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1 INTRODUCTION 4

1 Introduction

This software is designed for the modelling and simulation of univariate or multivariate daily
weather sequences at single or multiple sites. It evolved from the earlier Glimclim package,
which was a suite of Fortran programs that were developed from the mid-1990s onwards
for the modelling and simulation of daily rainfall sequences. The main differences between
Rglimclim and the original Fortran package are:

• Rglimclim has been ported to the R programming environment (R Core Team, 2013)
which makes for a much more convenient user interface. Most of the computations are
still done using Fortran code, however: thus the package combines the computational
efficiency of Fortran with the convenience of R.

• Rglimclim has multivariate simulation capability: it can generate daily series of multiple
variables at multiple sites, preserving inter-site and inter-variable relationships.

• Rglimclim adds new model classes, based on normal distributions, to the gamma and
logistic regression classes that were available in Glimclim.

• The R interface makes it much easier to save and update models, and to transfer and
visualise information.

For references describing the methods used in this software, see Wheater et al. (2000),
Chandler and Wheater (2002), Yan et al. (2002), Chandler (2005) and Yan et al. (2005) for
example. The Appendix to this manual gives some technical details, for the interested user.

A basic level of IT competence is assumed throughout — in particular, the ability to edit
text files. Some familiarity with R is also assumed.

A list of known bugs and problems, with suggested workarounds, is given at the end of
this manual.

2 Installing the software

Rglimclim is regularly updated, in response to personal research requirements and to user
requests. The latest version is always available from www.homepages.ucl.ac.uk/~ucakarc/

work/glimclim.html. To receive notifications of updates, please email the package author
(r.chandler@ucl.ac.uk).

To use the software, a working R installation is required (preferably version 3.0 or above).
R can be obtained from the CRAN link at www.R-project.org. It is a cross-platform
environment: download and install the version appropriate for your operating system.

Once R is installed, the procedure for installing Rglimclim depends on your operating
system. Instructions are given here for Windows and Unix systems.

www.homepages.ucl.ac.uk/~ucakarc/work/glimclim.html
www.homepages.ucl.ac.uk/~ucakarc/work/glimclim.html
mailto:r.chandler@ucl.ac.uk
www.R-project.org
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2.1 Windows systems

For Windows users, a precompiled binary distribution is supplied as a zip archive named
Rglimclim_x.y-z.zip where x.y-z indicates the version number. Download and save this
from the Rglimclim web page (address given above). Next, start up R with administrative
privileges (depending on your system configuration, you may need to right-click the R icon
on your Windows desktop and select ‘Run as Administrator’). Finally, from the Packages

menu, select ‘Install packages from local zip files’, navigate to the downloaded file and select
it.

The Windows distribution contains both 32- and 64-bit versions of the package; the ap-
propriate one(s) will be selected automatically to match your R installation.

2.2 Unix systems

On Unix systems, the package must be compiled from its source code which is supplied as a
tarball named Rglimclim_x.y-z.tar.gz. Download and save this from the Rglimclim web
page (address given above). Next, open up a terminal and navigate to the directory where
you saved the tarball. The package can now be installed from the Unix prompt using

R CMD INSTALL --html --clean Rglimclim

You will need administrative privileges for this. Precise details are implementation-
dependent — use sudo on Ubuntu systems, for example. The command above will ensure
that HTML help files are installed and that the installation cleans up after itself. To see the
other installation options that are available, type

R CMD INSTALL --help

2.3 Other operating systems

Users of other operating systems should build the package from the source tarball
Rglimclim_x.y-z.tar.gz. If unsure how to do this, read the R documentation (start up R,
type help.start() and follow the ‘R Installation and Administration’ link).

3 Using the package

Once the package is installed, it can be loaded within R by typing

> require(Rglimclim)
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Loading required package: Rglimclim

Use 'help("Rglimclim-package")' to get started

New users should follow the hint here:

> help("Rglimclim-package")

or

> help("Rglimclim-package",help_type="html")

if your R system is not set up to produce HTML help by default.

The main routines in the package are GLCfit() and GLCsim(), for fitting and simulating
models respectively. The help pages for those routines give full details of their arguments
and outputs. The purpose of this manual is to supplement the help pages, in particular by
providing comprehensive documentation for the coding used in model definition files (see
Section 3.8 below), by providing some hints on use in Section 4, by providing a simple
worked example in Section 5 and by providing technical details of the underlying theory and
algorithms in the Appendix. New users are advised to work through the example in Section
5 to familiarise themselves with the package. First however, it is helpful to set out some of
the underlying rationale and principles.

Rglimclim is designed to allow flexibility in fitting fairly complicated generalized linear
models (GLMs1) to daily climate/weather data, and to avoid some of the tedious manipula-
tion of data files that would be necessary if standard software packages were used to perform
this kind of analysis. It exploits the fact that all exercises involving fitting, and simulating,
GLMs for daily weather series must inevitably share common features, as follows:

• Models are to be fitted to data from one or more sites, for which various attributes
(e.g location) are known. Flexibility in the placement and known attributes of sites is
achieved via the use of a database containing site information.

• Typically, possible covariates fall into a small number of categories, as follows:

– A constant term.

– Site effects (i.e. systematic spatial variation)

– ‘Year’ effects (e.g. long-term trends).

– ‘Month’ effects (e.g. seasonality).

– ‘Day’ effects (e.g. day-to-day temporal autocorrelation).

1It is assumed that the reader has a basic working knowledge of GLMs. A brief summary of the main
features is provided in Appendix A. Gentler introductions can be found, for example, in Krzanowski (1998),
Davison (2003) and Chandler and Scott (2011, Chapter 3).
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– Interactions.

The software exploits this small number of categories, and treats each separately. In
each category a variety of choices can be made regarding model structure, by selecting
from a ‘menu’.

‘External’ effects (such as ENSO or the North Atlantic Oscillation) are dealt with
under the appropriate timescale — for example, if you wanted to use a monthly ENSO
index as a covariate in your model, this would be treated as a ‘monthly’ effect; if you
wanted to use a ‘winter NAO’ series (one value per year), it would be a ‘yearly’ effect.

Climate datasets often have other unusual features relating to measurement methods. For
example, in daily raingauge data any non-zero amount that is less than some small threshold
may be recorded as a ‘trace’ amount, because it is too small to be measured accurately.
Such features pose potential problems for statistical analysis. The software aims to provide
methods for dealing with them.

The original Fortran version of Glimclim made extensive use of definition files to define
sites and models. All of these had to be prepared manually, with a consequent risk of error.
Rglimclim contains routines that will read old Glimclim definition files; however, it is intended
that eventually the primary means of defining sites, models etc. will be via manipulation
of R objects so that definition files will no longer be needed. At present however, some
definition files are still necessary; and model definition files in particular make extensive use
of coding as detailed below.2 These files must be prepared manually (templates are provided
with the distribution), with a consequent risk of error. Whenever a model definition file
is read into the system therefore, it is always a good idea to print the resulting object
(the system will produce an interpretable description of what has been defined) and check
carefully that the definition is what was intended. Whenever a model has been fitted, the
write.modeldef() routine in Rglimclim can be used to generate an updated definition file,
which can subsequently be edited to make minor changes to a model. This feature takes
some of the pain out of the process.

3.1 Distributions available

Most software packages for fitting GLMs (for example the glm() routine in R) offer a wide
range of different distributions. The range available in Rglimclim is more limited, and reflects
the kinds of situations that are most commonly encountered in climatological data. Although
it is straightforward in principle to estimate coefficient vectors for additional distributions,
it is often difficult to devise tractable and realistic models for inter-site dependence and
imputation (for example, the Rglimclim inter-site dependence structures for logistic regression
models are the result of several years’ research).

2One or two codes have a different meaning in Rglimclim than in Glimclim; this was necessary to provide
the necessary multivariate functionality in a compact manner. If the user provides one of these codes, by
default the software will issue a warning that the meaning has changed.
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The following distributions / models are available in Rglimclim:

Logistic: in a logistic regression model, the response variable (Yst say, denoting the response
at site s on day t) takes values 0 or 1. Let pst = P (Yst = 1), and let xst be a
corresponding vector of covariates. Then the logistic regression model takes the form

log
pst

1− pst
= x′stβ

for a coefficient vector β.

Logistic regression is often used to model the occurrence of rainfall. In Rglimclim, if
required the GLCfit() routine will automatically dichotomize a variable into ‘zero’ and
‘non-zero’ values when fitting logistic regression models (the precise behaviour depends
on the setting of the response.check argument — help(GLCfit) for more details).

Gamma: for a response variable Yst taking non-negative values, a gamma GLM with log
link states that conditional on a covariate vector xst, Yst has a gamma distribution
with mean

µst = exp (x′stβ)

and shape parameter ν (which does not vary with xst).

Such models are often useful for studying positive-valued variables such as precipita-
tion intensity and wind speed. Sometimes (as with precipitation intensity, for exam-
ple), gamma GLMs should be fitted only to the non-zero values in a data set; once
again, this can be achieved in the GLCfit() routine via an appropriate setting of the
response.check argument.

Normal: A normal GLM is just a standard linear regression model in which Yst is drawn
from a normal distribution with mean

µst = x′stβ

and constant variance σ2. Such models are rarely appropriate for daily climate time
series.

Normal-heteroscedastic: the main problem with standard linear regression models, when
studying variables such as temperature and pressure at a daily time scale, is that the
assumption of constant variance is usually violated. As an alternative therefore, a
normal-heteroscedastic model allows both the mean and variance of Yst to depend on
(possibly different) covariate vectors xst and ξst:

Yst ∼ N(µst, σ
2
st)

with µst = x′stβ (1)

and log σ2
st = ξ′stγ , (2)

so that now the model contains two coefficient vectors β and γ.
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3.2 Inter-site dependence structures

When simulating time series at multiple spatial locations, it is necessary to preserve the
dependence between them. Rglimclim allows the use of a variety of dependence structures.
Most of these are correlation-based although the precise details are model-dependent, as
follows:

Normal and normal-heteroscedastic: for these models, inter-site dependence is specified via
correlations between standardised residuals: if Yst ∼ N(µ − st, σ2

st) under the model
then the corresponding standardised residual is (Yst − µst)/σst.

Gamma: for gamma models, inter-site dependence is specified via correlations between
Anscombe residuals: these are defined (see Appendix D) in such a way as to have a
distribution that is very close to normal. The rationale for this is that the multivariate
normal distribution is the only multivariate distribution whose dependence structure
is completely characterised by correlations.

Logistic: For binary response variables modelled using logistic regression, correlation-based
dependence structures are defined in terms of latent Gaussian variables: specifically,
a standard normal random variable Zst is associated with site s on day t, and Yst is
set to 1 if Zst > −Φ−1 (pst) where Φ(·) is the standard normal distribution function
and pst = P (Yst = 1). Correlation between the latent variables {Zst} therefore induces
association between the {Yst}.

There are two other spatial dependence structures that can be used for logistic regression
models. The first postulates the existence of two unobserved ‘weather states’ which respec-
tively increase or decrease the probability that Yst = 1 at all sites simultaneously, in such a
way as to maintain consistency with the probabilities obtained from the logistic regression
model. The other is obtained by modelling the distribution of the sum

∑S
s=1 Yst where S is

the total number of sites. Both of these dependence structures are designed for use in situa-
tions where inter-site dependence is very high and does not vary appreciably with inter-site
distance — for example, when modelling the occurrence of rainfall in catchments that are
small relative to the typical scale of weather systems. For full details of these schemes, see
Appendix E.3.

3.3 Task list

The steps required to carry out an ‘end-to-end’ analysis using Rglimclim are as follows:

1. Collate data

(a) Assemble daily data on the weather variable(s) of interest, along with data
on any ‘external’ covariates that vary on daily, monthly or annual time scales.
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These data must be provided in external files with tightly specified formats: the
write.GLCdata() and write.GLCexternal() commands can be used to generate
these files.

(b) Create an R object containing information about the locations from which daily
data are available, or for which simulation is required. This can be done either
by reading definition files using the read.siteinfo() routine, or from existing R
objects using the make.siteinfo() routine.

Optionally, sites can be assigned to ‘subregions’ for which separate summaries
can be calculated when simulating from the fitted models. The motivation for
this comes from applications in hydrology, where it can be important to pro-
duce realistic weather sequences over subcatchments in order to reproduce cor-
rectly the river flow in a larger catchment. Subregions can be defined using the
define.regions() routine or (for compatibility with old versions of Glimclim
in which subregions were defined via definition files) via the read.regiondef()

routine.

If subregions are defined, this must be done before calling read.siteinfo() or
make.siteinfo().

2. Build models

(a) Decide on an appropriate class of models to represent the variable of interest. This
will usually be determined by the nature of the variable — for example, if it takes
non-negative values then a gamma model is the natural choice from those available
in Rglimclim, whereas if it takes both positive and negative values then either a
normal or normal-heteroscedastic model will probably be more appropriate.

(b) Write a file to define the structure of a fairly simple model, use the GLCfit()

routine to estimate its parameters, and write the result to a new definition file
using write.GLCmodeldef().

(c) Check the model: is there structure in the data that is not explained by the
model (use the plot() and summary() methods for the fitted models to answer
this question), or does the model contain terms that could be removed without
degrading its performance (use the print() and anova() methods)?

(d) Amend or extend the model by editing the new definition file produced in step
(b); refit, recheck and repeat until a reasonable model has been found.

In a multivariate setting (i.e. where more than one weather variable is to be mod-
elled, preserving inter-variable relationships) this process should be carried out for
each variable separately. Inter-variable relationships are accounted for by including
(transformations of) variables that have already been modelled as covariates.

3. Simulate from the fitted models

(a) If necessary (for example if simulated data are required at different locations from
those used for model calibration) generate a new database of site information
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for the simulation using read.siteinfo() or make.siteinfo(), and assemble
any necessary files of ‘external’ climate covariates needed to drive the simula-
tions (e.g. using write.GLCexternal()). These might be the outputs from
Atmosphere-Ocean General Circulation Models for example, in order to derive
weather sequences corresponding to projections of future climate.

(b) Run the simulation routine GLCsim() to generate the required number of simula-
tions for a specified time period and set of locations.

(c) To assess the credibility of the simulated sequences it is also helpful where possible
to generate simulations in ‘imputation mode’ (discussed in more detail later in
this manual) and to compare the properties of simulated and imputed sequences
(the package provides summary and plot methods to enable this): this may reveal
further deficiencies and hence lead to further model refinement.

The remainder of the section gives more details, where necessary, of inputs and model
codings. New users should study this, in conjunction with the examples given in section 5.

3.4 The primary data file

Daily data on the weather variables of interest should be provided to the system in an ASCII
file, the format of which is described in the help page for the GLCfit() routine under the
data.file argument: at the R prompt, type

> help(GLCfit)

to view this. The make.GLCdata() command can be used to generate such a file from data
that are already stored in a data frame within R; however, as noted in the GLCfit help, R
can be slow when dealing with very large datasets.3

A potential limitation of the Rglimclim data file format is that only six positions are
available for each record. This is a deliberate decision, made to try and avoid excessive
file sizes. It does, however, mean that some variables must be transformed before they can
be modelled using Rglimclim. For example, mean sea level pressure is usually recorded in
millibars and typically takes values between 950mb and 1050mb. If it is recorded to two
decimal places, then a value of (for example) 1012.23 occupies seven positions and hence
cannot be used in an Rglimclim data file. To get round this, a user may choose either to
round to one decimal place (on the grounds that pressure observations are unlikely to be
accurate to two decimal places in any case)4; to divide all observations by 10 and write the
results to two decimal places; or to subtract 1000 from each value. Modelling and simulation

3Rglimclim itself does not store much data internally in R objects: it merely passes the file locations to
the underlying Fortran code. This ensures fast performance with large datasets.

4If this is done, the ‘missing value’ code in the data file must be changed from its default value of −99.99
to a number with one decimal place — this can be done using the missval argument to routines such as
GLCfit() and write.GLCdata().
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can then be performed on the transformed values, and the simulated values transformed back
to the original scale.

3.5 ‘External’ data files

In many applications, it is of interest to examine the effects of ‘external’ covariates upon
climate/weather variables. By ‘external’, we mean non-deterministic time-varying quantities
(as distinct from trends, which can be regarded as deterministic) other than the variable
under consideration. Examples include ENSO, sea surface temperature series and the North
Atlantic Oscillation.

We classify such external covariates according to the timescale of available data (i.e.
whether we have annual, monthly or daily time series). To simplify the structure of the
input files, a separate ASCII file is used for each timescale. These files are only required if
the user requests external covariates at the corresponding timescales.

The recommended way to generate files of external covariate data is to use the
write.GLCexternal() routine. Because of this, the format of the files is not documented
further here. However, the generated files contain header sections which give details of the
file format: users wishing to know more should read these headers.

When generating external data files, it is the user’s responsibility to ensure that the data
are provided in in chronological order and with no missing dates (otherwise, the programs
may not be able to find all of the required covariates). Missing data values should be coded
as −9999.9 in the data files.5

When fitting models, cases with missing values of any covariates will be discarded from an
analysis (so, your external covariate data are available for a different time period from your
response variable, models will be fitted only to that period for which the records overlap).

The simulation routine GLCsim() will halt with an error message if you try to simulate
over any period for which external covariate data are missing.

3.6 Defining subregions

In the original Fortran version of Glimclim, subregions were defined to the system using
‘region definition files’. This is no longer necessary: if simulation summaries for subregions
are required, simply create an R object of region definitions using the define.regions()

routine6 before defining the database of site information (see below). Alternatively, to read
an old Glimclim region definition file, use the read.regiondef() routine.

Note that subregion information is provided to the Rglimclim system using R objects

5The write.GLCexternal() routine automatically converts NA values to −9999.9.
6This object is just a data frame containing two columns: Region (the region number, starting with zero

for the whole area) and Name (the name of the subregion).
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rather than via files: these objects are small, so it is easy to store them internally.

Subregion definitions are ignored when fitting models: they are used only when generating
summaries of simulations produced using GLCsim(). There is no requirement to define any
subregions: if none are defined, by default the system will proceed as though a single “whole-
area” region has been defined.

3.7 Defining site information

As with subregion definitions, sites and their attributes are defined to the Rglimclim system
via R objects, in this case of class siteinfo. The recommended way to create such an object
is via the make.siteinfo() routine: at the R prompt, type

> help(make.siteinfo)

for more details.

Rglimclim uses site information in several ways: first to define attributes (for example
geographical co-ordinates and site altitude) of each site, for use in the subsequent modelling;
second to define descriptive text for the site names and attributes, from which to construct
meaningful output labels; third to associate sites with subregions if required, as discussed
above; fourth to define four-character identification codes for each site, that are used to
link the site information with the primary data file (see the help for GLCfit(), under the
data.file argument, for more details on this); and finally to provide information that can
be used to make maps of the sites or to compute inter-site distances.

Any number of attributes can be defined for each site. By default, the system assumes
that the first two attributes represent geographical co-ordinates to be used in plotting maps
or computing inter-site distances; this behaviour can be changed if necessary using the
coord.cols argument to make.siteinfo(). To see what attributes have been defined in a
siteinfo object and in what order, just type the name of the object at the R prompt.

In the original Fortran version of Glimclim, site information was provided using site defi-
nition files. This is no longer necessary nor recommended, so the file format is not discussed
here. The read.siteinfo() routine can be used, however, by users wishing to read old site
definition files.

3.8 Model definition files

In Rglimclim, model definition files are used to define covariates for a model (along with their
associated parameter values), and to select spatial dependence structures. When fitting
models using GLCfit(), the parameter values in these files are treated as initial estimates
for the numerical estimation algorithm. Fitted models are stored as R objects of class
GLC.modeldef; the write.modeldef() routine can be used to generate updated definition
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files while building models. When simulating however, the GLC.modeldef objects can be
supplied directly to the GLCsim() routine without any further reference to model definition
files (this is a difference from the original Fortran version of Glimclim, in which the simulation
routines also read their model structures from definition files).

Specimen model definition files can be generated using the write.modeldef() routine
in conjunction with some of the template model structures included with as part of the
Rglimclim installation (see Section 5 below, and help(GLCdemo), for more details of these
templates).

Model definition files each contain a header which is 46 lines long, and contains details of
the file structure. This header should not be altered. The line after this is reserved for future
use. Line 48 is used to define a title, of up to 70 characters, for the model being defined.
This in turn will be used by the system to label outputs.

The remainder of the file is used to define the model structure proper. Each row corre-
sponds to a single parameter in the model, and contains five entries:

COMPONENT VALUE CODE1 CODE2 CODE3 TEXT.

The rows are read using the FORTRAN format I5,F10.6,3I5,A40. An explanation of
the entries is as follows:

COMPONENT occupies the first 5 positions in the record, and is used to identify the type of
quantity being defined. Valid entries are:

0 if the record relates to the constant term in the regression part of the model.

1 if the record relates to a site effect in the regression part of the model.

2 if the record relates to a ‘year’ effect in the regression part of the model.

3 if the record relates to a ‘month’ effect in the regression part of the model.

4 if the record relates to an ‘day’ effect, in the regression part of the model. This
includes previous days’ values, as well as any other covariate that varies on a daily
timescale.

5 if the record relates to a 2-way interaction in the regression part of the model.

6 if the record relates to a 3-way interaction in the regression part of the model.

7 if the record relates to the nonlinear transformation of one of the covariates in the
regression part of the model.

8 if the record relates to a global quantity such as a ‘trace’ threshold for raingauges.
Such quantities are not strictly part of the model, but must be defined to the
system somehow.

9 if the record relates to a dispersion parameter for the model (not used for logistic re-
gression models, or for the components of models of type normal-heteroscedastic).

10 if the record relates to the spatial structure of the model.
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Component Code 1 Code 2 Code 3

0 (constant) No codes used

1 (site effects)

Number of attribute, in the order
stored in the siteinfo object (see
Section 3.7)

If present, label of
nonlinear transforma-
tion (see Table 3)

Not used

2
(year effects)

Up to 50: Label of trend function
(see Table 3)
51 upwards: (x − 50)th variable
defined in file of ‘external’ annual
data (x being the code entered).

Optional selection of
lagged values of exter-
nal covariate (if Code 1
> 50).

Not used.

3 (month ef-
fects)

1: cos(2π ×month/12)
2: sin(2π ×month/12)
3: cos(2π ×month/6)
4: sin(2π ×month/6)
11–22: Individual month indica-
tors (11 = Jan, 12 = Feb etc.)
51 upwards: (x − 50)th variable
in file of ‘external’ monthly data.

E.g. to use covariate
value 2 years/months
ago, set this field
to 2. To use next
year’s/month’s value
set to -1.

Not used

4 (day effects) See Table 2, page 16

5 (2-way in-
teractions)

Indices of interacting main effects (first site effect is 1) Not used

6 (3-way in-
teractions)

Indices of interacting main effects (first site effect is 1)

7 (parameters
in nonlinear
transforma-
tions)

Index of covariate for which
transformation is being defined.
See note 5, page 19.

Parameter being de-
fined (1, 2 or 3 — see
Tables 3 and 5)

0: treat parame-
ter as known
1: find ML esti-
mate of parameter

8 (global
quantities)

1: Threshold for defining ‘small’
positive values. See note 6, page
19.

Method for dealing
with such values (See
Table 6)

Not used

9 (dispersion
parameter)

No codes required. NB logistic and normal-heteroscedastic models have no
dispersion parameter. This field is ignored by model fitting programs.

10 (spatial
structure)

Label of spatial dependence
structure used (see Table 7)

Number of parameter
(see Table 7)

Not used

Table 1: Codes for specification of models in definition files. To be used in conjunction with
Tables 2–7.
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Code 1 Code 2 Code 3

0–10: value x days ago (see note
1 on page 19)
21: cos(2π×day of year/366) (see
note 3 on page 19)
22: sin(2π × day of year/366)
23: cos(2π × day of year/183)
24: sin(2π × day of year/183)
31–42: Smooth month adjust-
ments (31 = Jan, 32 = Feb etc.).
See note 4 on page 19.
51 upwards: (x − 50)th variable
defined in file dy preds.dat.

Optional. If present
and Code 1 ≤ 10, se-
lects a transformation
of previous days’ values
(see Tables 4 and 5).
If Code 1 > 50, selects
lagged covariate values
as in rows 2 and 3 of
Table 1.

If present, refers to the
number of a variable
in a multivariate input
data file, thus allowing
for inter-variable de-
pendencies in the mod-
elling. If not present,
the system will assume
that the response vari-
able is intended. See
note 2 on page 19.

Table 2: Codes for specifying ‘daily’ effects in model definition files. This is row 4 of Table
1. See Tables 4 and 5 for further details on transformations and averaging.

The rows of a model definition file must be ordered according to the value of COMPONENT;
if the rows are out of order, an error message will result.

VALUE is the value of the parameter being defined, occupying positions 6–15 of the record.

CODE1, CODE2 and CODE3 are used to define the precise details of the model to the system.
Their interpretation depends on the value of COMPONENT. In general, it is not necesary
to define all three codes. If they are all defined, CODE1 occupies positions 16–20 of
the record, CODE2 occupies positions 21–25 and CODE3 occupies positions 26–30. See
Tables 1–7 for full details on coding.

TEXT contains descriptive text for this record, and appears after position 31. It is intended
to help make the definition file readable by the user, and is not required or used by the
program.

See Section 5 below for examples of model definition files.

3.8.1 Notes on Tables 1–7

1. In Table 2, when working with multivariate data a value of zero can be entered as Code
1. This defines a model in which one variable depends on the value of another for the
same day. Obviously, in this case the variable being referenced cannot be the same as
the response variable.
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Component Label Function Parameter 1 Parameter 2

1

Box-Cox power transform:

f(x) =

{
lnx λ = 0
xλ−1
λ otherwise

λ Not used

2 Exponential transform: f(x) = eax a Not used

1 (site effects) 3

Arctan transform:

f(x) = arctan

(
x− a
b

)
a b

11–30

Fourier series representation of effect
over the range (a, b). 11 and 12 are
sine and cosine terms at the first
Fourier frequency, 13 and 14 at sec-
ond etc. Odd numbers correspond to
sine terms (i.e. odd part of function).
a and b can be specified once only for
each site attribute. All sites must lie
within the range [a, b]. Both a and b
must always be treated as known.

a b

31–40

Legendre polynomial representation
of effect over the range (a, b). 31 is
linear, 32 is quadratic etc. a and b
can be specified once only for each
site attribute. All sites must lie
within the range [a, b]. Both a and
b must always be treated as known.

a b

1
Linear: f(t) = (t − 1950)/10 (t is
year)

No parameters required

2 (year effects) 2

Piecewise linear:

f(t) =

{
(t− a)/10 if t > a

0 otherwise
a Not used

3

Cyclical:

f(t) = − cos

(
2π
t− b
a

)
a b

Table 3: Labels for nonlinear transformations of covariates (excluding previous days’ values)
in model definition files. This table should be used in conjunction with Table 1.
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Label Transformation

1 ln
(
Y

(s)
t−k

)
2 ln

(
1 + Y

(s)
t−k

)
3 I

(
Y

(s)
t−k > 0

)
(i.e. indicator taking the value 1 if Y

(s)
t−k was non-zero, 0 otherwise).

4 I
(

0 < Y
(s)
t−k < τ

)
, where τ is a ‘trace’ threshold (defined in row 8 of Table 1).

5 ‘Persistence’ indicator: 1 if Y
(s)
t−1, . . . , Y

(s)
t−k were all > 0, 0 otherwise.

10–15

Transformations as above, but averaged over all sites with available data. Covari-

ate is S−1
∑

r f
(
Y

(r)
t−k

)
, where S is the number of contributing sites and f(.) is

the transformation. Code 10 is an average of untransformed values: S−1
∑

r Y
(r)
t−k.

20–25

Transformations as above, but averaged over all sites with available data using
weights that decrease exponentially with distance from the current site s. Covari-

ate is
∑

r wr,sf
(
Y

(r)
t−k

)
, where the weights {wr,s} sum to 1 and are proportional

to exp [−adr,s]. The value of a must be specified in the ‘nonlinear parameters’
section of the definition file — see Table 5.

30–35

Weighted averages of transformed values; weights proportional to

exp

{
−a
[
(ur − us − ku0)2 + (vr − vs − kv0)2

]1/2}
.

See note 7, page 20 for an interpretation of this scheme.The values of a, u0 and
v0 must be specified in the ‘nonlinear parameters’ section of the definition file —
see Table 5.

110–115,
120–125
and
130–135

As 11–15, 21–25 and 31–35 but with the order of transformation and averaging

reversed. Covariates are f
(∑

r wr,sY
(r)
t−k

)
i.e. transformations of averages rather

than averages of transformations.

Table 4: Labels for specifying nonlinear transformations of previous (and current, in a multi-

variate setting) days’ values, in model definition files. Y
(s)
t denotes the value at site s on day

t; us and vs are the geographical co-ordinates of site s (taken as the first two site attributes
defined in the siteinfo object — see Section 3.7); and ds1,s2 is the distance between sites
s1 and s2, again calculated from these two attributes. The expressions in the table relate to
prediction of the value at site s on day t; k is the lag (in days), defined as described in Table
2.
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2. In Table 2, the interpretation of Code 3 in Rglimclim differs from that in Glimclim. In
Glimclim it was used to select a subset of cases for model fitting, based on the number
of previous days’ data available. In Rglimclim, this selection is performed using the
argument nprev.required to GLCfit(). When reading a model definition file, by
default Rglimclim will issue a warning if it finds something in this field, in case the
user is accidentally using an old definition file. These warnings can be suppressed by
passing the argument oldGlimClim.warning=FALSE to read.modeldef().

3. In Table 2, covariates corresponding to a ‘daily seasonal cycle’ are calculated as though
every year is a leap year. There is a tiny discontinuity between February 28th and
March 1st in non-leap years.

4. In Table 2, the ‘smooth month adjustments’ are intended to allow departures from
an overall seasonal cycle to be modelled smoothly, rather than via an indicator vari-
able for a particular month (which results in a discontinuity in the fitted cycle). The
adjustments are calculated from a shifted and scaled bisquare function

f(x) =

{
(1− x2)2 |x| < 1

0 otherwise.

The scaling is chosen so that the adjustment takes its maximum value in the middle
of the month, and is zero on the last day of the preceding month and on the first day
of the following month.

5. In cases where the user wishes to define a covariate as a weighted average of previous
values at all sites, any necessary parameters in the weighting schemes should be spec-
ified in the ‘nonlinear parameters’ section of the model definition file (see Tables 1, 4
and 5). Such parameters can be defined only once for each weighting scheme. Where
more than one covariate is subject to the same weighting scheme (for example, if we
wish to use weighted averages of values both one and two days ago), enter the index
number of any of these covariates when defining the parameters. The software will
automatically attach the correct weights to all other relevant covariates.

6. In row 8 of Table 1, there is an option to define a threshold below which positive-
valued variables are simply regarded as ‘small’. For non-negative variables such as
rainfall and windspeed, the measurement of small values can be problematic. For data
analysis purposes, perhaps the best way to deal with this problem is for the observer
to set a threshold below which non-zero values cannot be measured accurately, and to
record any non-zero values below this as ‘trace’ values. The analyst (and the software)
can then treat these observations as censored data, and can adjust for the resulting
uncertainty when fitting models.

Unfortunately, observational practice tends to be inconsistent. At one site, the observer
may be extremely diligent with regard to the reporting of trace values, while at another
the observer may simply record them as zeroes. This can (and does) make fitted models
appear to perform poorly on a site-by-site basis, because in its current form the software
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is not able to model these ‘human effects’. A pragmatic solution to this problem is to
set any small values to zero, effectively reducing all of the data to the level of the least
diligent observer. The question then arises: what should be done with the values above
the threshold? The software allows 2 possibilities: ‘soft’ and ‘hard’ thresholding (the
terminology is borrowed from the literature on wavelets). See Table 6 for details.

Note that the software will allow only one of these methods of dealing with small
values. This restriction has been imposed deliberately, in case users are tempted to
build nonsensical models.

When simulating models for thresholded data (codes 2 and 3 in Table 6), the software
converts the simulations back to the scale of the original variable where necessary.
Specifically:

• For ‘soft’ thresholding, after simulation the threshold is added back to any non-
zero values. Therefore the simulated output will contain no values between zero
and the threshold.

• For ‘hard’ thresholding, no correction is made. In particular, positive values below
the threshold are not set to zero, so that the simulated output may contain values
between zero and the threshold. This may be seen as a problem. However, from
a modelling perspective it is certainly the correct thing to do because, in this
case, non-zero values are modelled on the scale of the original data. If the fitted
model is reasonable, the problem will be negligible. Conversely, if the problem
is non-negligible then the fitted model is unreasonable. If this is the case, ‘soft’
thresholding should be used instead.

7. In Table 5, weighting scheme 3:

wr,s ∝ exp
{
−a
[
(ur − us − ku0)2 + (vr − vs − kv0)2

]1/2}
allocates the greatest weight to a location displaced from the current site by a vector
(ku0, kv0). It may be appropriate when movement of weather systems (at an average
velocity of (−u0,−v0) units per day) can be identified from the available data.

8. In Table 7, option 1 is to model inter-site dependence via an empirical inter-site corre-
lation matrix. If this option is chosen, the GLCfit() routine will write the estimated
correlations to a file7 that can be accessed subsequently by the GLCsim() routine to
simulate dependent sequences. The nature of the correlations depends on the under-
lying model, as described in Section 3.2 above. Note, however, that these empirical
correlations are not guaranteed to produce a positive definite correlation structure: in
this case it may be necessary to fit one of the parametric spatial correlation models
(options 3 through 20 in Table 7). See next note.

7The name of this file is set via the cor.file argument to GLCfit.
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Weighting Parameters

scheme 1 2 3

1: Equal weights at all sites No parameters required

2: Distance-based exponential decay: wr,s ∝ exp [−adr,s] a Not required

3: Distance-based exponential decay with shift in origin:

wr,s ∝ exp

{
−a
[
(ur − us − ku0)2 + (vr − vs − kv0)2

]1/2} u0 v0 a

Table 5: Parameters in schemes for computing weighted averages of previous days’ values.
This table should be used in conjunction with Tables 2 and 4. wr,s is the weight associated
with site r when predicting for site s. All other notation is the same as for Table 4.

Value of Code 2
(Table 1, row 8)

Treatment of ‘small’ values

1

Treat values as ‘trace amounts’. This option is designed with rainfall
in mind. Any ‘small’ value will be regarded as non-zero (and hence
will count as a ‘wet’ day in a logistic regression model for rainfall, for
example), but will be treated as a left-censored observation in any
models for non-zero amounts.

2
‘Soft’ thresholding. If the original variable of interest is Y and the
threshold is τ then models are fitted to Y ∗, where Y ∗ = 0 if Y < τ ,
Y − τ otherwise.

3
‘Hard’ thresholding. If the original variable of interest is Y and the
threshold is τ then models are fitted to Y ∗, where Y ∗ = 0 if Y < τ ,
Y otherwise.

Table 6: Methods for dealing with ‘small’ positive values. The threshold below which a value
is regarded as ‘small’ is defined as a ‘global’ quantity in the main model definition file (see
row 8 of Table 1).
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Table 7: Labels for specifying spatial structures in model definition files. See Section 3.2 for more
details of the structures available. For the correlation-based structures, dij denotes the Euclidean
distance between sites i and j in terms of the first two site attributes defined in the siteinfo object
(see Section 3.7). This table should be used in conjunction with Table 1.

Label Model Parameter
description 1 2 3 4

0 (default) Independence No parameters required

1
Empirical correlations between
each pair of sites

No parameters required (see note 8 on
page 20)

2
Constant correlation between each
pair of sites: ρ(i, j) = ρ

ρ Not used

3
Exponential correlation function:
ρ(i, j) = exp [−φdij ]

φ Not used

4
Correlation function ρ(i, j) = α +
(1− α) exp [−φdij ]

φ α Not used

5
Powered exponential correlation

function: ρ(i, j) = exp
[
−φdκij

]
φ κ Not used

6
Correlation function ρ(i, j) = α +

(1− α) exp
[
−φdκij

]
φ κ α —

21

Conditional independence given
weather state X, which is 0 for a
‘dry’ day and 1 for a ‘wet’ day.
P (X = 1) = 1 − P (X = 0) = α,
the mean of the site probabilities
predicted by the occurrence model.
When X = x, the log odds for a
non-zero value at site i is

ln

(
pi

1− pi

)
+ x ln a− ln b(α, pi) ,

where pi is the probability of rain
at site i according to a logistic
regression model, and b(α, pi) is
chosen to make the unconditional
probability at the site equal to pi.
This structure is valid only for lo-
gistic regression models.

ln a Not used
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Table 7: (continued).

Label Model Parameter
description 1 2 3 4

22

Dependence induced by specifying
a Beta-Binomial distribution for
the number of wet sites on any
day. The mean of the distribu-
tion, θ, is fixed at the mean of the
individual site probabilities, and
the shape parameter φ is estimated
from data. This structure is only
valid for logistic regression models.

φ

Parameters 2 and 3 are optional,
and control program behaviour
for days when the specified Beta-
Binomial distribution is incompat-
ible with the probabilities of rain
at the sites. When this occurs, the
probabilities are shrunk towards θ:
pi becomes pi − λ (pi − θ), for λ ∈
(0, 1). The default value of λ is
0.01: to change this, enter it as pa-
rameter 2 for this model.
By default, an error message will
be printed to screen whenever such
shrinking occurs. To suppress this,
set parameter 3 equal to zero.

9. In Table 7, many of the correlation-based structures (codes 3 through 20) are fitted
by minimising a weighted least-squares criterion between the modelled and empirical
correlations. The first step in estimating such structures is to calculate the empirical
matrix and write to a file, as in the previous note. Parameter estimation is then carried
out using an iterative numerical minimisation scheme (see Appendix E.2). The success
of such fits can be dependent on a good choice of starting values in the model definition
files. However, if the user enters a starting value of zero for any of the parameters in
these correlation-based structures, then the software will set its own starting value
using some potentially sensible heuristics.

4 Hints on use

This section contains a few guidelines which may be useful for avoiding error messages and
meaningless models.

1. When fitting models, start with a very basic model (e.g. no covariates except a con-
stant) and gradually increase its complexity, adding a couple of covariates at a time.
The easiest way to do this is to use write.modeldef() to create a new definition file
corresponding to the model that has just been fitted, and to edit this definition file.
When adding new covariates whose coefficients are unknown, set the coefficient values
to zero in the new model definition file.

There are two reasons for this recommendation:
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(a) The chances of error in defining a model are reduced — the user only has to make
small changes to a model definition file at each stage.

(b) The approach should ensure computational stability, by providing reasonable
starting values for fitting each model.

2. When building up a model, add ‘obvious’ covariates (for example those representing
seasonality and temporal dependence) first. There is little doubt that such covariates
should appear in a model (although it may be necessary to compare different represen-
tations of temporal dependence, for example), and it makes sense to start by getting
close to a reasonable model quickly. Moreover, such a strategy makes it unlikely that
any covariates added early on will subsequently need to be dropped.

3. For computational stability, covariate values should not be too large. For example, it
might be necessary to express site altitude in hundreds of metres rather than in metres.
As a rule of thumb, choose units of measurement so that covariate values tend to be
between 0.1 and 10 in magnitude, if possible.

4. Keep track of the number of covariates involving regional effects (including interac-
tions). If this number approaches the number of sites from which data are available,
there is a risk that the model may be overfitted to these individual sites and may not
be reproducable at other locations. One warning sign is the presence of extremely large
and uninterpretable coefficients (usually, but not necessarily, relating to site effects) in
a fitted model involving large numbers of orthogonal series components to represent
site effects. This is likely to be the result of one or two sites which do not fit the general
pattern, and may be an indication that data from these sites are suspect.

As a general strategy for defining site effects, it may be useful to fit a model containing
no site effects, and to plot a map showing the magnitudes of mean residuals at each site.
This can be done using the plot method for fitted model objects (set the which.plots
argument to 3). If there is clear regional structure in this map that can be related to,
say, site altitude, then clearly altitude should be included as a covariate. If there is
other clear systematic structure, then the map can be used to guide the choice of
orthogonal series representation. For example, if residuals are positive in the north
of a study area and negative in the south, it will probably be approriate to include
Legendre polynomials for site northings. If there is no systematic structure in the map,
there is little point trying to include regional effects in a model! In this case, if many
sites have large mean residuals there may be some data quality problems; it may be
worth working with thresholded data (see row 8 of Table 1) to try and overcome these.

5. When estimating parameters in nonlinear transformations of covariates, it is worth
proceeding in several stages. First, fix the unknown parameters at some ‘plausible’
level and estimate the optimal regression coefficients (βs) for that level. Next, free
up a single parameter and estimate that together with the βs, holding the remaining
nonlinear parameters fixed; carry on freeing up more parameters gradually. It may
be necessary at some stage to fix some parameters which had previously been freed
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because, despite the sophistication of the algorithm used, it can sometimes be extremely
slow. In some cases it may be clear that, for all practical purposes, the algorithm has
converged (keep an eye on the log-likelihood at each iteration, to determine this) but
many iterations may be spent making rather small changes. If this occurs, it may
be worth fixing all nonlinear parameters at their approximately optimal values, and
running a final fit to obtain the correct βs for these values. If standard errors are
required, they can be obtained by freeing up the parameters and running a further ‘fit’
with zero iterations.

Convergence difficulties may also indicate a silly model. Please try and resist the
temptation to shoot the programmer until you are sure your model is reasonable! Avoid
models that are too complex to be supported by the available data. For example, it is
unlikely that weather system movement can be detected in daily data over small areas,
in which case weighting scheme 3 in Table 5 should not be used.

6. Log-likelihoods (or deviances) can only be used to compare models that have been
fitted to the same dataset. This is particularly relevant when comparing models that
have different numbers of ‘autoregressive’ terms. Typically, missing observations will
mean that a model involving, say, 2 previous days’ values can be fitted to a larger subset
of data than a model involving 3 previous days’ values. The solution, in this case, is
to fit the 2-day model using just those observations for which a 3-day model can be
fitted (using the nprev.required argument to GLCfit()), and compare log-likelihoods
based on this common subset of observations.

7. In an ideal world, likelihood ratio tests or deviance comparisons are preferable to t-
tests (i.e. the comparison of an estimate with its standard error) for determining the
statistical significance of terms in a model. The reason is that likelihood ratios auto-
matically adjust for correlations among the covariates. However, any model comparison
can only be made if the underlying calculations are correct. In particular, if models
are fitted to a network of sites then inter-site dependence will usually invalidate the
‘näıve’ versions. The software reports both ‘näıve’ and ‘robust’ standard errors and
likelihood ratio statistics; the robust versions are adjusted for inter-site dependence
and are usually preferable, whereas the näıve versions allow comparison with results
from other software packages. Note, however, that for the robust versions no attempt
is made to adjust the log-likelihoods and deviances themselves. The theory underlying
the adjustments is given in Appendix C.2 — note that the adjustments are independent
of the particular spatial structure used in the model.

8. As far as ‘autocorrelation’ effects are concerned, averaging previous days’ values over
several sites is likely to lead to better performance than considering each site’s history
separately8. However, the computational load is dramatically increased by averaging
over sites, particularly if parameters in weighting schemes have to be estimated. Also,

8From a physical point of view, day-to-day dependence is dictated by the movement of weather systems,
which affect whole areas rather than single sites. From a mathematical perspective, averaging over previous
days can go some way towards alleviating the problems caused by inter-site dependence.
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there is a possibility of bias when averaging over previous days for which some sites have
missing data (the software computes averages over all sites with available data, and
only designates the resulting covariate as ‘missing’ if there is missing data at the single
site of interest). This is particularly true of averages computed using the ‘distance-
based exponential decay with shift in origin’ weighting scheme (Table 5) where edge
effects may be present near the boundary of a study region. Such effects may manifest
themselves via a change in the variance of residuals at boundary sites.

9. When simulating models that involve averages of previous days’ values, choose the
sites for simulation carefully. If simulation is carried out for a sparse subset of the sites
originally used for model fitting, averages computed over this subset may have rather
different properties from weighted averages computed over the entire network. In such
cases, simulation results will be biased.

10. When choosing model structures, bear in mind that some options have been designed
primarily for use in a specific situation. For example, the beta-binomial spatial de-
pendence structure (option 22 in Table 7) is designed for the modelling of rainfall
occurrence in regions that are small relative to the synoptic scale so that sites tend to
be mostly wet or mostly dry: this scheme does not explicitly represent the decay of
correlation with inter-site separation, because in small regions this decay is rather small
and it is hydrologically more relevant to capture the high frequency of simultaneous
occurrence. Such a scheme is not appropriate for use in larger catchments, however,
where the distance dependence is more obvious: in this case, one of the correlation-
based schemes (which are slow and inaccurate for small regions where the correlations
are very high) should be used instead.

11. It is often required to simulate time series at locations for which data are not available.
To assess the credibility of any simulated sequence, ideally one would compare its
properties with those of an observed sequence. If data are not available however, this
is not possible. One solution is to use multiple imputation to generate sequences at the
new locations which are conditioned on all of the available data (inter-site dependence
can be exploited here), and to compare the properties of the imputed sequences with
those of the simulations. All of the inter-site dependence structures in Rglimclim have
been designed in such a way that this multiple imputation can be carried out. It
requires, however, that any siteinfo object passed to the GLCsim() routine must
contain details of the sites for which data are available in addition to the sites for
which simulate time series are required.

5 Example

In this section, we work through a simple example to illustrate the use of the software.
It is an artificial example relating to daily rainfall over part of Ashdown Forest in Sussex,
England. A map of the area can be found in Milne (1958). The data were actually generated
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by simulating a GLM fitted elsewhere, with appropriate modifications. These simulated data
exhibit many typical features of rainfall sequences in temperate climates. To make things
more realistic, rainfall amounts less than 0.1mm have been set to ‘trace’ values and appear
in the data as values of 0.05mm. Moreover, approximately 20% of the values are missing (at
random).

It is recommended that you create a separate directory to work through this example,
because several new files will be generated and you need to know where they are. If you are
running R from a terminal (e.g. on a Unix system) then you should start R from within this
directory. Otherwise (e.g. Windows users), start up R and then set the working directory to
the desired location (in R for Windows, this can be done either using the setwd() command
or using the Change dir option from the File menu).

Having started R and set the working directory if necessary, load Rglimclim:

> require(Rglimclim)

If you get an error here, it is probably because you haven’t installed Rglimclim yet: see the
instructions in Section 2. Otherwise, you’re ready to start.

5.1 Prepare data

Referring back to Section 3.3, the first stage in any analysis is to collate the necessary data.
In this case, the data are provided with the Rglimclim distribution: to access them, type

> data(GLCdemo)

at the R prompt. For a description of the data, type

> help(GLCdemo)

The data values themselves are stored in a data frame called Ashdown.data. To see its
structure, type

> head(Ashdown.data,12)

Year Month Day Site Rain

1 1970 1 1 G1 3.74

2 1970 1 1 G2 0.21

3 1970 1 1 G4 0.15

4 1970 1 1 G5 1.21

5 1970 1 1 G6 1.34

6 1970 1 2 G1 1.99
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7 1970 1 2 G3 1.63

8 1970 1 2 G4 4.98

9 1970 1 2 G5 3.68

10 1970 1 2 G6 0.00

11 1970 1 3 G1 0.00

12 1970 1 3 G4 0.59

This should be fairly self-explanatory, with the possible exception of the Site column which
contains site identifiers ‘ G1’,‘ G2’ etc. Note that the data are ordered by date and site,
with missing observations excluded. For example, at the beginning of the file all 6 sites have
data for 1st January 1970, but site 2 is missing for 2nd January.

As discussed in Section 3.4, Rglimclim needs to access data from files rather than from R
objects. We must therefore write the data to a file with the correct format:

> write.GLCdata(Ashdown.data,file="Ashdown.dat")

By default, the write.GLCdata() routine assumes that the first four columns of Ashdown.data
represent year, month, day and site code; and that any remaining columns are data values
for different variables. This is the case here (the only remaining column is the Rain column;
for multivariate modelling we could include additional columns as well). Finer control is
available by specifying additional arguments to write.GLCdata(): consult the help page for
more details.

You should now find that you have a file called Ashdown.dat in your working directory.
Open it in a text editor to see its structure.9 When finished, close the editor and move on
to the next section.

5.2 Define site information

The data in this example are from six sites. Information on these sites is provided in a data
frame called Ashdown.sites:

> Ashdown.sites

Name Region Eastings Northings

G1 Pooh Bear's House 1 1.0 4.0

G2 Where the Woozle Wasn't 1 2.5 1.5

G3 Sandy pit where Roo plays 1 4.0 6.0

G4 Rabbit's frends and raletions 2 6.5 5.0

G5 Eeyore's Gloomy Place 2 9.5 1.0

G6 Bee Tree 2 7.5 6.0

9Windows users: the file is probably too large for Notepad to handle. A much better text editor for
Windows is Notepad++, available from http://notepad-plus-plus.org/.

http://notepad-plus-plus.org/
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Again, this should be self-explanatory: site G1 is called Pooh Bears House and is in Region
1 (see below), with geographical co-ordinates (1.0, 4.0). Note that the site identifiers G1, . . .,
G6 here are not labelled as variables in the data frame — they are the row names. This is
not necessary in general, however.

More information on the regions can be found in a data frame called Ashdown.regions:

> Ashdown.regions

Region Name

1 0 Ashdown Forest

2 1 Pooh and Piglet's side of the forest

3 2 Christopher Robin's side of the forest

This simply contains one column of region numbers, and one number giving the corresponding
names. The sole purpose of this is to provide interpretable labels for simulation output later
on. We see that Region 1 (in which Pooh Bear’s House can be found, according to the
previous output) is called Pooh and Piglet’s side of the forest. Region 0 corresponds
to the entire area (i.e. all six sites).

The two data frames provided here cannot be used directly to pass site information to
the Rglimclim fitting and simulation routines. To do this, we need to make an object of class
siteinfo. This is easy to do:

> Ashdown.siteinfo <-

make.siteinfo(Ashdown.sites,site.names=1,region.col=2,

attr.names=c("Eastings (inches from left of 11\" wide map)",

"Northings (inches from bottom of 8\" high map)"),

regions=Ashdown.regions)

The argument site.names=1 here means that the names of the sites can be found in the first
column of Ashdown.sites; region.col=2 means that the second column contains the region
codes; and the remaining columns are interpreted as attribute values for which full names are
defined via the attr.names argument. By default, as in this example the make.siteinfo()

routine takes the site identifiers from the row names of the data frame: see the help page for
other options.

To check that the site information has been defined successfully:

> Ashdown.siteinfo

6 sites defined, each with the following attributes:

1. Eastings (inches from left of 11" wide map)

2. Northings (inches from bottom of 8" high map)
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Detailed information is not written to screen here: users wishing to see the underlying object
structure can do so by accessing its named components which are described in the help page
for make.siteinfo().

Note the following:

• For the site identifiers, justification is important — the code for site G1 here is ‘space
space G 1’, and the software requires an exact match between the identifiers in the data
file and in the site definitions. So for example ‘ G1’ and ‘ G1 ’ would be interpreted
as different sites10.

• The first (and, in fact, only) two site attributes defined are the site X and Y co-
ordinates. This follows the recommendations given in Section 3.8 above, and relates to
the fact that the software will use these first two site attributes to compute inter-site
distances if necessary.

5.3 Model fitting

5.3.1 Trivial rainfall occurrence model

Now that we have created a data file and defined our site information, we can start to fit
models. Let’s start with the simplest possible logistic regression model for rainfall occurrence.
Let ps,t be the probability of non-zero rainfall for site s on day t. The model we will fit is

ln

(
pst

1− pst

)
= β0 or equivalently pst =

exp [β0]

1 + exp [β0]
. (3)

This is a GLM in which the single covariate is a constant term. To fit it, we must first define
the model structure to the system and then estimate the parameters (here just the coefficient
β0). To help you get started, the software comes with a model object already defined for
this model structure, called ConstantModel:

> ConstantModel

CONSTANT-ONLY MODEL

===================

Main effects:

-------------

Coefficient

Constant 0.0000

10A useful trick, if at any stage you want to fit or simulate a model at a subset of sites, is to make small
changes to the identifiers in a site definition object. For example, if you want to omit site G3 from the
analysis, change its code in the site definition to ‘ ?G3’. The software will no longer recognise the data from
this site in the data file, so it will be omitted from the analysis.
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No dispersion parameters defined

Spatial dependence structure:

-----------------------------

Structure used: Independence

Warning message:

In print.GLC.modeldef(list(model.type = "logistic", Np = c(0L, 0L, :

No global quantities (trace thresholds etc.) defined

Note the warning here: the model definition does not define a threshold below which positive
values should be considered ‘small’. Recall from the beginning of this section (page 26) that
any value less than 0.1mm should be regarded as a trace, and appears in the data files as
0.05mm. Hence, in our modelling of these data, we should define this information to the
system at the outset (in fact it makes no difference in this particular example, but it is good
modelling practice).

To define the ‘trace threshold’ to the system, we will define a revised model structure
using a definition file. The easiest way to do this is to start by writing the existing model
structure to file:

> write.modeldef(ConstantModel,file="Model0_Init.def")

NULL

This creates a file called Model0_Init.def. Now, proceed as follows:

1. Open Model0_Init.def with a text editor outside R (Windows users: see previous
comment about use of Notepad).

2. Scroll down to the model definition section at the bottom of the file. Note the row
containing the model title CONSTANT-ONLY MODEL: this will be used to label software
output as in the example above. The only other part of the model definition is the
final line

0 0.0000 Constant

which defines the constant term in the model. This is line 49 of the file (if your editor
does not display line numbers, throw it away and use a decent one!).

3. Tables 1 (row 8) and 6 tell us how to define a trace threshold to the system: add an
extra line

8 0.1000 1 1



5 EXAMPLE 32

to the end of the file. This will be line 50. Take care with the alignment: the 8

should be below the 0, the 0.1000 below the 0.0000 and the remaining values are
each preceded by four spaces. Save the file and quit the editor.

4. Read the new model definition into R:

> Model0.Init <- read.modeldef("Model0_Init.def",model.type="logistic",

siteinfo=Ashdown.siteinfo)

It may appear surprising that the model type and site information need to be specified
at this stage. The reason is that for more complicated models these are sometimes
needed to initialise the model structure.

If you get an error

Error in read.modeldef("Model0_Init.def", model.type = "logistic",

siteinfo = Ashdown.siteinfo) :

Input error while reading line 51 of file Model0_Init.def.

the reason is that you have accidentally inserted a blank line at the end of the model
definition file: re-open the file and delete it. The clue is in the error message — the
software is trying to read line 51 of the file but, as we noted earlier, the last line of
model definition should be line 50.

5. Check that the system has interpreted the definition file as you intended:

> Model0.Init

CONSTANT-ONLY MODEL

===================

Main effects:

-------------

Coefficient

Constant 0.0000

Global quantities:

------------------

Trace threshold: 0.1000

No dispersion parameters defined

Spatial dependence structure:

-----------------------------

Structure used: Independence

The software prints a meaningful description of the model, and the warning message has
been replaced with the trace threshold definition. Some default values have also been
substituted, relating to dispersion parameters and to inter-site dependence structure.
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6. Having defined the model structure to the system, we can fit the model:

> Model0.fitted <- GLCfit("logistic",siteinfo=Ashdown.siteinfo,

+ model.def=Model0.Init,data.file="Ashdown.dat",

+ diagnostics=1,nprev.required=0)

Checking files ...

Reading data ...

Beginning estimation ...

Iteration Log-likelihood Largest standardised score

--------- -------------- --------------------------

0 -24393.236 27.0582 (parameter 1)

1 -24025.899 0.1880 (parameter 1)

2 -24025.881 0.0000 (parameter 1)

3 -24025.881 0.0000 (parameter 1)

Computing covariance matrix of estimates ...

The first four arguments to the GLCfit() command here are self-explanatory: we are
fitting a logistic regression model to data from the sites defined in Ashdown.siteinfo,
with a model structure defined in Model0.Init ad taking the data values themselves
from file Ashdown.dat. Don’t worry about the other two arguments for the moment
— we will return to them later.

The fitting is done by maximising a log-likelihood function obtained under the assump-
tion that sites are independent of each other (see Appendix C for more details). The
fitting routine writes progress to screen as it works: the fitting algorithm is iterative
and, at each iteration, the routine outputs the current value of the log-likelihood as
well as the largest standardised score (this is the gradient, normalised by the second
derivative of the log-likelihood, for each parameter in the model). In this case the al-
gorithm converges quickly, yielding a maximised log-likelihood of −24025.881 at which
the gradient is zero (confirming that this is indeed a turning point of the log-likelihood
function).

7. Inspect the fitted model:

> Model0.fitted

CONSTANT-ONLY MODEL

===================

Response variable: Y

Main effects:

-------------

Coefficient Std Err Z-stat Pr(|Z|>z)

Constant 0.2905 0.0214 13.5749 < 2.2e-16
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Global quantities:

------------------

Trace threshold: 0.1000

No dispersion parameters defined

Spatial dependence structure:

-----------------------------

Structure used: Independence

Notice the following: :

• The ‘Coefficient’ value of 0.2905 is the estimate of β0 in (3). The corresponding
probability of rainfall on any day is exp(0.2905)/[1 + exp(0.2905)] = 0.572. This
is perhaps a long-winded way to discover that 57.2% of the values in the database
are non-zero, but it does at least provide some insight into the model structure,
and serves as a simple check on the software output!

• The value of 0.0214 in the ‘Std Err’ column is a robust standard error that accounts
for the possibility of inter-site dependence. The associated Z-statistic and p-value
allow us to test the null hypothesis H0 : β0 = 0 against the alternative H1 : β1 6= 0:
the tiny p-value suggests an overwhelming rejection of this hypothesis which is,
however, of no scientific relevance for this particular model.

8. When fitting the model above, we passed the argument siagnostics=1 to the GLCfit()
command. This tells the routine to store some basic diagnostics to help check the model
structure (alternatives are diagnostics=0 to suppress the calculation of diagnostics,
and diagnostics=2 to produce an output file containing detailed diagnostic informa-
tion for further analysis). One way to see these diagnostics is to type

> summary(Model0.fitted)

[Output suppressed]

The summary starts with some basic information about the fit, which is followed by
some tables of diagnostic information. The first of these tables provides a way of
checking the probability structure of the model. The basic idea is that if we collect
together all days for which the forecast probability of rain is 0.1, then 10% of these
days should have experienced rain. In practice we collect together all days for which
forecast probabilities lie in the ranges (0, 0.1), [0.1, 0.2), . . . , [0.9, 1.0) and calculated the
observed and expected numbers of wet days. A lack of agreement between in any cell
of the table indicates a problem with the model. Clearly however, for such a simple
model as this the information from such a table is not particularly useful (it indicates
that there were 35192 days — i.e. all of them, because the modelled probability of rain
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is the same every day — when the forecast probability of rain was between 0.5 and
0.6, and that the observed and expected proportions of wet days were both 0.572).

The remaining tables relate to Pearson residuals. If the model is correct, these all come
from distributions with mean zero and the same standard deviation (usually 1). To
illustrate how they may guide us in model-building, locate the following section of the
output:

Pearson residual summaries by month

-----------------------------------

# of days Mean Std Dev S.E. mean

Jan 2986 0.158 0.964 0.036

Feb 2677 0.139 0.970 0.037

Mar 3023 -0.112 1.010 0.035

Apr 2908 -0.187 1.010 0.036

May 2951 -0.218 1.008 0.035

Jun 2904 -0.208 1.009 0.036

Jul 2980 -0.079 1.009 0.035

Aug 2990 -0.074 1.008 0.035

Sep 2897 0.030 0.995 0.036

Oct 2986 0.092 0.982 0.036

Nov 2871 0.212 0.945 0.036

Dec 3019 0.255 0.928 0.036

This gives the mean Pearson residual for each month of the year, together with standard
errors (once again corrected for inter-site dependence — details of the correction are
given in Appendix D). Notice that the means in months 3–8 are all negative (indicating
overprediction by the model), whereas the remainder are positive. The clear systematic
structure tells us that the model is inadequate. An obvious way to improve things is
to add some seasonal structure to the model.

To check for unexplained structure in the model, perhaps an even easier approach is to
use the Pearson residual tables to construct graphical diagnostics:

> if (dev.cur() == 1) x11(width=8,height=6)

> par(mfrow=c(2,2))

> plot(Model0.fitted,which.plots=1:2)

The first command here opens a new graphics window, unless there is already a graphics
device open. The next command sets up a 2×2 array of plots, and the final plot() command
produces the diagnostic plots.

The results are shown in Figure 1. The first plot is simply a graphical representation of
the monthly mean Pearson residuals that we examined previously; the dashed lines show the
range within which most of them would be expected to lie under the model. The unexplained
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Figure 1: Diagnostic plots for initial logistic regression model.

seasonal structure is obvious. The second plot shows the monthly standard deviations, along
with their expected value of 1. The plots and the bottom row show the same information
but for annual rather than monthly means: these are designed to reveal any time trends that
have not been captured by the model.

For more details on the options available for interrogating fitted model objects, type
help(GLC.modeldef).

5.3.2 Occurrence model with seasonality

We have now fitted a trivial logistic regression model, and established that it fails to capture
the seasonality in the data. We therefore wish to extend this model by adding some seasonal
structure. The steps are as follows:

1. Write the fitted model structure to a new definition file called Model1_Init.def:

> write.modeldef(Model0.fitted,file="Model1_Init.def")
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NULL

2. Open this new definition file for editing. Notice that the value of the ‘Constant’ term
is now 0.2905, as fitted previously.

3. Decide on a plausible representation of seasonality, from the options available in Tables
1 and 2. A good starting point is usually a Fourier representation of the annual cycle
at a daily timescale. This requires both cosine and sine coefficients to be defined (since
the phase of the cycle is unknown). Since the resulting covariates vary daily, we need
to look at Table 2, and find that the required cosine term corresponds to a ‘Code 1’
value of 21. The sine term corresponds to a value of 22. So to define a simple annual
cycle, insert the following two lines between the ‘Constant’ and ‘Trace threshold’ rows
(recall from page 16 that rows must be ordered according to the value of COMPONENT
which is 4 for daily effects and 8 for the trace threshold):

4 0.0000 21

4 0.0000 22

In the absence of prior information, a value of zero is often a good starting point for
estimation of coefficients in the fitting programs.

Once again, take care with the alignment of the codes: there should be three spaced
before each of the 21 and 22 so that these codes each occupy a total of five positions
in their respective records.

Finally, remember to update the title of the model — for example ‘OCCURRENCE
MODEL WITH SEASONALITY’. Save the modified definition file and quit the text
editor.

4. Read the new model definition into R and check it:

> Model1.Init <- read.modeldef("Model1_Init.def",model.type="logistic",

+ siteinfo=Ashdown.siteinfo)

> Model1.Init

OCCURRENCE MODEL WITH SEASONALITY

=================================

Main effects:

-------------

Coefficient

Constant 0.2905

1 Daily seasonal effect, cosine component 0.0000

2 Daily seasonal effect, sine component 0.0000

Global quantities:

------------------

Trace threshold: 0.1000
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No dispersion parameters defined

Spatial dependence structure:

-----------------------------

Structure used: Independence

The software has interpreted the additional codes in Model1_Init.def as seasonal
cosine and sine components (if you do not see the output above, you have made a
mistake with your coding and should correct the definition file before proceeding).

5. Fit the updated model and inspect it:

> Model1.fitted <- GLCfit("logistic",siteinfo=Ashdown.siteinfo,

+ model.def=Model1.Init,data.file="Ashdown.dat",

+ diagnostics=1,nprev.required=0)

[output suppressed]

> Model1.fitted

OCCURRENCE MODEL WITH SEASONALITY

=================================

Response variable: Y

Main effects:

-------------

Coefficient Std Err Z-stat Pr(|Z|>z)

Constant 0.2974 0.0216 13.7644 < 2.2e-16

1 Daily seasonal effect, cosine compon 0.3899 0.0305 12.7626 < 2.2e-16

2 Daily seasonal effect, sine componen -0.2073 0.0305 -6.7884 1.134e-11

Global quantities:

------------------

Trace threshold: 0.1000

No dispersion parameters defined

Spatial dependence structure:

-----------------------------

Structure used: Independence

The p-values here indicate that all three coefficients differ from zero at any reasonable
level of significance. Also, the maximised log-likelihood for this model is -23612.764
(this can be found in the GLCfit() output that has been suppressed above). The



5 EXAMPLE 39

log-likelihood for the previous model was -24025.881. The addition of two terms to
the model has therefore increased the log-likelihood by 413.117. A formal test can be
carried out to determine whether the data support the more complicated model (see
Appendix B.1 for the underlying theory):

> anova(Model0.fitted,Model1.fitted)

Comparison of nested models

---------------------------

Model 1: OCCURRENCE MODEL WITH SEASONALITY

Model 2: CONSTANT-ONLY MODEL

Resid DF DF2-DF1 LogL LLR p Robust LLR Robust p

M1 35189 -23612.76

M1 vs M2 35191 2 -24025.88 413.117 < 2.22e-16 105.103 < 2.22e-16

The interpretation of this output is as follows:

• The first row of the final table corresponds to the model with seasonality (note
the use of the model titles to label the output), and the second row to the original
model.

• The Resid DF column gives the residual degrees of freedom, usually defined as the
number of observations less the number of parameters estimated. The DF2-DF1

column shows the difference between the numbers of parameters estimated in
the two models. The LogL column gives the maximised log-likelihoods, and the
LLR (‘log likelihood ratio’) column is the difference between them. The column
headed p is the p-value for a likelihood ratio test of the null hypothesis that the
data were generated by the simpler model, under the assumption of no inter-
site dependence. The remaining two columns give the log likelihood ratio and
p-value after adjustment for this dependence. The tiny value of the Robust p

here provides overwhelming evidence against the simpler model in favour of the
more complex one.

This likelihood ratio test procedure is an alternative to the comparison of estimates
with their standard errors. In general, it is to be preferred since it automatically adjusts
for correlation among the covariates.

6. Examine the observed versus expected performance for the new model, but without
displaying the tables of Pearson residuals:

> summary(Model1.fitted,tables=NULL)

OCCURRENCE MODEL WITH SEASONALITY

=================================
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Response variable: Y

Model of type 'logistic', fitted to 35192 observations

# of parameters estimated: 3 Independence log-likelihood: -23612.76

Residual degrees of freedom: 35189 Deviance: 47225.53

Mean squared error (mean Brier score): 0.2391

No dispersion parameters estimated for this model

Pearson residuals: mean 1e-04 (std err 0.0106), standard deviation 1.0000

Occurrence frequencies vs forecasts:

------------------------------------

Forecast decile

1 2 3 4 5 6 7 8 9 10

Observed prop. 0.000 0.000 0.000 0.000 0.482 0.547 0.647 0.000 0.000 0.000

Expected prop. 0.000 0.000 0.000 0.000 0.476 0.548 0.650 0.000 0.000 0.000

Number of cases 0 0 0 0 9221 11133 14838 0 0 0

There is now some variation in the wet-day probabilities, arising from the inclusion of
seasonal covariates in the model. To see whether these covariates are able to explain
all of the seasonality in the data, we can plot the results again:

> plot(Model1.fitted,which.plots=1:2)

The results are not shown here, but they suggest that there is still some seasonal
structure remaining (negative means in March–May and August–October, and positive
means elsewhere), albeit with a greatly reduced magnitude. The pattern may be due
to some small misspecification of the cycle, or to some other covariate that has not
been included in the model.

Of more concern here is the plot showing the mean Pearson residuals by year: although
there is no obvious time trend, several years have mean residuals that fall substantially
outside the limits expected under the model. Again, this indicates that we should
search for additional covariates. Previous days’ rainfalls are obvious candidates here,
since rainfall sequences are generally autocorrelated in time. This autocorrelation will
also affect the calculation of standard errors and likelihoods, so it is useful to account
for it early on in a model-fitting exercise.

5.3.3 Rainfall occurrence — accounting for autocorrelation

The modelling of autocorrelation is achieved, within the GLM framework, by including
previous days’ values as covariates in a model. This poses a number of questions, for example:
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how many previous days’ values should be included? Can we benefit by transforming them?
If so, what transformation should we use? Should we consider previous days’ values at each
site individually, or can we benefit by averaging over neighbouring sites as well?

In this tutorial, we will indicate how to go about answering the first two of these. Once
users are familiar with the software, they will be able to answer the third as well. Proceed
as follows:

1. Write the newly fitted model to a new definition file:

> write.modeldef(Model1.fitted,file="Model2_Init.def")

NULL

2. Open Model2_Init.def for editing. We’ll start by adding a single previous day’s rain-
fall, without any attempt at transformation. This covariate varies on a daily timescale,
so COMPONENT has a value of 4. From Table 2, we need to put a ‘1’ in the ‘Code 1’ field.
So insert the following before the ‘Trace threshold’ row:

4 0.0000 1

Finally, give the new model a title before saving the definition file and quitting the text
editor. For example, ‘OCCURRENCE MODEL WITH SEASONALITY & Y[t-1]’.

3. Read the new definition file. To illustrate another feature of the software, we will add
another argument to the read.modeldef() call this time:

> Model2.Init <- read.modeldef("Model2_Init.def",model.type="logistic",

+ siteinfo=Ashdown.siteinfo,var.names="Rainfall")

The additional argument here is var.names="Rainfall". To see what this does, in-
spect the model definition:

> Model2.Init

OCCURRENCE MODEL WITH SEASONALITY & Y[t-1]

==========================================

Main effects:

-------------

Coefficient

Constant 0.2974

1 Daily seasonal effect, cosine component 0.3899

2 Daily seasonal effect, sine component -0.2073

3 Rainfall[t-1] 0.0000

Global quantities:
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------------------

Trace threshold: 0.1000

No dispersion parameters defined

Spatial dependence structure:

-----------------------------

Structure used: Independence

Notice that the third covariate is now labelled as Rainfall[t-1]: the software at-
tempts to label the output as informatively as possible.

4. Run the fitting program and inspect the output:

> Model2.fitted <- GLCfit("logistic",siteinfo=Ashdown.siteinfo,

+ model.def=Model2.Init,data.file="Ashdown.dat",

+ diagnostics=1,nprev.required=0)

[output suppressed]

> Model2.fitted

[output suppressed]

The output shows that all four coefficients differ significantly from zero at any reason-
able level of significance, and that the log-likelihood has increased dramatically from
-23612.764 to -17954.621. However, if we try to carry out a formal test of this increase,
we find a problem:

> anova(Model2.fitted,Model1.fitted)

Error in anova.GLC.modeldef(Model2.fitted, Model1.fitted) :

Models were fitted to different numbers of observations

The problem here is that the latest model can only be fitted to observations for which
the previous day’s value is present in the dataset, whereas the previous model could
be fitted to all observations. As noted at the start of this example, around 20% of
the values are missing: thus there are considerably fewer observations available from
which to fit the latest model. Formal statistical tests can only be used to compare
models that have been fitted to the same data. This is the role of the nprev.required

argument to GLCfit(): if we refit the previous model with nprev.required=1, it will
be fitted using only those observations for which at least one previous day’s value is
available and the models can then be compared. We do not attempt this here since the
coefficient associated with the previous day’s rainfall is so overwhelmingly significant
(and since there are good physical reasons for the presence of autocorrelation in rainfall
time series).
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At this point, we may want to know how many previous days’ rainfall are relevant
for predicting the current day’s rainfall occurrence. We may also want to investigate
whether previous days’ rainfall amounts should be transformed prior to compare some
transformations of this quantity: in particular, we may wonder whether knowledge of
the amount of rain yesterday is more useful than just knowing whether it rained. We
will defer any further residual analyses until we have finished modelling autocorrelation
structure.

5. Edit Model2_Init.def again. At this stage, the penultimate line contains

4 0.0000 1

and defines the previous day’s value. We now wish to define a transformation of this
value. From Table 2, this can be achieved by inserting a value in the ‘Code 2’ field;
and from Table 4, the value 3 defines a transformation that takes the value 1 for a
non-zero amount and 0 otherwise. So change the penultimate line to:

4 0.0000 1 3

Save the file (overwriting the previous version), reread it, and refit the model as before
to observations for which at least one previous day’s value is available (note the change
to the nprev.required argument):

>

> Model2a.fitted <- GLCfit("logistic",siteinfo=Ashdown.siteinfo,

+ model.def=Model2.Init,data.file="Ashdown.dat",

+ diagnostics=1,nprev.required=1)

The maximised log-likelihood is now −15527.415. This is directly comparable with the
value of -17954.621 obtained above, since the models are fitted to the same dataset.
Clearly, the new model is vastly superior to the old one, so the transformation is
worthwhile. Of course, we could experiment with other transformations in Table 4 to
find the one with the highest log-likelihood, but there is no further need of illustration
here. We next try to establish how many previous days’ values are needed in the model.

6. At this point we could simply expand the model to include an indicator for rainfall
occurrence 2 days ago, then 3 days ago and so on. However, the effect of this is suc-
cessively to add covariates that may be highly correlated. As a result, inference based
on nominal standard errors can be misleading, and inference based on log-likelihoods
is to be preferred. But since there is a lot of missing data, it is important to ensure
that each model is fitted to the same dataset. For the sake of argument, let’s restrict
our search to models containing at most 4 previous days’ values. The starting point
is to refit our existing model to observations for which at least 4 previous days’ values
are available (note the nprev.required=4 argument to the next command):
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> Model2a.fitted <- GLCfit("logistic",siteinfo=Ashdown.siteinfo,

+ model.def=Model2.Init,data.file="Ashdown.dat",

+ diagnostics=1,nprev.required=4)

NULL

The final log-likelihood is -8001.956, although this is not directly comparable with any
of the previous models because the present model is fitted to a reduced subset of the
original data.

7. Write a new model definition file Model2b_Init.def:

> write.modeldef(Model2a.fitted,file="Model2b_Init.def")

NULL

Open the file for editing, add an extra line corresponding to an indicator for rainfall 2
days ago:

4 0.0000 2 3

and change the model title (‘OCCURRENCE MODEL WITH SEASONALITY, Y[t-1]
& Y[t-2]’, say). Then read the updated model definition:

> Model2b.Init <- read.modeldef("Model2b_Init.def",model.type="logistic",

+ siteinfo=Ashdown.siteinfo,var.names="Rainfall")

Warning in read.modeldef("Model2b_Init.def", model.type = "logistic",

siteinfo = Ashdown.siteinfo, :

When defining contributions of previous days' values, meaning of code3

is different in Rglimclim to that in previous versions of GlimClim

(see manual for details). Set oldGlimClim.warning=FALSE to suppress

this warning.

For more details on this warning message, see note 2 on page 19. It appears here
because the previous write.modeldef() command has automatically inserted a value
for Code 3 in the model definition file at line 52. It is unimportant here; however,
following the advice of the warning message we will suppress it in the ensuing analyses.

8. Rerun the fitting routine:

> Model2b.fitted <- GLCfit("logistic",siteinfo=Ashdown.siteinfo,

+ model.def=Model2b.Init,data.file="Ashdown.dat",

+ diagnostics=1,nprev.required=4)

[output suppressed]
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The maximised independence log-likelihood is now −7845.682. This is based on the
same set of observations as the previous model incorporating just one previous day’s
rainfall. The two models can be compared formally, therefore:

> anova(Model2a.fitted,Model2b.fitted)

Comparison of nested models

---------------------------

Model 1: OCCURRENCE MODEL WITH SEASONALITY, Y[t-1] & Y[t-2]

Model 2: OCCURRENCE MODEL WITH SEASONALITY & Y[t-1]

Resid DF DF2-DF1 LogL LLR p Robust LLR Robust p

M1 14570 -7845.682

M1 vs M2 14571 1 -8001.956 156.275 < 2.22e-16 80.95 < 2.22e-16

The robust p-value indicates an overwhelming rejection of the null hypothesis that the
data were generated from the simpler of these two models.

9. Fit models including both three and four previous days’ rainfall indicators, in a similar
manner:

(a) > write.modeldef(Model2b.fitted,file="Model2c_Init.def")

and edit the file Model2c_Init.def as appropriate.

(b) > Model2c.Init <- read.modeldef("Model2c_Init.def",model.type="logistic",

siteinfo=Ashdown.siteinfo,var.names="Rainfall",

oldGlimClim.warning=FALSE)

[Output suppressed]

> Model2c.fitted <- GLCfit("logistic",siteinfo=Ashdown.siteinfo,

model.def=Model2c.Init,data.file="Ashdown.dat",

diagnostics=1,nprev.required=4)

[Output suppressed]

(c) > write.modeldef(Model2c.fitted,file="Model2d_Init.def")

and edit the file Model2d_Init.def as appropriate.

(d) > Model2d.Init <- read.modeldef("Model2d_Init.def",model.type="logistic",

siteinfo=Ashdown.siteinfo,var.names="Rainfall",

oldGlimClim.warning=FALSE)

[Output suppressed]

> Model2d.fitted <- GLCfit("logistic",siteinfo=Ashdown.siteinfo,

model.def=Model2d.Init,data.file="Ashdown.dat",

diagnostics=1,nprev.required=4)
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[Output suppressed]

You should obtain log-likelihoods of -7804.427 and -7803.805 respectively. This suggests
that we should consider a model that incorporates just three previous days’ indicators,
since the fourth does not increase the log-likelihood significantly. To check this:

> anova(Model2a.fitted,Model2b.fitted,Model2c.fitted,Model2d.fitted)

Comparison of nested models

---------------------------

Model 1: OCCURRENCE MODEL WITH SEASONALITY, Y[t-1] - Y[t-4]

Model 2: OCCURRENCE MODEL WITH SEASONALITY, Y[t-1] - Y[t-3]

Model 3: OCCURRENCE MODEL WITH SEASONALITY, Y[t-1] & Y[t-2]

Model 4: OCCURRENCE MODEL WITH SEASONALITY & Y[t-1]

Resid DF DF2-DF1 LogL LLR p Robust LLR Robust p

M1 14568 -7803.805

M1 vs M2 14569 1 -7804.427 0.622 0.26477 0.343 0.40745

M2 vs M3 14570 1 -7845.682 41.255 < 2.22e-16 22.595 1.7878e-11

M3 vs M4 14571 1 -8001.956 156.275 < 2.22e-16 79.673 < 2.22e-16

Note the following:

• In the table above, the models are ordered from the most complex to the most
simple. At each stage, the null hypothesis being tested is that the data were
generated from the simpler of the two models.

• The test for M3 versus M4 leads to an overwhelming rejection of M4: this suggests
that more than one previous day’s rainfall is required as a covariate in the model.

• The test for M2 versus M3 leads to a convincing rejection of M3, similarly: this
suggests that more than two previous days’ rainfalls are needed.

• With a robust p-value of around 0.4, the test for M3 versus M4 gives no reason to
reject M3.

On the basis of these results, we may safely conclude that just three previous days are
sufficient for our model. In this case, we may want to refit the ‘three-day’ model to
include all cases for which three previous days’ values are available so as to maximise
the precision of our estimates (the fits above are limited to cases for which four previous
days’ values are available):

Model3.fitted <- GLCfit("logistic",siteinfo=Ashdown.siteinfo,

model.def=Model2c.Init,data.file="Ashdown.dat",

diagnostics=1,nprev.required=3)

[Output suppressed]
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It may also be a good idea to revisit the model diagnostics:

> summary(Model3.fitted,tables=NULL)

OCCURRENCE MODEL WITH SEASONALITY, Y[t-1] - Y[t-3]

==================================================

Response variable: Rainfall

Model of type 'logistic', fitted to 18158 observations

# of parameters estimated: 6 Independence log-likelihood: -9734.6

Residual degrees of freedom: 18152 Deviance: 19469.21

Mean squared error (mean Brier score): 0.177

No dispersion parameters estimated for this model

Pearson residuals: mean -0.0011 (std err 0.0116), standard deviation 1.0002

Occurrence frequencies vs forecasts:

------------------------------------

Forecast decile

1 2 3 4 5 6 7 8 9 10

Observed prop. 0.000 0.171 0.251 0.359 0.460 0.604 0.650 0.780 0.831 0.000

Expected prop. 0.000 0.190 0.245 0.354 0.457 0.587 0.661 0.768 0.837 0.000

Number of cases 0 1653 3328 1565 1121 394 1213 3297 5587 0

The tables of observed versus expected performance now show good agreement over a
wide range of forecast probabilities. We should also check the representation of seasonal
and annual structure:

> plot(Model3.fitted,which.plots=1:2)

These plots (not shown here) look much better than before: the seasonal structure in
Pearson residuals has decreased, and almost all of the annual mean Pearson residuals
now fall within the variability bands on the plots (one of the annual means falls outside
the bands, but this is not a cause for concern given that 5% of the values are expected
to lie outside the bands in any case). There is no discernible structure in the plots of
monthly and annual standard deviations, either.

These results suggest that the model is starting to capture many features of the data.
Obviously, we could experiment with the addition of other covariates representing tem-
poral dependence (in particular, in rainfall sequences it is natural to consider the effects
of ‘persistence’, which can be modelled via transformation 5 in Table 4). However, for
the purposes of illustration we will now move on to consider interactions.
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5.3.4 Rainfall occurrence — interactions

In northwestern Europe, winter rainfall tends to be produced by frontal weather systems
that may last for several days. In summer however, there are more short-lived convective
events. As a result, autocorrelation in rainfall sequences tends to be weaker in summer than
in winter. Therefore, in a realistic model for rainfall occurrence, any parameters associated
with previous days’ rainfalls should themselves vary seasonally. Within a GLM, this can be
achieved by defining interactions between previous days’ rainfalls and seasonal covariates.
We will use this example to demonstrate the software’s capability for handling interactions.

1. Create a new definition file Model4_Init.def:

> write.modeldef(Model3.fitted,file="Model4_Init.def")

and open it for editing. All being well, the last 8 lines of the file should now read as
follows:

OCCURRENCE MODEL WITH SEASONALITY, Y[t-1] - Y[t-3]

0 -1.2387 Constant

4 0.2143 21 Daily seasonal effect, cosine component 1

4 -0.1128 22 Daily seasonal effect, sine component 2

4 1.8042 1 3 1I(Rainfall[t-1]>0) 3

4 0.5957 2 3 1I(Rainfall[t-2]>0) 4

4 0.3908 3 3 1I(Rainfall[t-3]>0) 5

8 0.1000 1 1 Trace threshold

Note the following points:

• When writing the updated definition files, the software has provided descriptive
text in each row. This makes the definition files more readable.

• At the right-hand end of each row is the covariate number. For example, the
indicator for rainfall occurrence yesterday is covariate number 3. These numbers
are required for defining both interactions and nonlinear transformations (you
may have noticed that the covariate numbers also appear when you print the
fitted models to screen).

We wish to define interactions between the ‘seasonal cycle’ and ‘previous days’ covari-
ates. This will result in the addition of six additional terms to the model — one for
each seasonal/previous day combination. These are two-way interactions (each term
involves two covariates). Referring to row 5 of Table 1, these are defined by entering
the numbers of the interacting predictors in the ‘Code 1’ and ‘Code 2’ fields. So add
the following lines before the trace threshold:
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5 0.0000 1 3

5 0.0000 2 3

5 0.0000 1 4

5 0.0000 2 4

5 0.0000 1 5

5 0.0000 2 5

These define interactions between covariates 1 and 3, 2 and 3, . . ., 2 and 5. Give your
model a title, save and quit the editor.

2. Read the new model definition into R and check it:

> Model4.Init <- read.modeldef("Model4_Init.def",model.type="logistic",

+ siteinfo=Ashdown.siteinfo,var.names="Rainfall",

+ oldGlimClim.warning=FALSE)

> Model4.Init

The software splits the output into ‘main effects’ and ‘2-way interactions’. If you have
defined the model correctly, the ‘interactions’ section should read as follows:

Two-way interactions:

---------------------

Coefficient

Daily seasonal effect, cosine component 0.0000

with I(Rainfall[t-1]>0)

Daily seasonal effect, sine component 0.0000

with I(Rainfall[t-1]>0)

Daily seasonal effect, cosine component 0.0000

with I(Rainfall[t-2]>0)

Daily seasonal effect, sine component 0.0000

with I(Rainfall[t-2]>0)

Daily seasonal effect, cosine component 0.0000

with I(Rainfall[t-3]>0)

Daily seasonal effect, sine component 0.0000

with I(Rainfall[t-3]>0)

Assuming your model definition is correct, run the fitting program to convergence and
carry out a likelihood ratio test to see if the addition of interaction terms to the previous
model is justified:

> Model4.fitted <- GLCfit("logistic",siteinfo=Ashdown.siteinfo,

+ model.def=Model4.Init,data.file="Ashdown.dat",

+ diagnostics=1,nprev.required=3)

> anova(Model3.fitted,Model4.fitted)
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Comparison of nested models

---------------------------

Model 1: OCCURRENCE MODEL WITH SEASONALITY, 3 PREVIOUS DAYS & INTERACTIONS

Model 2: OCCURRENCE MODEL WITH SEASONALITY, Y[t-1] - Y[t-3]

Resid DF DF2-DF1 LogL LLR p Robust LLR Robust p

M1 18146 -9726.781

M1 vs M2 18152 6 -9734.604 7.823 0.015786 3.523 0.316636

The robust p-value of 0.317 does not provide any evidence for rejecting the null hy-
pothesis that the data were generated from the simpler model without interactions.
However, it is useful to look at the table of estimates and their standard errors (the
main effects are omitted in the output below to save space):

> Model4.fitted

Two-way interactions:

---------------------

Coefficient Std Err Z-stat Pr(|Z|>z)

Daily seasonal effect, cosine co 0.0702 0.0809 0.8680 0.38541

with I(Rainfall[t-1]>0)

Daily seasonal effect, sine comp 0.1635 0.0811 2.0166 0.04374

with I(Rainfall[t-1]>0)

Daily seasonal effect, cosine co -0.0744 0.0854 -0.8707 0.38392

with I(Rainfall[t-2]>0)

Daily seasonal effect, sine comp -0.0879 0.0847 -1.0373 0.29959

with I(Rainfall[t-2]>0)

Daily seasonal effect, cosine co -0.0350 0.0812 -0.4306 0.66672

with I(Rainfall[t-3]>0)

Daily seasonal effect, sine comp 0.0806 0.0808 0.9970 0.31879

with I(Rainfall[t-3]>0)

The interactions involving Yt−2 and Yt−3 all appear insignificant at the 5% level. This
suggests that we may try dropping these from the model. Of the two remaining terms
involving Yt−1, only one appears significantly different from zero. However, a seasonal
cycle involves 2 parameters (phase and amplitude) and neither of these are known
a priori, so from a modelling perspective it is good practice always to add seasonal
components in pairs. We will keep both of these terms in the model.

3. Open Model4_Init.def for editing again; delete the four rows corresponding to the
insignificant interactions, save and quit the editor. Read the definition file again, refit
the model and retest:

> Model4.Init <- read.modeldef("Model4_Init.def",model.type="logistic",

+ siteinfo=Ashdown.siteinfo,var.names="Rainfall",
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+ oldGlimClim.warning=FALSE)

> Model4.fitted <- GLCfit("logistic",siteinfo=Ashdown.siteinfo,

+ model.def=Model4.Init,data.file="Ashdown.dat",

+ diagnostics=1,nprev.required=3)

> anova(Model3.fitted,Model4.fitted)

Comparison of nested models

---------------------------

Model 1: OCCURRENCE MODEL WITH SEASONALITY, 3 PREVIOUS DAYS & INTERACTIONS

Model 2: OCCURRENCE MODEL WITH SEASONALITY, Y[t-1] - Y[t-3]

Resid DF DF2-DF1 LogL LLR p Robust LLR Robust p

M1 18150 -9729.863

M1 vs M2 18152 2 -9734.604 4.741 0.0087263 2.07 0.1261446

Once again, the p-value suggests that the simpler model with no interactions is ade-
quate. However, our understanding of European climate strongly suggests that these
interactions should be present, and it does no harm to keep them in the model (given
that the model is fitted to more than 18,000 observations, the inclusion of a couple
of potentially redundant parameters is not going to cause problems) so we will retain
them.

The diagnostics for this model, obtained using summary() and plot() (not shown
here) do not give any cause for concern, with the possible exception of the block of
negative monthly residuals between August and November (which could be accounted
for by adding ‘half-year cycles’ to the ‘seasonal’ component of the model — Table 2,
Code 1, values 23 and 24). Mean residuals are close to zero at all sites and for all
years. There is possibly some disagreement between observed and expected rainday
frequencies in the second and sixth deciles (probabilities in the ranges [0.1, 0.2) and
[0.5, 0.6) respectively), but in practical terms this discrepancy is of little consequence.

5.3.5 Rainfall occurrence — site effects

So far we have not considered the possibility that there may be systematic regional variation
in rainfall occurrence — it may tend to rain more frequently in the north of the study
area than in the south, for example. One way to check for this is to produce an additional
diagnostic plot for the current model:

> par(mfrow=c(1,1))

> plot(Model4.fitted,which.plots=3)

The result is shown in Figure 2, which shows the standardised mean Pearson residuals at
each site.11 The idea is that if there is any systematic regional variation that is not explained

11Notice that the axes are labelled using the site attribute descriptions that were defined earlier.
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Figure 2: Bubble map showing mean residuals from fitted logistic regression model at each
site. Circle areas are proportional to standardised mean residuals. Positive values are denoted
by solid circles, negative values by dashed circles.

by the model then the sites with positive mean residuals (solid circles) will tend to cluster
together, as will the sites with negative mean residuals (dashed circles). A lack of spatial
organisation to the plot indicates that there is no systematic residual structure.

With only 6 sites in Figure 2, it is clearly not possible to identify complex patterns. In
general, such a limited network may enable broad trends to be quantified, but little else.
The map indicates a possible northwest-southeast gradient in the residuals (solid circles in
the south and east, dashed circles in the north and west), that could be approximated by a
planar surface. By adding such a structure to the model, we can determine whether this is
a genuine effect, or merely a ‘chance’ configuration12.

A planar surface may be represented as a linear combination of Eastings and Northings
co-ordinates. For the present example, we could enter these directly into the model. However,
we will instead take the opportunity to illustrate the use of Legendre polynomials of degree

12Strictly speaking, it is bad scientific practice to both derive and test a hypothesis using the same data.
However, standard procedures can at least give some informal basis for judging the importance of a perceived
effect. In particular, non-significant results (i.e. those indicating that an apparent pattern is merely due to
chance) are probably reliable.



5 EXAMPLE 53

1 in each direction (the model formulation is equivalent, since a degree 1 polynomial is a
linear transformation of the underlying quantity). Proceed as follows:

1. Create a new definition file Model5_Init.def:

> write.modeldef(Model4.fitted,file="Model5_Init.def")

and open it for editing. Check that the last 10 lines of the file are as follows:

OCCURRENCE MODEL WITH SEASONALITY, 3 PREVIOUS DAYS & INTERACTIONS

0 -1.2380 Constant

4 0.1950 21 Daily seasonal effect, cosine component 1

4 -0.1914 22 Daily seasonal effect, sine component 2

4 1.8051 1 3 1I(Rainfall[t-1]>0) 3

4 0.5938 2 3 1I(Rainfall[t-2]>0) 4

4 0.3919 3 3 1I(Rainfall[t-3]>0) 5

5 0.0334 1 3 2-way interaction: covariates 1 and 3

5 0.1500 2 3 2-way interaction: covariates 2 and 3

8 0.1000 1 1 Trace threshold

2. Defining site effects now requires some care. Note the following:

• Site effects (for which COMPONENT is 1 — see Table 1) must be defined after the
constant term and before any other covariates. As a result, existing covariate
numbers will change (for example, if we insert two rows corresponding to site
effects then the existing covariate 1 will become covariate 3, and so on).

• If there are interactions involving covariates whose numbers have changed, the
corresponding interaction rows will need to be updated to reflect this change
(forgetting to do this is a frequent source of errors!).

• From row 1 of Table 1, site effect data are taken from the site information object
Ashdown.siteinfo that we created earlier. Two attributes (Eastings and Nor-
things) are defined in this object — either can be selected via the ‘Code 1’ field.
Transformations (in our case Legendre polynomials) can be selected via an appro-
priate entry in the ‘Code 2’ field. Table 3 indicates that for a degree 1 polynomial
we need a value of 31 in this field.

• The Legendre polynomial representation requires, in addition to the degree of the
polynomial, specification of the range (a, b) over which the representation holds.
a and b are essentially parameters involved in the transformation of an underlying
covariate, and hence can be defined via row 7 of Table 1.

The desired model can therefore be specified by making the following changes to the
definition file:

(a) Insert two rows after the ‘Constant’ row:
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1 0.0000 1 31

1 0.0000 2 31

Each of these defines a site effect: the first is transformation 31 of site attribute
1, the second is transformation 31 of site attribute 2.

(b) Edit the rows corresponding to interactions, so that they point to the correct main
effects:

5 0.0334 3 5 2-way interaction: covariates 1 and 3

5 0.1500 4 5 2-way interaction: covariates 2 and 3

The software ignores the descriptive text when reading the file, so there is no need
to update this unless you particularly want to.

(c) Add two rows after the interactions, to define the Eastings limits over which the
Legendre polynomial representation is to hold. These should be chosen so that
all sites fall within the limits. Based on the information in Ashdown.sites, we
will set the limits to 0 and 11 respectively:

7 0.0000 1 1

7 11.0000 1 2

These rows define the first and second parameters, respectively, in the transfor-
mation of covariate 1 (see Table 3).

(d) Add two more rows to define the Northings limits (0 and 8):

7 0.0000 2 1

7 8.0000 2 2

(e) Change the title of the model.

The model definition section of the file should now look something like this:

OCCURRENCE MODEL WITH SEASONALITY, PREVIOUS, INTERACTION & SITE EFFECTS

0 -1.2380 Constant

1 0.0000 1 31

1 0.0000 2 31

4 0.1950 21 Daily seasonal effect, cosine component 1

4 -0.1914 22 Daily seasonal effect, sine component 2

4 1.8051 1 3 1I(Rainfall[t-1]>0) 3

4 0.5938 2 3 1I(Rainfall[t-2]>0) 4

4 0.3919 3 3 1I(Rainfall[t-3]>0) 5

5 0.0334 3 5 2-way interaction: covariates 1 and 3

5 0.1500 4 5 2-way interaction: covariates 2 and 3

7 0.0000 1 1

7 11.0000 1 2

7 0.0000 2 1

7 8.0000 2 2

8 0.1000 1 1 Trace threshold
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Save the file, and quit the editor.

3. Read the model definition into R, and check it:

> Model5.Init <- read.modeldef("Model5_Init.def",model.type="logistic",

+ siteinfo=Ashdown.siteinfo,var.names="Rainfall",

+ oldGlimClim.warning=FALSE)

> Model5.Init

In particular, check the interactions and the section under ‘Parameters in nonlinear
transformations’. If there are any errors here (or if you get an error message), go back
and correct the definition file. Otherwise, fit the model and compare with the previous
one:

> Model5.fitted <- GLCfit("logistic",siteinfo=Ashdown.siteinfo,

+ model.def=Model5.Init,data.file="Ashdown.dat",

+ diagnostics=1,nprev.required=3)

> anova(Model5.fitted,Model4.fitted)

Comparison of nested models

---------------------------

Model 1: OCCURRENCE MODEL WITH SEASONALITY, PREVIOUS, INTERACTION & SITE EFFECTS

Model 2: OCCURRENCE MODEL WITH SEASONALITY, 3 PREVIOUS DAYS & INTERACTIONS

Resid DF DF2-DF1 LogL LLR p Robust LLR Robust p

M1 18148 -9728.521

M1 vs M2 18150 2 -9729.863 1.342 0.26131 1.862 0.15543

The robust p-value of 0.155 confirms our previous conjecture that no systematic regional
patterns of rainfall occurrence are detectable in these data. Nonetheless, for present
purposes it suffices to take this as our ‘final’ set of covariates. A residual analysis is,
to all intents and purposes, indistinguishable from that of the previous model.

5.3.6 Rainfall occurrence: inter-site dependence

So far, except for the calculation of robust standard errors and adjusted likelihood ratios,
our modelling has not addressed the issue of potential dependence between sites (you may
have noticed, in the software output, that the sites are assumed to be independent). This
will cause problems if we try and simulate rainfall sequences from the fitted model in its
current form, since the simulated sequences from each of the six sites will be independent.
This is clearly unrealistic.

Rglimclim offers several alternative ways to model inter-site dependence in binary se-
quences. These are summarised in Table 7; more details are given in Appendix E.3. For
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illustrative purposes we will consider the ‘binary weather state’ structure (label 21 in Table
7). The structure is explained in Section 3.2 and in Appendix E.3.

Proceed as follows:

1. Create a new definition file Model6_Init.def:

> write.modeldef(Model5.fitted,file="Model6_Init.def")

and open it for editing. Row 10 of Table 1 indicates how to define inter-site dependence
structures. We wish to use structure 21, which involves a single parameter (Table 7).
So append the following line at the end of the file:

10 0.0000 21 1

Give the model a title, and quit the editor.

2. Read the model definition into R and check:

> Model6.Init <- read.modeldef("Model6_Init.def",model.type="logistic",

+ siteinfo=Ashdown.siteinfo,var.names="Rainfall",

+ oldGlimClim.warning=FALSE)

> Model6.Init

[output truncated]

Spatial dependence structure:

-----------------------------

Structure used: Conditional independence given 'wet/dry' weather state

Increase in logit on a 'wet' day: 0.0000

If there are any errors at this stage, go back and correct them; otherwise, fit the model
and store the result in Model6.fitted:

> Model6.fitted <- GLCfit("logistic",siteinfo=Ashdown.siteinfo,

+ model.def=Model6.Init,data.file="Ashdown.dat",

+ diagnostics=1,nprev.required=3)

[output suppressed]

If you view the fitted model by typing Model6.fitted, you will find that the coefficients
and standard errors are exactly the same as for the previous model; the only change is
that the parameter of the spatial dependence model has changed (its estimated value
is 6.5120).

This is now our final rainfall occurrence model, that can be used for simulation.
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5.3.7 Modelling rainfall intensity

GLMs for daily rainfall usually consist of two parts: one uses logistic regression to model the
occurrence of rain, and the other uses gamma distributions to model the rainfall intensity
on ‘wet’ days. To model rainfall intensities here we will use a model structure that has
been developed earlier, using a similar model-building strategy to that illustrated above for
rainfall occurrence.

The structure is supplied as a model object called Ashdown.IntensityModel.Initial.
Have a look at this, by typing Ashdown.IntensityModel.Initial at the R prompt (be
careful: R is case-sensitive, so if you get an object not found error it is likely that you
have mistyped something). Notice the following:

• One of the covariates is labelled June indicator. This is a variable taking the value
1 during June and zero elsewhere (code 16 in row 3 of Table 1), and has presumably
been included because diagnostics indicated that without it the mean Pearson residual
for June was significantly different from zero.

• Autocorrelation in this model is represented by including logarithmic transformations
of previous days’ rainfall amounts (transformation 2 in Table 4), rather than just
indicators for previous days’ rainfall occurrence. There is also a ‘trace indicator’,
taking the value 1 if the previous day’s rainfall was less than the trace threshold of
0.1mm and zero otherwise.

• The model has a dispersion parameter. For the gamma distribution, this is equal to
the shape parameter (see Table 8 in Appendix A).

• Inter-site dependence is modelled via correlations between Anscombe residuals (see
Appendix E.2). The correlations between each pair of sites are taken to be constant:
this is presumably because the study area is so small that there is no discernible decay
of the correlations with inter-site distance and hence there is little benefit from the use
of a more complicated dependence structure.

We don’t need to create a definition file, because the model object is ready to pass directly
to GLCfit():

> Intensity.fitted <- GLCfit("gamma",siteinfo=Ashdown.siteinfo,

+ model.def=Ashdown.IntensityModel.Initial,

+ data.file="Ashdown.dat",nprev.required=0,

+ diagnostics=2,

+ cor.file="IntensityCorrelations.dat",

+ resid.file="IntensityResids.dat")

[output suppressed]



5 EXAMPLE 58

A few comments are in order here:

• By default, when fitting models of type "gamma", GLCfit() will discard any zero values
in the data files. The command above will therefore fit only to the non-zero rainfall
amounts. This default behaviour can be overridden using the response.check argu-
ment to the GLCfit() command.

• The command above uses nprev.required=0, so that the routine will attempt to fit
to all observations in the data file. However, because the model contains functions of
three previous days’ values as covariates, in fact the routine will only fit to observations
for which all three values are available. This is handled automatically.

• We have now set diagnostics=2 instead of diagnostics=1. The effect of this is to
generate more extensive diagnostics for the fitted model, in the form of a file containing
residual information for every case in the dataset (we will use this file below to gen-
erate a quantile-quantile plot of the residuals so as to check the gamma distributional
assumption). The name of the file is specified in the resid.file argument.

• We have also used the cor.file argument: this specifies the name of a file to store the
estimated correlations between each pair of sites, and is necessary because the model
contains a correlation-based inter-site dependence structure.

• When fitting the model, you may notice some messages about reducing step sizes
and a warning about the replacement of trace values by their approximate conditional
expectations. These are not too important.

The fitted model can be displayed and interrogated in exactly the same way as the occur-
rence models that we have already studied. Some of the diagnostics are different however,
because the response variable is continuous rather than binary and because we are using a
correlation-based inter-site dependence structure. To see some of these additional diagnos-
tics:

> par(mfrow=c(1,2))

> plot(Intensity.fitted,which.plots=4:5)

The results are shown in Figure 3. The left-hand plot is a quantile-quantile plot of
standardised residuals under the fitted model (for the gamma distribution, the standardised
residual for an observation Yst is defined as Yst/µst where µst is the modelled mean of the
distribution; and, if the fitted model is correct, the standardised residuals should all come
from the same gamma distribution with equal shape and scale parameter). The data values
are shown as grey points, and the theoretical relationship under the model is shown as a
dashed black line. The data are in excellent agreement with this theoretical relationship.

The second plot in Figure 3 shows the empirical inter-site correlations (grey dots) plotted
against inter-site distance; the horizontal black line is the fitted correlation model. The
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Figure 3: Some diagnostics for the fitted intensity model.

distances here are computed from the site attributed as defined in Ashdown.siteinfo. The
plot enables us to assess whether the assumed correlation structure is adequate. Here, with
so few sites it is difficult to tell: one could consider instead using a model in which the
correlations decay exponentially with distance, but it is unlikely to affect the simulation
performance dramatically (note, in particular, the data point in the bottom left-hand corner
of this plot).

We have now fitted and checked our occurrence and intensity models, and can move
on to perform some simulations. Before doing this however, take a quick look at the file
IntensityResids.dat (generated by the GLCfit() command above). This can be opened
in a text editor. The first few rows of the file are as follows:

SITE YEAR MONTH DAY OBSERVED PREDICTED SD

G1 1970 1 5 0.0618 3.3851 1.1219

G5 1970 1 5 0.0617 3.2103 1.1219

G1 1970 1 6 0.2100 2.2902 1.1219

G5 1970 1 6 0.3000 2.1252 1.1219

G1 1970 1 7 3.8500 3.3732 1.1219

G2 1970 1 9 0.2800 3.1627 1.1219

G6 1970 1 9 0.1900 2.7524 1.1219
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Note the following:

• The first four columns are self-explanatory. The ‘OBSERVED’ column contains a
observed rainfalls, ‘PREDICTED’ gives the means of the fitted gamma distributions;
and ‘SD’ is the standard deviation of the standardised residual under the model.

• The file does not contain values for every site on every day. The excluded values are
either those that could not be used in the fitting because they were missing or because
one of the three previous days’ values was missing; or those with rainfalls below the
0.1mm threshold that have been excluded from the intensity modelling.

This example should give the general feel of a model-building exercise using this software.
We have not illustrated all of its features, but hopefully the user should now be reasonably
familiar with the tables of codes in Section 3.8 above, and should be able to work out how
to define more complicated models using the help pages. Although we have concentrated on
logistic regression, the basic model-building process is the same for any GLM. The output
varies slightly for different models, but the basic framework is always the same. For full
explanations of the analysis methods, see the references given at the start of this manual.

5.4 Simulation

In this section we give a brief introduction to the simulation routine GLCsim(). We will
simulate rainfall sequences using the occurrence and intensity models just fitted.

By working through the analyses above, you should now have objects Model6.fitted

and Intensity.fitted in your R workspace. We will use these models to simulate 100 daily
rainfall sequences at all six sites, for the 10-year period 1980 to 1999. This is easy:

> set.seed(2000)

> sim <- GLCsim(list(Occurrence=Model6.fitted,Intensity=Intensity.fitted),

+ nsims=100,start=198001,end=198912,impute.until=197912,

+ which.regions=0:2,simdir="./SimFiles",file.prefix="SimDemo")

The first command here sets the random number generator to a repeatable initial state,
so that the results from the simulation can be reproduced exactly. The second carries out a
simulation and stores information about this simulation in an object called sim. While it is
running, note the following:

• The first argument to GLCsim() is a list containing both the occurrence and intensity
models, named explicitly as Occurrence and Intensity. This naming is important:
if the names were omitted, GLCsim would think that we were trying to perform a
multivariate simulation in which one variable was modelled using Model6.fitted and
the other using Intensity.fitted.
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• The next three arguments nsims, start and end are self-explanatory. Note that the
start and end dates are given in the form YYYYMM where YYYY is the year and MM is the
month. The simulation will start on the first day of start and finish on the last day
of end.

• The argument impute.until is used to control the imputation behaviour of the routine.
This is discussed in more detail below.

• The routine will optionally generate an output file for each simulation, containing
monthly time series of average rainfalls for a selection of subregions that are defined
within the site information databases. The which.regions argument controls this
selection. By default, the routine generates these monthly series only for region 0 (i.e.
the entire area); here we request monthly series for subregions 1 and 2 as well.

• The routine will also generate a daily output file for each simulation; each of these
output files has exactly the same format as the original data file (Ashdown.dat) that
has been used throughout the modelling process. Together with the monthly output
files therefore, this simulation will generate 200 output files in total. They will be
stored in the subdirectory defined by the simdir argument, and the output file names
will be generated automatically. The file.prefix argument allows the user to specify
a prefix for each output file name; we’ll see what the routine does with this shortly.

It is worth noting that the sim object does not contain the simulated data: it merely
contains information about what was simulated and where the data are stored. To see this:

> sim

Object of class GLCsim:

=======================

Variables taken from data file Ashdown.dat

Variables simulated:

1. Rainfall (model type: logistic-gamma)

Simulation period: 1/1980 to 12/1989

No imputation performed

100 realisations generated

Output files generated: daily and monthly

Daily output written from 1/1980 to 12/1989

Monthly summaries written for the following regions:

0 Ashdown Forest

1 Pooh and Piglet's side of the forest

2 Christopher Robin's side of the forest
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Output directory: [your directory here]/SimFiles

Prefix for output filenames: SimDemo

Next, we can inspect the output files that have been generated:

> list.files(path="./SimFiles")

[1] "SimDemo_Daily_Sim001.dat" "SimDemo_Daily_Sim002.dat"

[3] "SimDemo_Daily_Sim003.dat" "SimDemo_Daily_Sim004.dat"

[5] "SimDemo_Daily_Sim005.dat" "SimDemo_Daily_Sim006.dat"

[output truncated]

[195] "SimDemo_Monthly_Sim095.dat" "SimDemo_Monthly_Sim096.dat"

[197] "SimDemo_Monthly_Sim097.dat" "SimDemo_Monthly_Sim098.dat"

[199] "SimDemo_Monthly_Sim099.dat" "SimDemo_Monthly_Sim100.dat"

Notice how the file names have been automatically generated, using the file.prefix argu-
ment that we supplied to the GLCsim() routine.

Next, open the first of the daily simulation files (SimFiles/SimDemo_Daily_Sim001.dat)
in a text editor. If you set the random number seed to 2000 as above, the first few lines of
this file will be as follows:

1980 1 1 G1 0.00

1980 1 1 G2 27.47

1980 1 1 G3 0.00

1980 1 1 G4 0.00

1980 1 1 G5 16.19

1980 1 1 G6 0.00

1980 1 2 G1 1.18

1980 1 2 G2 2.29

As noted above, the format of these daily simulation files is exactly the same as that of
the original data file Ashdown.dat. For the simulated data however, of course there are no
missing values.

Now open the monthly file SimFiles/SimDemo_Monthly_Sim001.dat. The first few lines
should be13

1980 0 2.56 2.59 2.01 4.14 1.39 3.61 3.16 1.07 3.18 2.81 2.08 2.16 2.56

1980 1 2.80 1.60 2.39 3.97 0.85 3.72 3.02 1.11 2.73 2.81 1.96 2.01 2.41

1980 2 2.33 3.59 1.63 4.30 1.93 3.50 3.30 1.04 3.63 2.81 2.19 2.32 2.70

1981 0 3.68 2.03 2.61 2.79 1.45 2.29 1.18 2.26 2.34 1.82 3.32 3.34 2.43

1981 1 3.41 2.33 2.44 2.97 1.28 1.97 1.12 2.34 2.47 1.68 3.45 3.21 2.39

13The column separation has been reduced in this output, for reasons of space
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The first two columns are the simulation number and region code (recall that we asked for
summaries for all three regions, including region 0 which is the whole area). There follow 12
monthly means and an annual mean.

5.4.1 Multiple imputation

The daily (and possibly monthly) simulation files are now ready to be used for input into
hydrological or other climate impacts models. However, to assess the credibility of the
simulations it is helpful to be able to compare their with those of the observations. In doing
so, one problem is that there are many missing values in the observations so that the observed
properties cannot be known with certainty. One way to assess the resulting uncertainty is
to generate additional simulated sequences in which the missing values are sampled from
their conditional distributions given the available observations, and to calculate properties
of interest for each of these additional simulated sequences. The procedure is known as
multiple imputation, and the GLCsim() routine performs it automatically unless prevented
from doing so by the impute.until argument. So, to produce 39 imputations of the missing
observations in our data set:

> obs <- GLCsim(list(Occurrence=Model6.fitted,Intensity=Intensity.fitted),

+ nsims=39,start=198001,end=198912,

+ which.regions=0:2,simdir="./SimFiles",file.prefix="Imputation")

The call to GLCsim() here is exactly the same as before, except for the following:

• The impute.until argument is omitted so that the software will condition on all
available observations throughout the simulation period (note that in the earlier call,
impute.until was set to a date prior to the start of the simulation period, in order to
prevent the routine from doing imputation).

• The number of realisations is 39 rather than 100. The rationale for this is that if we
calculate the value of any property of interest for each of these 39 simulations, the
resulting range of values forms a 95% prediction interval for the actual value of that
property that would have been observed given complete data (a proof of this assertion
is left as an exercise for the interested reader . . .).

• The file.prefix is now Imputation, so that we can distinguish the files containing
simulations from those containing imputations.

We are now in a position to assess the simulation performance. This can be done by
calculating a variety of summary statistics for each of the simulations, and comparing the
distribution of these summary statistics with the corresponding observed value (or imputa-
tion range). For example, we might be interested in the mean rainfall for January. Each of
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the 100 simulations will produce a different January mean rainfall, so that we have a simu-
lated distribution of mean January rainfalls. The test of simulation performance is whether
or not the observed mean rainfall can plausibly be considered to belong to this distribution.

Rglimclim offers a wide range of diagnostic plots for the assessment of simulation per-
formance. To access these, it is first necessary to preprocess the simulation files and to
calculate summary statistics for each simulation. We will calculate some summaries for the
entire region: simulation performance at individual sites can also be explored if required
(type help(summary.GLCsim) for full details). The preprocessing can be carried out as
follows:

> seasons <- list(3:5,6:8,9:11,c(12,1,2))

> sim.summary <-

+ summary(sim,season.defs=seasons,thresholds=0,which.regions=0)

[output suppressed]

> obs.summary <-

+ summary(obs,season.defs=seasons,thresholds=0,which.regions=0)

[output suppressed]

To see what has been done here, type sim.summary. The system reports the variables, sites
and regions for which summaries have been calculated, and also indicates what summary
statistics are available. Notice the use of the thresholds argument in the summary commands
above: if this is supplied, the system will compute the proportion of threshold exceedances
(corresponding to the proportion of wet days in the current setting, where we are studying
rainfall and the threshold is set to zero). Notice also the use of the season.defs argument:
this will compute annual time series of seasonal means for user-define ‘seasons’ (which are
just groups of months, specified here in the seasons object).

Clearly, there is a lot of information in these summaries and it is hard to process all of
it. One might reasonably examine some plots for selected sites, regions and statistics. For
example:

> par(mfrow=c(2,5))

> plot(sim.summary,imputation=obs.summary,which.sites=NULL,

+ which.timescales="daily")

The results are shown in Figure 4. There are 10 plots here, each showing the simulated
distributions of a different summary of the daily rainfall time series for each month of the
year. The grey bands indicate the percentiles of the simulated distributions (see the figure
caption for details) while the black bands are 95% intervals for the observed values (obtained
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Figure 4: Simulated distributions of selected summary statistics for the entire study area,
together with envelopes obtained from 39 imputations. The bands in the simulated distri-
butions indicate the minimum and maximum values, together with the 1st, 5th, 10th, 25th,
50th, 75th, 90th, 95th and 99th percentiles.

from the range of values in the 39 imputations, as discussed above). The plots are too small
to accommodate their titles here; for finer control over the plot titles, and the selection of
which plots are produced, type help(plot.summary.GLCsim). The summaries produced are
the mean; standard deviation; maximum and minimum values (the minimum being zero for
every month of every simulation, unsurprisingly); autocorrelation at lags of 1, 2 and 3 days;
proportion of wet days; and the mean and standard deviation on wet days only (defined as
exceedances of the zero threshold).

If the simulated time series are realistic, the observed or imputed values for every prop-
erty should look like a sample from the simulated distributions. Informally, this means that
the imputation envelopes should lie mostly within the simulated distributions and, moreover,
should traverse the range of those distributions (i.e. there should be some values at the lower
end, some at the upper end and some in the middle). This seems to be the case throughout
Figure 4, with the possible exception of the standard deviation, conditional standard devi-
ation and maximum in October. However, for all of these statistics the imputation range
indicates substantial uncertainty due to missing data: overall there, the simulations seem to
do a good job of reproducing all of these properties.
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Figure 5: Simulated distributions of annual time series of seasonal mean rainfalls for the
entire study area, together with envelopes obtained from 39 imputations.

In some applications, it is important to reproduce the variation in rainfall means or
totals over monthly or longer time scales. In the summary commands above, we calculated
summaries for four 3-month seasons. To visualise these we can use the plot() command
again, but this time setting which.timescales="monthly" rather than "daily":

> par(mfrow=c(2,2))

> plot(sim.summary,imputation=obs.summary,which.sites=NULL,

+ which.timescales="monthly",

+ colours.sim="colour")

The result is shown in Figure 5. Once again, the simulations seem to do a good job of
reproducing the observed variability. Note that the final plot stops at 1988 rather than 1989:
this is because the simulation period ended in December 1989 so that simulated data for the
final (December, January, February) season are not available.

This completes the tour of the software. Any bug reports, suggestions for improvements
and general comments will be most welcome — email me at richard@stats.ucl.ac.uk.
Meanwhile: good luck, and happy modelling!

Richard Chandler
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Technical Appendix

This appendix gives, for the interested user, technical details of the models and algorithms
used in this software. It is necessarily brief and collates material that may be found in
Cox and Hinkley (1974); Jørgensen (1983); Liang and Zeger (1986); McCullagh and Nelder
(1989); Press et al. (1992); Fahrmeir and Tutz (1994); Wei (1997) and Dobson (2001), among
others. For an overview and more comprehensive reference list, see Chandler and Wheater
(2002), Yan et al. (2002) and Wheater et al. (2000, Chapter 4).

A Generalised Linear Models and the exponential fam-

ily of distributions

A GLM, for a n×1 vector of random variables Y = (Y1, . . . , Yn)′, is a model for the probability
distribution generating Y. Each of the Y s is considered to depend on p covariates, whose
values can be assembled into a n × p matrix X (the (i, j)th element of X is the value of
the jth covariate for Yi). The distribution of Y has vector mean µ = (µ1, . . . , µn)′, which is
related to X via the relationship

g(µ) = Xβ = η , say. (4)

Here, g(.) is a monotonic function (the link function) and β is a p×1 vector of coefficients
(by g(µ) we mean the n× 1 vector whose ith element is given by g(µi)). The elements of η
are called linear predictors.

For computational and inferential reasons, the distribution of each Yi is restricted to
belong to the exponential family. For current purposes, this may be defined as the
family of all distributions with densities of the form

f(y;ψ, φ) = exp

[
yψ − b(ψ)

a(φ)
+ c(y, φ)

]
, (5)

for some parameters ψ and φ, and functions a(.), b(.) and c(., .). Many standard distributions
are in this family; some examples are given in Table 8.

For a distribution expressed in this way, the mean is ∂b/∂ψ and the variance is a(φ)∂2b/∂ψ2.
These expressions may be verified readily for the examples given in Table 8. For the gamma
distribution, for example, we have b(ψ) = lnψ, so that ∂b/∂ψ = ψ−1 = µ. For the variance,
we get a(φ)∂2b/∂ψ2 = (−φ−1) (−ψ−2) = µ2/ν.

These results suggest that the parameter ψ determines the mean of the distribution and
that, given ψ, the parameter φ determines the variance. For this reason, φ is known as a
dispersion parameter. Equation (4) indicates that, in a GLM, the primary interest is
in the relationship between the mean and the covariates. Hence, from the perspective of
exponential families, ψ is a function of the covariates and of the coefficient vector β. The
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Distribution Density ψ φ a(φ) b(ψ) c(y,φ)

Bernoulli,
parameter p

py(1− p)1−y

(y = 0, 1)
ln

(
p

1− p

)
1 1 ln(1 + eψ) 0

Poisson, param-
eter µ

(e−µµy) /y!

(y ∈ N)
lnµ 1 1 eψ − ln y!

Normal, param-
eters µ and σ2

1
σ
√
2π
e[−(y−µ)

2/2σ2]

(y ∈ R)
µ σ2 φ

ψ2

2

−
(
y2

2φ
+

1

2
ln 2πφ

)

Gamma, mean µ
and shape pa-
rameter ν

(
yν
µ

)ν
e−νy/µ/yΓ(ν)

(y > 0)
µ−1 ν −φ−1 ln(ψ)

φ lnφy

− ln y

− ln Γ(φ)

Table 8: Some distributions in the exponential family.

dispersion parameter φ is usually assumed constant in a GLM (for example, for a normal
distribution the dispersion parameter is the variance σ2, which is assumed constant in a
classical linear regression).

A.1 Interactions

It is not uncommon for covariates to interact with each other, by which we mean that the
effect of one covariate may depend on the values of others. In North-Western Europe, for
example, the impact of the North Atlantic Oscillation upon rainfall is confined mainly to
the winter months. Hence the coefficient associated with the NAO in a GLM should vary
seasonally. This can be achieved by representing the coefficient itself as a linear combination
of covariates representing seasonality. Mathematically, this is equivalent to adding an extra
covariate to the model, whose value is the product of the interacting covariates. Hence
interactions can be incorporated straightforwardly within the overall framework of model
(4).
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A.2 Multivariate modelling

Suppose now that instead of an n×1 data vector we have an n×m data matrix Y, each column
of which represents the observations of a different variable so that the (i, j)th element Yij
represents the value of the jth variable for the ith case in the dataset. If the distributions of
the individual variables (possibly conditioned on covariates) are all Gaussian, then potentially
we could build a regression model for all of the variables simultaneously. However, in practice
this would be a gargantuan task for all but the simplest situations (the example in Section
5 shows the complexity of building a model for a single variable; to carry out this kind of
analysis for several variables simultaneously would be prohibitive). Moreover, there are few
tractable multivariate models that can be used in settings where one or more of the variables
has a non-Gaussian distribution.

An alternative strategy for multivariate modelling is based on a standard factorisation of
the joint distribution. Denote by Yi = (Yi1 Yi2 . . . Yim)′ the collection of all variables for
the ith case in the dataset, and let xi be the associated vector of covariates. Then the joint
density of Yi can be factorised as

f(yi|xi) = f1(yi1|xi)× f2(yi2|y1,xi)× . . .× fm(yim|y1, y2, . . . , ym−1,xi) ,

where here f·(a|b) denotes the density of a conditional upon the value(s) of b. This fac-
torisation enables a multivariate model to be constructed one variable at a time: start by
developing a GLM for the first variable, conditioned upon the covariates, then develop a
GLM for the second variable conditioned on the covariates along with the first variable, and
proceed in this way until all variables have been modelled. Simulation of the fitted models
can then also be done one variable at a time, generate a value of the first variable, then
sample the second from its conditional distribution given the value of the first, and so on.

Note that in this framework, the model for each variable must not include as covariates
any other variables that have not yet been modelled: this would create a “circular depen-
dency” (such that A depends on B and B in turn depends on A, for example) which prevents
the use of the simulation procedure just described. The GLCsim() routine checks for such
circular dependencies and terminates if any are found.

An obvious question here is: does the order of the variables matter? The answer is yes.
To see this, imagine building a bivariate model for rainfall and temperature. A normal-
heteroscedastic model will often be reasonable for daily temperatures, while a logistic regres-
sion model is often used to describe rainfall occurrence as in Section 5. If rainfall is taken
as the first variable, and temperature is conditioned on rainfall occurrence, then the implied
marginal temperature distribution for each day will be a mixture of two normal distributions
(one for dry days, and the other for wet): this mixture could be bimodal. On the other hand,
if temperature is taken as the first variable then its modelled marginal distribution will be
normal and unimodal.

Given that the order of the variables matters, it is worth giving some guidance as to how
one might decide on an appropriate ordering. There is no unique answer to this. However,
the following considerations may be helpful:
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• If data availability permits, order the variables so as to respect any physical mechanisms
that are present. For example, when building a model for a collection of variables
including pressure, wind speed, rainfall, cloud cover and incoming radiation, it makes
physical sense to start with pressure since the pressure field imposes a fundamental
control on atmospheric dynamics. Wind speed is naturally modelled as dependent
upon the pressure field, as are rainfall and cloud cover. Rainfall might be considered
as additionally dependent on cloud cover, given that rain is unlikely to occur without
clouds; and incoming radiation is also dependent on cloud cover.

It is perhaps worth noting that many existing multivariate weather generators start
with precipitation as the ‘primary’ variable and then derive other variables from this.
This is a habit that dates back to the early development of weather generators in the
1980s, when there was little awareness of techniques such as GLMs outside the sta-
tistical literature and when precipitation generators were largely restricted to models
based on Markov chains for which it was difficult to incorporate covariate informa-
tion. The present GLM framework overcomes this limitation (indeed, Markov chain
models can be considered as a special case) and hence provides the opportunity to de-
velop multivariate models based on physical understanding rather than mathematical
constraints.

• If data are plentiful for some variables but sparse for others, as a pragmatic strategy
it makes sense to model the data-rich variables first. This is because a GLM can only
be fitted to the cases for which observations on both the response and covariates are
available. If the data-rich variables are modelled first then their models can be fitted
to all of the available data for these variables. If they are modelled as conditional upon
the data-poor variables however, far fewer observations will be available.

These considerations are often directly conflicting: for example, station-based pressure
observations can be very sparse which may preclude the use of a physically-based ordering
of the variables. Scientific judgement is required, therefore.14

B Maximum likelihood estimation

Given a data vector y = (y1, . . . , yn)′, assumed to be drawn from some family of distributions
indexed by a parameter vector θ, we may wish to estimate this parameter vector. A standard
way to do this is via maximum likelihood. The basic idea is to choose the value of θ which
allocates highest probability to the observations y. Specifically, denote the joint density of
y by f(y;θ). Then the Likelihood for θ given y is defined as

L (θ|y) = f(y;θ) , (6)

14The use of gridded data products to ‘get around’ the problem of sparse data is most definitely not
required: many of these data products do not get around the problem at all, they merely hide it.
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and the maximum likelihood estimate (MLE) of θ is the value maximising this expres-
sion. Equivalently, it is the value that maximises the log-likelihood lnL (θ|y), which is
usually easier to compute. The MLE is usually denoted by θ̂. If the observations are all
independent and such that the density of the distribution generating yi is fi(.;θ), then their
joint density is just f(y;θ) =

∏
i fi(yi;θ). In this case the log-likelihood is

lnL(θ|y) =
n∑
i=1

ln fi (yi;θ) . (7)

The likelihood function can be used to form confidence intervals, by finding the set of
all values of θ for which the likelihood (or, equivalently, the log-likelihood) exceeds some
threshold.

Hypothesis testing can also be carried out in a likelihood-based framework. To test
whether the data are consistent with an underlying value of θ0, we can examine the likeli-
hood ratio Λ = L(θ̂|y)/L(θ0|y), or its logarithm. By definition of θ̂, L(θ̂|y) ≥ L(θ0|y).
Values of Λ close to 1 (i.e. values of ln Λ close to zero) are consistent with the null hypothesis;
larger values are not.

Likelihood-based procedures have a number of appealing properties. A precise statement
is lengthy and theoretical — see, for example, Cox and Hinkley (1974) for a full discussion.
For practical purposes however, the most important ones can be summarised as follows:

1. For many models based on the exponential family, MLEs have the smallest mean
squared error of any estimator.

2. For such models, likelihood-based confidence intervals are generally the shortest that
can be found, at a specified confidence level.

3. The most powerful test for distinguishing between two hypotheses is based on the
likelihood ratio (the Neyman-Pearson lemma). This means that if a weak signal is
present in a noisy record, a likelihood ratio test may be able to detect it when other
procedures cannot.

The only disadvantage to likelihood-based inference is that it requires the probability
model f(y;θ) to be completely (and correctly!) specified. Results and conclusions will
depend on this specification, so we need to ensure that the model structure is realistic. For
example, if the observations arise as a time series then they are likely to be dependent so
that (7) is incorrect. However, a standard factorisation of the joint density allows us to write
the log-likelihood as

lnL(θ|y) =
n∑
i=1

ln fi (yi|Hi;θi) ,

where here fi (yi|Hi;θi) denotes the density of the ith observation given its history Hi say.
This has the same form as (7), and hence we can proceed as usual providing the history is
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adequately accounted for within the model. It is this result that motivates the inclusion of
previous days’ values into the GLMs for daily climate time series.

In GLMs, where the observations all come from distributions within the exponential fam-
ily with a common dispersion parameter φ, the log-likelihood for β and φ given n independent
observations is, from (5) and (7),

lnL (β, φ|y) =
n∑
i=1

yiψi − b(ψi)
a(φ)

+ c(y, φ) . (8)

The coefficient vector β enters the right-hand side here through the ψi terms, as described
in the previous section.

In well-behaved problems, the value of β maximising the log-likelihood satisfies the p
score equations

∂ lnL

∂βj
=

1

a(φ)

n∑
i=1

∂

∂βj
[yiψi − b(ψi)] (= Uj, say) = 0 (j = 1, . . . , p) , (9)

whose solution clearly does not depend on φ.

B.1 Likelihood ratio tests

In the previous section, we noted that hypothesis testing can be carried out using likelihood
ratios. We now summarise the procedure. Specifically, we suppose that the linear predictors
in (4) have the form

ηi = β0 + β1xi1 + . . .+ βpxip ,

and we wish to test the null hypothesis H0 : βq+1 = βq+2 = . . . = βp = 0, for some q < p.
The likelihood ratio test procedure in this case is:

1. Fit the reduced model (i.e. the model containing the first q predictors) using Max-
imum Likelihood; denote the resulting log-likelihood by lnL0.

2. Fit the model containing all of the xs, and denote the resulting log-likelihood by lnL1.
This will never be less than lnL0.

3. Calculate the likelihood ratio test statistic 2 ln Λ = 2 (lnL1 − lnL0). If this is larger
than the appropriate percentage point of a χ2 distribution with (p − q) degrees of
freedom, reject the null hypothesis; otherwise accept it.

There is a potential complication here for GLMs that involve an unknown dispersion
parameter φ. This is because the log-likelihood (8) depends on φ, whence the likelihood
ratio does also (although the c(y, φ) term cancels in the ratio). If φ is unknown, we can
of course estimate it. However, in general we will obtain different estimates from each of
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the models under consideration and this may affect our inference. Most standard software
packages work around this problem by reporting the deviance (see below) rather than the
log-likelihood. This software reports both. For models involving a dispersion parameter φ,
the log-likelihoods are maximised with respect to both β and φ — thus the theory above is
directly applicable.

B.2 Deviance

For the reasons given above, many software packages output deviances for GLMs rather than
log-likelihoods. The deviance for a model is defined as

D = 2a(φ) (lnLF − lnL) ,

where LF is the likelihood for a full model in which we set µi = yi for each i, and L is
the likelihood for the model under consideration. Comparing this with (8), we see that the
deviance does not depend on φ.

The deviance is equivalent to the residual sum of squares in a linear regression (and
is never negative) — in fact, for a GLM based on the normal distribution with constant
variances, the deviance is the residual sum of squares. For this reason, procedures such as
analysis of variance (which describes how different predictors in a linear regression account
for the variability in the Y s) are generalised to ‘analysis of deviance’ in GLMs. F tests can
be used to compare models, as in the standard regression case.

C Numerical algorithms for GLMs

C.1 Iterative weighted least squares

We now address the problem of calculating the maximum likelihood estimate for a GLM. In
practice, the score equations (9) must be solved numerically in all but the simplest cases.
Assembling all p equations into vector form, we seek the solution of

U (β) = 0 (10)

where U (β) = (U1, . . . , Up)
′ is the score vector of log-likelihood derivatives. U(.) is

typically a nonlinear function of β.

To solve equations of the form (10), the Newton-Raphson algorithm may be used: start
with an initial guess at the solution, β(0) say, and then successively calculate

β(t) = β(t−1) −

[
∂U

∂β |β(t−1)

]−1
U
(
β(t−1)

)
(11)
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until convergence is achieved. ∂U/∂β here is the p × p matrix of second derivatives of the
log-likelihood with respect to β. Note that, since the likelihood for a given β depends on
the data, it should be regarded as the realised value of a random variable, as should its
derivatives. Hence it is meaningful to consider the expected value of likelihood derivatives.
In particular, the quantity I (β) = −Eβ [∂U/∂β] is called the information matrix for β.

The reason for introducing this concept is that, when finding the maximum likelihood
estimate of β in a GLM, it is common to replace the matrix ∂U/∂β in (11) by its ex-
pected value. The resulting maximisation algorithm is called the method of scoring: the
iterative scheme is

β(t) = β(t−1) +
[
I
(
β(t−1)

)]−1
U
(
β(t−1)

)
. (12)

With a log-likelihood of the form (8), the derivative with respect to βj is

Uj =
∂ lnL

∂βj
=

1

a(φ)

n∑
i=1

∂`i
∂βj

,

where `i is a contribution from the ith observation. The chain rule gives

∂`i
∂βj

=
∂`i
∂ψi

∂ψi
∂µi

∂µi
∂ηi

∂ηi
∂βj

,

where µi and ηi are the mean and linear predictor for the ith case (recall equation (4)).
Dealing with each of these in turn, and referring to the properties of the exponential family
on page 68:

1. ∂`i/∂ψi = yi − ∂b/∂ψi = yi − µi.

2. ∂ψi/∂µi = [∂µi/∂ψi]
−1. Now µi = ∂b/∂ψi, so ∂µi/∂ψi = ∂2b/∂ψ2

i . But Var(Yi) =
a(φ)∂2b/∂ψ2

i . Hence ∂2b/∂ψ2
i = Var(Yi)/a(φ), and ∂ψi/∂µi = a(φ)/Var(Yi) = a(φ)/Vi,

say.

3. ∂µi/∂ηi depends on the particular link function used in equation (4).

4. ∂ηi/∂βj = xi,j (the value of the jth covariate for the ith case).

Putting these results together and summing over all cases in the dataset, we find that
the jth element of the score vector is given by

Uj =
n∑
i=1

[
yi − µi
Vi

(
∂µi
∂ηi

)(
∂ηi
∂βj

)]
=

n∑
i=1

[
yi − µi
Vi

(
∂µi
∂ηi

)
xi,j

]
. (13)

Calculation of the information matrix I(β) is simplified by the fact that its (j, k)th
element is equal to E [UjUk] providing the underlying model is correct — in particular,
providing the independence assumptions of the model hold. It can also be shown that the
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scores all have mean zero, whence I(β) has an alternative representation as the covariance
matrix of the score vector. These are standard results and will not be proved here (the
former can be derived using straightforward algebra from representation (13) of the scores).
However they enable us to deduce, after a little manipulation involving (13), that if the
model is correct the (j, k)th element of the information matrix is

n∑
i=1

[
1

Vi

(
∂ηi
∂βj

)(
∂ηi
∂βk

)(
∂µi
∂ηi

)2
]

=
n∑
i=1

[
xi,jxi,k
Vi

(
∂µi
∂ηi

)2
]

(14)

In matrix form then, we can write

I (β) = X′WX , (15)

where W is a diagonal n× n matrix with elements wii = (∂µi/∂ηi)
2 /Vi (for computational

purposes, in fact it is convenient to use a(φ)∂µi/∂ψi in place of Vi here, since then a(φ)
appears as a constant that can be omitted from the iterative scheme (17) below). All of
these quantities are functions of β.

This matrix representation can be used in the iterative scoring algorithm (12): multi-

plying both sides of that equation by I
(
β(t−1)

)
and substituting (15) for I

(
β(t−1)

)
, we

find
X′W(t−1)Xβ(t) = X′W(t−1)Xβ(t−1) + U

(
β(t−1)

)
. (16)

Noting that Xβ(t−1) = η(t−1), the vector of linear predictors at iteration t− 1, and that the
score vector can itself be written as a vector product involving the matrix X′W (from (13)),
the scoring algorithm can finally be written in matrix form as[

X′W(t−1)X
]
β(t) = X′W(t−1)z(t−1) , (17)

where z(t−1) is an n× 1 vector whose ith element is

z
(t−1)
i = η

(t−1)
i +

(
yi − µ(t−1)

i

)(∂η
∂µ |µ(t−1)

i

)
.

Equation (17) in fact gives the solution of the weighted least-squares regression of z(t−1) upon
X, with weights contained in the diagonal elements of W(t−1). The need for iteration arises
because z and W both depend, in general, upon β. Expressed in this form, the algorithm for
fitting GLMs is referred to as iterative weighted least squares (IWLS). An additional
advantage is that for large samples, the covariance matrix of the final parameter estimates
is [X′WX]−1, which emerges as a by-product of the fitting procedure. This can be used, for
example, to derive standard errors for the parameter estimates. See Appendix C.2 below for
more details on this.
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C.1.1 The information matrix versus the Hessian

In what follows, it will be useful to understand the implications of replacing the Hessian
matrix of the log-likelihood by its expected value in the algorithm above. Differentiating
(13) with respect to βk, we find that the (j, k)th element of the Hessian matrix is

∂Uj
∂βk

=
n∑
i=1

{
(yi − µi)

∂

∂βk

[
xi,j
Vi

(
∂µi
∂ηi

)]
− ∂µi
∂βk

[
xi,j
Vi

(
∂µi
∂ηi

)]}

=
n∑
i=1

{
(yi − µi)

∂

∂βk

[
xi,j
Vi

(
∂µi
∂ηi

)]
− xi,jxi,k

Vi

(
∂µi
∂ηi

)2
}

. (18)

Note that, if we take expectations, the first term here vanishes and the expression reduces
(with a change of sign), to the (j, k)th element of the information matrix at (14). The first
term will also vanish if the term in square brackets is invariant with respect to βk, since then
the derivative will be identically zero. If this is the case then the Hessian matrix will always
be exactly equal to its expected value. Such invariance will occur when ∂µi/∂ηi ∝ Vi i.e.
for a particular choice of the link function g(.) in (4). This choice is called the canonical
link. From item 2 in the list preceding (13) (page 75), we see that Vi may be defined as
a(φ) × ∂µi/∂ψi. Hence the canonical link function for any GLM is g(µi) = ψ(µi). Refer to
Table 8 for the canonical links ψ(.) in some standard distributions.

If the information is not equal to the negative Hessian matrix, it is natural to question
the applicability of the scoring algorithm. We now give a heuristic justification for its use.
From (11) and (12), it is clear that the algorithm will provide a good approximation to the
Newton-Raphson iterative scheme (and hence should work in well-behaved problems) provid-
ing [∂U/∂β]−1 + I−1(β) is small. Now, given n independent observations, the log-likelihood
and its derivatives are sums of n terms and therefore deviate from their expectations by
quantities that are Op

(
n1/2

)
. Hence, if the model is correct then in some neighbourhood of

the true parameter vector we can write

− ∂U

∂β
= I(β) + E , (19)

say, where E is a matrix whose elements are Op

(
n1/2

)
. Writing 1 for an identity matrix, we

therefore have

−
[
∂U

∂β

]−1
= I−1(β)

[
1 + I−1(β)E

]−1
.

Now the elements of I−1(β) are Op (n−1), so those of I−1(β)E are Op

(
n−1/2

)
. Hence, for

large n we have

−
[
∂U

∂β

]−1
≈ I−1(β)

[
1− I−1(β)E

]
= I−1(β) + M ,

where now M is a matrix whose elements are Op

(
n−3/2

)
(in contrast with those of I−1(β),

which are Op (n−1)). Hence, for sufficiently large samples, replacing ∂U/∂β with its expected
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value should not cause numerical problems providing the search is restricted to an appropriate
neighbourhood of the true parameter vector. This proviso arises because in (19), I(β)
is an expected value computed as though β is the true parameter vector. If I(β) varies
substantially with β then we may expect problems away from the true value (or equivalently,
away from the MLE, since this also deviates from the true value by Op(n

1/2)).

C.1.2 Normal-heteroscedastic models

The normal-heteroscedastic family of models, described in Section 3.1, does not strictly fall
within the framework outlined above. However, as described in Chandler (2005) and Yang
et al. (2005), these models can be fitted by noting that if Yi ∼ N(µi, σ

2
i ) then the squared

residual e2i = (Yi − µ − i)2 has a distribution proportional to chi-squared on one degree of
freedom; which is the same as a gamma distribution with mean σ2

i and shape parameter 1/2.
The fitting algorithm for normal-heteroscedastic models is therefore as follows:

1. Fit the mean component of the model (defined by equation 1 on page 8) to the obser-
vations Yi using least squares.

2. Compute the squared residuals {e2i } from the mean component of the model, and fit the
dispersion component (defined by equation 2) to these squared residuals as a gamma
GLM.

3. Refit the mean component of the model using weighted least squares, where the weights
for each case are the inverse of the fitted values from the dispersion component of the
model. Go back to step 2, and iterate to convergence.

The theory outlined elsewhere in this appendix needs to be modified slightly to allow for
the reweighting in step 3 of this algorithm, but conceptually the modifications are straight-
forward. They are omitted here, to avoid complicating the mathematical presentation.

C.2 Covariance matrix of the estimates

Having demonstrated how maximum likelihood parameter estimates may be obtained, we
now consider their covariance matrix. From (17), it is clear that the MLE satisfies

β̂ = [X′WX]
−1

X′Wz , (20)

where all quantities are evaluated at β̂. The required covariance matrix may be estimated
by considering the covariance of the right hand side here as a function of β, and evaluating
it at β̂. Note that as a function of β, [X′WX]−1 is non-random. Note also the standard
result that if Y is a vector of random variables and A a matrix such that AY is defined,
Var(AY) = AVar(Y )A′. Hence the covariance matrix of the right hand side of (20) is

[X′WX]
−1

Var (X′Wz) [X′WX]
−1

, (21)



C NUMERICAL ALGORITHMS FOR GLMS 79

since [X′WX]−1 is a symmetric matrix.

The next step is to note that the covariance matrix of X′Wz is, for fixed β, the same
as that of the score vector U. To see this, equate the right hand sides of equations (16)
and (17) to obtain X′WXβ + U = X′Wz — this relationship defines z for any β. But for
fixed β, X′WXβ is non-random, and hence can be ignored in variance calculations. The
estimated covariance matrix of β̂ is therefore

V̂ar
(
β̂
)

= [X′WX]
−1

Var (U) [X′WX]
−1

. (22)

If observations are independent, we have seen (page 76) that Var (U) = X′WX. In this case,
(22) reduces to [X′WX]−1. This is the ‘default’ formula used by the software to calculate
standard errors, if no spatial dependence structure is specified for a given model.

More frequently however, in climatological applications observations are obtained from a
network of sites. In this case, inter-site dependence means that observations from different
sites on the same day cannot be regarded as independent; however, in general there is nothing
to stop us from estimating β by maximising the ‘independence’ log-likelihood. In this case,
tests based on likelihood ratios and deviance must be modified to account for the inter-site
dependence — these modifications can be complex. However, tests based on the covariance
matrix (22) can be modified straightforwardly, providing we can find an easily computable
estimate of Var (U). Since U is a sum over all observations in the database, we can write

U =
T∑
t=1

St∑
s=1

Ust ,

where Ust denotes the contribution from site s on day t. Hence

Var (U) = Var

(
T∑
t=1

St∑
s=1

Ust

)
=

T∑
t=1

Var

(
St∑
s=1

Ust

)
,

assuming that score contributions from different days are uncorrelated (which will be the
case so long as the model contains an adequate representation of temporal dependence —
see Appendix B above, and also note that from equation (13), contributions to the score
vector are essentially weighted residuals from the fitted model). Now, since each contribution
to the score vector has expected value zero (page 76), we have

T∑
t=1

Var

(
St∑
s=1

Ust

)
=

T∑
t=1

E

[(
St∑
s=1

Ust

)(
St∑
s=1

Ust

)′]
,

where E [.] denotes expectation. For large T , we can use the observed values of the square-
bracketed terms to estimate their expectations, and obtain the estimator

V̂ar (U) =
T∑
t=1

(
St∑
s=1

Ust

)(
St∑
s=1

Ust

)′
, (23)

which is easily computable at little extra cost, once β has been found. The software uses
this estimator of Var (U), in conjunction with (22), to compute standard errors whenever
the user specifies a spatial dependence structure in a model.
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C.3 Dependence-adjusted likelihood ratio

Appendix B.1 above presented the likelihood ratio test procedure for discriminating between
two nested models. The theory underlying this procedure assumes that the observations
are conditionally independent given the covariates. Specifically, it relies upon the standard
identity

Var [U (β0)] = −E [H (β0)] ,

where β0 is the underlying true value of β (this assumes, of course, that the model is correctly
specified so that it is meaningful to speak of such a ‘true’ value) and H is the Hessian matrix
of second derivatives of the ‘independence’ log-likelihood function (8). Inter-site dependence
affects the covariance matrix of U (β0), as detailed above; however, the Hessian of the
independence log-likelihood is unchanged.

This observation has been used by Chandler and Bate (2007) to develop an adjustment
to the likelihood ratio test in the presence of inter-site dependence. The idea is to construct
a modified inference function that is maximised at the ‘independence’ MLE β̂, but with
Hessian −R−1, where R is the ‘robust’ covariance estimate obtained by combining (23)
with (22). Denoting by `IND the ‘independence’ log-likelihood (8), this modified inference
function is defined as

`ADJ(β) = `IND (β∗) (24)

for a linear transformation
β∗ = β̂ + A

(
β − β̂

)
. (25)

By equating Taylor series expansions about β̂, it can be shown that the matrix A satisfies

A =
{[

N−1
]1/2}−1 [

R−1
]1/2

, (26)

where N is the ‘naive’ covariance matrix [X′WX]
−1

. The matrix square roots in (26) are
not uniquely defined; however, the second-order Taylor expansion underlying the adjustment
is unique. The software uses Cholesky square roots.

Notice that the adjustment here is model-dependent, and hence cannot be used for ‘global’
correction of the log-likelihood. It can be used, however, to compare two models when one is
a special case of the other. In this case, the missing terms in the simpler model can be treated
as having zero coefficients and the adjusted log-likelihood `ADJ(β) can be treated as though
it is the true log-likelihood function. For example, a likelihood ratio test can be performed
by maximising `ADJ(β) under both the reduced and full models, to obtain estimates β̂0 and
β̂1, say: then the adjusted likelihood ratio statistic

2
[
`ADJ(β̂1)− `ADJ(β̂0)

]
(27)

can be compared with percentage points of the appropriate χ2 distribution in the usual way.
To maximise `ADJ(β) under the full model is straightforward: it is achieved by maximis-
ing the ‘independence’ log-likelihood using the usual algorithms. Maximisation under the
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reduced model is more difficult; moreover, in typical applications the reduced model will
already have been fitted using the ‘independence’ log-likelihood (to yield an estimate β̃0,
say), and the user may wish to use this existing estimate rather than carry out an extra,
computationally expensive maximisation. To compute (27) it is therefore tempting to con-

sider using β̃0 in place of β̂0. However, since by definition `ADJ

(
β̂0

)
≥ `ADJ

(
β̃0

)
, such a

procedure will inflate the values of the test statistic. This inflation can be corrected using a
secondary adjustment: specifically, an alternative to (27) is

2c
[
`ADJ(β̂1)− `ADJ(β̃0)

]
, (28)

for some scaling factor c ∈ (0, 1). The value of c can be computed explicitly if (a) `ADJ (·)
is quadratic in the neighbourhood of interest (b) the reduced model is defined in terms of
a linear constraint on the parameters of the full model. In the applications for which this
software is designed, both criteria are likely to be satisfied.15

C.4 Nonlinear transformations of the covariates

The above theory provides an algorithm for finding the MLE of the parameter vector β in
a model of the form (4). In some situations, however, we may wish to represent one or
more covariates themselves as nonlinear transformations of some underlying quantity. For
example, some of the ‘year’ effects in Table 3 involve parameters that are, in general unknown.
Similarly, there are unknown parameters involved in some of the weighting schemes in Table
5. The general setup here is that xi,j can be written as f(x∗i,j; θ) where x∗i,j is the value of
the underlying quantity for the ith case in the dataset, and f(.; .) is a function of known
parametric form. This scenario is non-standard within GLMs. For simplicity, to start with
we assume that θ is a scalar and write θ.

Although the estimation of nonlinear transformations is nonstandard, the MLE of θ can
in principle be found via a straightforward extension of the IWLS algorithm above. The
key point to note is the presence, before simplification in equations (13) and (14), of the
quantities ∂ηi/∂βj and ∂ηi/∂βk. In the standard GLM case, these partial derivatives are
equal to xi,j and xj,k respectively — it is the fact that these are elements of the matrix X
that enables us to write the scoring algorithm in the IWLS form (17). Following the previous
argument up to (13), the score for θ is just

Uθ =
n∑
i=1

[
yi − µi
Vi

(
∂µi
∂ηi

)(
∂ηi
∂θ

)]
, (29)

and the information matrix for the augmented parameter vector (β θ)′ can be constructed
as before via covariances of the scores. A matrix representation of the resulting scoring

15In fact, in Rglimclim the anova method for fitted model objects uses the ‘vertical’ adjustment of the
likelihood ratio statistic from Chandler and Bate (2007) rather than the ‘horizontal’ adjustment described
above. The vertical version is easier to compute, and is also slightly preferable on theoretical grounds.
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algorithm can therefore be obtained as

X∗′W(t−1)X∗
(
β
θ

)(t)

= X∗′W(t−1)z(t−1) , (30)

where X∗ is now the n × (p + 1) matrix obtained by adding an extra column to X, whose
elements are the values of ∂η/∂θ for each case in the dataset. By analogy with (16), the
definition of z(t−1) must also change slightly — its ith element is now

z
(t−1)
i = η

(t−1)
i + θ(t−1)

∂η
(t−1)
i

∂θ(t−1)
+
(
yi − µ(t−1)

i

)(∂η
∂µ |µ(t−1)

i

)
.

Conceptually at least then, the extension of the usual IWLS algorithm to deal with
nonlinear transformations of covariates is straightforward: simply augment the original p
covariates with a set of ‘dummy’ covariates corresponding to derivatives of the linear predic-
tor with respect the parameters of interest, and proceed as normal. Of course, since some
elements of X now depend on θ, they will need to be updated after each iteration — this
increases the computational load somewhat, particularly for large datasets. A further con-
sequence is that the information matrix X∗′W(t−1)X∗ may vary rapidly for some nonlinear
parameterisations. In this case, from the discussion in the previous section, we may expect
convergence problems with the scoring algorithm.

It turns out that a small modification of the algorithm will guarantee convergence to a
maximum. To introduce this, let `(.) be an arbitrary log-likelihood function for a parameter
vector θ, and let U(.) be the corresponding score vector. Then, providing `(.) is continuous
and differentiable in the neighbourhood of θ, there exists a radius δ (which may be small)
such that, for all vectors ε with |ε| < δ,

` (θ + ε) = ` (θ) + λε′U (θ)

for some λ > 0. In particular, this holds if we set ε = DU (θ) where D is a sufficiently small,
symmetric, positive definite matrix. In this case,

` (θ + ε) = ` (θ) + λU′ (θ) DU (θ) ,

which cannot be less than ` (θ) since λ > 0 and D is positive definite.

The relevance of this result is as follows: a step of the unmodified scoring algorithm
changes the current value of the parameter vector by [X∗′WX∗]

−1
U (θ), in an obvious nota-

tion (compare with (16) to verify this). This is of the form DU (θ), where D is symmetric
and positive definite. Therefore, from the result above there exists a ρ > 0 such that changing
the current value of the parameter vector by ρ [X∗′WX∗]

−1
U (θ) is guaranteed to increase

the log-likelihood. The implication is that, if the log-likelihood decreases during any iteration
of the unmodified algorithm, the step size was too large and we should reduce it.

To stabilise the algorithm therefore, if any step reduces the log-likelihood we successively
reduce the step size until an increase is obtained. The literature recommends the use of rather
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simple reduction schemes (e.g. successively halving the step size). However, experience shows
that in particularly ill-behaved problems such schemes can require many successive reductions
before an increase is found. We therefore halve the step size once and then try and locate the
optimal step size by fitting a quadratic to the log-likelihood surface along the search direction.
This modification guarantees eventual convergence to a maximum of the likelihood surface,
although when nonlinear parametrisations are involved this maximum may be local rather
than global (a trivial example of this, which can be overcome by suitable reparametrisation,
arises when estimating the phase of a long-term cycle with a fixed frequency — the likelihood
is then periodic with respect to the phase).

C.4.1 Miscellaneous details

A couple of points are worth noting with respect to this algorithm, and its use in the software
provided here:

1. ∂η/∂θ contains contributions not just from the underlying covariate itself, but also
from interactions with other covariates. In most cases, this is straightforward. Care
needs to be taken, however, if two interacting covariates (the jth and kth, say) are both
transformations involving the same parameter θ. In this case (which may not always
correspond to a sensible model!) the contribution to ∂η/∂θ from the interaction term
xi,jxi,k is

xi,j
∂xi,k
∂θ

+ xi,k
∂xi,j
∂θ

.

The software considers contributions ∂η/∂θ involving the derivatives of each covariate
in turn. In the example above, the contribution involving ∂xi,j/∂θ will pick up the
second term, while that involving ∂xi,k/∂θ will pick up the first. One of those magical
mathematical fortuities that brightens up a programmer’s life.

2. When estimating parameters in schemes for computing weighted averages (Table 5),
the weight attached to site r when computing an averages for site s is of the form

wr,s =
(
w∗r,s
)
/

(∑
j

w∗j,s

)
, (31)

where the sum is over all sites contributing to the average. Here, w∗j,s is the non-
normalised weight, whose functional form is known. The resulting covariate then takes
the form ∑

r

wr,sf
(
Y

(r)
t−k

)
for the ‘average of transformed values’ case (codes 11–99 in Table 4), and

f

(∑
r

wr,sY
(r)
t−k

)
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for the ‘transformation of averages’ case (codes 111–199). For the two different cases,
the contributions to ∂η/∂η are

∑
r

∂wr,s
∂θ

f
(
Y

(r)
t−k

)
and f ′

(∑
r

∂wr,s
∂θ

Y
(r)
t−k

)∑
r

∂wr,s
∂θ

Y
(r)
t−k ,

respectively. Both expressions require ∂wr,s/∂θ which, from (31), is given by

∂wr,s
∂θ

=

[∑
j

w∗j,s

]−2(
∂w∗r,s
∂θ

∑
j

w∗j,s − w∗r,s
∑
j

∂w∗j,s
∂θ

)
.

Note, incidentally, that if f(.) here is an indicator function (e.g. zero if its argument is
0, 1 otherwise), f ′(.) is zero almost everywhere so that parameters in weighting schemes
for the ‘transformation of averages’ case cannot be estimated. This makes perfect sense
— the covariate value will be 1 or 0 regardless of the weighting scheme used, so in this
case there is no information in the data regarding the parameters.

D Residuals

The model fitting software generates a variety of residual analyses by default. Residuals
can be used to check both the systematic component of a model, and its distributional
assumptions. They can also be used in simulation (see Appendix E below).

D.1 Types of residual

There is no unique definition of a ‘residual’ for a GLM. The main residual measures used in
this software are as follows:

Pearson residuals: these are defined in such a way that, if the model is correct, they all
come from distributions with zero mean and the same variance. They can be defined
as

r
(P )
i = K

Yi − µi
σi

, (32)

where µi and σi are the modelled mean and standard deviation for the ith case in the
dataset and K is a constant that may be chosen to make the residuals as interpretable
as possible. Often it will be sensible to set K = 1, so that the residuals all come
from distributions with zero mean and unit variance. For a gamma GLM, however, we
have σi = µi/

√
ν, where ν is the common shape parameter of the distributions (see

Appendix A). In this case, putting K = 1/
√
ν gives the residual measure (Yi − µi)/µi,

which is just the proportional error in prediction. This might be preferred as being
more directly interpretable.
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Anscombe residuals: These are model residuals defined, in some sense, to have a distri-
bution that is as close to Gaussian as possible. This is extremely useful for simulation
of dependent sequences at several sites (see Appendix E below), particularly when the
variable of interest is continuous. For a gamma GLM, the Anscombe residual for the
ith case is defined to be (yi/µi)

1/3.

D.2 Checking the distributional assumptions

For continuous response variables, the easiest way to check the form of the forecast distribu-
tion is via quantile-quantile plots of suitably-defined residuals. ‘Suitably-defined’ here means
that if the model is correct, all residuals come from identical distributions. For normal dis-
tributions, this is easily achieved: if Yi ∼ N(µi, σ

2
i ) then Zi = (Yi − µi)/σi has a standard

normal for all i. For the gamma family of distributions, the quantities Yi/µi all have the
same gamma distribution under the model.

Checks for discrete variables are more difficult. Here we focus on the binary case, and
consider specifically the modelling of rainfall occurrence. If we collect together all of the
days when the forecast probability of rain is close to some preassigned value p∗, then the
overall proportion of these days upon which rainfall was actually observed should be close
to p∗. An overview of the ideas is given by Dawid (1986). For practical implementa-
tion, we collect together groups of days for which forecast probabilities are in the intervals
(0.0, 0.1), (0.1, 0.2), . . . , (0.9, 1.0) and compute observed and expected proportions of rainy
days within each of these groups. Unless there is agreement across the whole range of fore-
cast probabilities, there is something wrong with the probability structure of the model.

D.3 Checking systematic structure

Traditionally in regression modelling, the systematic structure of a model is checked by
plotting residuals against predicted values, and against the covariates themselves. Such plots
may be produced both for predictors which appear in the model, and for potential covariates
that may need to be accounted for. Any apparent structure in these plots indicates a problem
with the model. However, in many climate datasets such plots contain too many data points
to distinguish any structure. For this reason, rather than plotting individual residuals we
focus on summary statistics for residual measures over subgroups of observations. The
software computes mean Pearson residuals for each month, year and site. This allows the
modeller to check very quickly that the model captures the seasonal and regional structure
in the data, along with any trends.

To aid the interpretation of such mean residuals, it is helpful to calculate their standard
errors, which can be converted into confidence bands if desired. Suppose that all residuals
are expected to have mean µε and variance σ2

ε under the model, and a mean residual (r,
say) is computed over a large subset of M cases. Then 95% limits for this mean are at
µε ± 1.96s.e.(r), where s.e.(r) is the standard error of the mean residual under the model.
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This standard error can be calculated as follows: the mean residual is defined as

r =
1

M

T∑
t=1

S∑
s=1

χtsrts , (33)

where T is the number of days in the subset under consideration; S the number of sites; χts is
an indicator taking the value 1 if a residual is available for site s on day t, 0 otherwise; and rts
is the residual at site s on day t. Since M is the total number of observations in the subset,
we have M =

∑T
t=1

∑S
s=1 χts. When there is dependence between residuals at different sites

on the same day (but independence between days), denote by cs1s2 the correlation between
residuals at sites s1 and s2 on the same day. Then we have

Var(r) =
1

M2

T∑
t=1

S∑
s1=1

S∑
s2=1

χts1χts2cov(rts1 , rts2) =
σ2
ε

M2

S∑
s1=1

S∑
s2=1

T∑
t=1

χts1χts2cs1s2

=
σ2
ε

M2

S∑
s1=1

S∑
s2=1

ns1s2cs1s2 , (34)

where ns1s2 is the number of days for which sites s1 and s2 both have data. Taking the square
root of (34) now yields the required standard error.

In implementing (34), the software calculates a single set of inter-site correlations {cs1s2}
from the entire dataset, and applies these to all subsets.

E Simulation

This section gives an overview of the algorithms used in the software for simulation of daily
sequences using the fitted GLMs.

E.1 Random number generator

The simulation program makes extensive use of pseudo-random numbers. Rather rely on the
adequacy of generators ‘built-in’ to FORTRAN compilers (which are generally inadequately
documented, and occasionally use rather poor algorithms), the routines used here are based
on a uniform random number generator with excellent properties (Marsaglia and Zaman,
1991). These routines were written by myself together with Paul Northrop, and are suitable
for extensive simulation excercises. The random number generation code is included with
the software distribution. Full details, including documentation and references, are available
from http://www.homepages.ucl.ac.uk/~ucakarc/work/randgen.html.

http://www.homepages.ucl.ac.uk/~ucakarc/work/randgen.html
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E.2 Spatial dependence — continuous variables

To generate realistic sequences of simulated climate data at several sites simultaneously, it
is necessary to account adequately for the dependence between sites. The literature offers a
plethora of possible methods for generating such dependent sequences. This software offers
a limited, but hopefully adequate, range of options. All of these options are specified in such
a way that, given observations at some sites on a particular day, the conditional distribution
for missing observations at other sites can be calculated. This allows missing data to be
imputed.

For continuous random variables, a convenient way of generating dependent data is to
generate a multivariate normal random vector using a standard algorithm, and then trans-
form the resulting values so that they can be regarded as coming from the correct marginal
distributions. In this way, spatial dependence is completely characterised by the correla-
tion structure of the multivariate normal distribution. Furthermore, if some elements of a
multivariate normal random vector have been observed then a standard result enables us
to compute the conditional distribution of the remaining elements (which is still multivari-
ate normal) — this enables us to sample missing observations using the information in the
available data.

For gamma GLMs, the transformation to normality uses the Anscombe residuals (see
Appendix D). To generate a vector of dependent random variables in the GLM, we can
draw a vector of correlated Anscombe residuals from the appropriate multivariate normal
distribution and invert the residual transformation (which will depend on the means under
the model). In general, Anscombe residual transformations are approximate rather than
exact, but the approximation is extremely good in many cases.

Providing each pair of sites has an overlapping period of record, the residual correlation
for that pair can be estimated straightforwardly. Unfortunately however, the resulting set
of correlations for all pairs of sites is not guaranteed to be internally consisten. Moreover,
correlations cannot be estimated for pairs of sites whose periods of records do not overlap, or
for ungauged locations. To get round this, one might choose to adopt a valid spatial model
for the correlations. For small spatial scales, inter-site correlations tend to be so similar
that they can be regarded as effectively constant: in this case, the constant correlation
can be estimated as a weighted average of the available inter-site correlations with weights
proportional to the numbers of contributing observations for each pair of sites.

At larger spatial scales, however, it becomes necessary to account for the likely decay of
correlation with inter-site distance (and potentially direction). There are several commonly-
used spatial correlation models that can capture this behaviour. Currently the software
offers a choice of exponential and powered exponential correlation models (see Table 7); also
the option for the correlation to decay to a non-zero threshold rather than to zero at large
distances. This phenomenon has been observed in several data sets, and probably arises
from the relatively small scale of many study regions relative to the synoptic scales of the
weather systems affecting them: the overall characteristics of an individual system are likely
to affect all sites simultaneously on any given day, with enhanced inter-site dependence at
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local scales within the system.

The correlation models currently handled by the software can all be written in the general
form

ρ (d;θ, α) = α + (1− α) ρ∗ (d;θ) , (35)

where d is the inter-site distance, θ is a parameter vector, α is the limiting correlation at
large distances and ρ∗ (·; ·) is a ‘standard’ correlation model that decays to zero at large dis-
tances. The parameters (θ, α) are estimated by minimising a weighted least-squares objective
function:

S (θ, α) =
∑
i

ni [ri − ρ (di;θ, α)]2 , (36)

where the sum is over all pairs of sites with overlapping records; ri is the residual correlation
computed for the ith pair; ni is the number of residuals contributing to this correlation; and
di is the inter-site distance for this site pair.

Minimising (36) with respect to θ and α can be achieved by equating the gradient vector
to zero. Writing ρi = ρ (di;θ, α) and ρ∗i = ρ∗ (di;θ, α), we have

∂S

∂θ
= −2(1− α)

∑
i

ni (ri − ρi)
∂ρ∗i
∂θ

(37)

and
∂S

∂α
= −2

∑
i

ni (ri − ρi) (1− ρ∗i ) . (38)

For a given value of θ, (38) can be solved analytically to yield the corresponding optimal
value of α as

α̂ (θ) =

[∑
i

ni (ri − ρ∗i ) (1− ρ∗i )

]
/

[∑
i

ni (1− ρ∗i )
2

]
. (39)

For most correlation models, however, (37) does not have an analytical solution. For a given
value of α, the solution can in principle be found iteratively by specifying an initial estimate
θ(0) and then iterating to convergence the Newton-Raphson scheme

θ(t+1) = θ(t) −

[
∂2S

∂θ∂θ′

∣∣∣∣
θ
(t−1)

]−1
∂S

∂θ

∣∣∣∣
θ
(t−1)

. (40)

The Hessian ∂2S/∂θ∂θ′ can be derived from (37) as

∂2S

∂θ∂θ′
= −2 (1− α)

∑
i

ni

[
(ri − ρi)

∂2ρ∗i
∂θ∂θ′

− (1− α)

(
∂ρ∗i
∂θ

)(
∂ρ∗i
∂θ

)′]
.

The software implements a slightly modified version of this scheme in which, at each iteration,
the value of α is also updated using (39). A further refinement is that the adjustments in
each iteration of (40) are scaled if necessary to ensure that the values of θ always satisfy
any necessary constraints for the underlying correlation model. The resulting algorithm is
probably suboptimal, but it seems to be fairly stable and to produce reasonable results.
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E.3 Spatial dependence — binary variables

Incorporating spatial dependence into binary sequences is much more difficult than for con-
tinuous variables. Several options are available within this software. They are documented
fairly completely here since not all details have been published elsewhere.

Throughout this section we denote by St the number of sites we are studying on day t,
and by Yt = (Y1t . . . YStt)

′ a vector of binary variables corresponding to rainfall occurrence
at those sites. A logistic regression model allows us to calculate E (Yst) = pst, say.

E.3.1 Latent Gaussian variables

A conceptually simple approach to generating correlated binary variables is to start by
generating a set of correlated Gaussian variables Z = (Z1, . . . , ZSt) and then to define

Yst =

{
1 if Zs > τst
0 otherwise,

(41)

where the thresholds τst, . . . , τStt are chosen to ensure that P (Yst = 1) = pst as required
by the logistic regression model. Specifically, if the {Zs} are all standard normal variables
(i.e. with zero mean and unit variance), we need to set τst = −Φ−1(pst) where Φ(·) is the
distribution function of the standard normal distribution: standard algorithms are available
for computing this.

In this setup, dependence between sites s1 and s2 can be induced by specifying a corre-
lation, ρs1s2 say, between Zs1 and Zs2 . As this correlation varies between −1 and +1, so the
strength of dependence between Ys1t and Ys2t varies over its entire range. The idea seems first
to have been used by Pearson (1901). In the present context, the ‘latent correlations’ be-
tween each pair of sites are chosen so as to match the proportion of days for which both sites
experience rain. Specifically, suppose there are n days for which observations are available at
both sites s1 and s2. Then the observed proportion of days for which both sites experience
rain is n−1

∑
t Ys1tYs2t and the expected proportion is n−1

∑
t P (Zs1 > τs1t, Zs1 > τs2t) (the

sums here are over days for which both sites have data). Thus we choose the correlation
ρs1s2 to solve the equation∑

t

P (Zs1 > τs1t, Zs1 > τs2t) =
∑
t

Ys1tYs2t . (42)

For a given value of ρs1s2 , the probability on the left-hand side of (42) can be calculated
using algorithms for the bivariate normal distribution: the software uses that of Donnelly
(1973). A numerical search is then carried out to solve the equation for ρs1s2 .

The approach as just outlined has two drawbacks. First, by comparison with the other
binary dependence models discussed below it is relatively slow: latent correlations have to
be estimated separately for each pair of sites, and each of these requires repeated evaluation
of bivariate normal probabilities (the calculation of which is nontrivial despite the use of a
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fast algorithm) in the search for a root of (42). For a moderately large data set (say 40 or
50 years of daily data at 40 sites), it might take between 5 and 10 minutes to estimate these
correlations on a relatively fast modern machine — obviously the computing time increases
quadratically with the number of sites.

A second drawback, which is arguably more serious, is that the matrix obtained by
solving (42) for each pair of sites is not guaranteed to be positive definite, and is therefore not
necessarily a valid correlation matrix. This can cause problems in simulation, since simulation
algorithms for the multivariate normal distribution (required to generate a realisation of Z
on each day of simulation here) require that the correlation matrix is positive definite. In
practice, to overcome this problem it is necessary to postprocess the individual correlations
by fitting an appropriate spatial correlation model and then using the modelled correlations
as inputs to the simulation program. The software uses the algorithm described in Appendix
E.2 to fit spatial correlation models here.

A final problem, in some way related to the second drawback above, is that a solution to
(42) is not guaranteed. This is because as ρs1s2 varies from its minimum value of −1 to its
maximum value of +1, it can be shown that P (Ys1t = Ys2t = 1) varies correspondingly from
max (ps1t + ps2t − 1, 0) to min (ps1t, ps2t). Thus the right-hand side of (42) is constrained to
lie in the range ∑

t

[max (ps1t + ps2t − 1, 0) ,min (ps1t, ps2t)] .

However, the left-hand side is not so constrained and — either due to sampling variation
or to slight mis-specification of the modelled marginal probabilities by the GLM — can
occasionally produce values outside this range. If this occurs for a pair of sites, the software
estimates the corresponding latent correlation as −1 or +1 as appropriate, and issues a
warning message.

Given a positive definite correlation matrix, simulation of a dependent vector of rainfall
occurrence indicators is straightforward using this dependence structure: for each day of
simulation, calculate the marginal probabilities as predicted by the GLM, simulate a vector
Z from a multivariate normal distribution with the specified correlation structure, and then
threshold the simulated Zs according to equation (41).

Imputation is more difficult, however. Essentially, what is required is to simulate from
the conditional distribution of Z given the observed elements of Yt and then to generate the
missing elements by thresholding the generated Zs as before. The problem is in simulating
from the conditional distribution of Z. A näıve algorithm is as follows:

1. Sample a value of Z from its unconditional distribution

2. If all of the observed elements of Yt are consistent with the corresponding elements of
Z, continue; otherwise reject the sampled Z and return to step 1.

The problem with this algorithm is that if observations are available at many sites, the
probability of simultaneously generating a Z that is consistent with all of the available
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observations will typically be rather small. Therefore, many attempts will be required before
an acceptable Z is generated in step 1; this makes the algorithm very slow.

As an alternative therefore, one might consider speeding up the algorithm by retaining
those elements of Z that are consistent with the corresponding observations and then re-
sampling the remainder from their distribution conditional on the retained elements; this
procedure can then be iterated until all of the generated values are consistent with the ob-
servations. Unfortunately, it can be shown that this procedure is incorrect and does not lead
to a sample from the distribution of Z given Yt.

The solution adopted in the software is to deal with the problem in two parts. Specifically,
denote by Ỹt the vector of observed components of Yt and by Z̃ the corresponding elements
of Z. Then the first step is to sample from the joint distribution of Z̃ conditional on Ỹt;
the second step is to sample the remaining elements of Z from their distribution given Z̃
(which is straightforward since the joint distribution is multivariate normal) and to threshold
these remaining sampled elements to impute the missing values of Yt. Efficient sampling
from the distribution of Z̃|Ỹt itself is nontrivial: the algorithm implemented here is a Gibbs
sampler in which the elements of Z̃ are initialised by sampling each one independently from a
normal distribution truncated at the corresponding threshold τ ; and then repeatedly visiting
each element of Z̃ in turn and sampling from its distribution conditional on the current
configuration of the remaining elements and of Ỹ. Specifically, according to the correlation
model outlined above, the unconditional distribution of Z̃ is multivariate normal with mean
0 and covariance matrix Σ, say. Let Z̃i denote the ith element of Z̃ and let Z̃(−i) denote the
vector of the remaining elements. Moreover, let σ(ii) denote the ith diagonal element of Σ−1

and let Σ−1(i,−i) denote the ith row of Σ−1 with the ith element removed. Then, using standard
results for conditioning in the multivariate normal distribution, as well as the formula for

the inverse of a partitioned matrix REFS!!! , it may be shown that the distribution of Z̃i

given Z̃(−i) is normal with mean −Σ−1(i,−i)Z̃(−i)/σ
(ii) and variance 1/σ(ii). To update the value

of Z̃i therefore requires sampling from this normal distribution, truncated as appropriate for
consistency with the corresponding observation Ỹi say.

In the present context, a single iteration of the Gibbs sampler consists of a sequence
of updates in which every element of Z̃ is visited once. If the procedure is repeated for a
large number of iterations, the resulting Z̃ will be sampled approximately from the required
distribution. Obviously, there is a tradeoff here between accuracy and computation time: the
higher the number of iterations, the closer will be the distribution of the sampled Z̃ to the
required target but the overall simulation time will increase. For the purposes of imputing
binary wet/dry indicators however, excessive accuracy is probably unnecessary and speed of
execution is a priority. The software therefore uses just 10 Gibbs iterations when imputing
rainfall occurrence indicators using this spatial dependence model. This choice was made
on the basis of plots such as Figures 6 and 7. These have been produced for a hypothetical
network of five sites of which site 2 is known to be dry and the remainder are wet, and with
latent inter-site correlations ranging from 0.61 to 0.96. The top panel of Figure 6 shows a
random sample of 50 initial configurations for the Gibbs sampler in this situation, with each
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Figure 6: Gibbs sampling to draw from distribution of Z̃|Ỹt at five sites, with intersite
correlations in Z̃ ranging from 0.61 to 0.96. Site 2 is known to be dry and the remaining
sites are wet; the grey region in each plot shows the values of Z̃ that are inconsistent with
these observations. Blue lines in each plot are contours of the bivariate densities from which
the elements of Z̃ would be drawn in the absence of observations. 50 separate realisations
have been produced: each has been initialised by sampling the elements of Z̃ independently
from their marginal distributions (top plot). Bottom plot shows the sampled configurations
after 10 iterations of the Gibbs sampler.
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Figure 7: Convergence of the Gibbs sampler for Z̃: logarithm of joint density of sampled
observations over 100 Gibbs iterations, for each of 50 samples.

element of Z̃ sampled independently as described above. The independent sampling shows
up clearly: the sampled points are not aligned along the contours of the correlated joint
distributions of the Z̃-pairs. However, by the tenth iteration of the sampler (bottom panel)
the points look much more plausibly like samples from these joint distributions. Figure 7
is another way of exploring the convergence of the sampler: here, at each iteration, the

quantity log π
(
Z̃
)

is plotted for every one of the 50 initial configurations, where π(·) is the

joint density of a multivariate normal distribution with mean 0 and covariance matix Σ.
The figure shows that the initial configurations typically have a very low joint density, but
that this rapidly increases within a few iterations to fluctuate around an equilibrium level
indicating convergence to the required distribution. According to this plot, all but one of
the 50 traces have reached the equilbrium level by around the tenth iteration.
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E.3.2 Hidden binary weather state

Over a wide range of spatial scales, spatial dependence in binary climate sequences at a daily
timescale (e.g. absence/occurrence of rainfall) is mainly due to the fact that all sites tend to
be influenced by the same weather systems on particular days. This process can be modelled
by including a hidden weather state which categorizes each day as ‘on’ or ‘off’ over the entire
area. For incorporation into a logistic regression model, it is convenient to model the effect
of such a hidden weather state on the log odds scale.

In this context, we consider that there is a random variable Xt associated with day t that
represents the ‘weather state’ on that day. Xt = 1 with probability αt (representing a ‘wet
day’) and 0 otherwise (a ‘dry day’). Xt is not directly observable.

The {Yst} are modelled as conditionally independent given Xt. The probability of rain
at each site on day t is modelled using

ln

(
P (Yst = 1|Xt = x)

1− P (Yst = 1|Xt = x)

)
= ln

(
pst

1− pst

)
+ x ln a+ ln bst (αt, pst, a) . (43)

Here ln a is constant for all sites and days, and is free over the range (−∞,∞). ln bst(.) is a
function of αst, pst and a, chosen to ensure that the unconditional probability of rain at site
s is pst. We abbreviate it to bst for convenience. Some straightforward manipulation enables
us to calculate bst from the remaining parameters.

It can be shown that no matter how large a is, we cannot make P (Yst = 1|Xt = 1)
arbitrarily close to 1 if pst < αt. Similarly, we cannot make P (Yst = 1|Xt = 0) arbitrarily
close to zero if pst > αt. This indicates a limitation of this particular structure.

The covariance structure of model (43) can be derived. The covariance between Ys1t and
Ys2t (s1 6= s2) is defined as P (Ys1t = Ys2t = 1)− ps1tps2t, and is equal to

cov (Ys1t, Ys2t) =
(1− α)ps1tps2t (1− ps1t) (1− ps2t) (1− bs1t) (1− bs2t)

αt [1− ps1t (1− bs2t)] [1− ps1t (1− bs2t)]
. (44)

Note that this covariance is not explicitly dependent on inter-site distance: thus this particu-
lar dependence structure is probably unsuitable for use in catchments that are large relative
to the typical scale of weather systems that affect them so that inter-site correlations vary
appreciably in magnitude for different pairs of sites.

This spatial dependence model involves two unknown parameters on any given day: αt
and a. An obvious choice for αt is the mean of the {pst} on day t. In this case the marginal
predictions of the GLM at all sites are used to determine whether a day will be ‘wet’ or
‘dry’. Thus features such as seasonality are automatically incorporated into the weather
states, since these should be reflected in the {pst}.

How to choose a is less obvious because the sequence ofXs is not observed. Note, however,
that given the ps predicted by the GLM, the corresponding α can be calculated. In this case,
given the observed Y values it is possible, numerically, to obtain a maximum likelihood
estimate of a. However, this may be undesirable since the model structure, while plausible
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in some applications, is probably a fairly crude approximation of reality. An alternative
estimation procedure is a method of moments. In applications, it is often important to
reproduce the spatial coverage of a binary random field (i.e. the proportion of 1s among the
sites). The software therefore chooses a so as equate the observed and theoretical variances
of the coverage distribution. The theoretical variance can be derived from the expression
for covariances at (44). The observed variance can be calculated straightforwardly from the
time series of coverages, weighting each day by the number of active sites. Equating the two
can be achieved using straightforward numerical methods.

Imputation of missing data is straightforward under this spatial dependence structure.
Suppose on a particular day we observe Y1t = y1, . . . , Ykt = yk (s < St), and wish to fill in
the remaining values Y(k+1)t, . . . , YStt. Rearranging (43), we find that

P (Y1t = y1, . . . , Ykt = yk|Xt = x) =
∏
ys=1

axbstpst
1− pst (1− axbst)

∏
ys=0

(
1− axbstpst

1− pst (1− axbst)

)
.

Now we can use Bayes’ Theorem to find the conditional probability distribution of Xt on the
basis of the observed Y s:

P (Xt = 1|Y1t = y1, . . . , Ykt = yk) =
P (Y1t = y1, . . . , Ykt = yk|Xt = 1)∑1

x=0 P (Y1t = y1, . . . , Ykt = yk|Xt = x)P (Xt = x) .
(45)

Recalling that P (Xt = 1) = α = 1 − P (Xt = 0), we can therefore impute missing data by
simulating Xt = 1 with probability given by (45), and then sampling the remaining missing
sites independently from (43) as before.

E.3.3 Modelling the coverage distribution

One feature of the hidden weather state model above is that the probability of all sites being
in the same state (0 or 1) cannot be made arbitrarily close to 1. This may not be a problem
for some applications; however, in some problems (for example rainfall modelling at small
spatial scales) it is common for the distribution of coverage to be ‘U-shaped’ with a high
concentration at both 0 and 1. An alternative approach to the generation of dependent
binary sequences is to address the dependence directly through the coverage distribution,
thus guaranteeing that simulations will reproduce this important feature.

In this alternative model therefore, a (non-unique) dependence structure can be specified
for Yt through the distribution of Zt =

∑St
s=1 Yst. Since the marginal occurrence probabilities

(i.e. the psts) vary from day to day, so does the distribution of Zt — in particular, we have
E (Zt) =

∑St
s=1 pst.

A flexible family of distributions for discrete random variables taking values in {0, 1, . . . , St}
is the Beta-Binomial family:

P (Zt = z) =

(
St
z

)
Γ (αt + z) Γ (St + βt − z) Γ (αt + βt)

Γ (αt + βt + St) Γ (αt) Γ (βt)
(z = 0, 1, . . . , St) , (46)
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for some parameters αt, βt ∈ R+. For small values of St, these probabilities can be evaluated
cheaply using a recurrence relation. The mean and variance of the distribution are

Stαt
αt + βt

and
Stαtβt (αt + βt + St)

(αt + βt)
2 (αt + βt + 1)

, (47)

respectively. The uniform distribution corresponds to the special case αt = βt = 1. If
αt = 0, βt 6= 0 then P (Zt = 0) = 1, and if βt = 0, αt 6= 0 then P (Zt = St) = 1. The case
when αt = βt = 0 is discussed below.

It is convenient to reparametrise the Beta-Binomial distribution here: set

θt =
αt

αt + βt
and φt = αt + βt , (48)

so that

αt = θtφt , βt = φt (1− θt) , E (Zt) = Stθt and Var (Zt) =
Stθt (1− θt) (φt + St)

φt + 1
.

(49)
We can think of θt as a mean value parameter, and φt as a dispersion parameter (in fact,
φt essentially controls the tendency of the distribution to be concentrated either at its ex-
tremities or around its mean). It is convenient, and not implausible, to assume that φt = φ
is constant for all t, so that θt (which is known, since it can be calculated from the logistic
regression model) is the only time-varying parameter of the distribution. As θt varies then,
so we hope to reproduce typical ‘summer’ and ‘winter’ coverage distributions for example.

The reparametrisation also allows us to investigate the shape of the distribution when
αt = βt = 0. In this case, we have φ = 0. If we consider limφ→0 P (Zt = 0) with θt
fixed, we find that in the limit Zt takes the values 0 and St with probabilities 1− θt and θt
respectively. At the other extreme, it can be shown that the limiting distribution as φ→∞ is
Binomial with parameters St and θt. Since the Binomial arises if all the Ysts are independent
and identically distributed, we see that φ can be regarded as an overall summary of the
dependence among the Ysts — small values of φ correspond to strong dependence.

Given data {(St, Zt, θt) : t = 1, . . . , T}, a natural way to estimate the dispersion param-
eter φ is via a method of moments. Note that

E

(
(Zt − Stθt)2

Stθt (1− θt)

)
=
φ+ St
φ+ 1

= E
(
R2
t

)
say.

Hence

E

(
T∑
t=1

R2
t

)
= T +

1

φ+ 1

T∑
t=1

(St − 1) ,

so that a natural estimator of φ is

φ̂ =

∑T
t=1 (St − 1)∑T
t=1 (R2

t − 1)
− 1 . (50)
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In the simple case where all the psts are equal and the Y s are independent, we have
Zt ∼ Bin (St, θt), and Var (Zt) = Stθt (1− θt), whence E (R2

t ) = 1. If all the R2
t s were equal

to 1, (50) would give φ̂ = ∞ (corresponding to independence): overdispersion results in
lower values of φ̂ as expected.

To simulate from this model, a natural strategy is to sample the number of wet sites
from the distribution of Zt, and then to allocate the positions of these wet sites. However,
this will only yield sequences with the correct properties if the conditional probabilities
of rain at each site, given the overall number of wet sites, are correctly specified. This
can be achieved providing a valid joint distribution can be found for Yt and Zt. We now
describe the algorithm used to find such a joint distribution (which may not be unique). The
subscript t is now unnecessary, so we drop it and write Y, Z. We assume initially that the
given distribution of Z is compatible with the individual probabilities of the Y s (this is not
guaranteed, as we will see below).

From our earlier notation, we have P (Ys = 1) = ps. We also define πz = P (Z = z),
and ws,z = P (Ys = 1 and Z = z). A first step in determining a joint distribution of Y and
Z is to find {ws,z : s = 1, . . . , S; z = 0, . . . , S}, from which we can calculate the conditional
probabilities at each site:

P (Ys = 1|Z = z) =
ws,z
πz

. (51)

The following relationships must hold:

0 ≤ ws,z ≤ πz ; (52)
S∑
z=0

ws,z = ps ; and (53)

S∑
s=1

ws,z = zπz . (54)

The second of these is the Law of Total Probability; the third can be seen by noting that
E [(

∑
s Ys)|Z = z] = z. But

E

[(∑
s

Ys

)∣∣∣∣∣Z = z

]
=
∑
s

P (Ys = 1|Z = z) =
∑
s

ws,z
πz

,

and the condition follows.

To visualise the problem, it is helpful to lay the ws out in the form of a contingency table,
as in Figure 8. The only constraint which is not apparent from this is (52).

The algorithm developed here is based on linear programming ideas, but takes advantage
of the rather tight constraints to speed up the search for the ws. Additionally, it is insensitive
to the order in which sites are considered . The basic procedure is to allocate a row of the
table at a time, starting with ws,0 = 0 (s = 1, . . . , S) and noting that ws,S = πS (s = 1, . . . , S)
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s

1 2 · · · S
TOTAL

0 0 0 · · · 0 0

1 w1,1 w2,1 · · · wS,1 π1

2 w1,2 w1,2 · · · wS,2 2π2

z ...
...

...
. . .

...
...

S πS πS · · · πS SπS

TOTAL p1 p2 · · · pS E(Z)

Figure 8: Contingency table illustrating restrictions on the weights
{ws,z : s = 1, . . . , S; z = 0, . . . , S}.

— both of which follow from constraints (52) and (54) above. As each row is allocated,
the constraints on the remaining entities will change. Specifically, suppose we have allocated
rows 0, 1, . . . , z − 1 and are currently considering row z ≤ S − 1. Constraints (52) and
(54) above are unchanged. If we define ps|z = P (Ys = 1 and Z ≥ z), then constraint (53)
becomes

S∑
j=z

ws,z = ps|z = ps −
z−1∑
j=0

ws,z . (55)

Since we know that ws,S = πS, we must have ws,z ≤ ps|z − πS for z ≤ S − 1. A further
inequality can be deduced from constraint (52) applied to the subsequent rows of the table:
ps|z+1 =

∑S
j=z+1ws,j ≤

∑S
j=z+1 πj ⇒ ps,z−ws,z ≤

∑S
j=z+1 πj, so that ws,z ≥ ps|z−

∑S
j=z+1 πj.

Putting these inequalities together we must have, for z ≤ S − 1,

max

(
0, ps|z −

S∑
j=z+1

πj

)
≤ ws,z ≤ min

(
πz, ps|z − πS

)
. (56)

Writing the lower and upper bounds as LBs,z and UBs,z respectively, and summing, gives

S∑
s=1

LBs,z ≤
S∑
s=1

ws,z ≤
S∑
s=1

UBs,z . (57)

Now from (54) above, we require
∑S

s=1ws,z = zπz. Hence, providing
∑S

s=1 LBs,z ≤ zπz ≤
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∑S
s=1 UBs,z, we can set

ws,z = LBs,z +
zπz −

∑S
s=1 LBs,z∑S

s=1 UBs,z −
∑S

s=1 LBs,z

(58)

for each s, and proceed to the next row of the table. If the desired row total zπz is outside

the interval
[∑S

s=1 LBs,z,
∑S

s=1 UBs,z

]
then we must return to a previous row and re-allocate

some of the joint probabilities. The following result is useful:

Result: providing the entries in rows 0 to z − 1 of the table all satisfy inequalities of the
form (56), the inequality

∑S
s=1 UBs,z ≥ zπz is automatically satisfied.

The proof is omitted, since it is not particularly instructive and the margin is too small
to contain it. �

The result tells us that in our algorithm, the only problem that can arise is when∑S
s=1 LBs,z > zπz. Since LBs,z = max

(
0, ps|z −

∑S
j=z+1 πj

)
, the only way around this

is to re-allocate some probabilities so as to reduce ps|z at sites where ps|z −
∑S

j=z+1 πj > 0

(because the πs are fixed), with a corresponding increase at sites where ps|z−
∑S

j=z+1 πj < 0.
If this cannot be achieved, the given distribution of Z is incompatible with the marginal
probabilities of the Y s.

We are now in a position to summarise the algorithm for calculating the ws. For each z:

1. Compute ps|z = ps −
∑z−1

j=1 ws,j.

2. Compute LBs,z = max
(

0, ps|z −
∑S

j=z+1 πj

)
and UBs,z = min

(
πz, ps|z − πS

)
.

3. Compute
∑S

s=1 LBs,z and
∑S

s=1 UBs,z.

4. If
∑S

s=1 LBs,z ≤ zπz, calculate the ws for the current row according to (58). Otherwise,
re-allocate some probabilities in previous rows of the table, if possible. For practical
purposes, when re-allocating probabilities we try to avoid setting any value of ws,z to
either 0 or πz (except when z = 0 or S), since this can lead to problems in imputation
(see below) and is unrealistic.

The joint distribution of Y and Z is only partially specified by the ws in Figure 8, since
the dependencies among the Y s are not represented. However, for simulation purposes it is
not necessary to specify the distribution completely: all that is required is to sample one
site at a time and then update the probabilites at the remaining sites to condition upon the
sampled value. It can be shown that this updating can be done using the algorithm of the
previous section.



E SIMULATION 100

The discussion so far has assumed that the distribution of Z is compatible with the
marginal probabilities of the Y s. This is not guaranteed — obvious examples of incompat-
ibility arise when P (Z = S) > mins P (Ys = 1) and when P (Z = 0) > mins P (Ys = 0).
When simulating long sequences, it is almost inevitable that at some stage we will encounter
a situation where the specified probabilities are incompatible with the distribution of Z. If
this occurs, to continue simulation we must either adjust the probabilities or the distribution
of Z.

In practice, incompatibility usually occurs when one or two of the individual ps are very
different from the majority — in many situations, this is unrealistic (it is usually related
to dependence upon previous days’ values, and the problem can be reduced by including
averages of previous days’ values as covariates). Since the objective of this spatial dependence
model is to reproduce a plausible distribution for the number of wet sites, the software deals
with incompatibility by modifying the ps rather than the distribution of Z. Specifically, we
shrink the ps towards their mean i.e. for each s replace ps with

ps − λ (ps − θ) , (59)

where λ ∈ (0, 1), and θ is the mean of the ps (and the mean-value parameter of the beta-
binomial distribution — see equation (49)). The expected number of wet sites is unchanged
by this adjustment. For small values of λ, the adjustment is a small one, in which case it may
need to be repeated until a compatible set of probabilities is found. Repeated adjustments are
guaranteed to find a compatible set of probabilities, since in the limit all of the probabilities
are equal and, in this limit, it can be shown that at least one joint distribution exists.

Imputation using this model is, again, straightforward. Without loss of generality, we
assume that the values of Y1, . . . , Yk are observed, and that Yk+1, . . . , YS are missing. The
starting point is the table of joint probabilities {ws,z}. We work with the ‘observed’ sites
one at a time, at each stage updating both the distribution of Z, and the probabilities of
rain at the remaining sites, to condition on the observations. The procedure differs from
the ‘unconditional’ case only insofar as we take the observed values of Y1, . . . , Yk rather than
simulating them.



Known bugs and problems

The following problems are known to occur within the software. Please provide further bug
reports to me (richard@stats.ucl.ac.uk) in the unlikely event of there being any . . .

• For Windows systems running both 32- and 64-bit R installations, problems have been
encountered when running Rglimclim under 32-bit R (a common symptom is a long
string of error messages about gamma or digamma functions when fitting models). I
don’t understand the cause of this, since the supplied Windows distribution contains
both 32- and 64-bit binaries. The resolution is to use 64-bit R where possible, although
I would welcome any suggestions for more satisfactory solutions.

• If a definition file created under Dos or Windows is used on a Unix system, character
strings may read incorrectly. The reason is the extra line feed character (^M) used by
Dos/Windows: the software reads this as part of the input. This problem may manifest
itself via site names or attributes appearing incorrectly (if at all) in output files. The fix
is to run a utility such as dos2unix / fromdos / whatever-the-name-is-on-your-system,
on the definition file first.

• Conversely, if a definition or data file created under Unix is used on a Windows system,
the absence of line feed characters can cause problems and produce ‘end of file’ error
messages. In Windows, the easiest way to fix this is to open the offending definition /
data file in WordPad and save it without making any changes: this will automatically
append the required line feed characters.

• If the fitting programs terminate abnormally, they can leave large temporary files lying
around. These need to be manually deleted.

Revision history

30th January 2014: (Version 1.2-0):

• Added an external.files argument to the GLCsim() routine, to allow users
easily to run simulations driven by different sets of predictor data. This is useful,
for example, when downscaling climate model outputs if the user wants to explore
the sensitivity of downscaled scenarios to the choice of climate model.

• Improved the plot of inter-site correlations in the plot method for objects of
class GLC.modeldef: opacity is now used to indicate the sample size available for
calculating correlations at each pair of sites (points with more data appear darker).
The purpose of this is to prevent the user from overinterpreting correlations that
are estimated very imprecisely.

101
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• Fixed a bug in the maximum likelihood estimation of dispersion parameters in
gamma models, which was causing warning messages in 32-bit Windows installa-
tions under some circumstances.

14th November 2013: (Version 1.1-0):

• Added verbosity argument to the GLCfit() routine, allowing the user to control
the amount of information that is written to screen while fitting models.

• Fixed an error in make.siteinfo() that caused it to crash when there is only
one site.

• Fixed an error in the simulation code that caused it to crash when the user requests
simulation of a logistic regression model without an associated “Intensity” model.

30th October 2013: (Version 1.0-2):

• Corrected some overenthusiastic trapping of negative values in models with Gaus-
sian responses.

• Corrected (I think) an error that would occasionally result in Fortran getting
confused about which files were connected to which units when a problem was
encountered during fitting. The symptom of this error was a message

Input file error: last successful access was for data on 0/ 0/ 0.

If anybody still gets this message (and their input files are correct!) please let me
know.

• Corrected a bug that resulted in incorrect output on the first day of imputation,
in situations where the first record in a data file is later than the date of any
lagged values required to initialise the simulation / imputation process.

• Corrected the text of error messages relating to invalid values of the response
variable when using logistic or gamma models.

19th October 2013: (Version 1.0-1):

• Corrected an inconsistency in the code for reading external predictor values from
file: the missing value flag was incorrectly set in the code as −9999.99 instead of
−9999.9.

• Corrected an error in the internal code for pseudo-random number generation, to
ensure that if the random number seed is reset within an R session then the Rglim-
clim internal random number generator is completely reset (the original version
did not reset array pointers; nor did it prevent the use of ‘spare’ random normal
deviates from the Box-Müller algorithm).

• Corrected the routine that checks for the existence of required input files when
simulating, so that files of empirical correlations are no longer required to be
present unless the model specifically needs them;
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• Corrected an error in the code for plotting inter-site correlations;

• Corrected an error in the anova method for fitted model objects, relating to
comparisons of models with different numbers of site effects;

• Made some changes to the manual (e.g. added Appendix A.2 on multivariate
modelling).

8th October 2013: First public release (1.0-0) of Rglimclim, building on the final Fortran
version of Glimclim.
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