
The Analysis of Data Perturbed by PRAM

A.D.L. van den Hout

November 1999



2



Contents

Acknowledgements 5

1 General Introduction 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 The Need for Disclosure Control . . . . . . . . . . . . . . . . . . . . . 3
1.3 Current Techniques of Disclosure Control . . . . . . . . . . . . . . . . 4
1.4 PRAM, Basic Ideas . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 The Moment Estimator . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Perturbations Similar to PRAM 11
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Misclassification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Randomized Response . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4 Incomplete Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Invariant PRAM 17
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Invariant PRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3 Two-Stage PRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.4 Using PRAM to Protect Tabular Data . . . . . . . . . . . . . . . . . 21
3.5 Applying PRAM Several Times . . . . . . . . . . . . . . . . . . . . . 22

4 Two-Way Contingency Tables 29
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2 Difference of Proportions . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.3 Relative Risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.4 The Odds Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34



4.5 Pearson Chi-Square Test . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5 EM Algorithm 37
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.2 General Form of the Algorithm . . . . . . . . . . . . . . . . . . . . . 38
5.3 The EM Estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.4 Two Estimators Compared . . . . . . . . . . . . . . . . . . . . . . . . 46
5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6 Loglinear Analysis 49
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.2 Standard Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.3 Loglinear Analysis and the Moment Estimator . . . . . . . . . . . . . 53
6.4 Loglinear Analysis and the EM Algorithm . . . . . . . . . . . . . . . 54
6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

7 Logistic Regression 59
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
7.2 Standard Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
7.3 A Perturbed Outcome Variable: Newton Raphson . . . . . . . . . . . 62
7.4 A Perturbed Outcome Variable: EM Algorithm . . . . . . . . . . . . 64
7.5 A Perturbed Independent Variable . . . . . . . . . . . . . . . . . . . 67
7.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Conclusion 71

References 73

Summary 77



Acknowledgements

This report is written under the authority of Statistics Netherlands (CBS). The
research took place at the CBS at the Department of Statistical Methods and was
part of a two-year post-Master’s program at the University of Delft (TU Delft). The
report was presented and defended at 30 November 1999 at the TU Delft in front
of a committee.

The committee members:

- prof dr R.M. Cooke, TU Delft
- prof dr ir P. Kooiman, CBS, Voorburg
- dr L.C.R.J. Willenborg, CBS, Voorburg
- dr C. Kraaikamp, TU Delft
- dr H.P. Lopuhaä, TU Delft

I would like to thank Cor Kraaikamp, Leon Willenborg, Peter Kooiman and Peter-
Paul De Wolf for their comments and suggestions.

Ardo van den Hout
Voorburg, November 1999





Chapter 1

General Introduction

1.1 Introduction

The Post RAndomisation Method (PRAM) was introduced in Kooiman et al. (1997)
as a method for disclosure protection of microdata files (see also Gouweleeuw et al.,
1998). A microdata file consists of records and each record contains individual data
of respondents. The PRAM procedure yields a new microdata file in which the
scores on certain variables in the original file may be changed into different scores
according to a prescribed probability mechanism. The randomness of the procedure
implies that matching a record in the perturbed file to a record of a known individual
in the population could, with a high probability, be a mismatch. The recipient of
the perturbed data is informed about the probability mechanism which is used in
order that he can adjust his statistical analysis and take into account the extra
uncertainty caused by applying PRAM.

This report explains PRAM and discusses how statistical analysis can be ad-
justed when variables are perturbed by PRAM. Because PRAM always concerns
categorical variables - variables with a finite number of values - we discuss mainly
categorical data analysis. We do not discuss the extent of randomness which the
PRAM procedure needs to protect the data satisfactory. This randomness, that
is, the transition probabilities that scores on certain variables change into different
scores, should be determined before the microdata file is perturbed, see Willenborg
(1999). In this report we assume that the randomness of the PRAM procedure is
known. So the main problem in this report is the problem of the recipient of the
data: given the perturbed file and the information on the extent of the perturbation,
how can standard statistical analysis be adjusted?

PRAM is not yet applied in practice but research in the applicability of the
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2 Chapter 1. General Introduction

method is in progress. We hope that this report contributes to the understanding
of the possibilities and the problems involved.

Although the PRAM method is fairly new and, as far as we know, there is no
literature concerning adjustment of data perturbed by PRAM, the situation bears
close resemblance to analysis of data subject to misclassification, analysis of data
obtained by using randomized response and analysis of incomplete data. Methods
used in these situations provide the main tools of the methods presented in this
report.

This report is not only a theoretical research into analyses of data perturbed
by PRAM, it is also intended as a guidebook to people who actually have to work
with these data. Therefore we have taken some effort to explain statements and
provide the reader with examples and references. The much used scheme is to start
with an easy case and extend it to the general case. Not every discussed analysis
is considered in its most general form though, but we think that concerning the
analyses discussed and the techniques used, the first and most important steps are
made.

The report is organized as follows. The remaining of this chapter explains the
need for statistical disclosure control of microdata files and describes current tech-
niques of disclosure control in particular as used at Statistics Netherlands (CBS).
Furthermore, it introduces PRAM and discusses an estimator of the original fre-
quencies in the microdata file perturbed by PRAM. This estimator is called the
moment estimator.

In Chapter 2 we compare the situation in which data are perturbed by PRAM
with data subject to misclassification, data obtained by randomized response and
incomplete data. The similarity between these situations: the scores which are
missing or the scores which are only known via perturbed scores can be considered
as stochastic variables.

Chapter 3 describes a special way to apply PRAM, invariant PRAM, and dis-
cusses an alternative to the way the analyst is provided with data perturbed by
PRAM. In this discussion we briefly consider disclosure risk when data are per-
turbed by PRAM.

In the remaining chapters the discussion concerns the adjustment of statistical
analysis when variables are perturbed by PRAM. Chapter 4 discusses basic analysis
of contingency tables. Quantities as the difference of proportions, relative risk and
the odds ratio are considered when data are perturbed by PRAM.

Chapter 5 is introductory to the EM algorithm which is used in the remain-
ing chapters. An alternative to the moment estimator is given, we called it the
EM estimator. The two estimators are compared and an important conjecture is
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formulated.

Chapter 6 and 7 introduce two analyses, loglinear analysis and logistic regression
respectively, and discuss how these analyses can be adjusted to take into account
the perturbation caused by applying PRAM.

In the conclusion of the report we summarize the problems concerning analysis
of data perturbed by PRAM and we give recommendations for future research.

1.2 The Need for Disclosure Control

In recent years there is a growing demand in society to have access to microdata files
which are collected at the CBS. The files which are passed on to analysts should be
protected against disclosure of identities of respondents.

Imagine you are the mayor of a big city in a small country and you are asked as a
citizen to participate in a survey. Would you cooperate? Of course it is guaranteed
that your name and address are not mentioned in the file with your answers, but is
that enough to protect your identity? If the city is mentioned together with your
profession, your identity is clear to whoever sees the file and is familiar with the
situation in your country. And even when the city is not mentioned, your identity
is liable to disclosure: there are not many mayors in a small country. Your gender,
for example, can in that case be a clue to your identity.

What to do? Of course you can decide not to cooperate. An alternative is to
take measures to prevent disclosure of your identity. For instance, you can report
that you work for the government, instead of reporting that you are the mayor. It
is also possible not to mention your profession at all and skip the related question.

In general, these measures are not necessary. The privacy of the respondents is
well protected. CBS protects the privacy of respondents, which can be individuals as
well as companies, by what is called statistical disclosure control. Disclosure control
applies not only to microdata, but also applies for instance to tables in which data of
respondents are processed. When a company is large, it is for instance possible that
information concerning the financial state of affairs of the company can be deduce
from unprotected tables with annual turnovers.

The example with the mayor shows that there is more to disclosure control than
simply leaving out name and address.
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1.3 Current Techniques of Disclosure Control

In order to protect the identity of respondents in a microdata file several measures
can be issued. I explain two of them which are currently in use at CBS and postpone
the third, PRAM which is not yet applied, to the next section.

When the concerning variable is categorical, the identity of the respondent can
be protected by global recoding. By this we mean that new categories are made
which include more respondents that the categories in the original file. This can be
necessary when a category in the original file contains just a few respondents. For
example, when we have a microdata file in which the variable profession has just
one respondent with the value ‘mayor’, we can make a new variable ‘working for the
government’ and include in this category not only the mayor, but also the people
in the original file who have governmental jobs. The identity of the mayor is then
protected not only by the number of people in the survey with governmental jobs,
but also by the number of people in the population with governmental jobs.

Another way to protect the identity of the mayor is to leave out his profession.
This procedure is called local suppression. When data are locally suppressed it
should always be checked whether there are other combinations which become rare
and can therefore lead to other disclosures. Locally suppressing scores in a microdata
file yields incomplete data.

When microdata are processed by using global recoding or local suppression,
there is always loss of information. This is inevitable: losing information is intrinsic
to statistical disclosure protection. Likewise, there will be loss of information when
data are protected by applying PRAM.

More information on statistical disclosure control in the Netherlands and abroad
can be found in a special issue of Netherlands Official Statistics (1999) which is
devoted to current disclosure control practices as well as research into the assessment
of the disclosure risk.

1.4 PRAM, Basic Ideas

This section describes PRAM, gives an idea how it can be applied as a method
for statistical disclosure control and introduces the notation used throughout the
report.

PRAM is a method for disclosure protection of microdata files. A microdata file
consists of records at the respondent level. Each record represents one respondent
and consists of scores on characteristic variables for that respondent.
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The main idea of PRAM as a method for disclosure protection of microdata files
is that PRAM produces a microdata file in which the scores on some variables for
certain records in the original file are changed into a different score according to
a prescribed Markovian probability mechanism. The randomness of the procedure
implies that matching a record in the perturbed file to a record of a known individual
in the population could, with a high probability, be a mismatch.

Note, that as soon as we want to use a file for statistical analysis and we treat
the respondents as a sample from a larger population, we have to take into account
the sample model. So, in the context of statistical analysis, applying PRAM means
introducing a second stochastic element when the original file is a sample from a
larger population. (The first stochastic element is the stochastic nature of the sample
model). It is important to realize that the perturbation issued by applying PRAM
is independent of the chosen sample model.

Let A, B, C, ... be categorical variables in the original file to which PRAM is
applied and let A∗, B∗, C∗, ... be the corresponding variables in the perturbed file.
Suppose A has K categories with scores 1, ..., K. PRAM is applied using transition
probabilities: let pkl = IP (A∗ = l|A = k) denote the probability that A∗ = l given
that the original score A equals k, for all k, l = 1, ..., K. The transition probabilities
are aggregated in a matrix. PA denotes the K×K matrix that has pkl as its (k, l)-th
entry. PA = (pkl) is called a PRAM matrix. Note that a PRAM matrix is a Markov
matrix, i.e., each row sums up to 1.

The PRAM matrix plays a central role when data are perturbed by PRAM.
First, the entries of the matrix determine the extent of the perturbation caused by
applying PRAM. Secondly, the PRAM matrix is needed when statistical analyses on
the perturbed data have to be corrected to take into account the perturbation. As
is mentioned before, in this report we do not discuss how the values of pkl should be
chosen, instead this report considers the problem of the recipient of the data: given
the perturbed file and the PRAM matrix, how can standard statistical analysis be
adjusted?

In this report the assumption is made that PA is invertible, although this is
strictly speaking not necessary for applying PRAM. However, it turns out that P−1

A

comes in handy when we want to estimate the frequency distribution of A in the
original file.

Applying PRAM to a microdata file means that per record the score on A is
liable to change in a different score. The scores per record which are the result of
this randomness are the scores on variable A∗ in the perturbed file. In this report
we describe this procedure as though A has been perturbed to A∗.

Let TA be the K×1 table (or vector) with the frequencies of the K possible scores
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on the variable A in the original file. (We do not make a distinction in notation
according to whether the original file is a sample or not.) TA(k) denotes the number
of records in the original file with score A = k. Let TA∗ be the K × 1 table with the
frequencies in the perturbed file.

Given TA, we can estimate IP (A = k) if the sampling design is known. In general
this is a complicated formula, unless the sampling design is self-weighting, in which
case IP (A = k) is estimated by TA(k)/n, where n is the number of respondents.
In this report we will assume that IP (A = k) can be estimated by TA(k)/n. To
estimate IP (A∗ = l) we use

IP (A∗ = l) = IP (A∗ = l, A = 1) + ... + IP (A∗ = l, A = K)

= IP (A∗ = l|A = 1)IP (A = 1) + ... + IP (A∗ = l|A = K)IP (A = K)

= p1lIP (A = 1) + ... + pKlIP (A = K). (1.1)

In other words, given TA, the distribution of TA∗(l) (= nIP (A∗ = l)) is a sum of K
independent binomial distributions: X1 ∼ Bin(TA(1), p1l), X2 ∼ Bin(TA(2), p2l), ...,
XK ∼ Bin(TA(K), pKl)

We give an example. Suppose that the variable A is gender, with scores 1 =
male and 2 = female and suppose PRAM is applied using

PA =

(
9/10 1/10
2/10 8/10

)
. (1.2)

When the original file contains 100 individuals, 99 male and 1 female, the perturbed
file will also contain 100 individuals. However, 10.7 of these individuals are expected
to be female. The idea is that when it is known that the original file contains 1
female, the probability that the identity of this female is disclosed in the perturbed
file should be small. In other words, given A∗

i = 2, the probability that female i in
the perturbed file is the female of the original file should be small. This is the case.
One has

IP (Ai = 2|A∗
i = 2) =

IP (A∗
i = 2|Ai = 2)IP (Ai = 2)

IP (A∗
i = 2)

, (1.3)

and (1.3) can be estimated using PA and the assumption that TA(k)/n is an estimate
of IP (A = k). This yields

8/10 · 1/100

1/10 · 99/100 + 8/10 · 1/100
' 0.075.

So far, we discussed applying PRAM to the values of one variable. Of course it
is possible to apply PRAM independently to different variables by using the method
sequentially.
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Three types of independence can be distinguished regarding PRAM. Applying
PRAM to A is called nondifferential with respect to B if for all l:

IP (A∗ = l| A = k, B = s) = IP (A∗ = l| A = k).

Inconsistencies can occur in a file when PRAM is applied non-differentially. When,
for instance, being in the possession of a driving licence or not being in the possession
of a driving licence is perturbed by PRAM non-differentially with respect to age, it is
possible that in the perturbed file a ten years old has a driving licence. Inconsistency
in a record can be a clue to disclosure, because in that case it is obvious that the
record has been affected by PRAM.

The term independent is used when PRAM is applied to more than one variable
and is as usual. Applying PRAM to A is independent of applying PRAM to B when

IP (A∗ = l, B∗ = t| A = k, Bi = s) =

IP (A∗ = l| A = k, Bi = s)IP (B∗ = t| A = k, B = s)

The third type of independence is independence of the perturbation with respect
to different records : applying PRAM to several records is independent when the
perturbation of the values in record j is not influenced by the values in record i
(i 6= j). For instance, when there is an upper limit to the amount of records that
can be perturbed, the perturbation is not independent with respect to the records.
In this report this type of independence will not play a role.

Besides applying PRAM to more than one variable sequentially, it is possible to
apply PRAM to more than one variable simultaneously. When we want to apply
PRAM to A and B with categories 1, ....., K and 1, ..., S respectively, we define

pkl,st = IP (A∗ = l, B∗ = t|A = k, B = s).

Applying PRAM now means that given record i with Ai = k and Bi = s, the values
A∗

i = l and B∗
i = s, are determined using the transition probabilities pkl,st.

When PRAM is applied to A and B independently and non-differentially with
PRAM matrices PA =

(
pA

kl

)
and PB =

(
pB

st

)
, the transition probabilities can be

written as

pkl,st = IP (A∗ = l, B∗ = t|A = k, B = s)

= IP (A∗ = l|A = k)IP (B∗ = t|B = s)

= pA
klp

B
st
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Let TAB be the cross-tabulation of variables A and B and let vec(TAB) denote the
KS×1 table of stacked columns of TAB. Together A and B can be considered as one
compounded variable with KS categories and frequencies given by vec(TAB). We
can define the PRAM matrix PAB ∈ IRKS for applying PRAM to the compounded
variable by:

PAB =




pB
11PA pB

12PA · · · pB
1LPA

...
. . . . . .

...
pB

L1PA · · · · · · pB
LLPA


 , (1.4)

where each pB
stPA is itself a K ×K matrix.

More theory and ideas regarding PRAM can be found in Kooiman et al. (1997),
Gouweleeuw et al. (1998) and De Wolf et al. (1997).

1.5 The Moment Estimator

What is the effect on statistical analyses when PRAM is applied to microdata?
Can standard analyses be adjusted to take into account the perturbation effected
by applying PRAM? These questions are essential when PRAM is discussed as a
possible method for disclosure control - indeed, they form the main subject of this
report. Different analyses demand different corrections. For some analyses the
correction is relatively easy. This section discusses the estimation of the original
frequencies. In the remainder of this report this estimation will be useful when
other statistical analyses have to be adjusted.

Let the notation be as in the previous section and let PRAM be applied to vari-
able A with categories 1, ..., K. Using the fact that TA∗(l) is a sum of K independent
binomial distributions, it follows from (1.1) that

IE [TA∗|TA] = P t
ATA. (1.5)

Thus, TA can be unbiasedly estimated by

T̂A =
(
P−1

A

)t
TA∗ . (1.6)

We call the estimator (1.6) of the original frequencies the moment estimator. Note
that PA has to be invertible in order for (1.6) to be well defined. Note also that it
is possible that the estimation yields negative frequencies.

The conditional covariance matrix of T̂A given TA is

V
(
T̂A|TA

)
=

(
P−1

A

)t
V (TA∗ |TA) P−1

A .
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(Kooiman et al., 1997). To deduce V (TA∗ |TA), we consider first the case of a 3×1-
table, afterwards we give the (co)variances in the general case.

When A has three categories, TA∗(l) is a sum of three independent binomial
variables: Xl ∼ Bin(TA(1), p1l), Yl ∼ Bin(TA(2), p2l) and Zl ∼ Bin(TA(3), p3l), for
l = 1, 2, 3. Because of the independence we can sum the variances:

V (TA∗(l)|TA) = TA(1)p1l(1− p1l) + TA(2)p2l(1− p2l) + TA(3)p3l(1− p3l).

Regarding the covariances we note that for l 6= j

C (TA∗(l), TA∗(j)|TA) = C (Xl + Yl + Zl, Xj + Yj + Zj|TA)

= C (Xl, Xj|TA) + C (Xl, Yj|TA) + ... + C (Zl, Zj|TA)

= C (Xl, Xj|TA) + C (Yl, Yj|TA) + C (Zl, Zj|TA)

= −TA(1)p1lp1j − TA(2)p2lp2j − TA(3)p3lp3j.

Since, because of the independence,

C (Xl, Yj|TA) = C (Xl, Zj|TA) = C (Yl, Xj|TA) = C (Yl, Zj|TA)

= C (Zl, Xj|TA) = C (Zl, Yj|TA) = 0.

An equivalency as C (Xl, Xj|TA) = −TA(1)p1lp1j is a property of the multinomial
distribution and can be found for instance in Johnson and Kotz (1969), Chapter 11,
or Agresti (1990), Chapter 12.

In the same way, the general case is given by

V (TA∗|TA) =
K∑

k=1

TA(k)Vk,

where, for k = 1, ..., K, Vk is the K × K covariance matrix of the outcomes l, j =
1, ..., K of the transition process of an element with true score k:

Vk(l, j) =





pkl(1− pkl) if l = j

−pklpkj if l 6= j
, for l, j = 1, ..., K

To conclude, the derivations in this section show that when PRAM is applied,
perturbed frequencies can be corrected when the PRAM matrix is known. Using the
PRAM matrix, it is also possible to estimate variances and covariances of the esti-
mated true frequencies. The moment estimator to estimate the original frequencies
is easy to understand and easy to implement. The possibility that this estimator
can yield negative estimated cell frequencies is a disadvantage because it conflicts
with standard analysis of a frequency table.
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Chapter 2

Perturbations Similar to PRAM

2.1 Introduction

Although PRAM is a new technique for statistical disclosure control, the problems
the analyst encounters when he wants to apply statistical analysis to data perturbed
by PRAM are not completely new. We can understand applying PRAM as misclassi-
fication on purpose and investigate statistical methods which work with misclassified
data. Also, data perturbed by PRAM bears close resemblance to data provided by
randomized response and results of research in this field should also be applicable.
Furthermore, there is extensive literature on incomplete data and although data
perturbed by PRAM is not incomplete in the sense that some records do not have
scores on a variable, the similarity is that we can consider scores which are missing
and scores which are only known via perturbed scores as stochastic variables. This
chapter goes to some length into the use of literature on misclassification, random-
ized response and incomplete data. We make the effort because we think that it can
be useful to further research on the analysis of data perturbed by PRAM. Fact is
that it was the basis of the results in this report. We did not make an extensive and
systematic research of literature and just want to mention what came along.

2.2 Misclassification

Misclassification is an easy concept. When a respondent is classified, there is a
certain probability that his score is classified as l, while it is in fact k. It has long
been recognized that categorical variables are often subject to misclassification and
that this can distort the results of statistical analysis. In Kuha and Skinner (1997)

11
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an example is given: misclassification in the 1991 population census of England and
Wales. Following this census, a census validation survey was carried out. In contrast
to the much larger census, in which data were collected by self-completion forms,
the validation survey employed experienced interviewers who used more detailed
questionnaires which were designed to probe for the most accurate answer. On the
basis of the comparison between the census and the more reliable validation survey,
the following misclassification matrix was estimated regarding ethnic group.

Census
Caucasian Other

Validation Caucasian 0.9986 0.0014
Survey Other 0.0566 0.9434

Statistical analysis of misclassified data which explicitly works with a misclas-
sification matrix, will work fine when the data are perturbed by PRAM and the
PRAM matrix is taken to be the misclassification matrix. An important advan-
tage in the case of PRAM is that the PRAM matrix is known while in the case of
misclassification the matrix always has to be estimated. Another difference is that
misclassification is often differential with respect to subgroups, i.e., transition proba-
bilities can differ per subgroup, while applying PRAM is, in general, non-differential
(see section 1.4).

Often it is the case that analysis of misclassified data does not use a misclassi-
fication matrix explicitly, but incorporates the validation survey in the analysis of
the misclassified data. In that case there is no parallel to the situation where data
are perturbed by PRAM. A validation survey as a supplement to data perturbed by
PRAM is not possible.

Work in which the analysis of misclassified data makes explicit use of the mis-
classification matrix are the following. Kuha and Skinner (1997) discuss bivariate
analysis such as difference of proportion, relative risk and tests of association. As
to multivariate analysis they consider the moment estimator and the EM algorithm
as a tool for loglinear analysis. Chen (1979, 1989) uses a EM algorithm to apply
loglinear analysis. His form of the EM algorithm is quite obscure and this report
favours the EM algorithm as described in Kuha and Skinner (1997) because it is
easier to combine with standard loglinear analysis. Assakul and Proctor (1967) dis-
cuss testing independence in two-way tables. Copeland et al. (1977) present ‘an
empirical description’ of the extent and direction of the bias in situations with mis-
classification and give a explicit adjustment of the relative risk. Goldberg (1975)
discusses the effects of misclassification on difference of proportions and on the rel-
ative odds. Greenland (1980,1988) considers effects in the odds ratio and gives
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estimates of the variance of the odds ratio. Magder and Hughes (1997) introduce
the EM algorithm for the logistic regression model when the dependent variable is
subject to misclassification.

2.3 Randomized Response

The similarity between PRAM and randomized response is that in both procedures
data are perturbed on purpose. Randomized response is an interview technique
which can be used when sensitive questions have to be asked. We explain a simple
form of the method (Warner, 1965) with an example.

Let the sensitive question be ‘Have you ever used illegal drugs?’ When inter-
viewing, have the respondent roll a dice. If the result is 1,2,3 or 4 ask him to answer
question QS, if the result is 5 or 6 ask to answer Qc

S, where

QS = ‘Have you ever used illegal drugs?’

Qc
S = ‘Have you never used illegal drugs?’

The interviewer does not know the outcome of the dice, he only receives a ‘yes’ or
a ‘no’. The respondent answers QS with probability θ = 2/3 and answers Qc

S with
probability 1 − θ. Let py be the proportion in the population for which the true
response to QS is yes. Then the proportion of yes-responses should be given by
θpy + (1 − θ)(1− py). So, when the number of all yes-responses in a sample of size
n0 is Y , we estimate py by

p̂y =
Y/n0 − (1− θ)

2θ − 1
.

The analogy with PRAM is as follows. Let A be a binary variable which is
perturbed using PRAM matrix

PA =

(
θ 1− θ

1− θ θ

)
.

So, IP (A∗ = 0) = θIP (A = 0) + (1− θ)IP (A = 1). Let n1 = TA∗(0) + TA∗(1). Given
TA∗ we estimate pA = IP (A = 0) with the moment estimator as

p̂A =
TA∗(0)/n1 − (1− θ)

2θ − 1
.

This example illustrates the resemblance between PRAM and randomized re-
sponse. There are all sorts of randomized response techniques, but the principle is
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always the same: perturbation with a known probability mechanism. There is also a
difference between the two procedures. When using randomized response the proba-
bility mechanism is determined before the data are collected, but the PRAM matrix
can be determined conditionally on the original data. This means that the extent
of randomness in applying PRAM can be controlled better than in the randomized
response setting.

Literature on randomized response is used in this report. Maddala (1983) dis-
cusses a method to adjust the likelihood function in the logistic regression model
with a dependent variable which is perturbed. Van der Heijden et al. (1998) uses
this method. Chaudhuri and Mukerjee (1988) have written a monograph about ran-
domized response and consider in Appendix A1.3 the maximum likelihood in the
Warner model. Bourke and Moran (1984, 1988) describe how the EM algorithm can
be applied in several randomized response procedures. In Bourke and Moran (1988)
randomized response is discussed in a form that is close to the PRAM procedure; in
this article the authors work with a matrix that contains the information concern-
ing the perturbation. In Bourke and Moran (1984) observations from randomized
response procedures are viewed explicitly as incomplete data and the EM algorithm
is used.

2.4 Incomplete Data

The link between PRAM and incomplete data problems is less obvious. In a data file
perturbed by PRAM no data are missing. But when incomplete data are analysed,
this can be done by considering missing values as random variables and using the
known values to estimate these missing values. In the same way: when data per-
turbed by PRAM are analysed it is possible to estimate the original values using the
perturbed values. So, when we are confronted with data perturbed by PRAM and
we want to use incomplete data methods, we can treat each value in the perturbed
file as a random variable value which has to be estimated. Also, we can consider
a data file twice the size of the original file where half of the data is missing (the
original data) and the other half is observed (the perturbed data).

The literature on incomplete data that we use concerns the EM algorithm. The
main article is Dempster et al. (1977), but the monograph by McLachlan and
Krishnan (1997) on this subject is easier to read and more up to date.

The EM algorithm plays an important role in this report. An alternative to the
moment estimator is presented in which the algorithm is used. Also, the algorithm is
applied in the logistic regression model, which is nonlinear. We conjecture that the
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EM algorithm can be used as a general tool for problems regarding statistical anal-
yses of data perturbed by PRAM. This is the reason we discuss the EM algorithm
at length in Chapter 5.

2.5 Conclusion

To summarize, although perturbation of categorical variables by applying PRAM
is new and produces new problems for standard statistical analysis, it is possible
that solutions to these problems can be found in existing methods which deal with
similar perturbation problems. The similarity between these situations: the scores
which are missing or the scores which are only known via perturbed scores can
be considered as values of stochastic variables which have to be estimated. An
important advantage in the case of PRAM is that the probability mechanism used
is known, which simplifies these methods.

Of course, it can also be considered the other way round: results regarding the
analysis of data perturbed by PRAM can be of use in situations with incomplete
data, misclassified data or data provided by randomized response.
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Chapter 3

Invariant PRAM

3.1 Introduction

This chapter discusses a suggestion which was made at Statistic Netherlands and
which is partly stated in De Wolf et al. (1997, section 6). The suggestion concerns
the availability of the PRAM matrix to the recipient of the perturbed data and the
idea is to apply PRAM twice: first, the original scores on variable A are perturbed
using PRAM matrix PA and, secondly, PRAM is applied several times ‘backwards’
to the perturbed scores using a matrix

←−
P A. This matrix

←−
P A should be chosen

in such a way that the twice perturbed scores are ‘close’ to the original scores
in order that these perturbed scores can be used directly as an estimate of the
original scores. The idea for applying PRAM several times backwards is to be
able to withhold the PRAM matrices because the analyst can estimate variances
using several realizations of the perturbed scores. The main motivation behind
this procedure is that not providing the PRAM matrix is beneficial to statistical
disclosure control. Furthermore, the recipient can use standard analyses on the
twice perturbed data.

To investigate the suggestion of applying PRAM twice, we consider in the next
two sections two PRAM procedures introduced in Kooiman et al. (1997) and De
Wolf et al. (1997) respectively: invariant PRAM and two-stage PRAM. The appli-
cability of these procedures is not restricted to the investigated suggestion though;
viewed apart they are interesting variations on standard PRAM. The fourth section
recommends to use invariant PRAM to protect tabular data and can be viewed as
an excursion outside the subject of this report. In the last section of this chapter
we pay some attention to disclosure control in the PRAM situation and discuss the
usefulness of applying PRAM twice.

17
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3.2 Invariant PRAM

So far, non-singularity is the only restriction regarding the Markov matrix PA which
is used to apply PRAM to variable A. This section demonstrates that the analysis
of the perturbed data can be simplified if a special choice is made for PA.

When PA can be chosen in such a way that

P t
ATA = TA, (3.1)

we have (see also section 1.4):

IE [TA∗|TA] = P t
ATA = TA,

which means that given TA∗ , the original table TA can be estimated unbiasedly by

T̂A = TA∗ .

Of course this simplifies the analysis, since no pre-multiplication by a matrix is
needed to estimate the original table.

A non-trivial solution for a Markov matrix PA satisfying (3.1) is given in Kooiman
et al. (1997) and in Gouweleeuw et al. (1998): assume without loss of generality
that TA(k) ≥ TA(K) > 0, for categories k = 1, ..., K, and let, for some 0 < θ < 1

pkl =





1− (θTA(K)/TA(k)) if l = k

θTA(K)/ ((K − 1)TA(k)) if l 6= k
. (3.2)

When PA = (pkl), PA is a Markov matrix satisfying (3.1).
To give an example: let TA be (75, 25, 50)t. When PA is computed using (3.2),

it is given by

PA =




1− θ/3 θ/6 θ/6
θ/2 1− θ θ/2
θ/4 θ/4 1− θ/2


 .

With a choice for θ ∈ (0, 1) the PRAM matrix can be fixed, i.e., the parameter θ
can be use to fix the transition probabilities and fine-tune the extent of randomness.

Note that a transformation satisfying (3.1) is invariant with respect to the origi-
nal frequencies of A. The method which perturbs variable A using this special choice
for PA, is therefore called invariant PRAM. Note also that PA does not need to have
a dominant diagonal, which means that the matrix can be singular. This is not an
immediate problem since TA is estimated by TA∗ when invariant PRAM is applied.
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The invariance of invariant PRAM does not entail that the transformation is
invariant with respect to table-crossings of A with other variables in the microdata
file. Consider the case with two variables A and B which are cross-tabulated in table
TAB. Variable A has K categories and variable B has J categories. Let vec(TAB)
denote the KJ × 1 table of stacked columns of TAB.

When PRAM must be applied to both A and B, then together A and B can be
considered as one compounded variable with KJ categories. This is essentially the
same situation as in the case where only one variable has to be perturbed: invariant
PRAM can be applied as explained above.

The situation is different when B has to remain unperturbed. Kooiman et al.
(1997) present a method to apply invariant PRAM in this case. The two restrictions
regarding the invariant matrix PAB are

P t
ABvec(TAB) = vec(TAB) (3.3)

and
K∑

k=1

TA∗B(k, j) =
K∑

k=1

TAB(k, j), for j = 1, ..., J. (3.4)

The first condition implies that IE [TA∗B|TAB] = TAB holds, the second implies that
the variable B is not perturbed.

Now, let the KJ ×KJ matrix PAB be given by the following block matrix

PAB =




P1 0 · · · 0

0
. . . . . .

...
...

. . . . . . 0
0 · · · 0 PJ




,

where Pj is a K ×K block, for j = 1, . . . , J. Since vec(TAB) is the table of stacked
columns of TAB, condition (3.3) can be written as

P t
j TAB,j = TAB,j , for j = 1, ..., J (3.5)

where TAB,j is the jth column of TAB. For each j, equation (3.5) is an univariate
invariant PRAM condition. So, solutions Pj for j = 1, ..., J to equation (3.5) can be
found by using (3.2). Also note that by choosing this structure for PAB, condition
(3.4) is satisfied since transition from category (k, s) to (l, t) can only occur if s = t,
hence B is not perturbed.
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Note that for example in the case that A and B are binary variables, it is very
likely that

IP
(
(A∗, B) = (l, 0)|(A,B) = (k, 0)

)
6= IP

(
(A∗, B) = (l, 1)|(A,B) = (k, 1)

)
.

This is because the two probabilities are determined on the basis of the first column
and the second column of TAB, respectively. This is interesting because it means
that perturbing A by applying PRAM in this way is not nondifferential with respect
to B (see section 1.4).

The advantage of invariant PRAM is obvious: the estimation of the original TA

is easy. Furthermore, applying invariant PRAM means that there will never be
negative estimated frequencies.

Drawbacks of invariant PRAM are less freedom in the choice of PA and the
impracticable size of PA when A is a compounded variable and there are a lot of
cross-tabulations to be preserved. Finally it should be noted that an analyst always
needs extra information to determine the extra variance due to applying PRAM.

3.3 Two-Stage PRAM

As stated in the introduction of this chapter, we are looking for a way to apply
PRAM twice. When the original scores on variable A are perturbed using PRAM
matrix PA, we want to apply PRAM several times ‘backwards’ to the perturbed
scores using matrix

←−
P A. Matrix

←−
P A should be chosen in such a way that the twice

perturbed scores are ‘close’ to the original scores.
In De Wolf et al. (1997) a procedure called two-stage PRAM is presented. The

idea of applying two-stage PRAM to a variable A is to apply PRAM twice. The
second PRAM matrix,

←−
P A, is determined using the probabilities that the original

value of A is k, given that A∗ is l.
←−
P A is used to apply PRAM backwards and

perturb variable A∗.←−
P A is constructed as follows. Note that

IP (A = k|A∗ = l) =
IP (A∗ = l|A = k)IP (A = k)

IP (A∗ = l)
.

These probabilities can be estimated by

←−p lk =
pklTA(k)∑
j pjlTA(j)

.



3.4. Using PRAM to Protect Tabular Data 21

Let
←−
P A be the matrix that has ←−p lk as its (l, k)-th entry. Matrix

←−
P A is a Markov

matrix and can therefore be used to apply PRAM to the perturbed file. When A∗

is perturbed to A∗∗, we have

IE [TA∗∗|TA] =
←−
P

t

A

(
P t

ATA

)
=

(
PA
←−
P A

)t
TA = TA. (3.6)

That
(
PA
←−
P A

)t
TA = TA is not trivial, but follows from direct calculations.

So far, we did not define what we meant by ‘twice perturbed scores ‘close’ to
the original scores’, but now, inspired by equation (3.6) we consider twice perturbed
scores on A close to the original scores when IE [TA∗∗|TA] = TA holds. When this is
the case, TA∗∗ can be used as an unbiased estimate of TA.

Let R = PA
←−
P A, then R is an invariant matrix due to (3.6). If R was used to

perturb the original file, we would have obtained the same result as when we applied
PRAM twice using PA and

←−
P A respectively. So, starting with an arbitrary matrix

PA, if we apply
←−
P A to the perturbed file, we have in fact applied invariant PRAM.

Considering the application of PRAM in a software package for statistical dis-
closure control, two-stage PRAM is interesting. The data protector can choose any
invertible Markov matrix to start with, and the package will compute the corre-
sponding invariant matrix.

There are still issues to be investigated when two-stage PRAM is discussed as a
possible way to apply PRAM. For instance, when PA is provided, the effect of the
resulting invariant matrix R on the disclosure risk is not clear.

3.4 Using PRAM to Protect Tabular Data

So far, and so it will be in the rest of the report, we focussed on statistical disclosure
control of microdata. However, is also possible to use invariant PRAM to protect
tables. There exist several techniques to avoid disclosure in tabular data: cell sup-
pression, rounding of values and data perturbation, see for example Willenborg and
De Waal (1996). When tables are protected by processing the tables themselves,
there can be problems regarding disclosure control when more than one table is con-
structed using a single microdata file. Two tables of a single microdata file which
are safe when viewed apart, can still disclose information when they are combined.
Of course, at the CBS this problem is known and measures are taken.

Another technique concerning this problem is to process the microdata which
provide the material for the tables. The advantage of this idea is that as soon as
the microdata file is safe, all the tables constructed using that file are safe, see for
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reference Zayatz e.a. in NOS (1999). This is the approach we have in mind when
using PRAM as a technique to protect tables against disclosure.

When invariant PRAM can be implemented easily using the idea of two-stage
PRAM, it is possible that a specific and protected cross-tabulation is provided by
the institute. By which we mean that, when an analyst asks for a cross-tabulation,
the institute provides a tabulation which is protected by applying invariant PRAM.
Instead of giving the used PRAM matrix to the analyst, the institute can limit the
information on the perturbation by giving only the extra variances per cell due to
applying PRAM. Note that the institute protects in this way the table by perturbing
the microdata file and that the choice of the PRAM matrices depends on the specific
cross-tabulation.

The advantage of this procedure is that, given a microdata file with certain
variables, the analyst can ask for any cross-tabulation he wants and, furthermore,
receives information on the extra variance due to the statistical disclosure control.

Note, that when statistical disclosure control on microdata level is used to pro-
tected tabular data, the extent of the protection - in the case of PRAM: the extent
of the randomness - should be determined with an eye to the tabular data level.
In other words, there has to be a translation of disclosure control on the level of
tabular data to disclosure control on the level of microdata.

3.5 Applying PRAM Several Times

Invariant PRAM and two-stage PRAM are introduced in this chapter to investigate
a suggestion to apply PRAM twice in such a way that the twice perturbed scores
are close to the original scores and can be used as a direct estimate of the original
scores. The idea is that the first execution of PRAM perturbs the scores and that
the second perturbation, which can be seen as perturbation ‘backwards’, is executed
several times in order that the analyst has information on variances and can do
without the two PRAM matrices.

The concept of two-stage PRAM provides us with a idea of closeness: when A∗∗

is the twice perturbed variable A, then

IE [TA∗∗|TA] = TA

is as close as we can get (apart from variances).

At first sight, with two-stage PRAM at hand, the suggestion seems promising
because the analyst can use standard software to analyse the twice perturbed scores
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and he can apply his analysis several times to the several realizations of the per-
turbation in order to gain insight in variances. But on second thought, it does not
seem worthwhile to investigate this idea any further before the following problem
regarding disclosure control is solved.

Two-stage PRAM is a special form of invariant PRAM and invariant PRAM is
a special form of PRAM. When records are perturbed by any form of PRAM some
scores are changed into other scores. When PRAM is applied once in the way it is
assumed in this report, i.e., with a dominant diagonal in the PRAM matrix, most
scores will not be changed. So, when PRAM is applied several times to the same
scores, it will be easy to detect which scores are changed in the different realizations,
since for each record there are several realizations and most of them will be the same.
In other words, as De Wolf et al. (1997, section 6) put it: comparing the same record
in all the provided data files and picking the score that is present in the majority of
them, will - with a high probability - result in the true score. Hence, the disclosure
limitation accomplished by PRAM is essentially eliminated in this way.

We will make this more exact. Let m be the number of times PRAM is applied
to a variable A with categories 1 and 2 and let A∗

1, ..., A
∗
m be the variables with the

perturbed scores. Let the PRAM matrix PA = (pkl)be given by (1.2).

Assume that the score is picked that is present in the majority of the perturbed
scores A∗

1, ..., A
∗
m and let the selected score be denoted by A∗.Within this procedure

we consider the transition probabilities that A∗
i = 2 given that Ai = 2 in order to

compare them with the transition probabilities in PA. Note that when the disclosure
control is approached in this way, the distribution of the variable in the original file
is not important; the disclosure control is looked at per record.

Without any further information, two stochastic variables A∗
m1

and A∗
m2

(m1 6=
m2) are not independent, since A∗

m1
provides a clue to the original score on A, which

in turn gives a clue to the score on A∗
m2

. But conditioned on the score of A the two
variables are independent.

When m = 1, we get IP1(A
∗
i = 2|Ai = 2) = p22 = 0.8. When m = 3, one has

IP3(A
∗
i = 2|Ai = 2) = IP (A∗

1i = 2, A∗
2i = 2, A∗

3i = 2|Ai = 2)

+

(
3
1

)
IP (A∗

1i = 2, A∗
2i = 2, A∗

3i = 1|Ai = 2)

= p3
22 + 3 · p2

22p21

= 0.896
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The general case is given by

IPm ( A∗
i = 2|Ai = 2) = IP (A∗

1i = 2, ..., A∗
mi = 2|Ai = 2) +

+

(
m
1

)
IP (A∗

1i = 1, A∗
2i = 2, ..., A∗

mi = 2|Ai = 2) + ... +

+

(
m⌊

m
2

⌋
)

IP (A∗
1i = 1, .., A∗

bm
2 ci = 1, A∗

dm
2 ei = 2, ..., A∗

mi = 2|Ai = 2) (3.7)

Instead of proving mathematically that (3.7) converges to 1 for m → ∞, we
tested this conjecture numerically (with p22 = 0.8):

.

m IPm(A∗
i = 2|Ai = 2)

2 0.64
3 0.896
4 0.8192
5 0.94208
6 0.90112
10 0.967206
25 0.999631
50 0.999997
100 1.000000

Because of the procedure to pick the score that is present in the majority of the
perturbed scores, there is discontinuity between the cases that m is odd and m is
even. When m = 2, IP2(A

∗
i = 2|Ai = 2) = 0.64 which is even smaller than p22. The

trend is not really interrupted by this; in general, when m becomes large IPm(A∗
i =

2|Ai = 2) tends to go towards 1. The disclosure limitation per record accomplished
by using the PRAM matrix PA is essentially eliminated in this way: the transition
probabilities in PA are overruled by the transition probabilities IPm(A∗

i = l|Ai = k).
When A has more than two categories, the notation becomes elaborate since the

possible number of combinations of values increases. However, the concept does not
change and we think that also in this situation the disclosure limitation per record
accomplished by using the PRAM matrix PA in the standard way is eliminated when
PRAM is executed several times to the same scores.

Another approach to the disclosure limitation is possible. Consider the prob-
ability that given the m perturbed scores of one record, the original score of the
record is disclosed, i.e., we are interested in IP (Ai = k|A∗

1i = l1, ..., A
∗
mi = ln) where
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k, l1, ..., lm ∈ {1, ..., K}. It will turn out that when the disclosure control is ap-
proached in this way, the distribution of the variable in the original file is important.
Of course, IP (Ai = k|A∗

1i = l1, ..., A
∗
mi = ln) is not the exact probability that the

original score is disclosed; disclosure is an act of the recipient of the perturbed data
and is an act far to complex to describe with this probability alone. Nevertheless,
it is obvious that IP (Ai = k|A∗

1i = l1, ..., A
∗
mi = ln) is important regarding disclosure

limitation.
One has

IP (Ai = k|A∗
1i = l1, ..., A

∗
mi = lm) =

=
IP (Ai = k, A∗

1i = l1, ..., A
∗
mi = lm)

IP (A∗
1i = l1, ..., A∗

mi = lm)

=
IP (A∗

1i = l1|Ai = k)...IP (A∗
mi = lm|Ai = k)IP (Ai = k)

∑K
k=1 IP (A∗

1i = l1|Ai = k)...IP (A∗
mi = lm|Ai = k)IP (Ai = k)

=
pkl1 ...pklmIP (Ai = k)

∑K
k=1 pkl1 ...pklmIP (Ai = k)

. (3.8)

When we go back to the example in Chapter 1 with the file containing 100
individuals, 99 male and 1 female, we can compare probabilities of disclosure. As-
sume that the recipient of the perturbed data knows that the original file contains
1 female. When PRAM is applied once with PA as given by (1.2), the probabil-
ity that the female in the perturbed file is indeed the female in the original file,
IP (Ai = 2|A∗

i = 2), is estimated to be 0.075.
When PRAM is applied twice we can use (3.8) and estimate IP (Ai = 2|A∗

1i =
2, A∗

2i = 2) to be 0.393, which is regarding disclosure control too large. When m = 3
we get IP (Ai = 2|A∗

1i = 2, A∗
2i = 2, A∗

3i = 2) = 0.838.
Note that

IP (Ai = 2|A∗
1i = 2, ..., A∗

mi = 2) =
IP (Ai = 2)

(p12/p22)
m IP (Ai = 1) + IP (Ai = 2)

.

So IP (Ai = 2|A∗
1i = 2, ..., A∗

mi = 2) → 1, when m →∞.
But there is more to consider. Although IP (Ai = 2|A∗

1i = 2, ..., A∗
mi = 2) con-

verges to 1, when m converges to infinity, IP (A∗
1i = 2, ..., A∗

mi = 2) converges to zero
when m converges to infinity. For example, IP (A∗

1i = 2, A∗
2i = 2, A∗

3i = 2) = 0.006.
In other words, a particular realization of the perturbation by PRAM can disclose
the identity a the female with probability close to 1, but at the other hand, this
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realization has a small probability. Therefore, it is more realistic to consider the
probability that A = k given that the majority of the perturbed scores has the
value k.

Again, let the score that is present in the majority of the perturbed scores
A∗

1, ..., A
∗
m be denoted by A∗. We are interested in IPm(Ai = k|A∗

i = k) = IP (Ai =
k|majority of A∗

1, ..., A
∗
m has value k) where k ∈ {1, ..., K}. The general case is given

by

IPm(Ai = k|A∗
i = l) =

IPm(A∗
i = l|Ai = k)IP (Ai = k)

∑K
p=1 IPm(A∗

i = l|Ai = p)IP (Ai = p)
, (3.9)

where IPm(A∗
i = l|Ai = p) can be computed for l, p ∈ {1, ..., K}, using the same

idea as in (3.7). Since IPm(A∗
i = l|Ai = k) for k = l converges to 1 when m → ∞,

it follows that IPm(A∗
i = l|Ai = k) for k 6= l converges to 0 when m → ∞. So,

we conjecture that IPm(Ai = k|A∗
i = k) converges to 1 when m → ∞. This is not

proven wrong by the little test we did with the example in Chapter 1, where K = 2,
p11 = 0.9 and p22 = 0.8:

m IPm(Ai = 2|A∗
i = 2)

2 0.392638
3 0.2442748
4 0.6910164
5 0.5264428
6 0.8775576
10 0.9851863
25 0.9999839
50 1.0000000
100 1.0000000

Notation becomes elaborate when A has more than two categories, but the con-
cept does not change.

The above discussion of IPm(Ai = 2|A∗
i = 2) also supports our idea that the

disclosure limitation accomplished by using the PRAM matrix PA in the standard
way is eliminated when PRAM is executed several times to the same scores.

For the moment we will leave aside whether disclosure control should be ap-
proached by considering the transition probabilities as in (3.7) or by considering
also the distribution in the original file as we did in (3.9).

The effect of PRAM on disclosure limitation is also discussed in Kooiman et al.
(1997) and Gouweleeuw et al. (1998). In these papers the effect is considered in the
case PRAM is applied once and a measure is presented for the amount of confusion
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introduced by the perturbation. It may be worthwhile to investigate the possibility
that this measure is adapted in order that it can be used in the case PRAM is
applied more than once.

Out of limitation regarding the subject of this report, we did not go into the
matter deeply. Nevertheless, we conjecture that because of the disclosure control
problems mentioned in this section the suggestion to release several realizations of
applying PRAM to the original scores is not a good idea.
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Chapter 4

Two-Way Contingency Tables

4.1 Introduction

This chapter discusses analysis of two-way contingency tables which are constructed
using a microdata file to which PRAM has been applied to one or more variables.
It considers basic analysis as difference of proportions, relative risk, odds ratio and
the Pearson chi-squared test.

When an analyst has at his disposal a microdata file perturbed by PRAM, he
can use the moment estimator to estimate the original table and perform analyses
on the basis of this estimate. It is also possible that the analyst wishes to consider a
particular analysis and wishes to adjust the analysis in order to work directly with
the table of the perturbed variables. Both these situations will be considered.

4.2 Difference of Proportions

The comparison of proportions between two subgroups is a simple form of analysis
and is a good starting point to explore the influence of PRAM on a 2×2 contingency
table.

Let A and B be two binary variables, taking only the value 1 or 2, and let
TAB be their contingency table with A the row variable and B the column variable.
Furthermore, let πA|B(i|j) denote IP (A = i|B = j) and let PAB(i|j) be the estimator
of πA|B(i|j) with realization:

pA|B(i|j) =
TAB(i, j)

TAB(2, j) + TAB(1, j)
, (4.1)
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with the convention that pA|B(i|j) = 0, when the denominator in (4.1) equals zero.
So, given TAB, the proportion difference πA|B(2|2)− πA|B(2|1) can be estimated by
pA|B(2|2)− pA|B(2|1).

For example, assume that we want to know whether a certain disease is associated
with gender and we have a contingency table in which A denotes the presence or
absence of the disease and B denotes gender (presence of the disease: A = 1 and
males: B = 1):

TAB B
1 2

A 1 35 30 65
2 45 70 115

80 100 180

Using (4.1), πA|B(2|2)−πA|B(2|1) is estimated to be 0.70−0.56 = 0.14. The differ-
ence of 0.14 is an indication that gender and the disease are associated: πA|B(2|2) >
πA|B(2|1). So being a female diminishes the risk of having the disease.

Note that πA|B(1|2) + πA|B(2|2) = 1 = πA|B(1|1) + πA|B(2|1). So πA|B(2|2) −
πA|B(2|1) = πA|B(1|1)−πA|B(1|2). Comparison on A = 2 is equivalent to comparison
on A = 1. See Agresti (1990,1996) for more information concerning the difference
of proportions.

Consider the situation in which PRAM is applied to variable A where the per-
turbed variable is denoted by A∗, and the analyst has a microdata file which contains,
amongst others, A∗ and a not-perturbed variable B.

Let PRAM be applied to A non-differentially with respect to B according to the
Markov matrix

PA =

(
α 1− α

1− β β

)
.

The analyst can estimate the original table using the unbiased moment estimator of
TAB given by

T̂AB = (P−1
A )tTA∗B,

where TA∗B is the table of A∗ and B (Kooiman et al., 1997).

With T̂AB at hand, we can define an estimator of πA|B(2|j), denoted by P̂AB(2|j)
with realization p̂AB(2|j), as in the situation with TAB, and estimate πA|B(2|2) −
πA|B(2|1) by

p̂A|B(2|2)− p̂A|B(2|1) =
T̂AB(2, 2)

T̂AB(2, 2) + T̂AB(1, 2)
− T̂AB(2, 1)

T̂AB(2, 1) + T̂AB(1, 1)
(4.2)
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A second possibility is to estimate πA|B(2|2) − πA|B(2|1) directly by means of
TA∗B. When PRAM is applied, the realization pA|B(i|j) is perturbed. Let PA∗|B(i|j)
denote the stochastic function of this process and let pA∗|B(i|j) be its realization.

When A is perturbed, the number of records with B = j (j = 1, 2) does not
change. So TAB(2, 2) + TAB(1, 2) = TA∗B(2, 2) + TA∗B(1, 2). Therefore

IE
[
PA∗|B(2|2)

]
= IE

[
TA∗B(2, 2)

TA∗B(2, 2) + TA∗B(1, 2)

]

=
1

TAB(2, 2) + TAB(1, 2)
IE [TA∗B(2, 2)] . (4.3)

Because of this property and from (1.1) it follows that for j = 1, 2

IE
[
PA∗|B(2|j)

]
= βpA|B(2|j) + (1− α)pA|B(1|j). (4.4)

Using (4.4) yields

IE
[
PA∗|B(2|2)− PA∗|B(2|1)

]
= (α + β − 1)

(
pA|B(2|2)− pA|B(2|1)

)
(4.5)

(Kuha and Skinner, 1997). Analogous to (4.1), pA∗|B(i|j) can be determined using
TA∗B. Therefore, πA|B(2|2)− πA|B(2|1) can be estimated by

pA∗|B(2|2)− pA∗|B(2|1)

α + β − 1
. (4.6)

The estimates (4.2) and (4.6) of πA|B(2|2)−πA|B(2|1) are identical, which can be
proved by analysing the moment estimator. Furthermore, this estimator is unbiased:
the moment estimator yields an unbiased estimate of the cell frequency TAB(i, j) and
(4.3) shows that this is enough to obtain an unbiased estimate of πA|B(i|j).

Two remarks as a result of (4.5). First, it turns out that applying PRAM dimin-
ishes the difference of sample proportions: because α en β are transition probabilities
close to 1, it follows that 0 < α + β − 1 < 1. Secondly, (4.5) makes clear that the
use of invariant PRAM is limited in the situation where a perturbed microdata file
is given to the analyst: in the univariate case we can build the PRAM matrix in
such a way that TA∗ is a unbiased estimator of TA, but then TA∗B is not an unbi-
ased estimator of TAB, which means that pA∗|B(2|2)− pA∗|B(2|1) is not an unbiased
estimator of πA|B(2|2)− πA|B(2|1).

The difference between the two methods to estimate πA|B(2|2) − πA|B(2|1) be-
comes interesting when the original table is not estimated with the moment esti-
mator. For instance, when the original table is estimated by a maximum likelihood
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estimator to prevent negative cell frequencies from occurring, see Chapter 5, it is
possible that the two methods to estimate the difference of proportion yield different
values.

Up till now, we have considered a point estimate of the original difference of
proportions in case one of the variables is perturbed by PRAM. Next we discuss how
the extra variance due to applying PRAM should be incorporated in this situation.

Regarding the difference of proportions, the columns in the table are treated
as independent binomial samples: in column j of the 2×2 table TAB, TAB(i, j) is
considered to be a realization of a binomial distribution with sample size TAB(+, j)
and probability πA|B(i|j), where TAB(+, j) = TAB(1, j) + TAB(2, j). Note that the
sum TAB(+, j) is not considered to be stochastic.

This means that

V
[
PA|B(i|j)

]
=

πA|B(i|j)
(
1− πA|B(i|j)

)

TAB(+, j)
.

Since estimators PA|B(2|2) and PA|B(2|1) are independent, their difference has ex-
pectation

IE
[
PA|B(2|2)− PA|B(2|1)

]
= πA|B(2|2)− πA|B(2|1)

and variance

V
[
PA|B(2|2)− PA|B(2|1)

]
=

2∑

j=1

πA|B(2|j)
(
1− πA|B(2|j)

)

TAB(+, j)
. (4.7)

To estimate V
[
PA|B(2|2)− PA|B(2|1)

]
the term πA|B(2|j) in formula (4.7) is replaced

by pA|B(2|j), for j = 1, 2.
So far for the standard model, source: Agresti (1990).
When PRAM is applied, it is applied independently of the binomial model as-

sumed. We would like to use the estimated original table, denoted by T̂ , as though
it is the original table in order to calculate difference op proportions in a standard
way and take into account extra variance because of PRAM. Strictly speaking, this
is not possible since the columns in T̂ are not independent binomial samples due to
the perturbation because of PRAM.

For the time being we suggest the following method, which should be investigated
in future research. Regarding the variance, we propose to sum the variance due to
PRAM and the variance due to the independent binomial model. Let V ∗ denote the
extra variance per cell due to PRAM, then for j = 1, 2

V
[
T̂AB(2, j)

]
= TAB(+, j)πA|B(2|j)

(
1− πA|B(2|j)

)
+ V ∗ [

T̂AB(2, j)
]

(4.8)
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and therefore

V
[
P̂A|B(2|2)− P̂A|B(2|1)

]
=

V
[
T̂AB(2, 2)

]

TAB(+, 2)2
+

V
[
T̂AB(2, 1)

]

TAB(+, 1)2

+
2C

[
T̂AB(2, 2), T̂AB(2, 1)

]

T̂AB(+, 2)T̂AB(+, 1)
(4.9)

The covariance in (4.9) is the covariance due to PRAM, since the covariance due to
the binomial model is zero because of the independence between the columns.

To estimate V
[
P̂A|B(2|2)− P̂A|B(2|1)

]
, the term πA|B(2|j) in formula (4.8) is

replaced by p̂A|B(2|j) for j = 1, 2 and (4.8) is used in (4.9).

4.3 Relative Risk

It is not always the case that analyses on the basis of the table of perturbed variables
can be adjusted as simply as in (4.6).

Let the notation be as in the previous section. The relative risk is defined as the
ratio of two proportions, e.g. πA|B(2|2)/πA|B(2|1). The distance to 1 of this ratio is
a measure of the difference between the subgroups, see also Agresti (1990,1996).

Let PRAM be applied to A. Because of the equations

IE
[
PA∗|B(2|j)

]
= βpA|B(2|j) + (1− α)(1− pA|B(2|j)) (4.10)

for j = 1, 2, the sample proportion pA|B(2|j) can be unbiasedly estimated for j = 1, 2
by using TA∗B to get

pA∗|B(2|j)− 1 + α

α + β − 1
. (4.11)

But (4.11) does not provide a unbiased estimate of the ratio pA|B(2|2)/pA|B(2|1). In
general: IE[X−1] 6= IE[X]−1.

A possible way out is to determine the maximum likelihood estimate (MLE) of
pA|B(i|j), say p̃A|B(i|j), and estimate 1/pA|B(i|j) by 1/p̃A|B(i|j). This is possible

because when ψ̃ maximizes the likelihood function l(ψ), g(ψ̃) is the MLE of g(ψ),
on condition that g−1 exists. This follows from noting that the likelihood function of
φ = g(ψ) is l(g−1(φ)), which is maximized when φ = g(ψ̃) (Little and Rubin (1987),
section 5.1, see also: Kotz and Johnson (1982)). Note that in general p̃A|B(i|j) need
not to be an unbiased estimator of pA|B(i|j).
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When we use the moment estimator to estimate the original table and then
estimate the sample proportion pA|B(2|j), we get the same estimate as in (4.11).

As will be explained in Chapter 5, we conjecture that the moment estimator
yields the MLE of the original table on the condition that the estimated cell fre-
quencies are positive. So, on this condition, we can use T̂AB to compute the MLE
of pA|B(2|j), that is p̂A|B(i|j) = p̃A|B(i|j), and estimate pA|B(2|2)/pA|B(2|1) by

p̂A|B(2|2)

p̂A|B(2|1)
.

Or equivalently, we can work with TA∗B and estimate pA|B(2|2)/pA|B(2|1) by using
(4.11) to get

pA∗B(2|2)− 1 + α

pA∗B(2|1)− 1 + α
.

We use this estimate of pA|B(2|2)/pA|B(2|1) as an estimate of the true ratio
πA|B(2|2)/πA|B(2|1). With this procedure we drop the requirement of unbiasedness
and settle for maximum likelihood properties. Copeland et al. (1977) provide the
same estimator, but do not mention its properties.

Since
pA∗|B(2|2)

pA∗|B(2|1)
=

p̂A|B(2|2) + 1−α
β−1+a

p̂A|B(2|1) + 1−α
β−1+a

,

it turns out that applying PRAM diminishes the difference between the subgroups:
the ‘effect’ of B on A is made to seem less than it is. Applying PRAM attenuates
the ratio away from pA|B(2|2)/pA|B(2|1) towards the null value of one (Kuha and
Skinner, 1997).

We did not consider thoroughly the extra variance due to applying PRAM, but
we think that the discussion in Greenland (1988) concerning the extra variance in
the estimation of the odds ratio due to misclassification is useful.

4.4 The Odds Ratio

The odds ratio θ is a measure of association for 2×2 contingency tables. Let πij =
IP (A = i, B = j) denote the probability that (A,B) falls in the cell in row i and
column j. The odds ratio is defined as

θ =
π11/π12

π21/π22

=
π11π22

π12π21

.
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(Agresti, 1990,1996, and Fienberg, 1980). The odds ratio is also called the cross-
product ratio. With TAB the observed table, the sample odds ratio equals

θ̂ =
TAB(1, 1)TAB(2, 2)

TAB(1, 2)TAB(2, 1)
.

For multinomial and Poisson sampling, this is the ML estimator of the true odds
ratio (Agresti, 1996).

If we think of row totals as fixed, then π11/π12 is the odds of being in the first
column given that one is in the first row, and π21/π22 is the corresponding odds for
the second row. When the two cross classified variables A and B are independent,
π11/π12 = π21/π22 , so θ = 1. This value of θ serves as a standard measure for
comparison. When 1 < θ < ∞, the odds of B = 1 are higher given A = 1 than
given A = 2. For instance, when θ = 4, the odds of B = 1 given A = 1 are four
times the odds of B = 1 given A = 2. When 0 < θ < 1, B = 1 given A = 1 is
less likely than B = 1 given A = 2. Values of θ farther from 1 in a given direction
represent stronger levels of association.

It is possible to use proportions to define the odds ratio:

θ =
πA|B(1|1)

πA|B(2|1)

(
πA|B(1|2)

πA|B(2|2)

)−1

=
πA|B(1|1)

1− πA|B(1|1)

(
πA|B(1|2)

1− πA|B(1|2)

)−1

. (4.12)

Let PRAM be applied to A non-differentially with respect to B and according
to the PRAM matrix PA. Using the information of the PRAM matrix, the MLE of
pA|B(1|j) for j = 1, 2 can be determined analogously to (4.11).

Using these MLE’s in (4.12) yields the MLE of the odds ratio:

θ̂ =
pA∗|B(1|1)− (1− β)

α− pA∗|B(1|1)

(
pA∗|B(1|2)− (1− β)

α− pA∗|B(1|2)

)−1

.

This formula can be used only if all the numerators and denominators in the formula
are positive.

Assuming that θ̂ is not equal to zero or infinity, it will always be farther from 1
than the odds ratio which is computed in the standard way using TA∗B. Incorpo-
rating the information of the PRAM matrix in the estimation process compensates
for the bias towards 1 (Magder and Hughes, 1997).

We will not consider the extra variance due to applying PRAM. Instead, we refer
to Greenland (1988) who discusses the extra variance in the estimation of the odds
ratio due to misclassification.
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4.5 Pearson Chi-Square Test

Regarding the often used Pearson chi-squared test to detect association in a two-way
table: PRAM also influences the size of this test.

The null hypothesis of independence is H0 : πij = πi+π+j. To test H0 it is possible
to estimate the expected frequencies under H0 by m̂ = ni+n+j/N and calculate

X2 =
I∑

i=1

J∑

j=1

(nij − m̂ij)
2

m̂ij

.

X2 has an asymptotic chi-squared distribution with degrees of freedom equal to
(I − 1)(J − 1).

In papers concerning misclassification and contingency tables, it is stated that
misclassification influences the size of the chi-squared test (Kuha and Skinner, 1997,
Assakul and Proctor, 1967). Obviously, this will also be the case when PRAM is
applied to variables in the table. Association in a table is undermined by applying
PRAM non-differentially to one variable or non-differentially and independently to
two variables. When there is no association between A and B, there certainly will
not be association between A∗ and B∗. But if there is association between A∗ and
B∗, then there is even stronger association between A and B (Kuha and Skinner,
1997, section 3.2.3).

4.6 Conclusion

It is interesting to see that because of the attenuation produced by applying PRAM
regarding the analyses discussed, a conclusion concerning the presence of association
is justified on the basis of the observed table alone. Indeed, when the observed table
contains a significant difference in proportion, the original table will contain an even
larger difference. And the same applies to the relative risk, the odds ratio, and the
Pearson chi-squared test: when the risk, the ratio, and chi-squared test is computed
without adjustment for PRAM and the outcome suggests association, then there is
certainly association in the original table.

In this chapter we showed that adjustment is possible in the case of simple
analysis of a 2×2-table. Still, the estimation of extra variances due to PRAM
should be worked out in future research.



Chapter 5

EM Algorithm

5.1 Introduction

The expectation-maximization (EM) algorithm is used as an iterative scheme to
compute maximum likelihood estimates (MLEs). The algorithm is broadly applied
in statistical problems concerning incomplete or erroneous data and it is an alter-
native to maximizing the likelihood function using methods as e.g. the Newton
Raphson method. The algorithm can also be applied in situations bearing a close
resemblance to situations with incomplete data: e.g. censored data (Tanner, 1993,
Ch. 4), blurred images (McLachlan and Krishnan, 1997, section 2.5), statistical
models such as random effects (Magder and Hughes, 1997) or latent class structures
(Hagenaars, 1993, app. B). In the following it will be shown that the EM algorithm
can be used in situations where PRAM has been applied.

There are many variants of the EM algorithm and the first EM-type of algorithm
was proposed by Newcomb in 1886. The much used reference is the seminal paper
of Dempster et al. (1977), in which the authors describe the most general form of
the algorithm, prove some convergence properties, and give several examples of the
use of the algorithm.

This chapter introduces the EM algorithm in a general form and in the form
in which it can be used when data have been perturbed by applying PRAM. An
alternative to the moment estimator of the original table is presented and analysed.

37
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5.2 General Form of the Algorithm

The standard incomplete data scheme considers the observable incomplete data
y ∼ g(y|φ) as resulting from partial observation of complete data x ∼ f(x|φ), where
g and f are densities and φ a parameter vector in a parameter space Ω. When the
vector x can be written as a compounded vector (y, z) where z denotes the missing
data, we have

g(y|φ) =
∫

Z
f((y, z)|φ)dz.

When x can not be written in this way, only the notation becomes more complex
(Dempster et al., 1977).

The EM algorithm can be used when the observed data likelihood function is
complicated. The algorithm makes use of the often less complicated complete data
likelihood function, which sometimes means that standard software for complete
data can be used within the iteration. Because of this last mentioned feature, the
algorithm can be quite user-friendly.

The general form of the algorithm is as follows. Let log f(x|φ) be the complete
data log likelihood function and, with φ(p) the current fit of φ, let Q(φ|φ(p)) be the
function

φ →
∫

Z
log f((y, z)|φ)h(z|y, φ(p))dz (5.1)

where h is the conditional density h(z|y, φ) = f((y, z)|φ)/g(y|φ). Notice that (5.1)
is equivalent to

φ → IEz

[
log f((y, z)|φ)|y, φ(p)

]
. (5.2)

The EM algorithm φ(p) → φ(p+1) is defined by:
Choose a starting point φ(0).
E-step: Calculate Q(φ|φ(p)).
M-step: Choose φ(p+1) to be the value of φ which maximizes Q(φ|φ(p)).
The E- and M-step are alternated repeatedly.
As Dempster et al. (1977) put it: ‘The heuristic idea here is that we would like

to choose φ∗ to maximize log f(x|φ). Since we do not know log f(x|φ), we maximize
instead its current expectation given the data y and the current fit φ(p).’

The general property of the algorithm is that the observed data likelihood func-
tion, denoted by g(y|φ), is non-decreasing along any EM sequence φ(p). Thus for a
bounded sequence of likelihood values {g(y|φ(p))}, g(y|φ(p)) converges monotically
to some value g∗. As McLachlan and Krishnan (1997, section 3.4) state: in almost
all applications, g∗ is a stationary point. That is g∗ = g(y|φ∗) for some φ∗ at which
∂g(y|φ)/∂φ = 0. In general, if g(y|φ) has several stationary points, convergence of
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the EM sequence to either type (local or global maximizers, saddle points) depends
on the choice of the starting point φ(0).

In the following we mention some results concerning the EM algorithm.

Regarding convergence to a stationary point: there is a convergence theorem for
an EM sequence. It is presented in McLachlan and Krishnan (1997, section 3.4).
First, we give the following regularity conditions.

Ω is a subset in d-dimensional Euclidian space IRd.

{φ ∈ Ω : g(y|φ) ≥ g(y|φ0)} is compact for any g(y|φ0) > −∞.

g(y|φ) is continuous in Ω and differentiable in the interior of Ω.

(The condition g(y|φ0) > −∞ is only significant when we work with the log
likelihood. In that case g(y|φ) is replaced in the regularity conditions by log g(y|φ).)

Theorem 1 Suppose that the regularity conditions hold and that Q(φ|ψ) is con-
tinuous in φ and ψ. Then all the limits points of any instance {φ(p)} of the EM
algorithm are stationary points of g(y|φ), and g(y|φ(p)) converges monotically to
some value g∗ = g(y|φ∗) for some stationary point φ∗.

A second result is about convergence to an unique maximum and can also be found
in McLachlan and Krishnan (1997, section 3.5).

Theorem 2 Suppose that the regularity conditions hold. When g(y|φ) has an unique
maximum in Ω with φ∗ being the only stationary point and when ∂Q(φ|ψ)/∂φ is con-
tinuous in φ and ψ. Then any EM sequence {φ(p)} converges to the unique maximizer
φ∗ of g(y|φ).

Of course, the EM algorithm is not a panacea concerning optimization problems.
In situations where there are more than one maximizers, there is often no guarantee
that the algorithm converges to the global maximum. (This it shares, of course,
with other optimization algorithms.) But, in the situation where the data have
been perturbed by PRAM there seems to be a good starting point. Because the
perturbation by PRAM is small, we can find a starting point by taking the perturbed
data as though it were the original data and using standard methods to determine
the parameter which will play the role of φ(0).
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5.3 The EM Estimator

This section provides an alternative to the moment estimator. In Chapter 1 we noted
that when data are perturbed by applying PRAM, the unbiased moment estimator
of the original table can yield negative cell frequencies. When negative estimated
frequencies occur, we know that they are not maximum likelihood estimates of the
original frequencies. In this section we use the EM algorithm to obtain maximum
likelihood estimates of the original frequencies when PRAM is applied to perturb
the data.

For ease of exposition we consider the simple case of a 2×1 frequency table of
variable A:

TA 0 TA(0)
1 TA(1)

n

When we consider A as a stochastic variable with IP (A = 0) = φ where φ ∈
Ω = [0, 1], then A ∼ Bin(1, φ) and V (A) = φ(1 − φ). By taking n fixed we assume
multinomial sampling. The likelihood function is given by

(
n
TA(0)

)
n∏

i=1

IP (Ai = 0)(1−ai)IP (Ai = 1)ai

where the ai’s are the realizations of the stochastic functions Ai. Since the aim is
to maximize the likelihood function with the ai fixed, we ignore the constant and
apply the natural logarithm. We call it the original data log likelihood:

log l(ai,φ) =
n∑

i=1

(
(1− ai) log IP (Ai = 0) + ai log IP (Ai = 1)

)

=
n∑

i=1

(
(1− ai) log φ + ai log(1− φ)

)
.

The MLE of φ is φ̂ = 1
n

∑n
i=1(1− ai), which is TA(0) divided by n. The variance of

this estimator is V (φ̂) = V (A)/n.
Next, consider the situation when PRAM has been applied to the ai, so the

values ai are perturbed to a∗i according to the Markov matrix

PA =

(
p00 p01

p10 p11

)
. (5.3)

With A perturbed by PRAM, the objective is not changed: the MLE of φ. We
will use the EM algorithm to achieve this objective.
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In the PRAM situation we know IP (A∗ = k) = p0kIP (A = 0) + p1kIP (A = 1) for
k = 0, 1 and n∗ = n. So, the observed data log likelihood function is given by

log l∗(a∗i , φ) =
n∗∑

i=1

(
(1− a∗i ) log IP (A∗

i = 0) + a∗i log IP (A∗
i = 1)

)

=
n∑

i=1

(
(1− a∗i ) log (p00φ + p10(1− φ)) + a∗i log (p01φ + p11(1− φ))

)

(5.4)

In the following, l∗(a∗i , φ) is maximized for φ ∈ [0, 1] and a∗i fixed, by using the EM
algorithm.

The EM algorithm maximizes the observed data likelihood by iteratively maxi-
mizing the expected value of the original data log likelihood, where the expectation
is taken over the distribution of the original data given the perturbed data and the
current value of φ, denoted by φ(p). That is, we take function Q(φ|φ(p)) in (5.2) to
be

φ → IEAi

[
log l(Ai, φ)|a∗, φ(p)

]
.

Because in this case l(ai, φ) is linear with respect to the ai’s, this can be done by
maximizing l(ai, φ) after each unknown ai in l(ai, φ) is replaced with the expected
value of ai given the observed a∗i and φ(p):

Q(φ|φ(p)) =
n∑

i=1

(
(1− IEAi

[
Ai|a∗i , φ(p)

]
) log φ + IEAi

[
Ai|a∗i , φ(p)

]
log(1− φ)

)
.

So in this case the EM algorithm is equivalent to a procedure which first estimates
the original data and them determines φ̂ (see also Dempster et al., 1977, and Magder
and Hughes, 1997).

Since the objective is the MLE of φ, it is not necessary to estimate IEAi

[
Ai|a∗i , φ(p)

]

for each i; it is enough to estimate IEA

[
TA|a∗i , φ(p)

]
. These expected frequencies of

ai can be determined by first considering the distribution of A and A∗ together and
subsequently considering the distribution of A.

We start the EM algorithm with an initial value of φ(0), which we determine by
using the perturbed data: we take φ(0) equal to the number of observations a∗i = 0
divided by n.

In the first E-step we estimate IEA

[
TA|a∗i , φ(p)

]
using the observed a∗i and φ(p) =

φ(0). This goes as follows.
Let TAA∗ be the cell frequencies in the 2×2 table of A and A∗, and TA∗ the

observed cell frequencies in the 2×1 table of A∗. Note that the analyst of the
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perturbed data does not have TAA∗ , since he has A∗ and the PRAM matrix only.
One has for i, j ∈ {0, 1}

IE [TAA∗(i, j)] = IP (A = i, A∗ = j)n

=
IP (A = i, A∗ = j)

IP (A∗ = j)
IP (A∗ = j)n

=
IP (A = i, A∗ = j)

IP (A∗ = j)
IE [TA∗(j)]

=
IP (A∗ = j|A = i)IP (A = i)

p0jIP (A = 0) + p1jIP (A = 1)
IE [TA∗(j)]

So, when we estimate IP (A = 0) by φ(0) and IE [TA∗(j)] by the realization TA∗(j),
we get for instance

T̂
(1)
AA∗(0, 1) =

p01φ
(0)

p01φ(0) + p11(1− φ(0))
TA∗(1).

We obtain the expected frequencies of A by T̂
(1)
A (j) = T̂

(1)
AA∗(j, 0) + T̂

(1)
AA∗(j, 1) for

j = 0, 1. This estimation of T
(1)
A ends the E-step.

The first M-step is the next estimation of φ using T̂
(1)
A which is easy: φ(1) =

T̂
(1)
A (0)/n.

This EM procedure is iterated: with φ(1) we compute T̂
(2)
AA∗ in the second E-step

and determine φ(2) in the second M-step, etcetera (based on Kuha and Skinner,
1997).

Since for each φ(p)

Q(φ|φ(p)) =
n∑

i=1

(1− IE
[
Ai|a∗i , φ(p)

]
) log φ + IE

[
Ai|a∗i , φ(p)

]
log(1− φ)

is continuous in both φ and φ(p), and the regularity conditions are fulfilled, the
sequence log l∗(a∗i , φ

(p)) converges to log l∗(a∗i , φ
∗) for some stationary point φ∗ (see

theorem 1).
In general, let A have K categories and let φ(i) = IP (A = i), the EM algorithm

in this situation:

Initial values: φ(0)(i) =
TA∗(i)

n
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E-step: T
(v)
AA∗(i, j) =

pijφ(i)(v)

∑K
i=1 pijφ(i)(v)

TA∗(j)

T
(v)
A (i) =

K∑

j=1

T
(v)
AA∗(i, j)

M-step: φ(v+1)(i) =
T

(v)
A (i)

n

As an example of the method we consider the situation where

TA 65
87
152

and PA =

(
9/10 1/10
2/10 8/10

)
.

So, in the original situation φ̂ = 65/152 = 0.428 and because V (φ̂) = φ̂(1 −
φ̂)/152, the standard error is estimated to be 0.040.

Let TA∗ be a possible realization when A is perturbed A∗ by applying PRAM
and be given by

TA∗ 75
77
152

Firstly, we use the moment estimator to analyse the perturbed data. Let T̂A be the
estimation of the original table as a result of the moment estimator. T̂A is given by

T̂A 63.714
88.286
152

Where the standard error of the frequencies in T̂A is 6.366.

In this situation, φ̂ is estimated by φ̂ = 63.714/152 = 0.419 and its standard error
is a sum because to the variance φ̂(1 − φ̂)/152 should be added the extra variance
due to PRAM which is N−2V (T̂A) = 152−2 · 6.3662. Therefore SE(φ̂) = 0.058

Secondly, we use the EM algorithm. Note that the EM algorithm as explained in
this section has as its objective the MLE of φ and not an estimate of TA. Neverthe-
less, we can speak of an MLE estimate of TA because of the statistical method (in
the normal situation) to relate an estimate of φ directly to a realization of a table.
Therefore, the MLE estimate of φ provides also an estimate of the original table.
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The EM algorithm provides the same estimate as the moment estimator:

iterations A=0 A=1

1 69.919 82.081
2 66.892 85.108
5 64.159 87.841
10 63.732 88.268
15 63.715 88.285
20 63.714 88.286
25 63.714 88.286
50 63.714 88.286
100 63.714 88.286
500 63.714 88.286
1000 63.714 88.286

To estimate the standard error of this EM result, we use a bootstrap and Monte
Carlo simulation (McLachlan and Krishnan, 1997):

Step 1. A new set of ‘perturbed’ data T ∗
A∗ is created using φ̂ = 0.419.

Step 2. The EM algorithm is applied to the bootstrap observed data T ∗
A∗ and

its output is denoted by φ̂∗.
Steps (1) and (2) are repeated independently a number of times (say B) to

give estimates φ̂∗1, φ̂∗2, ..., φ̂∗B. Then the bootstrap covariance matrix of φ̂∗ can be
approximated by the sample covariance matrix of these B bootstrap replications to
give

cov∗(φ̂∗) =
B∑

b=1

(φ̂∗b − φ̂∗)(φ̂∗b − φ̂∗)t/(B − 1)

where

φ̂∗ =
B∑

b=1

φ̂∗b/B.

In this example (φ̂∗b− φ̂∗)(φ̂∗b− φ̂∗)t = (φ̂∗b− φ̂∗)2 because φ̂∗ is a scalar. Furthermore,
estimates φ̂∗1, φ̂∗2, ..., φ̂∗B can be used directly to construct a 95%-confidence interval.
When B = 1000 for instance and the estimates are ordered in order of magnitude,
number 26 and number 974 form the 95%-confidence interval.

Note that in step 1 we need to create a perturbed data set. So we have to use
φ̂ in the distribution of A∗: IP (A∗

i = 0) = p00IP (Ai = 0) + p10IP (Ai = 1) which is
therefore estimated by p00φ̂ + p10(1− φ̂). Note also that in using the EM algorithm
and the bootstrap, we have incorporated not only the perturbation due to PRAM,
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but also the multinomial sampling scheme. This means that the variance which is
estimated using the bootstrap, is the total variance of φ̂.

We applied the bootstrap method four times taking each time B = 500. This
yielded three times a rounded standard error of 0.058 and once a standard error of
0.059. So we estimate SE(φ̂) = 0.058, which is the same as the estimate obtained
using the moment estimator.

We illustrated the EM algorithm for the 2×1 table, but as we noted, the al-
gorithm can be used also when A has K categories. Therefore, we can stack the
columns of a I × J-table and build the accompanying PRAM matrix using as in
(1.4), the original table can always be estimated by using the EM algorithm.

An advantage of this estimator, which we will call the EM estimator, compared
to the moment estimator is that there will never be estimated cell frequencies with
negative values. For example, consider a new situation where A and B are cross-
classified and A is perturbed by using PRAM matrix PA as specified in (1.2). Let
the original table be given by

TAB B
A 214 12 226

14 0 14
228 12 240

Two possible realizations of a perturbed table after applying PRAM to A are given
by

TA∗B B
A∗ 189 11 200

39 1 40
228 12 240

TA∗B B
A∗ 196 12 208

32 0 32
228 12 240

(5.5)

Correcting the perturbed table on the left in (5.5), the moment estimator and the
EM estimator yield

T̂AB B
A 204.86 12.29 217.15

23.14 -0.29 22.85
228 12 240

T̂AB B
A 204.86 12 216.86

23.14 0 23.14
228 12 240

respectively.

And regarding the perturbed table on the right in (5.5), the moment estimator
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and the EM estimator yield

T̂AB B
A 214.86 13.71 228.57

13.14 -1.71 11.43
228 12 240

T̂AB B
A 214.86 12 226.86

13.14 0 13.14
228 12 240

respectively.

5.4 Two Estimators Compared

In the case of a I × J-table with data perturbed by PRAM, we have two estimators
to estimate the original table: the EM estimator and the moment estimator. How
are these estimators related and what are their properties?

The moment estimator is unbiased: IE[T̂AB] = TAB.
The EM estimator yields the maximum likelihood estimate (MLE). The MLE

can be useful because with θ̂ the MLE of θ, g(θ̂) is the MLE of g(θ), on condition
that g−1 exists. In Chapter 4 this property turned out to be useful in estimating
the relative risk and the odds ratio.

In the case of a 2 × 1-table the two estimators can be compared easily: they
provide the same value as long as the moment estimator does not yield negative cell
frequencies. In the following this will be explained.

The EM algorithm searches the maximum of (5.4) which can also be formulated
as

log l∗(a∗i , φ) = log (p00φ + p10(1− φ))
N∑

i=1

(1− a∗i ) + log (p01φ + p11(1− φ))
N∑

i=1

a∗i

= TA∗(0) log (p00φ + p10(1− φ)) + TA∗(1) log (p01φ + p11(1− φ)) .

Putting
∂

∂φ
log l∗(a∗i , φ) = 0,

results in the root

φ0 =
(p10 − p00)p11TA∗(0) + (p11 − p01)p10TA∗(1)

(TA∗(0) + TA∗(1))(p01p00 − p10p01 − p11p00 + p11p10)
. (5.6)

When we write out the moment estimator

T̂A = (P−1
A )tTA∗ ,
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we get the following estimate of φ

TA∗(0)p11 − p10TA∗(1)

(p00p11 − p01p10)(TA∗(0) + TA∗(1))
. (5.7)

It turns out that (5.6) is equal to (5.7).
It should be decided whether log l∗(a∗i , φ) has a maximum or a minimum in φ0,

or if φ0 is a point of inflection. In this case log l∗(a∗i , φ) is a sum of two logarithms
which depend on the values of pij. Because the differential of log l∗(a∗i , φ) is given
by

∂

∂φ
log l∗(a∗i , φ) = TA(0)

p00 − p10

p00φ + p10(1− φ)
+ TA(1)

−p11 + p10

p11(1− φ) + p10φ
,

we see that when p00−p10 > 0 and −p11 +p10 < 0, say condition (i), log(a∗i , φ) is for
φ ∈ [0, 1] a sum of an increasing logarithm and a decreasing logarithm. When the
diagonal is dominant in matrix PA, condition (ii), the asymptotes of these logarithms
lie outside [0,1]. Because PA is a PRAM matrix, conditions (i) and (ii) are fulfilled
and log l∗(a∗i , φ0) is a maximum.

When φ0 ∈ [0, 1], the moment estimator and the EM algorithm provided the
same estimate (see also Ghaudhuri and Mukerjee (1988), app. A1.3). But when
φ0 < 0, the moment estimator yields φ0 while the EM algorithm, which searches for
a maximum within the parameter space, yields φ̂ = 0.

The general case of a I×J-table in which the variables are subject to misclassifi-
cation or PRAM is not clear. Bourke and Moran (1988), Chen (1989) and Schwartz
(1985, app. A) maintain that the moment estimator yields the MLE as long as
negative cell frequencies do not occur, but proof of this statement is not provided.
Out of caution we formulate the statement as a conjecture. We hope that proof will
be provided by future research.

Conjecture Let TA be the frequency table of the categorical variable A and let
PRAM be applied to the scores on A using matrix PA. The moment estimator of
the original table of frequencies given by T̂A = (P−1

A )tTA∗, where TA∗ is the frequency
table of the perturbed scores, is the maximum likelihood estimator of TA as long as
T̂A does not contains negative frequencies.

5.5 Conclusion

When the original contingency table has to be estimated, using the EM algorithm
is laborious and the algorithm cannot compete with the user-friendliness of the
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moment estimator, despite the advantage concerning negative estimated cell fre-
quencies. Furthermore, we did not give the EM algorithm in this chapter a firm
mathematical basis. The choice of the starting point is rather intuitive and the
faith we put in convergence to the global maximum is partly based on tests in which
the EM algorithm yielded the same solution as the moment estimator.

The conjecture regarding the two estimators is important, since, if it is right, it
provides a important property of the moment estimator: when the estimated cell
frequencies are nonnegative, the moment estimator yields the maximum likelihood
estimate.

This chapter can serve as an introduction to other applications of the EM algo-
rithm. In the following chapters we will see that the EM algorithm can be useful in
situations where data have been perturbed by PRAM.



Chapter 6

Loglinear Analysis

6.1 Introduction

Loglinear analysis is a method to explore relations in contingency tables. With the
knowledge of those relations the most simple model is determined which describes
the data satisfactory. The principles of loglinear analysis can be found for instance
in Fienberg (1980) and in Agresti (1990, 1996).

Section 2 introduces the basic ideas of loglinear analysis using these references.
Sections 2 and 3 consider the situation when one or two variable are perturbed by
PRAM. In section 2 the moment estimator is used to adjust the analysis, in section
3 the EM algorithm is used. Section 4 is the conclusion of this chapter.

6.2 Standard Model

Although the merits of loglinear analysis become clear with tables of three or more
dimensions, the 2×2 table can serve as an introduction. Consider the contingency
table

B
1 2

A 1 π11 π12 π1+

2 π21 π22 π2+

π+1 π+2 π++

where πij is the cell probability of cell (i, j), πi+ = πi1 + πi2, π+j = π1j + π2j

and π++ =
∑

i,j πij = 1. The analysis of the observed cell frequencies requires
assumptions about the random mechanism that generated the data. It is common

49
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to assume multinomial sampling: a fixed sample of size n and cross-classification of
each member of the sample according to its values for the underlying variable A and
B.

The basic model is the model of independence: πij = πi+π+j. This model states
that the values of A are independent of the values of B. The expected cell frequencies
under this model are given by

mij = nπi+π+j. (6.1)

By taking the logarithm we get an additive structure:

log mij = log n + log πi+ + log π+j,

which is equivalent to
log mij = µ + µ1(i) + µ2(j). (6.2)

With I = 2 and J = 2, the parameters in (6.2) are given by:

µ =
1

IJ

∑

i

∑

j

log mij (6.3)

µ + µ1(i) =
1

J

∑

j

log mij (6.4)

µ + µ2(j) =
1

I

∑

i

log mij (6.5)

(Note that µ 6= log n.) Because µ1(i) and µ2(i) represent deviations from the mean
µ,

∑

i

µ1(i) =
∑

j

µ2(j) = 0. (6.6)

This is not a deduction from (6.3) to (6.5) but follows from the parameterization in
(6.2): 5 parameters is to much for a 2×2 table, but when (6.6) holds, the model has
in fact 3 parameters and is identifiable. (Other choices of parameters are possible.
For instance, in (6.2) we can put µ1(2) = 0 and µ2(1) = 0.)

When independence is not the case, the model can be extended by interaction
terms:

log mij = µ + µ1(i) + µ2(j) + µ12(ij).

Where

µ12(ij) = log mij − 1

J

∑

j

log mij − 1

I

∑

i

log mij +
1

IJ

∑

i

∑

j

log mij,
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and the µ12(ij) satisfy ∑

i

µ12(ij) =
∑

j

µ12(ij) = 0.

This is the saturated model when the table is 2×2. It fits the data precisely.
We give an example. Assume n = 164 and we observe

B
A 32 11 43

86 35 121
118 46 164

Let TAB(i, j) denote the observed cell frequencies in cell (i, j) and TAB(i, +) =
TAB(i, 1) + TAB(i, 2). Because of (6.1), we calculate the expected cell frequencies
under the model of independence by

m̂ij =
TAB(i, +)TAB(+, j)

n
.

This results in the following table:

B
A 30.94 12.06

87.06 33.94

With m̂ij we can estimate the mean µ̂ = 3.4783 and the deviations from the
mean µ̂1(1) = −0.5173 = −µ̂1(2) and µ̂2(1) = 0.4710 = −µ̂2(2).

Once we have estimated the expected values under a certain loglinear model, we
can check the goodness-of-fit of the model using either of the following statistics:

X2 =
∑ (Observed-Expected)2

Expected
(6.7)

G2 =
∑

(Observed) log

(
Observed

Expected

)
,

where the summation in both cases is over all cells in the table. If the model fitted
is correct and the total sample size is large, both X2 and G2 have approximate χ2

distributions with degrees of freedom

df = #cells - #parameters fitted.

X2 and G2 are asymptotically equivalent.
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In our example: X2 = 0.1755 and G2 = 0.1777, where df = 4 − 3 = 1 . So the
model of independence fits the data.

In the following we use vector notation. Let π be the vector of the cell probabil-
ities and p the vector of the sample proportions. The saturated model has π̂ = p.
Let Cov(p) denote the covariance matrix. Under multinomial sampling one has

Cov(p) =
[
Diag(π)− ππt

]
/n.

Where Diag(π) has the elements of π on the main diagonal. In our example, using
Cov(np)= n2Cov(p), the standard errors of the observed cell frequencies are given
by

SEs, saturated model B
A 5.08 3.20

6.40 5.25
(6.8)

When we consider covariances of an unsaturated model we use the following form
of loglinear models:

log m = Xµ.

Where X is a model matrix containing known constants and µ is a column vector
of parameters. In our example, the independence model, log mij = µ + µ1(i) + µ2(j):




log m11

log m12

log m21

log m22


 =




1 1 1
1 1 −1
1 −1 1
1 −1 −1







µ
µ1

µ2


 .

For instance, log m12 = µ + µ1 − µ2. Where µ1 = µ1(1) = −µ1(2) and µ2 = µ2(1) =
−µ2(2). (When the model describes a I × J table, with I > 2 or J > 2, an other
choice of the parameters is necessary in order that X is non-singular. This can be
done by setting parameters equal to zero.)

For the unsaturated model, the estimated covariance matrix of the estimated cell
probabilities equals

Ĉov(π̂) = Ĉov(p)X
(
X tĈov(p)X

)−1
X tĈov(p). (6.9)

In our example:
SEs, indep. model B

A 4.43 2.03
5.89 4.62

(6.10)

So far for the standard model.
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6.3 Loglinear Analysis and the Moment Estima-

tor

How should loglinear analysis be adjusted when the data are perturbed by PRAM?
When multinomial sampling is assumed, we can work as follows. Firstly, the

frequencies of the original table are estimated by either the moment estimator or
the EM estimator, and the covariance matrix of this PRAM correction is determined,
say Cov1.

Secondly, we choose a loglinear model in the standard way which fits the esti-
mated original cell frequencies.

Thirdly, we estimate the covariance matrix of the frequencies in the saturated
model using the estimated original frequencies, say Cov2.

Lastly, because PRAM is independent of the sample model, we can simply sum
Cov1 and Cov2 and take the sum as Ĉov(p). The covariances of reduced models
can be computed by using Ĉov(p) as in (6.9).

As an example we consider the situation discussed in the previous section:

TAB B
A 32 11

86 35

Assume that PRAM is applied non-differentially and independently to A and B
using

PA =

(
9/10 1/10
2/10 8/10

)
and PB =

(
9/10 1/10
1/10 9/10

)
,

respectively.
A possible observed table and its corresponding estimate of the original table:

TA∗B∗ B∗

A∗ 47 17
71 29

T̂AB B
A 36.22 8.36

90.78 28.64

(6.11)

The diagonal of the covariance matrix of this estimate, Cov1, is (49.20, 23.79,
59.73, 34.32). The diagonal of the covariance matrix of the saturated loglinear
model, Cov2, is (28.22, 7.93, 40.53, 23.64). We take Ĉov(p) as Cov1 + Cov2, which
has the diagonal (77.42, 31.72, 100.26, 57.96) and yields the following standard
errors:

SEs, satured model B
A 8.80 5.64

10.01 7.61
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We can compare these standard errors to the situation without PRAM, see table
(6.8).

The expected frequencies under the model of independence and its standard
errors:

T̂AB, ind. model B
A 34.52 10.06

92.48 26.94

SEs, ind. model B
A 7.25 2.64

8.69 5.76
(6.12)

Again, we can compare the errors to the situation without PRAM, see (6.10). Using
the X2 statistic (6.7), we can show that the model of independence fits the estimated
data.

6.4 Loglinear Analysis and the EM Algorithm

The second method to adjust loglinear analysis when data are perturbed by PRAM
makes use of the EM algorithm. We illustrate this method with two variables A
and B and corresponding perturbed variables A∗ and B∗. We assume multinomial
sampling.

As before, let πij denote the cell probabilities and TA∗B∗ the observed cell fre-
quencies. Suppose we want to fit model L between A and B.

We start with computing the expected cell frequencies under L, denoted by
TL

A∗B∗ , using TA∗B∗ , then we compute the cell probabilities of TL
A∗B∗ and use them

as the initial values in the EM algorithm: π
(0)
ij .

At the E-step of the EM algorithm the expected value of the complete table
between A, B and A∗, B∗ is computed using

IE
[
T

(v)
ABA∗B∗(i, j, k, , l)

]
=

π
(v)
ij IP (A∗ = k, B∗ = l|A = i, B = j)

∑
i,j π

(v)
ij IP (A∗ = k, B∗ = l|A = i, B = j)

IE
[
TL

A∗B∗(k, l)
]
.

(6.13)

Where π
(v)
ij is the current estimate of πij. An estimate T̂

(v)
ABA∗B∗ is determined by

using in (6.13) realization TL
A∗B∗ as an estimate of IE

[
TL

A∗B∗
]
.The expected table of

the original variables is obtained by

IE
[
T

(v)
AB(i, j)

]
=

∑

l,k

IE
[
T

(v)
ABA∗B∗(i, j, k, l)

]
.

At the M-step a new estimate π
(v)
ij is obtained by fitting model L to T

(v)
AB in a

standard way.
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The process is iterated until convergence.
Kuha and Skinner (1997, section 28.5.2) describe this method but do not use

TL
A∗B∗ in (6.13), they use TA∗B∗ instead, which seems to be incorrect, because:

IE [TABA∗B∗(i, j, k, , l)]

= IP (A = i, B = j, A∗ = k, B∗ = l)n

=
P (A = i, B = j, A∗ = k, B∗ = l)

IP (A∗ = k, B∗ = l)
IP (A∗ = k, B∗ = l)n

=
IP (A∗ = k, B∗ = l|A = i, B = j)IP (A = i, B = j)

IP (A∗ = k,B∗ = l)
IP (A∗ = k, B∗ = l)n

Assuming model L: IP (A∗ = k, B∗ = l)n = IE
[
TL

A∗B∗
]
.

In the following example we work with the same data as in the previous section.
We want to fit the independence model and due to the assumption that PRAM is
applied non-differentially and independently, it follows that

IP (A∗ = k, B∗ = l|A = i, B = j) = IP (A∗ = k|A = i)IP (B∗ = l|B = j).

We have
TA∗B∗ B∗

A∗ 47 17
71 29

TL
A∗B∗ B

A 46.05 17.95
71.95 28.05

Using the table on the right we determine initial values π
(0)
ij by computing the

corresponding cell probabilities. Within 25 iterations the EM algorithm yields the
following table

T̂L
AB B

A 34.52 10.06
92.48 26.94

which is the same as (6.12).
To estimate to standard errors of this estimation of the frequencies, we use the

bootstrap.
Step 1. A new set of ‘perturbed’ data is created, say TL∗

A∗B∗ , using π̂(i, j) =
T̂L

AB(i, j)/n.
Step 2. The EM algorithm is applied to the bootstrap observed data TL∗

A∗B∗ and
its output is denoted by π̂∗.



56 Chapter 6. Loglinear Analysis

Step 1 and step 2 are repeated independently a number of times (say B) to give
estimates π̂∗1, π̂∗2, ..., π̂∗B. The bootstrap covariance matrix of π̂∗ can be approximated
by the sample covariance matrix of these B bootstrap replications. To investigate
the efficiency of the bootstrap, we applied the bootstrap method four times with
B = 500. We give the estimated standard errors of the estimated frequencies which
can be compared with the standard errors in (6.12).

Run Standard errors per cell

(1,1) (1,2) (2,1) (2,2)
1 7.172 2.878 8,745 5.654
2 7.636 2.946 9.096 6.167
3 7.040 2.920 8.777 5.391
4 7.161 2.939 8.885 5.447

When we take L the saturated model, we get the same estimate of the original
table as in (6.11).

6.5 Conclusion

In Chapter 2 we already observed that statistical analysis assumes a certain distri-
bution of the data and that estimates of the original data (needed because of the
perturbations by PRAM) have different distributions than the original data.

In the case of loglinear analyses the data are assumed to be distributed according
to the multinomial distribution. (Other models are also possible, we did not go into
this.) When we estimate the original table and apply loglinear analyses as in section
3, we did not incorporate that the table which estimates the original table is not
distributed multinomially. Strictly speaking, this is not correct, but for the time
being we assumed that this causes no real problems in practice.

The same problem occurs in section 4 where we work with the EM algorithm.
In the procedure suggested, loglinear analyses is applied several times to a table
which is not distributed multinomially. The first time loglinear analysis is applied
in the algorithm it concerns the observed table which is assumed to be a product of
a multinomial distribution process and of a second distribution process because of
PRAM.

In this chapter we did not prove mathematically that the suggested procedures
are sound. Also, we only tested the procedures on small tables. We acknowledge
therefore that further research is necessary, but nevertheless like to state our trust
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in the procedures. We conjecture that regarding loglinear analysis the perturbation
by PRAM can be corrected.
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Chapter 7

Logistic Regression

7.1 Introduction

In many fields logistic regression has become the standard method of analysis in
the case that the dependent variable is discrete, taking on two or more possible
values, and the independent variables are either discrete or continuous. After an
introduction to the logistic regression model, this chapter considers the situation
in which either the dependent variable or an independent categorical variable is
perturbed by PRAM and discusses methods to adjust the regression. The EM
algorithm will be used in sections 4 and 5.

7.2 Standard Model

To discuss the standard logistic regression model, we use introductory literature as
for example Hosmer and Lemeshow (1989) and Agresti (1996).

Concerning logistic regression it is common to call the dependent variable the
outcome variable. Logistic regression is most frequently employed to model the
relationship between a binary outcome variable and a set of independent variables.
For ease of exposition we only consider this situation. (Hosmer and Lemeshow (1989,
section 8.1) discuss the standard logistic regression model in the case the outcome
variable is polytomous and show that this model is based on the same concepts
which are used when the outcome variable is binary.)

Let Y be the outcome variable, y its realization, and let x = (x0, x1, .., xp)
t denote

the vector with p independent variables (continuous or interval scaled). In practice,
Y can denote the presence or absence of a disease and x can be a vector containing

59



60 Chapter 7. Logistic Regression

variables such as age group (interval scaled) or weight (continuous).
The form of the logistic regression model is given by

IE [Y |x] =
eβtx

1 + eβtx
,

where β = (β0, β1, ..., βp)
t is the parameter vector. We take x0 = 1 which makes β0

the intercept coefficient.
In the linear regression model, y = IE [Y |x] + ε, it is common to assume that

the error ε follows a normal distribution with mean zero and some variance that
is constant across levels of the independent variable. Therefore the conditional
distribution of the outcome variable given x will be normal with mean IE [Y |x], and
a variance that is constant.

In the logistic regression model the outcome variable is binary. Without loss of
generality we assume y ∈ {0, 1} and find

IE [Y |x] = 0 · IP (Y = 0|x) + 1 · IP (Y = 1|x) = IP (Y = 1|x).

We introduce the notation π(x) = IP (Y = 1|x). So, the logistic regression model is
given by y = π(x) + ε. Note that given x, the error ε has two possible values: since
y ∈ {0, 1} it must the case that ε ∈ {1 − π(x),−π(x)}, and IP (ε = 1 − π(x)|x) =
IP (Y = 1|x) = π(x) and IP (ε = −π(x)|x) = IP (Y = 0|x) = 1 − π(x). Thus, the
error ε follows a distribution with mean (1−π(x))π(x)+(−π(x))(1−π(x)) = 0 and
variance equal to π(x)(1−π(x)). That is, the conditional distribution of the outcome
variable follows a Bernoulli distribution with probability given by the conditional
mean, π(x).

Therefore, given observations (y1,x1), (y2,x2), ..., (yn,xn) the likelihood function
is given by

l(β) =
∏

yi=0

IP (Y = 0|xi)
∏

yi=1

IP (Y = 1|xi)

=
∏

yi=0

(1− π(xi))
∏

yi=1

π(xi).

The principle of maximum likelihood states that we use as our estimate of β the
value which maximizes the likelihood function. To bring that about, it is common
to maximize the log likelihood function:

L(β) = log l(β) =
n∑

i=1

(
yi log[π(xi)] + (1− yi) log[1− π(xi)]

)
.
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Let xik indicate the kth element of xi = (xi0, xi1, .., xip)
t. To determine the

maximum of L(β), we put δ
δβk

L(β) = 0, which yields

n∑

i=1

xik(yi − π(xi)) = 0.

For k = 0, 1, ..., p this equation is nonlinear in β, the maximum of the log like-
lihood cannot be derived analytically. Numerical (iterative) procedures have to be
employed to obtain the implied maximum likelihood estimate of β. Hence, the
Newton-Raphson method is used to solve the equations. Let

S(β) =

(
δ

δβ0

L(β),
δ

δβ1

L(β), ...,
δ

δβp

L(β)

)t

.

The information matrix I(β) is a (p + 1)× (p + 1) matrix and is made up of

I(β)kl=− δ2

δβkδβl

L(β) =
n∑

i=1

xikxilπ(xi)(1− π(xi).

Starting with an initial value β(0) we compute the values S(β(0)) and I(β(0)) and
the new estimate of β is

β(1) = β(0) +
[
I(β(0))

]−1
S(β(0)).

This iterative procedure is repeated until it is clear that β(0), β(1), β(2), ... con-
verges. When this is the case and the difference between β(n) and β(n+1) for a
certain n is small or imperceptible we take β(n) as the maximum likelihood esti-
mate (MLE) of β. (Note that there is uncertainty whether this is indeed the MLE;
Newton-Raphson does not always yield the global maximum.)

An important feature of the information matrix is that it provides us with es-
timates of the covariances. If the MLE of β is denoted by β̂, then the asymptotic

covariance matrix is estimated by
[
I(β̂)

]−1
. These estimated covariances will enable

us to test hypotheses about the different elements of β̂.
Several tests were performed to gain insight in the behaviour and the speed of

the method. We also present the results because it makes a comparison possible
with methods in later sections.

We estimated parameters for different data sets with observations of a binary
outcome variable y and a continuous independent variable x = (x0, x1) with x0 = 1
always and x1 a continuous variable. It is not a surprise that the speed of the
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method is dependent on the size of the data set, but it turned out that the number
of iterations is not. In each test we started with an initial value β(0) = (0, 0). Three
tests with n = 500 as the number of records and with different choices of variables
showed that the iteration converges fast: two or three iterations were enough to
establish a difference between two following estimates of less than 1/1000, that is
|βk

0 − βk+1
0 | + |βk

1 − βk+1
1 | < 1/1000. Test with n = 20 and n = 1365, again with

different variables also showed convergence after three iterations. De time needed
between the iterations increases with the size of the data set. The test with n = 1365
for instance, took four times longer to finish then the tests with n = 500.

Once there is a fit of a particular logistic regression model, the process of assess-
ment of the model begins. In the framework of this report it is sufficient to state
that the significance of variables and the comparison between models are based on
the likelihood functions of the different models. Hence, when the likelihood function
is adjusted correctly to account for the perturbation, logistic regression can proceed
in the usual way, as though no perturbation has occurred.

So far for the standard model.

7.3 A Perturbed Outcome Variable: Newton Raph-

son

Consider the situation in which realizations of a binary outcome variable Y are
perturbed using the PRAM matrix

PY =

(
p00 p01

p10 p11

)
.

In the following we apply a method which is suggested for data obtained by
randomized response, see Maddala (1983). Let (y∗1,x1), (y

∗
2,x2), ..., (y

∗
n,xn) be the

perturbed observations. In the logistic model with π(x) as in the previous section
it follows that

IP (Y ∗
i = 1|x) = p11IP (Yi = 1|x) + p01IP (Yi = 0|x) = p01 + (p11 − p01)π(xi)

and
IP (Y ∗

i = 0|x) = 1− IP (Y ∗
i = 1|x) = p10 + (p00 − p10)(1− π(xi)).

So that the observed likelihood function becomes

l∗(β) =
∏

y∗i =0

(
p10 + (p00 − p10)(1− π(xi))

) ∏

y∗i =1

(
p01 + (p11 − p01)π(xi)

)
. (7.1)
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With L∗(β) = log l∗(β) we obtain

δ

δβk

L∗(β) =
n∑

i=1

(
(1− y∗i )

(p10 − p00)e
βtxi

(p10eβtxi + p00)(1 + eβtxi)
xik

+ y∗i
(p11 − p01)e

βtxi

(p01 + p11eβtxi)(1 + eβtxi)
xik

)
(7.2)

and

δ2

δβkδβl

L∗(β) =

n∑

i=1

(
(1− y∗i )

p10p00e
βtxi − p2

00e
βtxi − p2

10e
3βtxi + p10p00e

3βtxi

(p10eβtxi + p00)2(1 + eβtxi)2
xikxil

+ y∗i
p01p11e

βtxi − p2
01e

βtxi − p2
11e

3βtxi + p11p10e
3βtxi

(p01 + p11eβtxi)2(1 + eβtxi)2
xikxil

)
. (7.3)

Note that these computations can be quite laborious when there are more than
one independent variable, i.e., more than two parameters.

Using the derivatives (7.2) and (7.3), the estimate of the parameter vector β
and its covariance matrix can be computed with the Newton-Raphson method as
described in the previous section. The initial values for the iterative procedure can
be determined by applying standard logistic regression using the perturbed data.
The idea is that because the perturbation is small, these initial values are more
likely to be close to the ‘true’ β’s than random initial values.

Again, several tests were performed in which we used the same data sets as in
the previous section, be it with perturbed outcome variables. In each of the data
sets PRAM is applied to the outcome variable using PRAM matrix given by

PY =

(
9/10 1/10
2/10 8/10

)
.

We encountered no problems regarding convergence. Again, the iterations stopped
when the difference between two following estimates was less than 1/1000 (see the
previous section for this boundary). The test with n = 500 took considerable more
time compared to the situation where the outcome is not perturbed. Roughly speak-
ing, the number of iterations doubled and the iterations lasted four to five times
longer.

As expected, the variances were larger compared to the situation where the
outcome variable is not perturbed.
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7.4 A Perturbed Outcome Variable: EM Algo-

rithm

There is an another method to adjust logistic regression when PRAM has been ap-
plied to the outcome variable. Magder and Hughes (1997) show that it is possible
to incorporate the information of a misclassification matrix concerning the outcome
variable into the estimate of the parameters by using an EM algorithm. By exchang-
ing the PRAM matrix for the misclassification matrix we tackle the situation where
the outcome variable is perturbed by PRAM.

Let the notation be as in the previous sections and as in Chapter 5.
In the logistic regression model where the outcome variable is perturbed, the EM

algorithm has a simple form. In the E-step we calculate Q(β, β(k)):

Q(β, β(k)) = IEY

[
log (l(β)|Y,x) |y∗, β(k)

]

= IEY

[
n∑

i=1

Yi log[π(xi)] + (1− Yi) log[1− π(xi)]|y∗, β(k)

]
.

Since the original data log likelihood log (l(β)|y,x) is linear in yi, Q(β, β(k)) is
given by

Q(β, β(k)) =
n∑

i=1

IEYi

[
Yi|y∗, β(k)

]
log[π(xi)] + 1−

(
IEYi

[
Yi|y∗, β(k)

])
log[1− π(xi)].

In the logistic regression model yi is discrete and since IEYi

[
Yi|y∗i , β(k)

]
is not

discrete, it is not possible to use IEYi

[
Yi|y∗i , β(k)

]
as a substitution of yi and apply

standard software. A solution to this problem is to work with weights: the idea
is to compensate for PRAM by performing standard logistic regression considering
each individual as both having the property (Y = 1) and not having the property
(Y = 0) with weights determined by the probability that the individual originally
has the property given the perturbed data.

Of course, the probability of having the property depends in part on the value
of the logistic regression parameters, therefore these probabilities have to be recal-
culated after the parameters are estimated. This is precisely the essence of the EM
algorithm: estimating the probabilities and creating the new data set with weights
is the E-step, and maximizing Q(β, β(k)) is the M-step.

One has

IP (Y = 1|Y ∗ = 1,x) =
IP (Y = 1, Y ∗ = 1|x)

IP (Y ∗ = 1|x)
=

IP (Y = 1|x)p11

IP (Y = 1|x)p11 + IP (Y = 0|x)p01
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and similarly

IP (Y = 1|Y ∗ = 0,x) =
IP (Y = 1|x)p10

IP (Y = 1|x)p10 + IP (Y = 0|x)p00

.

To find the maximum likelihood estimate of β, proceed as follows: with an
initial estimate of β, IP (Yi = 1|Y ∗

i = 1,xi) and IP (Yi = 1|Y ∗
i = 0,xi) are calculated.

Standard logistic regression is then performed with each individual included as both
having the property and not having the property with corresponding weights: when
y∗i = 1 create a record of individual i with y = 1 with weight IP (Yi = 1|Y ∗

i = 1,xi)
and create a second record of individual i with y = 0 with weight1− IP (Yi = 1|Y ∗

i =
1,xi), when y∗i = 0 work with IP (Yi = 1|Y ∗

i = 0,xi) and 1 − IP (Yi = 1|Y ∗
i = 0,xi)

respectively. Standard logistic regression on the new records yields an updated
estimate of β.

As in the previous section: a good choice for the initial estimate of β is the β̂
which is the result of standard logistic regression on the perturbed data. Because
the perturbation by PRAM is not large, this value should provided a good starting
point for the EM algorithm.

Contrary to the Newton-Raphson method, the EM algorithm does not provide a
estimation of the covariance matrix as a by-product of the parameters estimates. In
the situation of logistic regression it is possible to compute the information matrix,
but the idea of using the EM algorithm is to avoid this computation.

We therefore present two ways to estimate the covariance matrix. The first is
general and is likely to be of use in other applications of the EM algorithm, the
second is purpose-made for logistic regression with a perturbed outcome variable.

Firstly, McLachlan and Krishnan (1997, section 4.3) describe how in the inde-
pendent and identically distributed case the empirical information matrix, Ie(β),
can be used as an approximation to the observed information matrix evaluated at
the maximum likelihood estimate of the parameters.

In the logistic regression model, the realizations of the outcome variable are inde-
pendent and identically distributed and the observed log likelihood can be expressed
in the form

L(β) = log l(β) =
n∑

j=1

log lj(β).

We can write the score vector S(β) as

S(β) =
n∑

j=1

sj(β) =
n∑

j=1

δ

δβ
log lj(β).
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On evaluation at β =β̂, the empirical information matrix is given by

Ie(β̂) =
n∑

j=1

sj(β̂)st
j(β̂).

So when PRAM is applied to the outcome variable and the observed log likelihood
is taken to be the logarithm of (7.1), we can use Ie(β̂) as an approximation of I(β̂).

Secondly, Magder and Hughes (1997) provide a way to estimate the covariance
matrix when the outcome variable of the logistic regression model is misclassified.

Let

I(β) =
n∑

i=1

I(β)i,

where I(β)i is the contribution of the ith subject to the information matrix. For
standard logistic regression,

I(β)i = xix
t
i(π̂(xi)(1− π̂(xi))

When the outcome variable is perturbed the information matrix is corrected as
follows

I(β)i = xix
t
i

(
π̂(xi)(1− π̂(xi)− Ŷi(1− Ŷi)

)
,

where Ŷi = IP (Y = 1|Y ∗ = 1,x) when y∗i = 1 and Ŷi = IP (Y = 1|Y ∗ = 0,x) when
y∗i = 0.

We tested the EM algorithm and used SPSS to execute standard logistic regres-
sion with weighted records. The same perturbed data sets as in the previous section
were used. The EM algorithm works fine, although the convergence is slower: more
iterations are needed, roughly two times more, compared to the Newton-Raphson
method. The point estimates of the parameters as provided by the EM algorithm did
not differ significantly from the results in the previous section. There are however
small differences in the estimation of the variance.

Three methods to estimate the variance were compared: using the information
matrix as in the previous section (i), using the empirical information matrix (ii) and
using the estimate given by Magder and Hughes (1997) (iii).

Although the differences were small between the variances estimated by the three
methods, they were distinctive: method (i) yields larger variance than method (iii),
which again yields larger variance than method (ii).

The method which uses the EM algorithm is user-friendly. The recipient of
the perturbed data has to implement the EM algorithm, but can use the standard
software for logistic regression within each iteration. It is not necessary to construct
and maximize a likelihood function as in the method described in the previous
section, which can be hard work when there are several independent variables.
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7.5 A Perturbed Independent Variable

Next we consider the situation in which PRAM has been applied to a categorical
independent variable. In the logistic regression model we have to distinguish between
interval scale variables (e.g. rank of income, appraisal) and nominal scaled variables
(e.g. race, religious affiliation). When the categorical variable is interval scaled
the variable can be included in the model directly, when the categorical variable is
nominal scaled we should use dummy variables.

We consider the model with a binary outcome variable Y and a binary indepen-
dent variable X with categories zero and 1. In this simple model the distinction
between interval or nominal scaled makes no difference. For sake of generality we
write xi = (xi0, xi1)

t = (1, xi)
t and β = (β0, β1)

t.
Let X be perturbed to X∗ using the PRAM matrix

PX =

(
p00 p01

p10 p11

)
.

Because the complete-data log likelihood is not linear in xi the simple form of
the EM algorithm as used in the previous section can not be applied. A possible
alternative is to estimate the conditional expectation of the complete-data log like-
lihood, that is Q(β, β(k)), in the E-step by Monte Carlo simulation and maximize
this estimation in the M-step. An EM algorithm where the E-step is executed by
Monte Carlo is known as a Monte Carlo EM (MCEM) (McLachlan and Krishnan,
1997). In general this algorithm can be use when the E-step is complex and does
not admit a closed-form solution to Q(β, β(k)).

In the case of logistic regression where X is perturbed to X∗ we have the follow-
ing:

Q(β, β(k)) = IEX

[
log (l(β)|y,X) |x∗, β(k)

]

= IEX

[
n∑

i=1

yi log (π(Xi)) + (1− yi) log (1− π(Xi)) |x∗, β(k)

]
.

To execute Monte Carlo we need the distribution of Xi given X∗
i , Yi and β(k):

IP (Xi = h|X∗
i = j, Y = k, β(k))

=
IP (Yi = k, Xi = h,X∗

i = j|β(k))

IP (Yi = k, X∗
i = j|β(k))
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=
IP (Yi = k|Xi = h,X∗

i = j, β(k))IP (Xi = h, X∗
i = j)

IP (Yi = k, X∗
i = j, Xi = 1|β(k)) + IP (Yi = k,X∗

i = j,Xi = 0|β(k))

=
IP (X∗

i = j|Xi = h)IP (Yi = k|Xi = h, β(k))IP (Xi = h)
∑1

h=0 IP (Yi = k|X∗
i = j,Xi = h, β(k))IP (Xi = h,X∗

i = j)
(7.4)

=
phjIP (Yi = k|Xi = h, β(k))IP (Xi = h)

∑1
h=0 phjIP (Yi = k|Xi = h, β(k))IP (Xi = h)

.

Note that in the step to (7.4) we use that IP (Yi = k|Xi = h, X∗
i = j, β(k)) =

IP (Yi = k|Xi = h, β(k)), since when Xi is known, X∗
i is not important regarding the

probability of Yi = k.
We do not have IP (Xi = h), but we can estimate this probability by using the

moment estimator. Let Tx∗ = (Tx∗(0), Tx∗(1))t be the vector where Tx∗(h) is the
number of x∗i with value h. If Tx is the vector with the original frequencies, then
according to the moment method we estimate the original frequencies by

T̂x = (PX)−1 Tx∗ .

Therefore we estimate IP (Xi = h) by T̂x(h)/n.
Let M be a positive integer. The MCEM runs as follows:
Monte Carlo E-step. On the kth iteration, draw x1

i , ...,x
M
i from the distribu-

tion of Xi given x∗i , yi and β(k). Then approximate the Q-function by

Q̂(β, β(k)) : β 7→ 1

M

M∑

m=1

log
(
l(β(k)|y,xm

)
.

M-step. Maximize Q̂(β, β(k)) over β to obtain β(k+1).

Because log
(
l(β(k)|y,xm

)
is itself a summation we can use standard logistic re-

gression software to maximize Q̂(β, β(k)): we need to maximize a complete-data log
likelihood which is made up of a data set which is M times larger than the original
data set:

max
β

M∑

m=1

n∑

i=1

yi log[π(xm
i )] + (1− yi) log[1− π(xm

i )].

In the MCEM algorithm the choice of M and the monitoring of convergence of
the algorithm are somewhat difficult. It is recommended (McLachlan and Krishnan,
1997) to use small values of M in the initial stages of the algorithm and to increase
M as the algorithm moves closer to convergence. As to monitoring convergence,
it is recommended that the values of β(k) be tabulated against k and when the



7.6. Conclusion 69

convergence is indicated by the stabilization of the process with random fluctuations
about a value β̂, the process may be terminated or continued with a larger value of
M .

To give an indication of the choice of M : we tested the method on a data set
with a binary outcome variable Y , a binary independent variable X with categories
zero and 1 and n = 500. In the model we include an intercept coefficient. In
the situation without perturbation: β̂0 = 1.29 with SE(β̂0) = 0.154 and β̂1 =
−1.952 with SE(β̂0) = 0.204. After X was perturbed by applying PRAM with
p00 = 1 − p01 = 9/10 and p11 = 1 − p10 = 8/10, we used MCEM to estimate the
parameters. We started with initial values calculated by estimating the parameters
as if no perturbation had been taken place.

With M = 5 and 25 EM iterations we notice after 5 iterations fluctuations
about central values for β̂0 and β̂1. The rounded variances of these fluctuations are
calculated using the last 15 iterations: 0.004 and 0.08 respectively. We continued
with M = 10 and the variance became a lot less: 0.001 and 0.004.

7.6 Conclusion

The fact that the EM algorithm can be slow is a drawback. Although we can
always use the bootstrap method to estimate the standard errors, this can be tedious
because of the slowness of the algorithm. Another limitation is the choice of M in
the MCEM algorithm. Most standard software will be able to handle a large M ,
but a large M will probably slow down the analyses.

The MCEM algorithm as discussed in the situation where PRAM is applied to
an independent variable can also be used in the situation where PRAM is applied
to the outcome variable. The advantage in that case is that logistic regression can
be applied without weights.

Because of the general use of the MCEM algorithm, we can also tackle the
situation when both the outcome and the independent variable are perturbed. In
the E-step of the MCEM we can simple draw from the conditional distribution of the
outcome variable and from the conditional distribution of the independent variable.

The main advantage of the EM algorithm in the context of logistic regression
is that the recipient of the data perturbed by PRAM can use standard software to
execute the regression. It this way the analyst can get round the required computa-
tions and implementation of the Newton Raphson method, which quickly becomes
laborious when the number of parameters goes up.

As in the previous chapter regarding loglinear analysis, we did not prove math-
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ematically that the suggested procedures are sound. The uncertainty lies in the
maximization of the adjusted log likelihood function and the choice of the start-
ing point of the maximization. (Alternatives to the adjustments of the likelihood
function itself do not seem at hand.) These problems are also encountered in the
standard logistic regression model; numerical maximization often does not provide
certainty about global maximums versus local maximums. So, to conclude, in the
situation with a variable perturbed by PRAM adjustment seems possible with the
procedures suggested in this chapter. Although the maximization in this situation
can be harder because of a more complex likelihood.



Conclusion

This report explains PRAM and discusses how statistical analysis can be adjusted
when data are perturbed by PRAM. Adjustment of basic analysis of a 2×2-table
(difference of proportions, relative risk and the odds ratio) is considered in Chapter
4 and loglinear analyses and logistic regression are considered in Chapters 6 and
7. The report shows that regarding these analyses, adjustments can be made in
order to work with the perturbed data. Of course, this report has its limitations:
we did not always consider extra variances (relative risk, odds ratio) and we only
discussed simple models with few variables. Nevertheless, we hope to have showed
that adjustment is often possible and, furthermore, we hope to have provided tools
(in particular the EM algorithm) for further research concerning adjustment of sta-
tistical analyses.

As stated in the introduction of Chapter 1: we did not discuss the extent of ran-
domness which the PRAM procedure needs to protect the data satisfactory. This
randomness, that is, the transition probabilities that scores on certain variables
change into different scores, should be determined before the microdata file is per-
turbed. Clearly, the benefit of adjustment of statistical analyses is related to the
choice of the transition probabilities. When probabilities that original scores change
into different scores are high, adjustment of analyses can not prevent that the extra
variance due to PRAM makes the analyses unworkable. So, in the end, research into
the choice of the PRAM matrix and research into the possibilities to adjust analyses
should be combined and tests on real data sets should be performed. This is the
first recommendation for future research.

Other subjects of future research are provided by some mathematical questions
which are not yet solved. Most important is the conjecture in Chapter 4 regarding
the differences between the moment estimator and the EM estimator. This is in-
teresting because of the different properties of the estimators which we would like
to combine, i.e., we would like to know when the unbiased moment estimator yields
the same output as the maximum likelihood estimator. Another subject for research
is the use of the bootstrap to estimate variances after the EM algorithm is applied.
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In Chapter 4 and 5 the bootstrap is used and we would like to investigate if this
use of the bootstrap is mathematically sound. Using the bootstrap in combina-
tion with the EM algorithm can provide a important tool when data perturbed by
PRAM have to be analysed. A problem which is encountered in all analysis of data
perturbed by PRAM is the fact that standard analyses assume certain models for
the original data and that these models are strictly speaking not appropriate after
the perturbations and estimation of the original data. For instance, the estimated
2×2-table of the original data does not have the same multinomial distribution as
the original 2×2-table. It may be that this problem can be ignored in practice, but
in view of mathematics, it is awkward.

There seems to be no end when it comes to different analyses which may be
adjusted in order to be able to work with data perturbed by PRAM; each analysis
which deals with categorical variables can be discussed. In the future it will be
worthwhile to get in touch with disciplines as for instance psychometrics, sociomet-
rics and econometrics. Contacts with these disciplines can outline research and may
also provide new insights. As discussed in Chapter 3, problems regarding perturbed
data are not new and in some situations (misclassification, randomized response
and incomplete data) problems are close to the problems encountered when working
with data perturbed by PRAM.

The final acceptance of PRAM as a method of statistical disclosure control de-
pends not only on the possibility to produce safe microdata and the possibility to
adjust analyses, but also on the user-friendliness of the adjustments.
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Summary

This reports discusses the Post Randomisation Method (PRAM). PRAM was intro-
duced in 1997 as a method for disclosure protection of microdata files. A microdata
file consists of records and each record contains individual data of respondents. The
PRAM procedure yields a new microdata file in which the scores on certain variables
in the original file may be changed into different scores according to a prescribed
probability mechanism. The randomness of the procedure implies that matching
a record in the perturbed file to a record of a known individual in the population
could, with a high probability, be a mismatch. The recipient of the perturbed data
is informed about the probability mechanism which is used in order that he can
adjust his statistical analysis and take into account the extra uncertainty caused by
applying PRAM.

This report explains PRAM and discusses how statistical analysis can be ad-
justed when variables are perturbed by PRAM. Because PRAM always concerns
categorical variables - variables with a finite number of values - we discuss mainly
categorical data analysis. We do not discuss the extent of randomness which the
PRAM procedure needs to protect the data satisfactory, instead it is assumed that
the randomness of the PRAM procedure is known and provided in the form of a
Markov matrix.

Although perturbation of categorical variables by applying PRAM is new and
produces new problems for standard statistical analysis, it is possible that solutions
to these problems can be found in existing methods which deal with similar per-
turbation problems such as data subject to misclassification, incomplete data, and
data obtained by randomized response. The similarity between these situations: the
scores which are missing or the scores which are only known via perturbed scores
can be considered as values of stochastic variables which have to be estimated. An
important advantage in the case of PRAM is that the probability mechanism used
is known, which simplifies these methods.

In Chapter 4 we show that adjustment regarding the perturbation is possible
in the case of simple analysis of a 2×2-table. Because of the attenuation produced
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by applying PRAM regarding the analyses discussed, a conclusion concerning the
presence of association is justified on the basis of the observed table alone. When
the observed table contains a significant difference in proportion, the original table
will contain an even larger difference. And the same applies to the relative risk,
the odds ratio, and the Pearson chi-squared test: when the risk, the ratio, and chi-
squared test is computed without adjustment for PRAM and the outcome suggests
association, then there is certainly association in the original table.

In Chapter 5 we consider the EM algorithm which is currently used in different
fields of applied mathematics and which is constructed to find maximum likelihood
estimates. For instance, the algorithm can be used when data are incomplete or cen-
sored. When data are perturbed by PRAM the recipient of the data can consider a
file which is twice the size of the original file and which consist both of the perturbed
scores and of the original scores. This new file is incomplete since the original scores
are not provided. Using the Markov matrix and the EM algorithm the analyst can
determine maximum likelihood estimates for analyses regarding the original data.
We used the EM algorithm for frequency estimation (Chapter 5), loglinear analysis
(Chapter 6) and logistic regression (Chapter 7). Of course, techniques other than
the EM algorithm are possible and some of them are also mentioned in this report.
The disadvantage of the EM algorithm is its slowness, but advantages are numerical
stability and user-friendliness due to the possibility to use standard software within
the iterations of the algorithm.

Research concerning PRAM is still necessary. Some of the techniques discussed
in this report demand a firmer mathematical basis. The use of the bootstrap in
connection with the EM algorithm, for instance, should be considered more care-
fully. Furthermore, there is no end when it comes to different analyses which may
be adjusted in order to be able to work with data perturbed by PRAM; each anal-
ysis which deals with categorical variables can be discussed. In the future it will be
worthwhile to get in touch with disciplines as for instance psychometrics, sociomet-
rics and econometrics. Contacts with these disciplines can outline research and may
also provide new insights.

The final acceptance of PRAM as a method of statistical disclosure control de-
pends not only on the possibility to produce safe microdata and the possibility to
adjust analyses, but also on the user-friendliness of the adjustments.


