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1 Introduction

Let X be a smooth, connected, compact manifold of dimension n without boundary, and p : E → X be a

(real or complex) vector bundle of rank k over x. Characteristic classes associate to each vector bundle E

over X a cohomology class c(E) ∈ Hk(X;R) (R is an “appropriate” coefficient ring as we will see later)

such that the association is natural, i.e. if we consider a map f : X → Y between smooth manifolds and a

pull-back bundle f∗E over Y , the characteristic class of the pull-back bundle c(f∗E) ∈ Hk(Y ;R) is equal to

the pull-back of the cohomology class f∗c(E) ∈ Hk(Y ;R).

The power of characteristic classes is that it can define an invariant of an isomorphism class of vector

bundles over X. Suppose p1 : E1 → X and p2 : E2 → X are two isomorphic vector bundles over X, with the

bundle isomorphism given by f : E1 → E2, so that E1 = f∗E2. Suppose also (for the sake of simplicity) that

c(·) is in the top degree with Z as the coefficient ring, i.e. c(E1), c(E2) ∈ Hn(X;Z). Then, by coupling with

the fundamental class of X, we get a number
∫
X
c(E1) and

∫
X
c(E2) corresponding to each vector bundle

E1 and E2. Since we assumed E1 = f∗E2, we see that (noting that f acts as an identity on the base X)∫
X

c(E1) =

∫
X

c(f∗E2) =

∫
X

f∗c(E2) =

∫
X

c(E2)

by virtue of naturality. This means that, if there are two vector bundles p : E → X and p′ : E′ → X

which have different numbers
∫
X
c(E) and

∫
X
c(E′) they cannot possibly be isomorphic. Thus, a number∫

X
c(E) can be powerful enough to tell an isomorphism class of a vector bundle. Often, a number obtained

by integrating a characteristic class is called a characteristic number. Later, we will see that the tautological

bundle over CP1 cannot be isomorphic to the hyperplane bundle over CP1 by using this principle.

Of course, we have not shown if such characteristic classes exist at all, let alone explaining how to

construct such an association E 7→ c(E) ∈ Hk(X;R). But an example of characteristic classes was already

known in 1935, called the Stiefel-Whitney classes wi(E) ∈ Hi(X;Z/2Z). In 1940’s, Pontrjagin classes

pi(E) ∈ H4i(X;Z) were discovered for a real vector bundle E, and Chern classes ci(E) ∈ H2i(X;Z)

were discovered for a complex vector bundle E. Another famous characteristic class is the Euler class

e(E) ∈ Hk(X;Z), integration of which is equal to the Euler characteristic χ(X) if E = TX.

All of these characteristic classes are not independent of each other, i.e. there are certain relationships

between various characteristic classes, and the way of defining these characteristic classes is not unique.

The approach we take in this section is differential-geometric, which is called Chern-Weil theory in a wider

context. Mainly because of the limitation on length, we will only focus on the Chern classes mentioned

above. One reason for doing so is that Chern classes are indispensable in complex differential and algebraic
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geometry, whereas other characteristic classes have more to do with much more subtle topological structure

on a vector bundle, e.g. existence of spin structure, signature of the intersection form, to mention just a few.

Another reason is that once we define the Chern classes by means of the Chern-Weil theory, the definition of

the Pontrjagin classes goes parallel with only minor modification. The definition of Euler class also follows

a similar strategy. We also have to remark that the Chern-Weil theory cannot be used to define the Stiefel-

Whitney classes, since the Chern-Weil theory goes through de Rham theory and the Stiefel-Whitney classes

are defined over Z/2Z.

2 Chern classes

Let p : E → X be a complex vector bundle of rank k (i.e. each fibre is a C-vector space with dimension k

over C) defined on the base manifold X. We define a connection ∇ on E, which exists by the Exercise 3.B.2.

Let R∇ ∈ Γ(EndC(E)⊗ ∧2T ∗X) be the curvature, i.e. R∇(V,W ) = ∇V∇W −∇W∇V −∇[V,W ]. Since R∇

is a 2-form on X with coefficients in EndC(E), we see that the following

det

(
λI − R∇

2π
√
−1

)
(1)

makes sense, where I is the identity matrix in the endomorphism ring EndC(Ck), by noting that det is the

usual determinant taken over the EndC(E) sector of R∇, and we may treat (1) as a matrix polynomial since

R∇ is a 2-form and hence commutes with itself. The presence of the numerical constant 1/2π
√
−1 will be

explained later.

We give a provisional definition of the Chern classes as follows.

Definition 2.1. We define differential 2i-forms ci(E,∇) ∈ Γ(∧2iT ∗X) as

det

(
λI − R∇

2π
√
−1

)
=

k∑
i=0

ci(E,∇)λk−i,

which later will turn out to be what is known as Chern classes.

Examples

c0(E,∇) = 1 ∈ R.

c1(E,∇) = −tr

(
R∇

2π
√
−1

)
∈ Γ(∧2T ∗X). (2)

The main theorem that we wish to prove is the following.

Theorem 2.2. ci(E,∇), for 0 ≤ i ≤ k, is a closed form, and the cohomology class [ci(E,∇)] ∈ H2i(X;C)

is independent of the connection ∇ initially chosen to define ci(E,∇). Moreover, [ci(E,∇)] is in fact a real

class, i.e. [ci(E,∇)] ∈ H2i(X;R) ⊆ H2i(X;C)

Remark This theorem has a far-reaching generalisation, which is called the Chern-Weil theory. The key

feature is that the determinant is adjoint-action invariant (adjoint action in the sense of Lie group theory).

However, it is not possible to discuss this in its full details here, due to the limitation on length.
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In fact, there are 4 axioms which uniquely characterise Chern classes as defined in algebraic topology [H],

[K]. In particular, these axioms characterise Chern classes as an integral class. We can show that [ci(E,∇)]

defined above satisfy all these axioms, although we do not provide details in this section. We refer to [K] for

details. An important consequence of this is the following theorem.

Theorem 2.3. [ci(E,∇)] is in fact an integral class, i.e. [ci(E,∇)] ∈ H2i(X;Z) ⊆ H2i(X;R)

Remark This is the reason for the numerical constant 1/2π
√
−1 appearing in the definition of the Chern

classes - it ensures that [ci(E,∇)] takes value in the integral class.

These theorems finally enable us to define the Chern classes.

Definition 2.4. For a complex vector bundle of rank k over X, i-th Chern class of E, written ci(E), is

the integral cohomology class defined by [ci(E,∇)] ∈ H2i(X;Z). This is well-defined because [ci(E,∇)] =

[ci(E,∇′)] for any two connections ∇ and ∇′ on E, by Theorem 2.2.

Examples Let X = CP1 and E be the tautological line bundle L. Then, we can show
∫
CP1 c1(L) = −1.

This is in fact one of the 4 axioms in algebraic topology which characterise Chern classes. Let H be the

hyperplane bundle over CP1, i.e. the dual of L. By noting that the curvature of the dual bundle is given by

−(R∇)t and recalling (2), we see that
∫
CP1 c1(H) = −

∫
CP1 c1(L) = +1. This shows that H is not isomorphic

to L, as mentioned in §1.

We finally comment on how this definition of the Chern classes satisfy the naturality1 mentioned in §1.

Let f : X → Y be a map between smooth manifolds and consider the pull-back bundle f∗E over Y. We

define an induced connection f∗∇ on f∗E as follows. For any local section s of E, we have a local section

f∗s of f∗E and any section of f∗E arises this way, by the definition of the pull-back bundle. Then, for any

vector field v on Y , we define f∗∇v(f∗s) := f∗(∇f∗vs). We can prove that the curvature of f∗∇ is given

by f∗R∇ (pull-back of a differential form), by considering a connection 1-form of ∇ (connection 1-form is

defined, for example, in [K]). Thus

k∑
i=0

ci(f
∗E, f∗∇)λk−i = det

(
λI − Rf∗∇

2π
√
−1

)
= det

(
λI − f∗R∇

2π
√
−1

)
=

k∑
i=0

f∗ci(E,∇)λk−i

and we see that the naturality of ci(E,∇) is satisfied, even at the level of differential forms (i.e. even before

taking the cohomology class).

3 Proof of Theorem 2.2.

We follow the exposition in [K].

1. ci(E,∇) is closed.

Proof. We remark that EndC(∧kE) is a trivial line bundle, since an endomorphism bundle of any line

bundle is trivial. Thus, the covariant exterior derivative d∇ on EndC(∧kE) agrees with the usual

1In fact, the naturality is one of the 4 axioms in algebraic topology which define the Chern classes.
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exterior derivative d. Thus, by noting that det
(
λI −R∇/2π

√
−1
)

is an EndC(∧kE)-valued differential

form on X, we see that

d

(
det

(
λI − R∇

2π
√
−1

))
= d∇

(
det

(
λI − R∇

2π
√
−1

))
= 0 (3)

where we used the Bianchi identity d∇R∇ = 0 and the Leibniz rule of d∇ to derive the second equality.

This shows dci(E,∇) = 0 for ∀i.

2. [ci(E,∇)] ∈ H2i(X;C) is independent of the connection ∇ chosen.

Proof. Let ∇0 and ∇1 be two connections defined on E. Then, the difference ∇1−∇0 is an EndC(E)-

valued 1-form which we call α. Let ∇t := (1 − t)∇0 + t∇1 = ∇0 + tα be a family of connections

connecting ∇0 and ∇1. Let dt be the covariant exterior derivative defined by ∇t. Then, the curvature

Rt := R∇
t

is given by Rt = dt ◦ dt = (d∇
0

+ tα) ◦ (d∇
0

+ tα). Then,

dRt

dt
=
d(dt)

dt
◦ dt + dt ◦ d(dt)

dt
= α ◦ dt + dt ◦ α = dtα (4)

where the last equality is the one as an element of Γ(EndC(E)⊗∧2T ∗X), i.e. (α◦dt)ξ+(dt◦α)ξ = (dtα)ξ

for ξ ∈ Γ(E).

Note that det
(
λI −R∇/2π

√
−1
)

acts on a section ξ1 ∧ · · · ∧ ξk of ∧kE by

det

(
λI − R∇

2π
√
−1

)
ξ1 ∧ · · · ∧ ξk =

(
λI − R∇

2π
√
−1

)
ξ1 ∧ · · · ∧

(
λI − R∇

2π
√
−1

)
ξk.

Similarly, we define an EndC(∧kE)-valued differential form ϕ by

ϕ := − k

2π
√
−1

∫ 1

0

α ∧
(
λI − Rt

2π
√
−1

)
∧ · · · ∧

(
λI − Rt

2π
√
−1

)
dt.

Therefore, by recalling (3), the Bianchi identity, Leibniz rule, (4), and the fundamental theorem in

calculus, we compute

dϕ = − k

2π
√
−1

∫ 1

0

d

(
α ∧

(
λI − Rt

2π
√
−1

)
∧ · · · ∧

(
λI − Rt

2π
√
−1

))
dt

= − k

2π
√
−1

∫ 1

0

dt
(
α ∧

(
λI − Rt

2π
√
−1

)
∧ · · · ∧

(
λI − Rt

2π
√
−1

))
dt

= − k

2π
√
−1

∫ 1

0

(
dtα
)
∧
(
λI − Rt

2π
√
−1

)
∧ · · · ∧

(
λI − Rt

2π
√
−1

)
dt

= − k

2π
√
−1

∫ 1

0

(
dRt

dt

)
∧
(
λI − Rt

2π
√
−1

)
∧ · · · ∧

(
λI − Rt

2π
√
−1

)
dt

= k

∫ 1

0

(
d

dt

(
λI − Rt

2π
√
−1

))
∧
(
λI − Rt

2π
√
−1

)
∧ · · · ∧

(
λI − Rt

2π
√
−1

)
dt

=

∫ 1

0

d

dt

((
λI − Rt

2π
√
−1

)
∧
(
λI − Rt

2π
√
−1

)
∧ · · · ∧

(
λI − Rt

2π
√
−1

))
dt

= det

(
λI − R∇

1

2π
√
−1

)
− det

(
λI − R∇

0

2π
√
−1

)
which proves the claim.
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3. ci(E,∇) is a real form.

Proof. Define a hermitian metric on E and take a connection ∇ which is compatible with the metric.

They do exist on any complex vector bundle, as explained in Chapter 5 of [M]. Then, by Gram-Schmidt

process, we can reduce the bundle structure group from GLk(C) to U(k), and the curvature R∇ takes

value in the Lie subalgebra u(k) = Lie(U(k)) of the Lie algebra EndC(Ck) = glk(C). Thus, R∇ is a

differential 2-form with values in skew-hermitian matrices.

Thus, assuming λ ∈ R without loss of generality,

det

(
λI − R∇

2π
√
−1

)
= det

(
λI − R∇

2π
√
−1

)t

= det

(
λI − (R∇)t

2π
√
−1

)
= det

(
λI +

R∇

2π
√
−1

)
= det

(
λI − R∇

2π
√
−1

)
= det

(
λI − R∇

2π
√
−1

)
which proves the claim, and hence completes the proof of Theorem 2.2.
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