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Abstract

Hypothesis testing in forensic science is discussed and using posterior dis-
tributions for likelihood ratios is illustrated. Instead of eliminating the
uncertainty by integrating (Bayes factor) or by conditioning on parameter
values, uncertainty in the likelihood ratio is retained by parameter uncer-
tainty derived from posterior distributions. A posterior distribution for
a likelihood ratio can be summarised by the median and credible inter-
vals. Using the posterior mean of the distribution is not recommended.
An analysis of forensic data for body height estimation is undertaken. The
posterior likelihood approach has been criticised both theoretically and
with respect to applicability. This paper addresses the latter and illus-
trates an interesting application area.
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1 Introduction

Evaluation of evidence in forensic science starts with formulating the prosecutor’s

hypothesis (Hp) and the defender’s hypothesis (Hd). A typical example is Hp:

the perpetrator is the suspect, and Hd: the perpetrator is not the suspect (but

a random person). Let us assume that there are background data. For example,

if the evidence is with regard to the height of the suspect, then background data

may consist of height measurements in the relevant population.

The evaluation of evidence is the investigation of how the evidence changes

the relation between the probability that Hp is true and the probability that

Hd is true. Formally, it is the investigation of the multiplicative factor that

turns the prior odds in favour of guilt P (Hp|B)/P (Hd|B) into a posterior odds

P (Hp|E,B)/P (Hd|E,B), where E is the evidence and B are the background

data. This factor is the Bayes factor, and is given by

P (Hp|E,B)

P (Hd|E,B)
=

p(E|Hp, B)

p(E|Hd, B)
× P (Hp|B)

P (Hd|B)
,

︸ ︷︷ ︸
Bayes factor

where p(·) is a generic notation for a probability density function (for continuous

evidence data) or a probability mass function (for discrete evidence data). If

the Bayes factor is 1, then the evidence does not help to choose between Hp

and Hd. If the factor is between 0 and 1, then the evidence makes Hd more

likely. If the factor is larger than 1, then the evidence makes Hp more likely. For

applications of the Bayes factor in forensic practice, see Lindley (1977), Evett et

al. (1987), Wakefield et al. (1991), Sjerps and Kloosterman (2003), Aitken and

Taroni (2004), and Bozza et al. (2008).

The definition of the Bayes factor above is in line with the formulation of

the Bayes factor within the statistical framework of model comparison. Given
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two hypotheses H1 and H2 corresponding to assumptions of alternative models,

M1 and M2, for data x, the Bayes factor in favour of H1 is p(x|M1)/p(x|M2)

(Bernardo and Smith, 2000). In the rest of this paper, the conditioning on a

model M will be indicated by the conditioning on the corresponding hypothesis

H.

The Bayes factor has often been used in the statistical literature, but it usage

is not without problems. First, using the Bayes factor can result in paradoxical

inference (Lindley’s paradox, see Bernardo and Smith, 2000). When a vague prior

density is used, non-zero prior weights are assigned to values that have negligible

likelihood. When integrating the likelihood with respect to the prior, the vague

prior may result in a marginal probability of the data close to zero (Aitkin 1999,

p. 115). Second, the factor can be hard to compute in some situations, see

the recent discussion in Carlin and Louis (2009). Third, using the factor for

a comparison between two models only works when there is no obvious middle

ground that can be described by a third model (Gelman et al., 2004, p. 185).

Fourth, the Bayes factor is a value without an associated uncertainty. The factor

quantifies an aspect of the data and as such it is a statistic without uncertainty.

Whether the factor is close to 1 or not can only be decided by following general

guidelines about what is considered to be a big or small value (Kass and Raftery,

1995).

The first point is not an issue in the evaluation of evidence when the prior

density for the parameters of the model for the background data is the same in

the numerator and in denominator of the Bayes factor. Also the third point is not

a problem in forensic practice, as proper formulation of Hp and Hd is exclusive.

With respect to the fourth point, a subjective assessment of a numerical outcome

will never be eliminated in statistics. Nevertheless, we think that the method

proposed in the current paper yields a more intuitive way of interpreting the
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outcome of hypothesis testing in forensic science.

Forensic evidence is sometimes evaluated by conditioning on model parameters

for the background data B. This leads to the evaluation of a conditional likelihood

ratio given by p(E|Hp,θ)/p(E|Hd,θ), where θ is a parameter vector for the model

for B. Typically, the likelihood ratio is evaluated conditional on the maximum

likelihood estimate of θ, see, e.g., Aitken and Lucy (2004). The advantage of this

is that the problems with the Bayes factor are avoided and there is no need for the

specification of prior densities. Using the likelihood ratio in this way is a two-stage

frequentist approach, where the second stage is statistical inference conditional

on the estimate of θ. The disadvantage is that the uncertainty associated with

the estimation of θ is ignored.

As a method for simple null hypothesis testing, Dempster (1974) and Aitkin

(1991, 1997, 2010) suggest to use a Bayesian framework but instead of working

with the Bayes factor, they propose to consider the posterior distribution of the

likelihood ratio. The current paper will illustrate using posterior distributions

for likelihood ratios in forensic practice. Careful terminology and formulation are

necessary to explain the posterior distribution of a likelihood ratio in a forensic

setting and the way the method can be applied. Curran (2005) used the posterior

distribution of the likelihood ratio in a specific application with DNA profiles. We

will provide a more extensive discussion showing the general applicability of the

method and the differences with a fully Bayesian approach.

The idea of using the posterior distribution of a likelihood ratio has received

criticism, see the discussion of Aitkin’s 1991 paper (in the same journal) and the

discussion of Aitkin’s 2010 book by Gelman et al. (2010). The two main points

made by Gelman et al. are that the Aitkin’s approach is incompatible with a

Bayesian perspective, and that the approach does not seem to be useful for com-

mon applications in statistics. The aim of our work here is with respect to the
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second point: we hope to illustrate that forensic science provides interesting ap-

plications for Aitkin’s method. With regard to the first point, Gelman et al. make

a strong case. But - as stated by Gelman et al. themselves - it does not imply

that Aitkin’s approach is wrong. It just means that the approach is not purely

Bayesian. Nevertheless, for reasons of consistency, we will use Aitkin’s terminol-

ogy such as posterior distribution of the likelihood ratio and posterior probability

throughout this paper. Further discussion of the merits and the disadvantages of

the approach are presented in the conclusion.

Section 2 introduces terminology. In Section 3, the posterior distribution of

the likelihood ratio is explained within the context of forensic science. Section 4

presents an evaluation of evidence where the posterior distribution of the likeli-

hood ratio is used for the measurement of body height. Background data in this

case consist of measurements on test persons. A comparison is made with the

Bayes factor approach. For the posterior sampling we use WinBUGS (Lunn et

al., 2000). Section 5 concludes the paper.

2 Terminology

For a continuous random variable, the likelihood ratio (LR) is the ratio of two

values of the probability function p(x|θ), given two values of model parameter

θ, and data x. For values θ1 and θ2, we have LR = p(x|θ1)/p(x|θ2), where, as
before, function p(·) is a generic notation for a probability density function or a

probability mass function.

Given two hypotheses H1 and H2 for assumptions for models M1 and M2,

respectively, the Bayes factor (BF ) in favour of H1 is given by

BF =
p(x|H1)

p(x|H2)
=

∫
p(x|ϕ,H1)p(ϕ|H1)dϕ∫
p(x|ψ,H2)p(ψ|H2)dψ

.

The BF is also called a marginal likelihood ratio as it is the ratio of two marginal
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likelihoods. It is not necessarily the case that p(x|ϕ,H1) is the same function as

p(x|ψ,H2). These probability functions are defined by M1 and M2, respectively.

The same holds for p(ϕ|H1) and p(ψ|H2). It is because of this that the BF can

be used to compare non-nested models.

If, however, M1 and M2 are nested, i.e., one can be derived from the other by

restricting a subset of the parameters, then the BF is still different from the LR,

as the latter is defined for specific parameter values and the former is defined by

integrating out the parameters. It is only in the specific case where the priors

given by p(ϕ|H1) and p(ψ|H2) identify parameter values with probability 1 (have

a point mass 1 at those values), that the BF reduces to a LR.

The LR can be used for simple null hypothesis testing. For example, let the

null hypothesis be given by H1: θ = θ1, and the alternative by H2: θ ̸= θ1. If θ̂

is the maximum likelihood estimate, then the probability distribution of the test

statistic −2 log[p(x|θ1)/p(y|θ̂)] can be approximated by a chi-square distribution

with 1 degree of freedom (conditional on some assumptions). This is the well-

established likelihood ratio test.

The BF can also be used for null hypothesis testing. For H1 and H2, BF

is given by p(x|θ1)/
∫
p(x|θ)p(θ)dθ, where p(θ) is the prior density under the

alternative hypothesis. In this case, H1 is rejected if BF < 1 and close to zero,

and H2 is rejected if BF > 1 and large.

The following example of a Bayes factor in forensic practice is taken from Lucy

(2005, Section 12.5). An eyewitness height description of the male perpetrator is

modelled as a normal distribution with mean 1.816 meter and standard deviation

0.054. The prosecutor’s hypothesis is Hp: perpetrator = suspect. The defender’s

hypothesis is Hd: perpetrator ̸= suspect. The assumed population distribution

of men is normal with mean 1.775 and standard deviation 0.098. The evidence is

the height E = 1.855 of the suspect.
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The Bayes factor is in this case equal to the probability density of E under

Hp divided by the probability density of E under Hd. That is, BF = f(E|µp =

1.816, σp = 0.054)/f(E|µd = 1.775, σd = 0.098) = 1.951, where f is the density

of a normal distribution with mean µ and standard deviation σ (Lucy 2005).

We would like to add the following explanation in terms of the BF . The BF

in this case is defined as

BF =
p(E|Hp)

p(E|Hd)
=

∫
p(E|θ, Hp)p(θ|Hp)dθ∫
p(E|η, Hd)p(η|Hd)dη

. (1)

There are no background data. The models under both hypotheses are completely

specified normal distributions. This means that p(θ|Hp) specifies θ = (µp, σp)

with probability one. Likewise p(η|Hb) specifies η = (µd, σd) with probability

one. As a result both integrals disappear in (1) and we end up with p(E|θ, Hp) =

f(E|µp, σp) and p(E|η, Hd) = f(E|µd, σd).

Note that there is no uncertainty associated with the BF . Consider the case

where background data are used for the estimation of µd and σd. In that case,

the denominator of (1) would have been

p(E|Hd, B) =

∫
p(E|η, Hd, B)p(η|Hd, B)dη

=

∫
p(E|η, Hd, B)

p(B|η, Hd)p(η|Hd)

p(B|Hd)
dη,

where p(B|η, Hd) is the likelihood and p(η|Hd) is the prior density. Because

the BF is in this case defined conditional on background data B, there is still

no uncertainty associated with the BF . The uncertainty with respect to η is

integrated out. Nevertheless, if a new data set B would be sampled, another

BF would be the result. By conditioning on B, this sample uncertainty is not

accounted for.
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3 Posterior likelihood ratio

As an alternative method for simple null hypothesis testing, Aitkin (2010) ad-

vocates to use a Bayesian framework but instead of working with the BF , and

proposes to consider the posterior distribution of the LR. Instead of eliminating

the uncertainty by maximising (LR test) or by integrating (BF ), uncertainty in

the LR is retained by parameter uncertainty derived from the posterior distribu-

tions.

Bayesian inference focusses on the posterior density of parameters. If θ is

the parameter and x are the data, then the posterior is given by p(θ|x) =

p(x|θ)p(θ)/p(x), where p(x|θ) is the likelihood of the data and p(θ) is the prior

density of θ. Thus the posterior is proportional to the likelihood times the prior,

and this is written as p(θ|x) ∝ p(x|θ)p(θ).
The posterior likelihood ratio approach is readily explained in terms of sam-

pling. The LR is considered as a function of the parameters under both hypothe-

ses. First, given H1: θ = θ1, the likelihood is a single value L(θ1) = p(x|θ1).
Second, given H2: θ ̸= θ1, S parameter values θ∗ are sampled from the posterior

p(θ|x) and for each value the likelihood L(θ∗) is computed. Next, the S ratios

L(θ1)/L(θ
∗) provide a random sample from the posterior of the LR.

At first sight, the setting in Aitkin (2010) is different from the forensic science

setting. For the former, there is a data set and a model, and the hypotheses

are about model parameters. For the latter, there is evidence E and background

data B, and the hypotheses are about E - not about the model for B.

For the forensic science setting, we can define an LR given an estimate of

model parameters for B. This only works if we assume that both the prosecutor

and the defender accept the same model for B. If the model parameter vector is

denoted θ, then we can define a likelihood ratio by the ratio of two probability
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densities for the evidence. This conditional ratio is given by

LR =
p(E|Hp,θ)

p(E|Hd,θ)
. (2)

For the forensic science setting, the BF is defined as

BF =
p(E|Hp, B)

p(E|Hd, B)
=

∫
p(E|Hp,θp)p(θp|B)dθp∫
p(E|Hd,θd)p(θd|B)dθd

, (3)

where p(θp|B) and p(θd|B) are posterior densities.

Given these definitions of BF and LR, we can apply the ideas of the posterior

likelihood ratio and achieve a middle way between BF and LR such that the

uncertainty in the LR is retained by parameter uncertainty derived from the

posterior distribution of the model parameter vector for the background data.

Thus we see LR as a function of sampled θ, and obtain its posterior by sampling

from the posterior p(θ|B).

The posterior of LR is very useful as it can be used to assess the strength of

evidence by way of posterior probabilities such as P (LR < c), for any c > 0.

Care has to be taken not the summarise the posterior distribution of the

likelihood ratio by its posterior mean. The posterior mean is not invariant under

the switching of the order of the hypotheses in the sense that

IEθ

[
p(E|Hp,θ)

p(E|Hd,θ)

]
̸=

(
IEθ

[
p(E|Hd,θ)

p(E|Hp,θ)

])−1

.

This is important since the order of the hypotheses should not effect the statistical

inference. Instead of assessing the posterior mean, the posterior median and

credible intervals can be used for statistical inference.

4 Evaluation of evidence

In this section, the posterior of the likelihood ratio (2) is used for forensic data

for height estimation of a perpetrator. A comparison with the Bayes factor (3) is

made.

9



A perpetrator was well visible on a security camera and one image was cho-

sen as the basis of height measuring. Background data B consist of additional

measurements of six test persons who were positioned in the same stance as the

perpetrators in front of the original camera (Edelman et al., 2010).

We use the following notation. Background data are measurements mi, for

test persons i = 1, 2, ..., 6, and known true heights hi. The model for the height

estimation is

mi = α + hi + ϵi with ϵi ∼ N(0, σ2), (4)

where α is the systematic measurement error, see Van den Hout and Alberink

(2010) for an extended model and details of the data. Let θ = (α, log(σ)).

The evidence is the measured height mp of the perpetrator. The height of the

suspect is hs. The prosecutor’s hypothesis is Hp: perpetrator is suspect (hp = hs).

The defender’s hypothesis is Hd: perpetrator is not suspect (hp ̸= hs). Assume

that both the prosecutor and the defender accept model (4). The BF is given by

BF =
p(mp|Hp, B)

p(mp|Hd, B)
=

p(mp|hp = hs, B)∫
p(mp|hp = h,B)p(h)dh

=

∫
p(mp|θ, hp = hs)p(θ|B)dθ∫ [∫

p(mp|θ, hp = h)p(h)dh
]
p(θ|B)dθ

. (5)

Let us assume that the height distribution of the population is given by p(h) =

p(h|µh, σh), a normal distribution with known mean µh and known standard

deviation σh. The conditional LR is given by

LR =
p(mp|hp = hs,θ)∫

p(mp|hp = h,θ)p(h|µh, σh)dh
. (6)

The numerator of (6) is a normal density and is given by

p(mp|hp = hs,θ) =
1√
2πσ2

exp

[
−1

2

(mp − α− hs)
2

σ2

]
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Since p(h|µh, σh) is a normal distribution, there is a closed-form solution for the

integral in the denominator of (6). The integrand is a convolution of two normal

distributions and the denominator is given by∫
p(mp|hp = h,θ)p(h|µh, σh)dh =

1√
2π(σ2 + σ2

h)
exp

(
−1

2

(mp − α− µh)
2

σ2 + σ2
h

)
,

see, e.g., Gelman et al. (2004, Section 2.6) for a similar computation. If θ is

treated as a fixed value, then there is no uncertainty associated with LR.

For the posterior of LR, firstly, we sample θ∗ from the posterior p(θ|B).

Secondly we compute LR for each sampled θ∗.

To obtain the posterior p(θ|B), we have to specify the prior of the model

parameter vector θ. Gelman et al. (2004) discuss the definition of the prior

density in the context of the normal distribution, and also the sampling from the

resulting posterior. Various levels of informativeness and conjugacy are presented

by Gelman et al.

For the evaluation of evidence in the present setting, we specify an informa-

tive proper prior p(θ) without worrying about conjugacy as we will rely on the

automatic MCMC procedures in WinBUGS to do the sampling.

To compare the posterior likelihood ratio approach with the Bayes Factor (5),

we approximate the integrals in the latter by using the trapezoidal rule (with 500

nodes). This computation includes the estimation of the marginal density p(B)

since the posterior for θ is given by p(θ|B) = p(B|θ)p(θ)/p(B). In general, the

estimation of marginal density can be complex (Carlin and Louis, 2009). Since θ

consists of only two parameters, numerical approximation of the integrals works

fine. Sampling from the posterior of LR is undertaken in WinBUGS (Lunn et

al., 2000). WinBUGS is freely available software for the Bayesian analysis of

statistical models using Markov chain Monte Carlo (MCMC) methods, see also

www.mrc-bsu.cam.ac.uk/bugs. Code is provided in the Appendix. For the

inference in this application, the MCMC consisted of two chains, each with a
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Table 1: Background data on measured heights and true heights of test persons,
and measured height of perpetrator.

Test persons Perpetrator

Measured height 1.964 1.832 1.900 1.780 1.937 1.865 1.885
True height 1.950 1.795 1.865 1.755 1.910 1.825 -

burn-in of 10000, and a further 10000 updates for inference. Convergence of the

MCMC was checked by using the diagnostic tools provided within WinBUGS.

Evidence mp and background data for the height estimation are presented

in Table 1. The population distribution of Dutch Caucasian men is assumed to

be normal with mean µh = 1.806 and standard deviation σh = 0.1 (Statistics

Netherlands, www.cbs.nl, 2006). This specifies p(h|µh, σh). For the prior of θ we

assume p(θ) = p(α, log(σ)) = p(α)p(log(σ)), and furthermore α ∼ N(0, 0.1) and

log(σ) ∼ U(−10, 0). These priors are informative and take into account that the

measurements are in meters.

Bayesian inference using WinBUGS yields a posterior mean 0.029 for α with

95% credible interval (CI) (0.017, 0.042). So there is a systematic overestimation

of the height of about 3cm. For σ the figures are 0.012 (0.006, 0.024). The

posterior density p(θ|B) has a regular shape and is depicted in Figure 1.

We will illustrate the evaluation of the evidence mp = 1.885 for various values

of the height of the suspect hs. Say that the suspect has the same height as the

perpetrator. In that case mp − α ≈ 1.885− 0.029 = 1.856 = hs. If this is indeed

the case we would expect the value 1 to be located in the left tail of the density

of LR because it is likely that the suspect is the perpetrator and hence the mean

of LR should be larger than 1. In other words, P (LR < 1) should be small.

For the same reason, we would expect BF to be larger than 1. This is indeed
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Figure 1: Posterior density p(θ|B) = p(α, log(σ)|B).

the case, the posterior median of LR is 10.03 with 95% CI (4.25, 17.69), and

the BF is estimated at 9.27. The big advantage of the posterior of LR is clear:

we have estimated its distribution. The 95% CI for instance shows immediately

that LR = 1 is not very likely. This is information that the computation of BF

does not provide. Because we have sampled values of LR, probabilities such as

P (LR < 1) are easy to estimate. In this case all sampled values of LR were larger

than one, so we may safely conclude that P (LR < 1) < 0.01. The evidence is

clearly in favour of the prosecutor’s hypothesis.

Next we consider two values of hs that are clearly in favour of the defender’s

hypothesis. Both values hs = 1.7 and hs = 2.0 yield a posterior median of LR

smaller than 0.01 and P (LR < 1) > 0.99. The corresponding BF are both

smaller than 0.001. For both theses values of the suspect’s height, the evidence

is clearly in favour of the defender’s hypothesis.
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The value hs = 1.825 illustrates a situation where the extra information of the

posterior of the LR is of particular use. The BF is estimated at 0.53. This is dis-

similar to the posterior median 0.15 of the LR, whereas the posterior mean 0.521

of the LR is close to the BF . Where the BF gives no uncertainty information,

the sampled values of the LR allow many possible quantities to be estimated to

assess whether the evidence is in favour of the defender’s hypothesis. The latter

is not the case. The 95% CI for the LR is (< 0.01, 2.86) which includes the value

1. Probability P (LR < 1) is estimated at 0.82.

For the value hs = 1.825, we investigate the sensitivity of the results with

regard to the specification of the prior p(θ) = p(α, log(σ)). First, we use priors

which are less informative. We specify α ∼ N(0, 1) and log(σ) ∼ U(−10, 5).

Given that measurements are in meters, these priors do not contain much infor-

mation. For the LR, we obtain median 0.150 and 95% CI (< 0.01, 3.03), the BF

is estimated at 0.54. Next we specify α ∼ N(0, 0.05) and log(σ) ∼ U(−10,−3).

The prior for α implies that about 95% of the systematic error falls with the

interval (-10cm, 10cm), the prior for σ implies that σ is less than 10cm. These

priors are informative, but are still reasonable for this case. For the LR, we obtain

median 0.145 and CI (< 0.01, 2.80), the BF is estimated at 0.51. Given these

alternative specifications of the priors, results are very similar to the previous

results.

5 Conclusion

A fully Bayesian evaluation of evidence requires the computation of a Bayes

factor. For complex models, this factor may be hard to compute. Using the ideas

in Dempster (1974) and Aitkin (2010), the posterior distribution of the likelihood

ratio is used in a forensic science setting as an alternative to the Bayes factor.

Using the posterior likelihood ratio is not frequentist as sampling from a posterior
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is required, but it is also not fully Bayesian since it does not use the Bayes factor

for hypothesis testing.

The application discussed forensic data where heights were estimated on the

bases of images from a security camera. The posterior mean of the likelihood ratio

was similar to the Bayes factor. With samples available from the posterior of the

likelihood ratio, an all-round inference was possible by investigating posterior

percentiles and credible intervals.

As stated in the introduction, Gelman et al. (2010) criticise the posterior

likelihood ratio approach by arguing that it is incompatible with a Bayesian

perspective, and that it does not seem to be useful for common applications in

statistics. We hope to have shown in this paper that forensic science is an area

where the approach seems useful. The points raised by Gelman et al. (2010) with

respect to using vague priors, comparing discrete hypotheses, and the problem

with product of posteriors, are not applicable in our setting: In forensic science,

it make sense to use vague prior densities for the parameters in the model for the

background data, researchers are interested in comparing discrete hypotheses,

and - at least in the current application - there is no assessment of a product of

posteriors.

Nevertheless, we acknowledge that there are still important issues in the pos-

terior likelihood ratio approach that need further attention. Using the posterior

distribution of LR for hypothesis testing can be seen as a hybrid of Bayesian

and frequentist methods. It is not fully Bayesian, but it is also not a frequentist

analysis. This ambiguity causes interpretation problems. For example, in a fully

Bayesian framework, a 95% credible interval of a parameter means that the pos-

terior probability that the parameter lies in that interval is 0.95. A frequentist

95% confidence interval means that given a large number of repeated samples,

95% of the estimated confidence intervals includes the true value of the parame-
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ter. What are the properties of the credible intervals for LR that we computed

in the current application?

Using the posterior likelihood ratio has a wide range of possible applications

in forensic practice. Computationally it is a feasible method to evaluate evidence.

It takes into account the uncertainty with regard to inference from background

and at the same time allows to model prior knowledge.

Appendix

WinBUGS code used in the evaluation of evidence. For more information on the
software and MCMC sampling see www.mrc-bsu.cam.ac.uk/bugs.

Data:

list(h = c(1.950, 1.795, 1.865, 1.755 ,1.910, 1.825) ,

m = c(1.964, 1.832, 1.900, 1.780, 1.937, 1.865))

Inits:

list(alpha=0, logsigma= -4)

list(alpha=0.02, logsigma= -5)

Model:

model{

# Model for measurement:

for(i in 1:6){ mu[i]<-h[i]+alpha; m[i]~dnorm(mu[i], tau) }

# Evaluation of evidence:

h_s<- 1.825; m.p <- 1.885

# Under H_p:

pi<-3.141593; p_Hp<-1/(sqrt(2*pi)*sigma)*exp(-1/2*tau*pow(m.p-(h_s+alpha),2))

# Under H_d:

mu_h.pop<-1.806; var_h.pop<-0.01

tau_h.pop<-1/var_h.pop

p_Hd<-1/sqrt(2*pi*(var+var_h.pop) )*exp(-1/(2*(var+var_h.pop))*pow(m.p-alpha-mu_h.pop,2))

# LR:

LR<-p_Hp/p_Hd

# Strength of evidence:

c<-1; pprob<-step(c-LR)

# Converting precision to sd and var:

tau<-pow(sigma,-2); var<-pow(tau,-1)

# Priors:

alpha~dnorm(0,0.1); logsigma~dunif(-10,0); sigma<-exp(logsigma)}
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