
Review of Fourier transforms
Note - a lot of what we discuss here applies to Laplace transforms as well by a 90 degree rotation in the complex
plane.  I  will  focus  on  Fourier  here  as  it  this  directly  relevant  to  the  Heston  model  to  be  considered  later.  But
watch  out  for  issues  to  do  with  deciding  which  half-plane  the  inversion  contour  needs  to  be  placed  in  (left  or
right for Laplace, upper or lower for Fourier), as this is problematic in financial applications. I will come back to
that if I get time. 

Definition of the Fourier transform
Their are many different definitions of the Fourier transform in the literature, all of which are related by numeri-
cal normalization factors involving 2p and -1. Try not to let this worry you | you just need to be careful about
compiling information from different sources. Given a function f HxL defined for -¶ < x < ¶, we set

(17.1)f
`HwL =

1

2p
‡

-¶

¶

f HxL ‰Âwx „ x

One  of  the  main  things  we  want  to  think  about  is  trying  to  work  this  out  for  different  classes  of  function  f .
Option-pricing  requires  us  to  think  outside  the  usual  "box"  of  functions  for  which  the  transform  exists  (e.g.
square-integrable is sometimes stated). We shall need to get a proper grip on this before talking about Heston's
model,  and  in  particular  along  the  way  we  shall  confront  the  initially  surprising  fact  that  vanilla  call  and  put
payoffs have functionally identical Fourier transforms!

An informal look at the delta-function
Those of you with a background in vector spaces may be aware of the concept of a "dual space". This is the set
of linear mappings from a vector space to the underlying field, e.g. the set of real numbers. When dealing with
finite-dimensional  vector  spaces  the  dual  space  has  the  same  dimension  as  the  original  space,  and  if  we  have
some notion  of  distance  we can  make  an  isomorphism between  a  space  and  its  dual  (think  about  ordinary  dot
products in three real dimensions). 

When dealing  with  infinite-dimensional  function  spaces,  it  all  gets  more  complicated.  The  dual  space  is  much
bigger  than  the  original  function  space  (which  is  already  infinite  in  dimension),  and  it  is  called  the  set  of
‘distributions’. There are things in the dual space that are not like ordinary functions.  This takes us straight to
the notion of a ‘delta-function’, which is not really a function at all! Pick a point a in the interval on which the
functions are defined, and set

(17.2)Da@ f D = f HaL
This is a perfectly valid linear mapping that does not arise through the integration of f  against any other continu-
ous function (the dot product for function space). What we do now is to invent a representation of such distribu-
tions that looks like an ordinary function, and call it 

(17.3)dHx - aL
the delta-function, or d-function, with support at a. It has the following properties:

(17.4)d Hx - aL = 0 if x ≠ a

(17.5)‡
a

b

f HxLdHx - aL „ x = f HaL

provided a < a < b. You can think of dHx - aL as being an ‘infinite spike’ located at a that integrates to unity.



‡ Ÿ The d-function as the limit of a sequence of functions
Although this object is not really a function at all,  it  is very convenient to think of it  in terms of the limit of a
sequence  of  functions.  This  ‘limit’  is  not  the  limit  in  any  of  the  senses  of  classical  analysis  |  it  is  only  to  be
applied  under  integration.  It  does  not  actually  matter  what  particular  sequence  of  functions  is  employed,  pro-
vided that they are continuous and integrate to unity over the entire real line. Let's introduce two sequences that
do the job. First, let's define D1 as follows. 

D1@e_, x_, a_D := 1 ê He Sqrt@2 PiDL Exp@-Hx - aL^2 ê H2 e^2LD
In standard mathematical notation (we have also converted the output) it is

TraditionalForm@D1@e, x, aDD

(17.6)‰
-

Hx-aL2
2 e2

2 p e

So this is just a Gaussian function. It integrates to unity provided e is real and positive:

Integrate@D1@e, x, aD, 8x, -Infinity, Infinity<, Assumptions Ø e > 0D
1

Students of probability or statistics will recognize this as the density function associated with a normal distribu-
tion with mean a and standard deviation e. The second function we shall introduce is

D2@e_, x_, a_D := e ê Pi ê HHx - aL^2 + e^2L
In mathematical notation (the output is converted here also) this is

(17.7)
e

p IHx - aL2 + e2M

Integrate@D2@e, x, aD, 8x, -Infinity, Infinity<,
Assumptions Ø 8Im@aD ã 0, e > 0<D
1

Students of probability or statistics will recognize this as the density function associated with a Cauchy distribu-
tion centred on a, parametrized by e.  Both of these functions have the property that they integrate to unity, and
are peaked at a.  (You might like to plot these functions using Mathematica.)  As the parameter e  tends to zero,
these functions become more strongly peaked at  a.  The idea is that their  limiting form is precisely that of a d-
function. You can get a better grip on this by considering integrating either function against a ‘test-function’ f .
We can write (from now on the integration range is fixed as the entire real line):

(17.8)

‡
-¶

¶

f HxLDiHe, x, aL „ x

= ‡
-¶

¶

H f HxL - f HaLLDiHe, x, aL „ x +‡
-¶

¶

f HaLDiHe, x, aL „ x

= f HaL‡
-¶

¶

DiHe, x, aL „ x +‡
-¶

¶

H f HxL - f HaLLDiHe, x, aL „ x

= f HaL +‡
-¶

¶

H f HxL - f HaLLDi@e, x, aD „ x

Now  consider  what  happens  as  e Ø 0.  The  last  integral  has  an  integrand  that  is  zero  at  x = a,  because  of  the
factor  f HxL - f HaL,  but  the  D-function  concentrates  itself  at  this  point,  becoming  zero  elsewhere.  Some  careful
analysis shows that this latter term tends to zero, leaving us with just f HaL when e = 0. So these D-functions do
have a limit that is a d-function, when all ‘limits’ are taken assuming an integration is being carried out. 

Having  got  a  grip  on  the  d-function,  we  need  to  say  what  it  has  to  do  with  Fourier  transforms.  The
concept we are after is to define the Fourier transform of unity, i.e,

358 Complex Analysis with Mathematica



Now  consider  what  happens  as  e Ø 0.  The  last  integral  has  an  integrand  that  is  zero  at  x = a,  because  of  the
factor  f HxL - f HaL,  but  the  D-function  concentrates  itself  at  this  point,  becoming  zero  elsewhere.  Some  careful
analysis shows that this latter term tends to zero, leaving us with just f HaL when e = 0. So these D-functions do
have a limit that is a d-function, when all ‘limits’ are taken assuming an integration is being carried out. 

Having  got  a  grip  on  the  d-function,  we  need  to  say  what  it  has  to  do  with  Fourier  transforms.  The
concept we are after is to define the Fourier transform of unity, i.e,

(17.9)
1

2p
 ‡

-¶

¶

1 ‰Âwx „ x

This does not exist at all in the usual sense, but it has a very simple interpretation once distributions are intro-
duced.  The way to get at  this  is  very simple.  We replace ‘1’ in the integral by a function whose limit is unity.
There are several choices, but the one that is most convenient is to consider, for e > 0, 

(17.10)
1

2 p
 ‡

-¶

¶

‰-e†x§ ‰Âwx „ x

This can be done by pen-and-paper in two pieces, or we can get Mathematica  to sort it out. Note that we have
said that the imaginary part of w  mustg be less than e  in magnitude. Think about why this must be true for the
integral in Eq. H17.15L to converge.

1/Sqrt[2 Pi]Integrate[Exp[-e*Abs[x]]*Exp[I*w*x], 
  {x, -Infinity, Infinity}, Assumptions Ø {e>0, -e < Im[w] < e}]

2
p

e

e2 +w2

which is precisely

(17.11)2p D2He, w, 0L
That is, we have established that

(17.12)
1

2p
 ‡

-¶

¶

‰-e†x§‰Âwx „ x = 2p D2He, w, 0L

Under any subsquent integration over w, we can let e Ø 0, and hence assert that, as a distribution,

(17.13)‡
-¶

¶

‰Âwx„ x = 2pdHwL

Eq. (17.13) gives the fundamental link between the Fourier transform and the d-function. 

Inversion, convolution, shifting and differentiation
We are now in a position to give informal distributional proofs of the key results | the inversion theorem and the
convolution theorem. These are stated with our definitional convention given in Eq. (17.1).

‡ The inversion theorem
Suppose that Eq. (17.1) holds, i.e. 

f
`HwL =

1

2p
‡

-¶

¶

f HxL‰Âwx „ x

Then the inversion theorem states that

(17.14)f HxL =
1

2p
‡

-¶

¶

f
`HwL‰-Âwx „ w

Assuming the distributional result from Eq. (17.13) and that some reordering of integrals is possible, we can give
a simple proof. We have:
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(17.15)

1

2p
‡

-¶

¶

f
`HwL‰-Âwx „ w =

1

2p
‡

-¶

¶

K‡
-¶

¶

f HyL‰Âwy „ yO ‰-Âwx „ w

= ‡
-¶

¶ 1

2p
‡

-¶

¶

‰ÂwHy-xL „ w  f HyL „ y = ‡
-¶

¶

dHy - xL fHyL „ y = f HxL

‡ The convolution theorem
Suppose we have two transforms:

(17.16)f
`HwL =

1

2p
‡

-¶

¶

f HxL‰Âwx „ x ; g̀HwL =
1

2p
‡

-¶

¶

gHxL‰Âwx „ x

The convolution of f  with g, @ f * gDHxL, is defined by,

(17.17)@ f * gDHxL = ‡
-¶

¶

f HyL gHx - yL „ y

If hHxL = @ f * gD HxL, then the Fourier transform of the convolution is

(17.18)h
`HwL = 2p f

`HwL g̀HwL
Here is the proof.

(17.19)

2p  h
`HwL =‡

-¶

¶

‰ÂwxhHxL „ x

=‡
-¶

¶

‰Âwx‡
-¶

¶ 1

2p
‡

-¶

¶

f
`HpL‰-Âpy„ p

1

2p
‡

-¶

¶

g̀HqL‰-ÂqHx-yL„ q „ y„ x

=
1

H2pL  ‡
-¶

¶

‡
-¶

¶

‡
-¶

¶

‡
-¶

¶

„ p „ q „ y „ x‰Âwx‰-Âpy ‰-ÂqHx-yL f
`HpLg̀HqL

Doing the y-integration reduces this to

(17.20)‡
-¶

¶

‡
-¶

¶

‡
-¶

¶

„ p „ q „ x‰Âwx ‰-Âqx f
`HpLg̀HqLdHq - pL

We now use the d-function to do the q integration, leaving us with

(17.21)‡
-¶

¶

‡
-¶

¶

„ p „ x‰ÂHw -pLx f
`HpLg̀HpL

Now we integrate by x, to obtain

(17.22)2p‡
-¶

¶

„ pdHw - pL f
`HpLg̀HpL = 2p f

`HwLg̀HwL

So we have established that

(17.23)h
`HwL = 2p  f

`HwL g̀HwL
That is, the Fourier transform of the convolution is essentially (up to a normalization) the product of the trans-
forms. Similarly, if we have the product of two functions in x terms, the Fourier transform of such a product can
be written as the convolution of the transforms. 

‡ The shift and scaling theorems
The shift theorem. This is simply the observation that if

(17.24)hHxL = ‰Âxa f HxL
then
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then

(17.25)h
`HwL = f

`Ha + wL
The scaling theorem. This is the result that if 

(17.26)hHxL = f Hx êaL
then

(17.27)h
`HwL = a f

`HwaL
Note also that the Fourier transform is linear. If

(17.28)hHxL = a f HxL + b gHxL
then the transform of h satisfies

(17.29)h
`HwL = a f

`HwL + b g̀HwL

‡ The differentiation theorem
For applications in mathematical physics and finance the critial observation is the manner in which differentia-
tion with respect to x becomes simple multiplication by H-ÂwL on the transform. Let

(17.30)hHxL = f £HxL
then

(17.31)h
`HwL = - Âw f

`HwL
To prove this, we note that this is a point at which we must be a little less cavalier about the class of functions
we are dealing with. From the definition

(17.32)h
`HwL =

1

2p
 ‡

-¶

¶

f £HxL ‰Âwx „ x

and we need to be able to write:

(17.33)h
`HwL =

1

2p
 ‡

-¶

¶ ∂ I f HxL ‰ÂwxM
∂x

- Âw f HxL ‰Â wx  „ x

and use integration to kill the first term | this requires of course that f Ø 0 as x Ø ±¶. Then we obtain

(17.34)h
`HwL = - Â w 

1

2p
 ‡

-¶

¶

f HxL‰Âwx „ x = - Âw f
`HwL

Provided higher derivatives tend to zero at ±¶ and the derivatives of the function remain integrable (continuous
will do), repeated application of this result can be used to show that the Fourier transform of the nth derivative is
given by

(17.35)I f HnLM` @wD = H-ÂwLn f
`HwL

Note that if the opposite sign convention is employed for the exponent, the right side of this becomes HÂwLn f
`HwL.

There is a corresponding inverse result that multiplication by x corresponds to differentiation with respect to w |
see Exercise 17.3 for the details.

Jordan's lemma: semicircle theorem II
It is evident that we need general methods for computing integrals of the form
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‡
-¶

¶

f HxL‰Âwx „ x

A  key  result  for  the  evaluation  of  such  integrals  is  Jordan's  lemma,  which  gives  very  useful  conditions  under
which the integration region may be completed by a large semicircle in the upper (or lower) half-plane (UHP or
LHP), and hence evaluated by the calculus of residues. Let's work with the upper half-plane version, where we
assume that w > 0. 
Theorem 17.6: Jordan's lemma. Consider the semicircular path

(17.36)
FR@tD = R‰Ât

0 § t § p

and let MR be the maximum (formally, the supremum) of » f HzL » on the image of FR in . Suppose that w > 0 and
that as R Ø ¶, 

(17.37)MR Ø 0

Then Jordan's lemma states that

(17.38)‡
FR

f HzL ‰Âwz „ z Ø 0

as R Ø ¶.

ü Comments

(1) The condition on f  is very weak | we just need that the function tends to zero.
(2) If w > 0 then as the imaginary part of z becomes large the integrand is exponentially damped | this is why we
need to associate positive w with the upper half-plane. If w < 0 there is an obvious corresponding result for the
lower half-plane.
(3) Once we have this result the answer for the integral for w > 0 is just

(17.39)2pÂ ‚
UHP

ResA f HzL‰ÂwzE

and for w < 0 it is

(17.40)-2pÂ ‚
LHP

ResA f HzL‰ÂwzE

Note  the  additional  minus  sign  in  Eq.  (17.44)  |  we  traverse  the  LHP contour  clockwise.  These  can  give  quite
different functional forms for the answer, and this is important.

ü Proof of Jordan's lemma

Let's first write the integration in terms of an integral over the path parameter t. We apply the integration inequal-
ity from Section 11.4:

(17.41)‡
FR

FHzL‰Âwz „ z b MR ‡
0

p

°‰ÂwR‰Ât
ÂR‰Ât• „ t

But 

(17.42)°‰ÂwR‰Ât
ÂR‰Ât• = R°‰ÂwRHcosHtL+Â sinHtLL• = R‰-wR sinHtL

so that

(17.43)‡
FR

FHzL‰Âwz „ z b RMR‡
0

p

‰-wR sinHtL „ t = 2RMR‡
0

pê2
‰-wRsinHtL „ t

Now we have the inequality, valid for  0 b t b p ê2, 
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(17.44)sinHtL r 2 t

p

(some  plots  with  Mathematica,  and  the  concave  nature  of  the  sine  function  in  this  range  of  t,  should  quickly
convince you of this) and so we can state that

(17.45)‡
FR

FHzL‰Âwz „ z b 2RMR‡
0

pê2
‰-2wRtêp „ t = 2RMR

pI1 - ‰-RwM
2Rw

(17.46)‡
FR

FHzL‰Âwz „ z b
pMRI1 - ‰-RwM

w
b

pMR

w

which tends to zero as required. 

Examples of transforms
A large number of Fourier transforms can now be generated by combining together:

(1) the basic distributional results;
(2) the shift, scaling and differentiation theorems;
(3) applications of Jordan's lemma and the calculus of residues;
(4) other contours invented for various special cases;
(5) Mathematica calculations.

It must be appreciated that one or a combination of these methods must be employed.

‡ An example using the basic distributional properties
What is the Fourier transform of f HxL = sinHa xL? This, by definition, is

(17.47)f
`HwL =

1

2p
‡

-¶

¶

sinHaxL‰Âwx „ x

This is best approached by writing the integrand in terms of pure exponential functions:

(17.48)

f
`HwL =

1

2p
 ‡

-¶

¶ ‰Âax - ‰-Âax

2Â
‰Âwx „ x

=
1

2Â
 

1

2p
 ‡

-¶

¶

I‰Â Hw+aL x - ‰Â Hw-aL xM „ x

= -Â p 
1

2p
Hd Ha + wL - d Hw - aLL = Â

p

2
Hd Hw - aL - d Ha + wLL

‡ Example using Jordan's lemma
Let's consider the function we have used before in defining d-functions:

(17.49)
e

p Ix2 + e2M
We can  now evaluate  its  transform very  quickly,  for  this  function  tends to  zero  for  large z,  and  hence  we can
apply Jordan's lemma immediately. For w > 0 the transform is given by 
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(17.50)
1

2p
 2pÂ ‚

UHP
ResB e

p Iz2 + e2M
‰ÂwzF =

1

2p
‚
UHP

 ResB 2Âe ‰Âwz

Hz - Â eL Hz + Â eL F

In the UHP there is only one pole, at z = Âe, and it is simple. So we cover up the one singular factor and evaluate
the remaining expression to obtain

(17.51)
1

2p
 ‰-ew

For w < 0 a similar calculation can be done in the LHP  to obtain ‰e w.  Thus the answer for all real w  (it  inte-

grates to 1ë 2p  if w=0) is just

(17.52)
1

2p
 ‰-e†w§

‡ An inverse transform using Jordan's lemma
Consider the transform function

(17.53)f
`HwL =

Â

w + Âa

What is the associated f HxL? It is given by the inversion formula 

(17.54)f HxL =
Â

2p
‡

-¶

¶ 1

w + Âa
‰-Âwx „ w

Note that now we are integrating over w and the parameter in Jordan's Lemma is -x. The non-exponential part
of the integral tends to zero at infinity so we can go ahead and apply the lemma. For x > 0 we must complete in
the lower half-plane. There is one simple pole and we get the answer

(17.55)f HxL =
Â

2p
 H-2pÂL ‰-Â H-ÂaLx = 2p  ‰-ax

But for  x < 0 we must  complete  in  the  upper  half-plane,  where there are no poles at  all!  Hence the answer is
then zero. 

‡ A special contour for Gaussian functions
The transforms of some functions require special treatment. Consider the Gaussian function

(17.56)
‰-Hx-mL2ëI2s2M

s 2p

We have written it this way in order to make the link with the characteristic function for the normal distribution
with mean m and standard deviation s. The Fourier transform of this is

(17.57)f
`HwL =

1

2 p s
 ‡

-¶

¶

‰-Hx-mL2ëI2s2M ‰Â w x „ x

The term in the exponential is

(17.58)

Âwx -
Hx - mL2

2s2
= -

x2

2s2
+

m

s2
+ Âw x -

m2

2s2

=
-x2 - m2 + 2xI m + Âs2wM

2s2
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(17.58)

=
-Ix - Im + Âs2wMM2 - m2 + I m + Âs2wM2

2s2

=
-Ix - Im + Âs2wMM2

2s2
+ Â mw -

s2w2

2

=
- p2

2s2
+ Â mw -

s2w2

2

where p is the complex shifted variable

(17.59)p = x - IÂws2 + mM
We can make a  real  change of  variables to eliminate m,  but what do we do about the imaginary shift? We can
write the result so far as

(17.60)‰Âw m-s2w2ë2 J

where the quantity J is

(17.61)J =
1

2ps
‡

-¶-Âws2

¶-Âws2

‰-q2ëI2s2M „ x

Now  consider  a  rectangular  contour  obtained  by  taking  the  contour  in  the  definition  of  J,  and  adding  a  piece
coming backwards along the real axis, joined at both ends, to form a rectangle. We observe:

(1) there is no contribution from the vertical contours, as the integrand tends to zero;
(2) there are no poles inside the rectangle.

By Cauchy's theorem, the total integral must be zero. Hence we note that

(17.62)J =
1

2ps
‡

-¶

¶

‰-q2ëI2s2M „ x =
1

2p
 

1

2p s
 ‡

-¶

¶

‰-q2ëI2s2M „ x =
1

2p

and hence that 

(17.63)f
`HwL =

1

2p
 ‰Âw m-s2w2ë2

This is almost the ‘characteristic function’ for the normal distribution, which omits the factor 1ë 2p . 

Expanding the setting to a fully complex picture
Complex numbers  actually  play other  roles  in  the management of  Fourier  transforms.  It  is  not  just  a  matter  of
finding the values of integrals using Jordan's lemma and applying the calculus of residues. In fact, we really need
to see transforms as being defined for complex values of w. Why should we bother with this? In fact it allows us
to cope with transforms of a rather larger class of functions, and furthermore to regard Laplace transforms and
Fourier  transforms  as  being  related  in  a  rather  trivial  fashion,  by  a  90-degree  rotation  in  the  complex  plane.
Furthermore,  the application of  Jordan's lemma requires that the function being integrated is actually holomor-
phic | when is this so?

In this subsection the independent variable will be taken to be t  rather than x. This is partly to make the
link with Laplace transforms easier, as we shall be concerned here mainly with Fourier transforms of functions
that are identically zero for t < 0. 

As a motivating example, consider the function 
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(17.64)f HtL = ; 0; t < 0
‰at; t > 0

where we make no particular requirement on the sign of the real parameter a. The Fourier transform is just

(17.65)
1

2p
‡
0

¶

‰Ha+ÂwLt  „ t

This integral is given by evaluating the difference in the values at the limits of the indefinite integral

(17.66)
1

2p
 
‰tHa+ÂwL

a + Âw

Under what circumstances does the limit of this, for t Ø ¶, exist and equal zero? We need the real part of 

(17.67)a + Âw

to be less than zero, i.e.

(17.68)a < ImHwL
Under these circumstances the transform exists and equals

(17.69)-
1

2p
 

1

Ha + ÂwL
So it is convenient to allow the transform variable w to be complex. The transform exists provided the imaginary
part is large enough to kill the exponential growth in the function being transformed. 

The inversion theorem must be adjusted accordingly | we need to do the inversion integration by integat-
ing  along  any  horizontal  contour  above  Im@wD = a.  We  shall  not  give  a  proof  of  the  following  remark,  but  it
turns out that this type of behaviour is absolutely typical for the transforms of functions that are zero for t < 0.
More specifically, let f HtL be zero for t < 0 and satisfy a condition that 

(17.70)† f HtL§ b K‰at

for t > 0 and some real K > 0 and real a. Then the Fourier transform exists and is a holomorphic function of w
for  ImHwL > a  |  the  upper  half-plane  above  a  |  see  Dettman  (1984)  for  a  discussion  of  this,  and  other  related
properties. The inversion takes place along a horizontal contour in the half-plane above a.  More generally still,
for functions that are not zero for t < 0, there will typically be a strip in which the transform is holomorphic. See
Exercise 17.7 for an example.
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