properties of interest such as lengths of dry
intervals. Informally, the problem is that the likelihood method tries too hard to achieve a
good match between model and data at very short timescales, whereas in practice this is not
to be expected.1

In the absence of a suitable likelihood-based approach, stochastic-mechanistic models are
usually fitted using a generalised method of moments: select a set of properties of interest
(e.g. mean, variance, autocorrelations and proportion of ‘dry’ intervals at various levels of
aggregation) and choose parameter estimates that minimise some measure of discrepancy
between model and data with respect to these properties. This measure is usually a (pos-
sibly weighted) sum of squared differences. A particular advantage of this approach is that
the model parameterisation can be chosen to reproduce, as closely as possible, those prop-
erties that are deemed to be particularly important in any specific application. However, a
major disadvantage (compared with, say, a likelihood-based approach) is that assessments
of uncertainty are not readily available. This note is an attempt to summarise the available
options for obtaining uncertainty estimates (e.g. confidence intervals) when model param-
eters are estimated using a generalised method of moments. The problem can be regarded
as an application of the theory of estimating equations; the relevant aspects are summarised
in Section 3 below. Before this, however, we review some standard theory of likelihood-
based inference, by way of illustrating the general concepts. In Section 4, we present the
moment-based estimation procedure within the estimating equation framework; and Section

1Although this is largely irrelevant to the present note, it occurs to me — I wonder if you could obtain
better performance by omitting the higher frequencies from the spectral likelihood?
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5 provides a concise summary along with some practical suggestions for implementation.

2 Inference in a likelihood-based setting

The relevant results from likelihood-based inference are most easily illustrated in the context
of a problem in which a vector of observations y = (y1 . . . yn)′ has been generated from a
joint probability distribution whose density has the form f(y; θ). The functional form of f
is known but the exact value of θ is not. The likelihood function for θ given the data
y is defined as

L(θ|y) = f (y; θ) ,

and can be interpreted as the probability of obtaining the observed data for any given value
of θ. The maximum likelihood estimate (MLE) of θ is the value, θ̂ say, for which the
likelihood function is maximised (i.e. the value that allocates the highest probability to the
observations). Equivalently, it is the value for which the log-likelihood

`(θ|y) = lnL(θ|y)

is maximised. In well-behaved problems, the MLE therefore satisfies the equation

U
(
θ̂|y
)

= 0 , (1)

where U (θ|y) = ∂` (θ|y) /∂θ is the score function. We assume here that (1) has a unique
solution. Note that

U (θ|y) =
∂ ln f (y; θ)

∂θ
=

1

f (y; θ)

∂f (y; θ)

∂θ
. (2)

2.1 Properties of the score

Since y has been generated from a probability distribution, it can be regarded as the realised
value of a vector Y of random variables. Hence the score function U (θ|y) is the realised
value of a random variable Uθ = U (θ|Y). The properties of this random variable depend on
the true value of θ; call this θ0. For example, we have

E (Uθ) =

∫
U (θ|y) f (y; θ0) dy =

∫
1

f (y; θ)

∂f (y; θ)

∂θ
f (y; θ0) dy ,

the last step following from (2). This expression is valid for all θ. In particular, the expected
score at the true parameter value is

E (Uθ0) =

∫
1

f (y; θ0)

∂f (y; θ)

∂θ

∣∣∣∣
θ=θ0

f (y; θ0) dy =

∫
∂f (y; θ)

∂θ

∣∣∣∣
θ=θ0

dy. (3)

Now, since f(y; θ) is a probability density for all values of θ, we have∫
f(y; θ)dy = 1 so that

∂

∂θ

∫
f(y; θ)dy = 0 .
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In well-behaved problems we can interchange the order of differentiation and integration, to
yield ∫

∂f (y; θ)

∂θ
dy = 0 .

This identity holds for all values of θ, and in particular for θ = θ0. Hence, from (3), we have

E (Uθ0) = 0 . (4)

We now turn to the variance of the score function. This can be related to the expected
value of its derivative — or equivalently, of the second derivative of the log-likelihood. For,
differentiating (2) with respect to θ, we obtain

∂U (θ|y)

∂θ
=
∂2` (θ|y)

∂θ2
= − 1

f 2 (y; θ)

(
∂f (y; θ)

∂θ

)2

+
1

f (y; θ)

∂2f (y; θ)

∂θ2

= −U2 (θ|y) +
1

f (y; θ)

∂2f (y; θ)

∂θ2
. (5)

As before, all of these quantities are the realised values of random variables, so we can
consider replacing y with Y and taking expectations. In particular, let Hθ = ∂2` (θ|Y) /∂θ2.
Then we obtain

E (Hθ) = −E
[
U2
θ

]
+

∫
1

f (y; θ)

∂2f (y; θ)

∂θ2
f (y; θ0) dy .

Evaluated at θ = θ0, the last term here is zero and we obtain

E
[
U2
θ0

]
= −E (Hθ0) = I (θ0) , say.

But since E (Uθ0) = 0, we must have E
[
U2
θ0

]
= var (Uθ0). Thus we have shown that

var (Uθ0) = I (θ0) . (6)

I (θ0) is called the (Fisher) information.

2.2 Large-sample properties of the MLE

The properties of the score function are fundamental to the development of asymptotic
results for maximum likelihood estimators — in particular, to the construction of standard
errors and confidence intervals for the parameters. The theory relies on the fact that, in well-
behaved problems, as the sample size n tends to infinity the following two things happen:

1. The score function Uθ tends, when suitably normalised, to its expectation. For example,
if the random variables in Y are independent and identically distributed (iid) then the
log-likelihood is a sum of n independent contributions; it follows that the score function
is also a sum of n independent contributions, and the law of large numbers dictates
that n−1 [Uθ − E (Uθ)]→ 0 as n→∞ in this case.
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2. The distribution of [Uθ − E (Uθ)] /
√
I (θ) tends to the standard normal distribution.

Again, in the iid case this is easy to see: Uθ is a sum of independent terms, and the
normality follows from the Central Limit Theorem.

Providing Uθ is continuous in θ, property 1 here implies that for large n, the score equation
(1) has a solution in the neighbourhood of θ0 (since, from (4), E (Uθ0) = 0), and that this

solution tends to θ0 as n→∞. Hence, providing n is large enough,
∣∣∣θ̂ − θ0

∣∣∣ will be small so

that we can carry out a Taylor Series expansion for the score function in the neighbourhood
of θ0 and write

Uθ̂ ≈ Uθ0 +
(
θ̂ − θ0

)
Hθ0 (7)

(recall that Hθ is the second derivative of the log-likelihood at θ). But by definition, Uθ̂ = 0,
so that

θ̂ − θ0 ≈ −
Uθ0
Hθ0

= − Uθ0
I (θ0)

I (θ0)

Hθ0

.

As n → ∞, Hθ tends to its expectation which is −I (θ), so that the second factor on the
right-hand side here tends to −1. Hence we can approximate the estimation error θ̂ − θ0 by
Uθ0/I (θ0). Strictly speaking, some care needs to be taken over the relative magnitudes of
the various approximations here — for full details, see Cox and Hinkley (1974, Section 9.2).

Having expressed the estimation error in terms of the score, we can use property 2
above to deduce that for large samples, the estimation error has an approximate normal
distribution. Specifically,√

I (θ0)
(
θ̂ − θ0

)
≈ Uθ0√

I (θ0)
=
Uθ0 − E [Uθ0 ]√

I (θ0)
∼ N(0, 1) , (8)

since E [Uθ0 ] = 0. For practical purposes, an equivalent statement of this result is that for
large n, the distribution of the MLE is approximately normal with mean θ0 and variance
1/I (θ0). This can be used, for example, to construct approximate confidence intervals for
θ0: an approximate 95% interval is

θ̂ ± 1.96√
I (θ0)

. (9)

Hypothesis tests based on (8) are referred to as Wald tests. As an alternative, inference
could be based directly on the quantity [Uθ − E (Uθ)] /

√
I (θ) at the right-hand side of (8),

to yield a score test. In general, the results from Wald and score tests will differ slightly
due to the first approximation in (8).

A third possibility is to base inference on the log-likelihood function itself. A second-order
Taylor expansion about the MLE yields, for some θ† between θ0 and θ̂,

` (θ0|Y) = `
(
θ̂|Y

)
+
(
θ0 − θ̂

) ∂`

∂θ

∣∣∣∣
θ=θ̂

+
1

2

(
θ0 − θ̂

)2 ∂2`

∂θ2

∣∣∣∣
θ=θ†

= `
(
θ̂|Y

)
+

1

2

(
θ0 − θ̂

)2

Hθ† , (10)
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as the first derivative of the log-likelihood is zero at θ̂ by definition. Since θ† is between θ0

and θ̂ we have Hθ† ≈ Hθ̂. Moreover, again using the fact that Hθ ≈ −I(θ) for large n, we
find

2
[
`
(
θ̂|Y

)
− ` (θ0|Y)

]
≈
(
θ0 − θ̂

)2

I
(
θ̂
)

=

[(
θ0 − θ̂

)√
I
(
θ̂
)]2

. (11)

But from (8), the right hand side here is just the square of a standard normal random variable,
and therefore has a chi-squared distribution with 1 degree of freedom. The asymptotic
approximation

2
[
`
(
θ̂|Y

)
− ` (θ0|Y)

]
∼ χ2

1 (12)

can therefore be used to test hypotheses and construct confidence intervals. For example,

a 95% confidence interval for θ consists of all values for which 2
[
`
(
θ̂|Y

)
− ` (θ|Y)

]
is less

than the upper 95% point of a χ2
1 distribution (which is 3.84).

Hypothesis tests based on (12) may be referred to as likelihood ratio tests. The
three test procedures (Wald, score and likelihood ratio) are asymptotically equivalent, in the
sense that their results will be very similar for large enough sample sizes. However, since
the likelihood ratio test is derived from approximation (11) rather than from (7), its results
will usually differ slightly, in finite samples, from both the Wald and score tests. There are

grounds for preferring 2
[
`
(
θ̂|Y

)
− ` (θ|Y)

]
as a test statistic, although the accuracy of the

χ2 approximation is not guaranteed in finite samples.

2.3 More than one parameter

The theory above carries over straightforwardly to the case when there is more than one
parameter. Specifically, denote the unknown parameter vector by θ = (θ1 . . . θp)

′. Then
the log-likelihood for θ can be defined as previously, and the MLE satisfies the system of
score equations

Uj

(
θ̂|y
)

= 0 (j = 1, . . . , p)

where now Uj (θ|y) = ∂` (θ|y) /∂θj. These p equations can be written in vector form as

U
(
θ̂|y
)

= 0 . (13)

U (θ|y) is the score vector, and can be regarded as the realised value of a vector of
random variables Uθ. Denoting the true parameter by θ0, we can show that

E (Uθ0
) = 0 and var (Uθ0

) = I (θ0) = −E (Hθ0
) , (14)

where Hθ is the Hessian matrix of second derivatives of the log-likelihood at θ. For large
samples, Uθ again approaches its expectation and has an approximate normal distribution
(this time in p dimensions):

Uθ0
∼MVN (0, I (θ0)) . (15)
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The Taylor expansion corresponding to (7) is now

Uθ̂ ≈ Uθ0
+ Hθ0

(
θ̂ − θ0

)
, (16)

so that θ̂ − θ0 ≈ −H−1
θ0

Uθ0
≈ I−1 (θ0) Uθ0

. Hence E
(
θ̂ − θ0

)
≈ 0 and var

(
θ̂ − θ0

)
≈

I−1 (θ0) var (Uθ0
) I−1 (θ0) = I−1 (θ0). For large samples we therefore have, approximately,

θ̂ ∼MVN
(
θ0, I

−1 (θ0)
)
. (17)

In the multiparameter case, the equivalent of (10) is

` (θ0|Y) = `
(
θ̂|Y

)
+

1

2

(
θ0 − θ̂

)′
Hθ†

(
θ0 − θ̂

)
for some θ† between θ0 and θ̂. Now for large n, the elements of the matrix Hθ† − E [Hθ† ]
are order n1/2 in probability. Also, since

(
θ0 − θ†

)
is order n−1/2, the elements of E [Hθ† ]−

E [Hθ0
] are themselves (op

(
n1/2

)
. Therefore we can write Hθ† = −I (θ0) + E, where the

elements of E are Op

(
n1/2

)
. Hence

2
[
`
(
θ̂|Y

)
− ` (θ0|Y)

]
=

(
θ0 − θ̂

)′
I (θ0)

(
θ0 − θ̂

)
+Op

(
n−1/2

)
=

[
A (θ0)

(
θ0 − θ̂

)]′
A (θ0)

(
θ0 − θ̂

)
+Op(n

−1/2) , (18)

where A (θ0) is a matrix such that A′ (θ0) A (θ0) = I (θ0). A (θ0) is not uniquely de-
fined but could be, for example, the Cholesky square root of I (θ0) (which is guaranteed
to exist since I (θ0) is a covariance matrix and is therefore positive definite). Now, since
θ̂ ∼MVN

(
θ0, I

−1 (θ0)
)
, we must have

A (θ0)
(
θ0 − θ̂

)
∼MVN

(
0,A (θ0) I−1 (θ0) A′ (θ0)

)
approximately. Now, assuming the information matrix I (θ0) is nonsingular, we must have

A (θ0) I−1 (θ0) A′ (θ0) = A (θ0) [A′ (θ0) A (θ0)]
−1

A (θ0)′

= A (θ0) [A (θ0)]−1 [A′ (θ0)]
−1

A (θ0)′ = 1p×p ,

the p × p identity matrix. Together with (18), this shows that 2
[
`
(
θ̂|Y

)
− ` (θ0|Y)

]
is

approximately a sum of squares of p standard normal random variables. Asymptotically
therefore,

2
[
`
(
θ̂|Y

)
− ` (θ0|Y)

]
∼ χ2

p . (19)

This is the multiparameter equivalent of (12).

Either (15) or (17) can be used to construct confidence intervals for individual parame-
ters, as well as confidence regions for subsets of the parameters. Moreover, (19) allows the
construction of a confidence region for the entire parameter vector — for example, an ap-

proximate 95% confidence region for θ consists of all values such that 2
[
`
(
θ̂|Y

)
− ` (θ|Y)

]
is less than the 95% point of χ2

p. As it stands however, (19) does not allow the construction
of confidence regions for subsets of the parameter vector. We now address this problem.
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2.4 Profile likelihood

Suppose now that the parameter vector is partitioned into two subsets: θ = (ψ′ λ′)
′
, with

target value θ0 = (ψ′0 λ
′
0)
′
. Write ` (θ) = ` (ψ,λ) for the log-likelihood,

U (θ) =

(
Uψ (ψ,λ)
Uλ (ψ,λ)

)
for the score vector,

I =

(
Iψψ Iψλ
Iλψ Iλλ

)
for var [U (θ0)], and H =

(
Hψψ Hψλ

Hλψ Hλλ

)
for E

[
∂2`/∂θ2

|θ=θ0

]
.

Suppose also that ψ is held fixed, and that the likelihood is maximised with respect to
λ alone for this value of ψ. In general, the resulting estimate of λ will depend on ψ, so call

it λ̂ (ψ). The value of the resulting maximised likelihood, `
(
ψ, λ̂ (ψ)

)
will also depend on

ψ; this is called the profile likelihood for ψ.

Let ψ̂ be the overall MLE for ψ; then the overall MLE for λ is λ̂
(
ψ̂
)

. By definition,

`
(
ψ̂, λ̂

(
ψ̂
))

cannot be less than the maximised log-likelihood at any other value of ψ.

Therefore the likelihood ratio statistic

Λ (ψ) = 2
[
`
(
ψ̂, λ̂

(
ψ̂
))
− `
(
ψ, λ̂ (ψ)

)]
(20)

is always positive-valued, although we would expect Λ (ψ0) to be ‘small’ in general, if ψ̂ is
close to ψ0. This suggests that when ψ is unknown, a confidence region could be determined
as the set of values for which Λ (ψ) is less than some threshold — or equivalently, as the set
of values for which the profile likelihood exceeds a corresponding threshold. An appropriate
threshold can be determined by considering the distribution of Λ (ψ0). We have

Λ (ψ0) = 2
{[
`
(
ψ̂, λ̂

(
ψ̂
))
− ` (ψ0,λ0)

]
−
[
`
(
ψ0, λ̂ (ψ0)

)
− ` (ψ0,λ0)

]}
. (21)

Now, using essentially the same argument as that given in the previous section we find

that the term 2
[
`
(
ψ̂, λ̂

(
ψ̂
))
− ` (ψ0,λ0)

]
can be written as

−
(
θ̂ − θ0

)′
H
(
θ̂ − θ0

)
+Op

(
n−1/2

)
= −

((
ψ̂ −ψ0

)′ (
λ̂
(
ψ̂
)
− λ0

)′)′( Hψψ Hψλ

Hλψ Hλλ

)(
ψ̂ −ψ0

λ̂
(
ψ̂
)
− λ0

)
+Op

(
n−1/2

)
= −

(
ψ̂ −ψ0

)′
Hψψ

(
ψ̂ −ψ0

)
−
(
λ̂
(
ψ̂
)
− λ0

)′
Hλψ

(
ψ̂ −ψ0

)
−
(
ψ̂ −ψ0

)′
Hψλ

(
λ̂
(
ψ̂
)
− λ0

)
−
(
λ̂
(
ψ̂
)
− λ0

)′
Hλλ

(
λ̂
(
ψ̂
)
− λ0

)
+Op

(
n−1/2

)
.

(22)

For the second term in (21), the analysis can repeated as though ψ0 is known and λ is
the unknown parameter vector, to yield

2
[
`
(
ψ0, λ̂ (ψ0)

)
− ` (ψ0,λ0)

]
= −

(
λ̂ (ψ0)− λ0

)′
Hλλ

(
λ̂ (ψ0)− λ0

)
+Op

(
n−1/2

)
. (23)
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We now substitute (22) and (23) into (21). This requires a relationship between λ̂
(
ψ̂
)

and λ̂ (ψ0). To find this we use (16), which we now write as Uψ

(
ψ̂, λ̂

(
ψ̂
))

Uλ

(
ψ̂, λ̂

(
ψ̂
))  =

(
Uψ (ψ0,λ0)
Uλ (ψ0,λ0)

)
+

(
Hψψ Hψλ

Hλψ Hλλ

)(
ψ̂ −ψ0

λ̂
(
ψ̂
)
− λ0

)
+ op

(
n1/2

)
.

(24)

If ψ0 is known so that only λ is being estimated, the corresponding expansion is

Uλ

(
ψ0, λ̂ (ψ0)

)
= Uλ (ψ0,λ0) + Hλλ

(
λ̂ (ψ0)− λ0

)
+ op

(
n1/2

)
. (25)

Since the left hand sides of both (24) and (25) are zero by definition, we can equate (25)
with the bottom row of (24) to obtain

Hλλ

(
λ̂ (ψ0)− λ0

)
= Hλψ

(
ψ̂ −ψ0

)
+ Hλλ

(
λ̂
(
ψ̂
)
− λ0

)
+ op

(
n1/2

)
,

so that
λ̂ (ψ0)− λ0 = λ̂

(
ψ̂
)
− λ0 + H−1

λλHλψ

(
ψ̂ −ψ0

)
+ op

(
n1/2

)
,

the order of magnitude of the error following from the fact that the elements of Hλλ are
Op(n). The quadratic term in (23) can now be written as

−
(
λ̂
(
ψ̂
)
− λ0

)′
Hλλ

(
λ̂
(
ψ̂
)
− λ0

)
−
(
λ̂
(
ψ̂
)
− λ0

)′
Hλψ

(
ψ̂ −ψ0

)
−
(
ψ̂ −ψ0

)′
Hψλ

(
λ̂
(
ψ̂
)
− λ0

)
−
(
ψ̂ −ψ0

)′
HψλH

−1
λλHλψ

(
ψ̂ −ψ0

)
+ op(1) .(26)

We now combine (21), (22), (23) and (26), and find

Λ (ψ0) = −
(
ψ̂ −ψ0

)′
Hψψ

(
ψ̂ −ψ0

)
+
(
ψ̂ −ψ0

)′
HψλH

−1
λλHλψ

(
ψ̂ −ψ0

)
+ op(1)

= −
(
ψ̂ −ψ0

)′ [
Hψψ −HψλH

−1
λλHλψ

] (
ψ̂ −ψ0

)
+ op(1) . (27)

Next, observe that
[
Hψψ −HψλH

−1
λλHλψ

]−1
is the submatrix of H−1 corresponding to

ψ (this is not immediately obvious, but is a standard result in matrix algebra — see, for
example, Horn and Johnson 1985, page 18). For notational convenience therefore, if we write
H−1 as

H−1 =

(
H(ψψ) H(ψλ)

H(λψ) H(λλ)

)
,

the likelihood ratio statistic (27) can be written as

Λ (ψ0) = −
(
ψ̂ −ψ0

)′ [
H(ψψ)

]−1 (
ψ̂ −ψ0

)
+ op(1) . (28)
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But from (17), the distribution of θ̂ is approximately MVN
(
θ0, I

−1
)

= MVN
(
θ0,−H−1

)
,

so that the distribution of ψ̂ − ψ0 is approximately MVN
(
0,−H(ψψ)

)
. The development

from (18) to (19) can now be repeated, to conclude that in large samples

Λ (ψ0) ∼ χ2
q (29)

approximately, where q is the dimension of ψ. Therefore, if ψ0 is unknown, a confidence
region can be determined as the set {ψ : Λ (ψ) < c}, where c is the appropriate percentile
of the χ2

q distribution.

3 Estimating equations

In the likelihood setting above, the asymptotic results depend on the following properties of
the score function:

1. The expected score is zero at the true parameter value.

2. The variance of the score can be calculated at the true parameter value.

3. The score, when suitably normalised, tends to its expectation as n→∞.

4. The score is a continuous function of the parameter, in the neighbourhood of the true
parameter value.

5. As n→∞, the distribution of the score vector tends to the multivariate normal.

6. The second derivative of the score is bounded in the neighbourhood of the true pa-
rameter value (this was not made explicit in the discussion above, but is necessary to
control the magnitudes of the various approximations leading to (8) and (17)).

These observations suggest that, as an alternative to likelihood-based inference, we may
consider obtaining parameters by solving the equation

g
(
θ̂|y
)

= 0 , (30)

where g is a function such that the associated vector of random variables gθ has properties
1–6 above. Any such equation is called an estimating equation; we will call gθ an
estimating function. If θ̂ solves an estimating equation of the form (30), then the
arguments of the previous section can be repeated. Let H (θ) denote the expected value of
the Hessian matrix Hθ = ∂gθ/∂θ, and let J (θ) be the covariance matrix of gθ. Then for
large n,

θ̂ ∼MVN (θ0,V (θ0)) approximately, (31)

where V (θ) = [H (θ)]−1 J (θ) H (θ)−1.

Many numerical optimisation methods (for example, those based around Newton-Raphson
iterative schemes) compute the Hessian Hθ̂ as a by-product of the optimisation procedure.
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We may therefore use this to approximate H (θ0) in the calculation of V (θ0). Further sim-
plification is possible if we can choose g in such a way that H (θ) = −J (θ) (from (14), this
is the case for score-based estimation), since in this case V (θ) = − [H (θ)]−1.

As in the case of likelihood-based inference, tests of hypotheses can be based either on
(31) (which is the equivalent of a Wald test) or on the multivariate normal distribution of
the estimating function itself (the equivalent of a score test):

gθ0
∼MVN (0,J (θ0)) . (32)

Much of the literature on estimating equations takes (30) as its starting point. In this
case, the resulting estimate is not necessarily the maximiser (or minimiser) of a function
such as the log-likelihood, whence there is no obvious equivalent to the likelihood ratio
test. However, a generalisation is possible if gθ is the gradient vector of some objective
function. Specifically, suppose that the estimating equations arise from minimising a measure
of discrepancy between data and model, S (θ|y) say. In this case, a confidence region could
be defined as the set of all values for which S (θ|y) is less than some threshold. We now
establish what this threshold should be.

A second-order Taylor expansion of S about θ̂ yields

2
[
S (θ0|Y)− S

(
θ̂|Y

)]
=

(
θ0 − θ̂

)′
H (θ0)

(
θ0 − θ̂

)
+ op(1).

This is dominated by the first term, which is a quadratic form in normal random variables.
Distributions of quadratic forms are difficult to compute exactly. However, it is common
(e.g. Bowman and Azzalini 1997, p.88) to approximate their quantiles with those of a scaled
and shifted χ2 distribution. The shift, scale and degrees of freedom of the approximating
distribution are chosen to match the first three moments (or equivalently, cumulants) of the
quadratic form. The rth cumulant is given (Kuonen, 1999, Section 2) by

κr = 2r−1Γ(r)tr {[V (θ0) H (θ0)]r} , (33)

with tr() denoting the trace operator. The distribution of the quadratic form is then ap-
proximated by that of aX + c, where X ∼ χ2

b and

a =
|κ3|
4κ2

b =
8κ3

2

κ2
3

c = κ1 − ab . (34)

In practice, it is necessary to replace θ0 in (33) with θ̂. Since V
(
θ̂
)

=
[
H
(
θ̂
)]−1

J
(
θ̂
) [

H
(
θ̂
)]−1

,

we therefore compute

κr = 2r−1Γ(r)tr
{[

H−1
(
θ̂
)

J
(
θ̂
)]r}

, (35)

This then yields a reasonably straightforward procedure for constructing confidence re-
gions based on the values of the objective function. For example, a 95% region consists of
the set of values for which

a−1
{

2
[
S (θ0|Y)− S

(
θ̂|Y

)]
− c
}
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is less than the 95th percentile of the χ2
b distribution.

Confidence regions for subsets of the parameters can be constructed in a similar way,
following the theory outlined in Section 2.4. Specifically, suppose a profile objective function
is calculated for a subvector ψ, by holding this subvector fixed and maximising over the
remaining parameters λ, say. With notation as in Section 2.4, define a profile test statistic
as

Λ (ψ) = 2
[
S
(
ψ, λ̂ (ψ) |Y

)
− S

(
ψ̂, λ̂

(
ψ̂
)
|Y
)]

, (36)

which is positive-valued by definition. Expansion (28) holds here, as in the likelihood setting;
the difference is, once again, that for estimating equations the covariance matrix of ψ̂ is
not directly related to the Hessian. It should be clear, however, that the same procedure
can be applied as in the case of the full parameter vector above. All that is required is

to replace H
(
θ̂
)

with the estimated value of
[
H(ψψ)

]−1

, and to extract the submatrix of

V
(
θ̂
)

corresponding to ψ. In fact, once the full matrices H−1 and V have been estimated,

the modification simply consists of extracting the elements corresponding to ψ from each of
these matrices when calculating the κs in (33). Notice that, in general, different choices of
ψ will lead to different thresholds. Notice also that the cancellation leading to (35) does not
hold in general, when considering subsets of the parameter vector.

If ψ consists of a single parameter ψ, the procedure outlined above is particularly simple.

In this case
[
H(ψψ)

]−1

is a scalar, as is the corresponding submatrix of V
(
θ̂
)

. Denote these

scalars by h and v respectively; then direct calculation shows that the constants defined in
(34) are given by a = hv, b = 1 and c = 0. A confidence interval for ψ can therefore be
defined as the set values for which the profile test statistic (36) is less than hv times the
appropriate percentage point of a χ2

1 distribution.

There is a substantial body of theory on the use of estimating equations. However, for
current purposes there is no need to go beyond what has been presented above.

4 Estimating equations for the method of moments

We now return to the problem of parameter estimation for stochastic-mechanistic models,
using a generalised method of moments. To formalise the problem, it is necessary to establish
some notation. Specifically:

• Let y be a vector of observations as previously; this is regarded as the realised value
of a vector Y of random variables.

• Let θ = (θ1 . . . θp)
′ be a vector of unknown parameters in the model.

• Let T (y) = (T1 (y) . . . Tk (y))′ be a vector of summary statistics computed from the
observations. T (y) is the realised value of a random vector T = (T1 . . . Tk) say. De-
note the expected value of this random vector by Eθ (T) = τ (θ) = (τ1 (θ) . . . τk (θ))′.
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The idea here is that T is a vector of data properties (means, variances, autocorrelations etc.)
and that τ (θ) is the corresponding set of theoretical properties derived from the model. The
generalised method of moments seeks to minimise some measure of disagreement between T
and τ (θ). Following the notation above, denote this measure by S (θ|y). In practice, this
is invariably a (possibly weighted) sum of squares:

S (θ|y) =
k∑
i=1

wi (θ) [Ti (y)− τi (θ)]2 . (37)

for some collection of positive weights {wi (θ) : i = 1, . . . , k}. For the moment, we allow the
possibility that these may be parameter-dependent, although we will see below that this is
actually a bad idea. In well-behaved problems, the minimiser of this function satisfies the
vector equation g (θ|y) = ∂S/∂θ = 0. We have

g (θ|y) =
k∑
i=1

{
∂wi (θ)

∂θ
[Ti (y)− τi (θ)]2 − 2wi (θ)

∂τi (θ)

∂θ
[Ti (y)− τi (θ)]

}
, (38)

so that the parameter estimate θ̂ satisfies g
(
θ̂|y
)

= 0, as in (30).

To apply the theory of estimating equations here, we need to ensure that properties
1–6 in Section 3 are satisfied by the random variables gθ whose values are given by (38).
Properties 4 and 6 (gθ is continuous in θ with bounded second derivatives) are unlikely to
cause problems. The remainder require some thought.

4.1 Zero mean

For gθ to have zero mean, we require

k∑
i=1

{
∂wi (θ)

∂θ
Eθ [Ti − τi (θ)]2 − 2wi (θ)

∂τi (θ)

∂θ
Eθ [Ti − τi (θ)]

}
= 0

at θ = θ0. Since E (T) = τ (θ0), this reduces to the requirement that

k∑
i=1

∂wi (θ)

∂θ
varθ (Ti) = 0 ,

which is trivially true providing the weights are independent of θ. If the weights depend on θ,
however, the requirement is not fulfilled in general. In particular, it is not fulfilled if wi (θ)
is set proportional to 1/varθ (Ti) (which is a natural weighting scheme to consider, given
the received wisdom that ‘in least squares problems with unequal variances, observations
should be weighted according to the inverse of their variances’, and that in such problems,
the weighted least squares estimates are known to be unbiased). To see this, consider any
collection of weights satisfying

k∑
i=1

wi (θ) varθ (Ti) = constant, independent of θ.
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Differentiating both sides with respect to θj yields

k∑
i=1

∂wi (θ)

∂θj
var (Ti) +

k∑
i=1

wi (θ)
∂varθ (Ti)

∂θj
= 0

in which case, the first term can only be zero if the second is also. But since the ws are
positive, the second term can only be zero if varθ (Ti) is independent of θj for each i. Also,
since each element of gθ must have zero expectation, the result must hold for all j: hence no
collection of weights satisfying the constraint above will yield a valid estimating equation,
unless varθ (Ti) is independent of θ for each i.

At first sight, this appears to contradict the ‘standard’ theory of weighted least squares in
regression problems. The resolution of the problem appears to lie in the fact that in regression
problems, the weights do not depend on the regression parameters (which are the θs in the
present context) — hence ∂wi/∂θ = 0 in such problems. I suspect that the difficulty, when
the weights depend on θ, is related to the known problems of bias in estimating equations
when nuisance parameters are present (Liang and Zeger, 1995), although the current setting
is slightly different.

The upshot of all this is that if we want to weight the fitting properties, the weights
should not depend on θ; otherwise the resulting estimates will be biased (at least, for the
kind of weighting scheme that may be considered in practice). In many situations, it is likely
that the bias will tend to zero as the sample size (i.e. dimension of Y) increases. However,
as a first step in obtaining sampling distributions for moment-based estimators, it seems
reasonable to restrict ourselves to estimators that are exactly unbiased. Hence the objective
function (37) becomes

S (θ|y) =
k∑
i=1

wi [Ti (y)− τi (θ)]2 (39)

and the corresponding estimating equation becomes

g (θ|y) = −2
k∑
i=1

wi
∂τi (θ)

∂θ
[Ti (y)− τi (θ)] = 0 . (40)

The factor of -2 is retained here to avoid confusion later on.

4.1.1 θ-dependent weights — a cunning plan

The problems above, regarding the use of weights depending on θ, can be resolved completely
if we modify the objective function (37) slightly, to

k∑
i=1

{
wi (θ) [Ti (y)− τi (θ)]2 − lnwi (θ)

}
. (41)

If we do this, the estimating function becomes

gθ =
k∑
i=1

{
∂wi (θ)

∂θ

[
[Ti − τi (θ)]2 − 1

wi (θ)

]
− 2wi (θ)

∂τi (θ)

∂θ
[Ti − τi (θ)]

}
= 0 ,
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which clearly has zero expectation if we set wi (θ) = 1/varθ (Ti). We do not pursue this any
further here; however, it may be prove useful in the future.

4.2 Asymptotic normality

From (40), it is clear that the estimating function gθ will have an approximate normal
distribution if either of the following conditions hold:

1. k is large, and the components of T are not too strongly dependent. For in this case,
gθ is a sum of a large number of terms and the Central Limit Theorem applies.

2. T itself has an approximate multivariate normal distribution.

In practice, providing the elements of T are chosen appropriately, condition 2 is likely to
be satisfied for large datasets, since most statistics of interest have an approximate normal
distribution in the limit. Obviously, the closer this approximation, the better will be the
normal approximation to the distribution of gθ. This suggests that we should seek fitting
properties with distributions that are ‘as normal as possible’, for example by transformation.

4.3 Consistency

The moment estimator will be consistent if E [gθ0
] = 0 and, when suitably normalised, gθ

converges in probability to its expectation as n → ∞. Again from (40), this convergence
will occur if T converges to τ (θ); and again, most statistics of interest do converge to their
expectations in the required sense.

4.4 Variance calculation

To complete the estimating equation framework it is necessary to calculate, or at least
estimate, J (θ0) = var [gθ0

], since this is required for the calculation of V (θ0) in (31) and
(33). A number of options are available here:

1. Find an analytical expression for J (θ), and use J
(
θ̂
)

as an estimate of J (θ0).

2. Obtain an empirical estimate of J
(
θ̂
)

, and use this to estimate J (θ0).

3. If possible, set up the estimating equation in such a way that J (θ0) ∝ H (θ0). In
this case, V (θ0) ∝ [H (θ)]−1 and we can use the observed Hessian to estimate V (θ0)
without ever needing to calculate J (θ0).

For the first two options, it may be useful to note that gθ can be written in matrix form as

gθ = −2 [W (θ)]′ (T− τ (θ)) ,



4 ESTIMATING EQUATIONS FOR THE METHOD OF MOMENTS 16

where W (θ) is a k × p matrix whose (i, j)th element is wi∂τi (θ) /∂θj. Standard results for
covariance matrices then give us

J (θ) = 4var
{

[W (θ)]′ (T− τ (θ))
}

= 4 [W (θ)]′ var (T) W (θ) . (42)

Hence J (θ) can be calculated from the covariance matrix of T. A specific suggestion for
estimating this covariance matrix empirically is given in Section 5 below. In practice, the
derivatives of τ (θ) appearing in W (θ) can be evaluated numerically if necessary.

4.4.1 Variance calculation using the Hessian

In the third option above, the idea is to define the objective function in such a way that
J (θ0) ∝ H (θ0) = E [∂gθ/∂θ]. We now investigate how to achieve this. The starting point
is the zero-mean requirement for the estimating function, which implies that∫

g (θ|y) f (y;θ) dy = 0 .

Differentiating both sides with respect to θ yields∫ [
∂g (θ|y)

∂θ
f (y;θ) + g (θ|y)

(
∂f (y;θ)

∂θ

)′ ]
dy = 0 ,

so that

E

[
∂gθ
∂θ

]
= −

∫
g (θ|y)

(
1

f (y;θ)

∂f (y;θ)

∂θ

)′
f (y;θ) dy

i.e. E [Hθ] = −E

[
gθ

(
∂ ln f (Y;θ)

∂θ

)′ ]
.

At θ0, we require the right-hand side here to be proportional to J (θ) = var [gθ] = E [gθgθ
′].

It is not obvious that this is the case, unless g (θ|y) is proportional to the score function

g (θ|y) =
∂ ln f (y;θ)

∂θ
.

However, note that gθ is a function of T, which in turn is a function of Y. Hence we can
obtain an equivalent development to the one above, by taking expectations with respect to T;
the only difference is that f (y;θ) will be replaced by the density of T, fT say, throughout.

This shows that J (θ0) ∝ H (θ0), as required, if g (θ|y) is the θ-derivative of the log
density for T. But in Section 4.2 above we argued that for large samples, T is likely to have
an approximate multivariate normal distribution. Suppose, for the sake of argument, that
we can choose T in such a way that (i) its elements are mutually uncorrelated (ii) var [Ti] is
independent of θ for each i. In this case the θ-derivative of the log density has jth element

∂ ln fT
∂θj

=
n∑
i=1

1

var [Ti]

∂τi (θ)

∂θ
[Ti (y)− τi (θ)]
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which, if we take the weight wi = 1/var [Ti], is equal to −1
2
g (θ|y) in (40). In this case,

therefore, var
[
∂ ln fT/∂θ

]
= 1

4
var [gθ], and E

[
∂2 ln fT/∂θ

2
]

= −1
2
E [∂gθ/∂θ]. Since the

left-hand sides here differ by a factor of -1, we must have J (θ) = var [gθ] = 2E [∂gθ/∂θ] =
2H (θ).

Of course, it is unrealistic to expect that the elements of T should be uncorrelated and
that their variances should be independent of θ. The argument above does suggest, however,
that if we choose T in such a way that as many components as possible have variances that
are independent of θ; and to set the weights for the remaining components to a ‘ballpark’
figure that roughly reflects their uncertainty, J (θ0) should be approximated reasonably by
2H (θ0) so that V (θ0) can be calculated as 2 [H (θ0)]−1.

In passing, it is also worth noting that θ-dependent weights can be accommodated within
this framework, by changing the objective function to (41). In this case, the resulting
estimating function is exactly the θ-derivative of a normal density for uncorrelated T s.

5 Summary, and implications

The main points to emerge from the discussion above are the following:

1. Using a generalised method of moments, unbiased estimators can be obtained by min-
imising an expression of the form

S (θ|Y) =
k∑
i=1

wi [Ti (Y)− τi (θ)]2

where the T s are properties of the data and the τs are their expected values under the
model.

2. The weights {wi} must not depend on the model parameters (or on the data!). If
parameter-dependent weights are used, the objective function must be modified to
that given in (41).

3. Under fairly general conditions, the estimator resulting from the above minimisation
has a multivariate normal distribution. This can be used, for example, to construct
approximate confidence intervals for the model parameters. The mean of the distri-
bution is θ0 (the true parameter vector), and its covariance matrix is V (θ0) where
V (θ) = [H (θ)]−1 J (θ) H (θ)−1. Here, H (θ) is the expected second derivative of the
objective function, which can be estimated from the Hessian output of a numerical
minimisation routine. J (θ) is the covariance matrix of the objective function deriva-
tives.

4. An alternative way to construct confidence regions uses the objective function itself.
Specifically, an approximate confidence region at a specified level consists of all points
θ such that

a−1
{

2
[
S (θ|Y)− S

(
θ̂|Y

)]
− c
}
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is less than the appropriate percentile of a chi-squared distribution with b degrees of
freedom. The constants a, b and c are given by

a =
|κ3|
4κ2

b =
8κ3

2

κ2
3

c = κ1 − ab ,

with κr = 2r−1Γ(r)tr
{[

V
(
θ̂
)

H
(
θ̂
)]r}

= 2r−1Γ(r)tr
{[

H−1
(
θ̂
)

J
(
θ̂
)]r}

.

Confidence regions for subsets of parameters can be constructed using profile objective

functions, defined for a subset of parameters ψ as S (ψ) = S
(
ψ, λ̂ (ψ) |Y

)
where

λ̂ (ψ) minimises the objective function for a fixed value of ψ. The procedure is exactly
the same as for the full parameter vector, except that the κs are calculated from the
appropriate submatrices of H−1 and V. In the case of a single parameter, let v be the
appropriate diagonal element of V, and h−1 the corresponding element of H−1; then
a = hv, b = 1 and c = 0 in this case.

5. A final way to carry out tests uses the fact that at the true parameter value θ0, the
objective function gradient vector is distributed as MVN (0,J (θ0)). Any θ where the
gradient is ‘large’ according to this distribution is therefore not supported by the data.
This does not require calculation of the Hessian, which may be seen as a potential
advantage.

6. The matrix J (θ0) can be estimated in any of three ways:

(a) Find an analytical expression for the covariance matrix of the fitting proper-

ties under the model; then estimate J (θ0) as 4
[
W
(
θ̂
)]′

varθ̂ (T) W
(
θ̂
)

, where

W (θ) is a k× p matrix whose (i, j)th element is wi∂τi (θ) /∂θj. If necessary, use
numerical differentiation to evaluate ∂τi (θ).

(b) Calculate an empirical estimate of var (T), and use 4
[
W
(
θ̂
)]′

v̂ar (T) W
(
θ̂
)

as

an estimate of J (θ0). For example, if n > 1 years of data are available, fitting
properties T1, . . . ,Tn can be computed separately for each year: T can then
be taken as the mean over all years, and v̂ar (T) as n−2

∑n
i=1 (Ti −T) (Ti −T)′.

This suggestion follows Rodriguez-Iturbe et al. (1988). Notice, however, that some
components of each Ti, in particular those relating to daily data, will be computed
using relatively small samples. It is therefore important to use estimators that
are, as far as possible, unbiased in small samples. This applies particularly to
estimators of autocorrelation coefficients, for example — standard estimators can
suffer from serious bias problems in small samples. Methods for correcting this
are given by Kendall and Ord (1990, page 79), for example.

(c) Choose fitting properties {Ti} in such a way that (i) the chosen properties are ap-
proximately uncorrelated (ii) as many components as possible have variances that
are independent of θ. Make an educated guess as to the variances of the remaining
properties. Then, in the objective function, set wi = 1/var [Ti]. Throw the result
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at a nonlinear minimisation routine that returns the Hessian as a by-product.
Multiply this Hessian by 2, and take the result as an estimate of J (θ0); invert
this to obtain an estimate of V (θ0) without any further matrix multiplication.

For practical purposes, J (θ0) and J
(
θ̂
)

are interchangeable.

The guidelines in (6c) above, regarding choice of fitting properties, apply more generally
— indeed, lack of correlation was one of the criteria given by Rodriguez-Iturbe et al. (1988)
for choosing fitting properties. The theory outlined in the preceding sections also suggests
the following considerations:

1. The chosen statistics should be unbiased for the corresponding theoretical properties
i.e. E [Ti] = τi.

2. The chosen statistics should have a normal distribution to a reasonable degree of ap-
proximation. This might involve, for example, taking logarithms of quantities that are
essentially positive (another suggestion of Rodriguez-Iturbe et al. 1988), or applying a
z-transformation to autocorrelations as in Wheater et al. (2000, Section 2.8.5).

3. The chosen statistics should have variances that are as small as possible. This is
intuitively obvious; in terms of the mathematics, it is easiest to see in the case of a
single parameter, so that all matrices become scalars. In this case the variance of the
parameter estimate is proportional to a weighted sum of variances of fitting properties.

4. The chosen statistics should vary rapidly with respect to the model parameters. Math-
ematically, this requirement corresponds to large values of the Hessian matrix (i.e. the
matrix of derivatives of fitting properties with respect to parameters). For a single
parameter, the variance is inversely proportional to this Hessian.

The theory outlined here represents an alternative to the approach suggested at the bot-
tom of page 290 of Rodriguez-Iturbe et al. (1988). Instead of calculating the covariance
matrix V (θ0), they suggested perturbing each of the fitting properties by a small amount,
and re-estimating the model parameters at each of the perturbed configurations. This deter-
mines an approximate linear transformation from fitting properties to parameter estimates,
which can be combined with an estimate of var (T) to estimate the covariance matrix. The
difference here is that we avoid refitting the model many times by transforming in the oppo-
site direction (from θ to τ rather than from T to θ̂) and using an analytical (or numerical)

linearisation of the transformation in the matrix W
(
θ̂
)

.

A further development is the ability to judge parameter sets on the basis of the objective
function itself. This can be used, for example, to identify the region of the parameter space
for which the objective function is ‘almost’ optimal.



REFERENCES 20

References

Bowman, A. and Azzalini, A. (1997). Applied smoothing techniques for data analysis — the
kernel approach with S-Plus illustrations, volume 18 of Oxford Statistical Science series.
Oxford University Press, Oxford.

Cox, D. and Hinkley, D. (1974). Theoretical Statistics. Chapman & Hall, London.

Horn, R. and Johnson, C. (1985). Matrix Analysis. Cambridge University Press, Cambridge.

Kendall, M. and Ord, J. (1990). Time Series (third edition). Edward Arnold.

Kuonen, D. (1999). Saddlepoint approximations for distributions of quadratic forms in
normal variables. Biometrika, 86(4):929–935.

Liang, K.-Y. and Zeger, S. (1995). Inference based on estimating functions in the presence
of nuisance parameters. Statistical Science, 10:158–173.

Rodriguez-Iturbe, I., Cox, D., and Isham, V. (1988). A point process model for rainfall:
further developments. Proc. R. Soc. Lond., A417:283–298.

Wheater, H., Isham, V., Onof, C., Chandler, R., Northrop, P., Guiblin, P., Bate, S., Cox,
D., and Koutsoyiannis, D. (2000). Generation of spatially consistent rainfall data. Re-
port to the Ministry of Agriculture, Fisheries and Food (2 volumes). Also available as
Research Report no. 204, Department of Statistical Science, University College London
(http://www.ucl.ac.uk/Stats/research/abstracts.html).


