
LGS Simulation Lecture 1
Scope and Key Algorithms

Introduction
The most fundamental problem is to calculate the expectation of a set of cash flows under various assumptions
about probability distributions. Such expectations are essentially integrals of cash-flows over explicit or very
implicit density functions. Sometimes these can be done analytically (get a formula) or semi-analytically
(numerical integration of a formula). But there are numerous problems that may be tackled, or have to be
tackled by simulation. Here is a reasonably good set of approaches:

1. Simulation of a known exact univariate terminal distribution (TD) to price an instrument based on a single
asset;

2. Simulation of a known exact multivariate terminal distribution to price an instrument based on two or more
assets;

3. Simulation of a multivariate terminal distribution based on a combination of marginals and a copula to price
an instrument based on two or more assets;

4. Any of 1-3 using space-filling algorithms rather than random numbers;

5. Modulation of any of the above by some method for the introduction of skewness/kurtosis, or general change
of TD to assess distribution risk;

6. Use of any of the above in a coarse asset-price path - e.g. we make jumps between widely separated events
using an effective "terminal" distribution at each event;

7. Detailed simulation of the solution of the raw SDE by Euler, Milstein... methods, i.e., we build a fine path to
simulation the random walk in detail.

I will try to take an optimal route through these approaches given the time available. The thing I want to say up
front is that you should only go to 7 if the terminal distribution is non-integrable analytically and/or a pig to
simulate. It is a common beginners' error to simulate an entire detailed path to do a European option, or even a
coarse Asian tail within the standard Black-Scholes framework.

Note also that an understanding of simulating the Normal or log-Normal distribution is critical, and is relevant
to ALL of the above cases, and not just under idealized assumptions. If we have an SDE with Brownian motion
we still need Normal samples to numerically solve SDEs. And we might still use a Gaussian copula even with
rather exotic marginal distributions.

Books and other resources
There are several that I can recommend.

You or your department/bank will probably have several copies of this lying around:

Numerical Recipes in C++ (or indeed any other language for the mathematical discussion). Press et al, Cam-
bridge University Press, 2002. Chapter 7 discusses simulation aspects.

But there is now a Third Edition, which has in fact standardized on C++!

http://www.nr.com/

There are several that I can recommend.

You or your department/bank will probably have several copies of this lying around:

Numerical Recipes in C++ (or indeed any other language for the mathematical discussion). Press et al, Cam-
bridge University Press, 2002. Chapter 7 discusses simulation aspects.

But there is now a Third Edition, which has in fact standardized on C++!

http://www.nr.com/

I will refer you to this for discussion of a lot of non-quantile based sampling. The books I have used most
beyond that are:

P. Jaeckel, Monte Carlo Methods in Finance (See also his web site at www.jaeckel.org.)

P. Glasserman, "Monte Carlo Methods in Financial Engineering", Springer, 2005;

P.E. Kloden and E. Platen, "Numerical Solution of Stochastic Differential Equations", Springer, 2000.

You should also see Luc Devroye's classic text

Non-Uniform Random Variate Generation, Springer 1986.

This is out of print and Prof Devroye is so cross with Springer about not reprinting he has put it up on his web
site. His web site has moved a bit because his comments tend to annoy people but it is brilliant. I looked a few
days ago and it is currently at

http://cg.scs.carleton.ca/~luc/rnbookindex.html

but you should also look at Luc's other stuff, especially the links on random number generation. Note that the
book is now a little dated in places but it remains a classic. I and many others have encouraged him to update it.

For copula theory in particular a lot of simulation work is discussed in

Copula Methods in Finance, Cherubini et al 2004, Wiley.

Your Prof's recent papers/preprints
So this is an area where I have found myself writing a bit on recently. The following papers maight be of
interest. Though the the first two focus a lot on making sense of the univariate and multivariate Student distribu-
tion they also explain a lot about the link between copula theory, Quantiles, multivariate distributions, and
preferred sampling methods, and have some worked examples.

Shaw, W.T., 2006, Sampling Student’s T distribution – use of the inverse cumulative distribution function.
Journal of Computational Finance, Vol 9 Issue 4, pp 37-73, Summer 2006 (on web)

W.T. Shaw and K.T.A. Lee, Bivariate Student t distributions with variable marginal degrees of freedom and
independence, Journal of Multivariate Analysis (2007), doi:10.1016/j.jmva.2007.08.006.

G. Steinbrecher and W.T. Shaw, 2008, Quantile Mechanics, EJAM (on web)

W.T. Shaw, 2007, Dependency without Copulas or Ellipticity, European Journal of Finance.

The main papers and new ArXiv preprints are linked from the course web page. All of the others can be found
through the links from my home page or papers page

http://www.mth.kcl.ac.uk/~shaww/web_page/papers/WebChronoPapers.htm

2 University College London

So this is an area where I have found myself writing a bit on recently. The following papers maight be of
interest. Though the the first two focus a lot on making sense of the univariate and multivariate Student distribu-
tion they also explain a lot about the link between copula theory, Quantiles, multivariate distributions, and
preferred sampling methods, and have some worked examples.

Shaw, W.T., 2006, Sampling Student’s T distribution – use of the inverse cumulative distribution function.
Journal of Computational Finance, Vol 9 Issue 4, pp 37-73, Summer 2006 (on web)

W.T. Shaw and K.T.A. Lee, Bivariate Student t distributions with variable marginal degrees of freedom and
independence, Journal of Multivariate Analysis (2007), doi:10.1016/j.jmva.2007.08.006.

G. Steinbrecher and W.T. Shaw, 2008, Quantile Mechanics, EJAM (on web)

W.T. Shaw, 2007, Dependency without Copulas or Ellipticity, European Journal of Finance.

The main papers and new ArXiv preprints are linked from the course web page. All of the others can be found
through the links from my home page or papers page

http://www.mth.kcl.ac.uk/~shaww/web_page/papers/WebChronoPapers.htm

let me know if you have problems getting anything.

Special Methods vs Quantile Functions
In elementary probability we often learn how to sample a distribution using a Quantile function (more about
this in a moment). Then when we first do simulation we find out that this is a bit hard for key distributions (e.g
Normal), so we invent special methods, like Box-Muller and Polar-Marsaglia. Then after a while we learn that
these special methods are a bit klunky when you try and use them with copula theory or sampling based on
space-filling methods, so we migrate back to Quantiles. So I will focus a lot on Quantile methods, but will
remind you of a key special method.

Reminder on Quantile Functions
Given a distribution function FXHxL, a simple means of simulation is to set

(1)X = FX
-1H UL

where U is a sample from the uniform distribution on @0, 1D.

Making U is compsci probem (see NumRec Section 7.1 and Glasserman) and not something I am interested in,
but you MUST take care not to use STUPID methods that only produce a "few" independent numbers. Use the
more advanced routines in Glasserman and NR.

The inverse CDF: FX
-1 = QFX is the Quantile Function associated with the distribution. We do not have to do

this, witness the use of Box-Muller, Polar-Marsaglia methods for the Normal case, and its extension to Student
by Bailey. But it is very useful if we can, particularly if we are working with algorithms based on hypercube-
filling quasi-Monte-Carlo methods, or in particular copula methods.

Quantile Functions and Copulas
For the case of copula-based simulation where there is a real underlying bivariate distribution, we make a
sample HX1, X2L from a given bivariate (in general multivariate) distribution (we have not seen how to do that
yet, but I need the principle now!), then form a sample from the associated copula:

(2)8U1, U2< = 9FX1 HX1L, FX2 HX2L=

Then to get samples with marginals with CDFs Gi:

(3)8Y1, Y2< = 9G1
-1@U1D, G2

-1@U2D= = 9QG1 @U1D, QG2 @U2D=

It is always helpful to know quantile functions. But note also we do not need the Ui, at least when we are
dealing with samples from a real distribution, for it would suffice to understand the composite mappings in the
following:

(4)8Y1, Y2< = 9G1
-1AFX1 HX1LE, G2

-1AFX2 HX2LE=

This is one of several motivations for considering composite maps of the form y = G-1@FHxLD, where F, G are
CDFs. I call this a distributional transmutation map.

Note that not all copulas come from identifiable bi- or multi-variate distributions. Sometimes one just postu-
lates them together with a sampling rule. This causes all sorts of arguments. You might like to Google:
Mikosch Copulas "Tales and Facts" to see an entertaining discussion. Otherwise see "Copula Methods in
Finance". Actually things are not as clear cut as is suggested in some of these discussions - see the paper by
Shaw and Lee on the multivariate Student distribution for lots of ways to make a Student T copula. There really
is no such thing as "The T Copula". That paper also explains how to simulate a number of T copulas in practice.

However you make a copula, it is the glue that introduces dependency. The marginals are treated separately and
most easily by a Quantile function.

Shaw: LGS Simulation Lectures 3

This is one of several motivations for considering composite maps of the form y = G-1@FHxLD, where F, G are
CDFs. I call this a distributional transmutation map.

Note that not all copulas come from identifiable bi- or multi-variate distributions. Sometimes one just postu-
lates them together with a sampling rule. This causes all sorts of arguments. You might like to Google:
Mikosch Copulas "Tales and Facts" to see an entertaining discussion. Otherwise see "Copula Methods in
Finance". Actually things are not as clear cut as is suggested in some of these discussions - see the paper by
Shaw and Lee on the multivariate Student distribution for lots of ways to make a Student T copula. There really
is no such thing as "The T Copula". That paper also explains how to simulate a number of T copulas in practice.

However you make a copula, it is the glue that introduces dependency. The marginals are treated separately and
most easily by a Quantile function.

The Normal Quantile Function
Recall the following definition that expresses the Normal CDF in terms of the error function "erf": in Mathemat-
ica we can see it

Ncdf[x_] := (1 + Erf[x/Sqrt[2]])/2

This can formally be inverted with

QuantileN@u_D := Sqrt@2D InverseErf@2 u - 1D

Plot@QuantileN@uD, 8u, 0.0001, 0.9999<D

0.2 0.4 0.6 0.8 1.0

-3

-2

-1

1

2

3

This function is actually quite expensive to work out computationally so people have been lead to other ways of
sampling the Nomal. The two most commonplace options are (a) converting samples from a square (b) approxi-
mating this function. Let's look at (b) first as it gives a practical fast method of using the easy Quantile function
directly.

4 University College London

The Beasley-Springer/Moro approximation
This has two bits, consisting of a piece to deal with 0.5 § u § 0.92, defined originally by Beasley-Springer, and
a tail construction developed by Moro. (see RISK, The full Monte, B. Moro, Risk 8, Feb, p. 57-58.). Symmetry
takes case of the other half-region.

a = 82.50662823884, -18.61500062529, 41.39119773534,
-25.44106049637<;

b = 8-8.47351093090, 23.08336743743, -21.06224101826,
3.13082909833<;

Note that if you look in Glassermann's otherwise excellent book he has a discussion in Section 2.3.2. The
algorithm is specified in terms of constants in both equation 2.27 and Fig. 2.12. These formulae are inconsistent
and the constants need to be used in the nested polynomial form implied by Fig 2.12. and not equation 2.27.

BSN@u_D := Module@8v = u - 1 ê 2, r = Hu - 1 ê 2L^2<,
v * Ha@@1DD + r * Ha@@2DD + r * Ha@@3DD + r * Ha@@4DDLLLL ê

H1 + r * Hb@@1DD + r * Hb@@2DD + r * Hb@@3DD + r * b@@4DDLLLLD

PlotB8BSN@uD, QuantileN@uD<, :u,
1

2
, 0.99>F

0.6 0.7 0.8 0.9 1.0

0.5

1.0

1.5

2.0

Shaw: LGS Simulation Lectures 5

PlotBBSN@uD - QuantileN@uD, :u,
1

2
, 0.98>F

0.6 0.7 0.8 0.9

-4.µ10-9

-2.µ10-9

2.µ10-9

So this is pretty good and the reason for the restriction to 0.92 is obvious (though it would have probably been
created to work in this interval)

Table@BSN@uD - QuantileN@uD , 8u, 1 ê 2, 0.92, 0.0001<D;

Max@Abs@%DD

3.00778 µ 10-9

‡ Dealing with the Tail Issue

Moro's main contribution in his RISK article was to nail down an accurate series for the tail using a polynomial
in

(5)r ‡ logH-logH1 - uLL

c = 80.3374754822726147, 0.9761690190917186, 0.1607979714918209,
0.0276438810333863, 0.0038405729373609, 0.0003951896511919,
0.0000321767881768, 0.0000002888167364, 0.0000003960315187<;

6 University College London

MoroTail@u_D := Module@8r = Log@-Log@1 - uDD<,
c@@1DD +

r *

Hc@@2DD +

r *

Hc@@3DD +

r *

Hc@@4DD +

r * Hc@@5DD + r * Hc@@6DD +

r * Hc@@7DD + r * Hc@@8DD + r * c@@9DDLLLLLLLD

MoroTail@0.975D

1.95996

Superficially this looks good everywhere!

Plot@8MoroTail@uD, QuantileN@uD<, 8u, 0.5, 0.9999<D

0.6 0.7 0.8 0.9 1.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

But things do go off!

Shaw: LGS Simulation Lectures 7

Plot@MoroTail@uD - QuantileN@uD, 8u, 0.5, 0.9999<D

0.6 0.7 0.8 0.9 1.0

5. µ 10-7

1. µ 10-6

1.5 µ 10-6

2. µ 10-6

Plot@MoroTail@uD - QuantileN@uD, 8u, 0.92, 0.9999<D

0.94 0.96 0.98 1.00

-1. µ 10-10

-5. µ 10-11

5. µ 10-11

1. µ 10-10

1.5 µ 10-10

8 University College London

Plot@MoroTail@uD - QuantileN@uD, 8u, 0.99, 0.9999999<D

0.992 0.994 0.996 0.998 1.000

-2. µ 10-10

-1. µ 10-10

1. µ 10-10

2. µ 10-10

Plot@MoroTail@uD - QuantileN@uD, 8u, 0.9999999, 0.9999999999<D

1 1 1 1 1

1. µ 10-10

1.5 µ 10-10

2. µ 10-10

Shaw: LGS Simulation Lectures 9

Plot@MoroTail@uD - QuantileN@uD,
8u, 0.9999999999, 0.9999999999999<D

1 1 1 1 1

-3. µ 10-10

-2. µ 10-10

-1. µ 10-10

Joshi has a C++ implementation of this in his web download. It might well be a fun compfin project to try to
improve on this without extending comp time too much. Glassermann remarks on going once around Newton-
Raphson iteration to refine the method. Clearly we are just doing a combination of taking logs and working out
polynomials and ratios of them - there are no special problems and Joshi's C++ implementation is good and
straightforward. Here is an extract from his Normals.cpp file with just the relevant bits. We will do an introduc-
tory C lecture presently, so do not worry about the details of this for now.

You should note his efficient representation of polynomials, which is good programming practice and some-
thing you should always follow.

#include <cmath>

// the InverseCumulativeNormal function via the Beasley-Springer/Moro approximation

double InverseCumulativeNormal(double u)

{

 static double a[4]={ 2.50662823884,

 -18.61500062529,

 41.39119773534,

 -25.44106049637};

 static double b[4]={-8.47351093090,

 23.08336743743,

 -21.06224101826,

 3.13082909833};

 static double c[9]={0.3374754822726147,

 0.9761690190917186,

 0.1607979714918209,

 0.0276438810333863,

 0.0038405729373609,

 0.0003951896511919,

 0.0000321767881768,

 0.0000002888167364,

 0.0000003960315187};

 double x=u-0.5;

 double r;

 if (fabs(x)<0.42) // Beasley-Springer

 {

 double y=x*x;

r=x*(((a[3]*y+a[2])*y+a[1])*y+a[0])/((((b[3]*y+b[2])*y+b[1])*y+b[0])*y+1.0);

 }

 else // Moro

 {

 r=u;

 if (x>0.0)

 r=1.0-u;

 r=log(-log(r));

r=c[0]+r*(c[1]+r*(c[2]+r*(c[3]+r*(c[4]+r*(c[5]+r*(c[6]+r*(c[7]+r*c[8])))))));

 if (x<0.0)

 r=-r;

 }

 return r;

}

 *

 * Copyright (c) 2002

 * Mark Joshi

 *

 * Permission to use, copy, modify, distribute and sell this

 * software for any purpose is hereby

 * granted without fee, provided that the above copyright notice

 * appear in all copies and that both that copyright notice and

 * this permission notice appear in supporting documentation.

 * Mark Joshi makes no representations about the

 * suitability of this software for any purpose. It is provided

 * "as is" without express or implied warranty.

*/

10 University College London

#include <cmath>

// the InverseCumulativeNormal function via the Beasley-Springer/Moro approximation

double InverseCumulativeNormal(double u)

{

 static double a[4]={ 2.50662823884,

 -18.61500062529,

 41.39119773534,

 -25.44106049637};

 static double b[4]={-8.47351093090,

 23.08336743743,

 -21.06224101826,

 3.13082909833};

 static double c[9]={0.3374754822726147,

 0.9761690190917186,

 0.1607979714918209,

 0.0276438810333863,

 0.0038405729373609,

 0.0003951896511919,

 0.0000321767881768,

 0.0000002888167364,

 0.0000003960315187};

 double x=u-0.5;

 double r;

 if (fabs(x)<0.42) // Beasley-Springer

 {

 double y=x*x;

r=x*(((a[3]*y+a[2])*y+a[1])*y+a[0])/((((b[3]*y+b[2])*y+b[1])*y+b[0])*y+1.0);

 }

 else // Moro

 {

 r=u;

 if (x>0.0)

 r=1.0-u;

 r=log(-log(r));

r=c[0]+r*(c[1]+r*(c[2]+r*(c[3]+r*(c[4]+r*(c[5]+r*(c[6]+r*(c[7]+r*c[8])))))));

 if (x<0.0)

 r=-r;

 }

 return r;

}

 *

 * Copyright (c) 2002

 * Mark Joshi

 *

 * Permission to use, copy, modify, distribute and sell this

 * software for any purpose is hereby

 * granted without fee, provided that the above copyright notice

 * appear in all copies and that both that copyright notice and

 * this permission notice appear in supporting documentation.

 * Mark Joshi makes no representations about the

 * suitability of this software for any purpose. It is provided

 * "as is" without express or implied warranty.

*/

Shaw: LGS Simulation Lectures 11

#include <cmath>

// the InverseCumulativeNormal function via the Beasley-Springer/Moro approximation

double InverseCumulativeNormal(double u)

{

 static double a[4]={ 2.50662823884,

 -18.61500062529,

 41.39119773534,

 -25.44106049637};

 static double b[4]={-8.47351093090,

 23.08336743743,

 -21.06224101826,

 3.13082909833};

 static double c[9]={0.3374754822726147,

 0.9761690190917186,

 0.1607979714918209,

 0.0276438810333863,

 0.0038405729373609,

 0.0003951896511919,

 0.0000321767881768,

 0.0000002888167364,

 0.0000003960315187};

 double x=u-0.5;

 double r;

 if (fabs(x)<0.42) // Beasley-Springer

 {

 double y=x*x;

r=x*(((a[3]*y+a[2])*y+a[1])*y+a[0])/((((b[3]*y+b[2])*y+b[1])*y+b[0])*y+1.0);

 }

 else // Moro

 {

 r=u;

 if (x>0.0)

 r=1.0-u;

 r=log(-log(r));

r=c[0]+r*(c[1]+r*(c[2]+r*(c[3]+r*(c[4]+r*(c[5]+r*(c[6]+r*(c[7]+r*c[8])))))));

 if (x<0.0)

 r=-r;

 }

 return r;

}

 *

 * Copyright (c) 2002

 * Mark Joshi

 *

 * Permission to use, copy, modify, distribute and sell this

 * software for any purpose is hereby

 * granted without fee, provided that the above copyright notice

 * appear in all copies and that both that copyright notice and

 * this permission notice appear in supporting documentation.

 * Mark Joshi makes no representations about the

 * suitability of this software for any purpose. It is provided

 * "as is" without express or implied warranty.

*/

Doing without Quantiles: Box-Muller; Polar-Marsaglia etc.
Until relatively recently, before people started playing with copulas and pseudo-random numbers, it was not
considered necessary to worry about the Quantile functions, and any method for generation Gaussian deviates
was used, except the inverse normal CDF! Such methods are used in the Mathematica packages for simulation,
for example, and you can see the details of the maths behind it in Numerical Recipes Section 7.2 (Section 7.3.4
in the Third Edition). In summary you start off with TWO uniform deviates Hx1, x2L, i.e. you sample from a
square. Then there are two routes. The easiest conceptually is to make the change of variables

(6)y1 ‡ cosH2 p x2L -2 logHx1L

(7)y2 ‡ sinH2 p x2L -2 logHx1L

If you work out the Jacobian of the transformation (exercise - do it you have not done so before) you find
that the yi are independent Normal variables. So you get two at once which is a payback for starting from a
square. The polar version of this is a bit more efficient. Instead of picking uniform deviates in the unit square,
we instead pick v1and v2 as the Cartesian coordinates of a random point inside the unit circle around the origin.
Then the sum of their squares, R2, is in fact a uniform deviate, which can be used for x1, while the angle that
Hv1, v2L makes with the horizontal axis can serve as the random angle 2 p x2. You save some trig calls at the
price of sample form the unit circle by rejection from a larger square. You still get two back of course.

You can find C++ to work these out in Numerical Recipes. Let's take a look in Mathematica,

Here is the first version without doing any optimization:

In[1]:=
npbm@mu_, sigma_D :=
mu + sigma Sqrt@-2 Log@Random@DDD Cos@2 Pi Random@DD

Here is the second version using (a) Rejection from a big square, (b) avoiding the trig call, (c) outputting a pair,
(d) using the Mathematica compiler.

12 University College London

normpair = Compile@8mu, sigma<,
Module@8va = 0.0, vb = 0.0, rad = 2.0, den<,

While@rad >= 1.00,
Hva = 2.0 * Random@D - 1.0;

vb = 2.0 * Random@D - 1.0;
rad = va * va + vb * vbLD;

den = Sqrt@-2.0 * Log@radD ê radD;
8mu + sigma * va * den, mu + sigma * vb * den<DD;

Timing@data = Flatten@Table@normpair@0, 1D, 8i, 1, 10 000<DD;D

80.042085, Null<

Mean@dataD

-0.0117209

Mean@data^2D - Mean@dataD^2

1.02347

‡ Antithetic combinations

You force any of these things to be symmetric by outputting the deviates of the opposite sign at the same time.
Get two for one and zero mean!

normpairat = Compile@8mu, sigma<,
Module@8va = 0.0, vb = 0.0, rad = 2.0, den<,

While@rad >= 1.00,
Hva = 2.0 * Random@D - 1.0;

vb = 2.0 * Random@D - 1.0;
rad = va * va + vb * vbLD;

den = Sqrt@-2.0 * Log@radD ê radD;
8mu + sigma * va * den, mu + sigma * vb * den,

mu - sigma * va * den, mu - sigma * vb * den<DD;

normpairat@0, 1D

80.53645, 1.30197, -0.53645, -1.30197<

Timing@data = Flatten@Table@normpairat@0, 1D, 8i, 1, 10 000<DD;D

80.04879, Null<

Shaw: LGS Simulation Lectures 13

Mean@dataD

-4.996 µ 10-19

Mean@data^2D - Mean@dataD^2

0.990798

N.B.!!! Bailey's Variation for the Student Distribution - not many people know
this...
It was only in 1994 that Bailey showed that the T distribution could be sampled by a minor modification to
these methods. Here is the efficient polar algorithm:

1. Sample two uniform deviates u and v from [0,1] and let U = 2 u - 1, V = 2 v - 1 (same as before)

2. Let W = U2 + V2; if W > 1 return to step 1 and resample (same as before!);

3. Let T = U nIW-2ên - 1MëW and that is one sample from the T with n degrees of freedom.

The last step has the limit T = U H-2 log WL êW as n Ø ¶ recovering the Normal case.

Note that as with the transmutation idea you can use the SAME underlying uniform samples and hence assess
distributional risk with less Monte Carlo noise. Note that the "other" output is no longer an independent sample
so you get half as many samples this way. I will return to the Student t later.

Acklam's formula
We make a quantile function that constructs N[0,1] numbers. You can find a big notebook on my website
containing some work I have done in early 2007 looking at quantiles for the normal. Go there if you want to see
some detail. By early next term I hope to post a new paper that uses differential equations to define quantile
functions. To summarize, despite my fondness for Wichura's algorithm AS241 I will use a compiled version of
Peter Acklam's code to convert random numbers on the unit interval to standard normal sample.:

You sould see his web page at:

http://home.online.no/~pjacklam/notes/invnorm/

for links to other implementations, including C/C++, Fortran, Java, VB, Matlab.

1 - 0.97575

0.02425

14 University College London

Acklam = Compile@88u, _Real<<,
Module@
8a = Reverse@8-39.69683028665376, 220.9460984245205,

-275.9285104469687, 138.3577518672690,
-30.66479806614716, 2.506628277459239<D,

b = Reverse@8-54.47609879822406, 161.5858368580409,
-155.6989798598866, 66.80131188771972,
-13.28068155288572<D,

c = Reverse@8-0.007784894002430293, -0.3223964580411365,
-2.400758277161838, -2.549732539343734,
4.374664141464968, 2.938163982698783<D,

d = Reverse@80.007784695709041462, 0.3224671290700398,
2.445134137142996, 3.754408661907416<D<,

Which@0.02425 § u § 0.97575,
Module@8v = u - 1 ê 2, r = Hu - 1 ê 2L^2<,
v *

Ha@@1DD +

r *

Ha@@2DD +

r * Ha@@3DD + r * Ha@@4DD + r * Ha@@5DD + r * a@@6DDLLLLL ê

H1 +

r *

Hb@@1DD +

r * Hb@@2DD + r * Hb@@3DD + r * Hb@@4DD + r * b@@5DDLLLLLD,
u > 0.97575,
Module@8q = Sqrt@-2 * Log@1 - uDD<,
-Hc@@1DD +

q *

Hc@@2DD +

q * Hc@@3DD + q * Hc@@4DD + q * Hc@@5DD + q * c@@6DDLLLLL ê

H1 + q * Hd@@1DD + q * Hd@@2DD + q * Hd@@3DD + q * d@@4DDLLLLD,
True,
Module@8q = Sqrt@-2 * Log@uDD<,
Hc@@1DD +

q *

Hc@@2DD +

q * Hc@@3DD + q * Hc@@4DD + q * Hc@@5DD + q * c@@6DDLLLLL ê

H1 + q * Hd@@1DD + q * Hd@@2DD + q * Hd@@3DD + q * d@@4DDLLLLDDDD;

QuantileN@u_D := Sqrt@2D InverseErf@2 u - 1D

QuantileN@0.975D

1.95996

Shaw: LGS Simulation Lectures 15

SeedRandom@100D;
Timing@dataone = Table@QuantileN@Random@DD, 810 000<D;D

82.1286, Null<

SeedRandom@100D;
Timing@datatwo = Table@Acklam@Random@DD, 810 000<D;D

80.043215, Null<

Max@Abs@Flatten@datatwo ê dataoneD - 1DD

1.12884µ10-9

So that is good and fast. Note that this is the first level of Acklam's method. Level two goes once round a high-
order Newton-Raphson type scheme to get the error down to machine precision (at least with "double preci-
sion).

Plot@Acklam@uD ê QuantileN@uD - 1, 8u, 0.000001, 0.999999<,
PlotPoints Ø 300,
Epilog Ø 8RGBColor@1, 0, 0D,

Line@880, 1.15 µ 10^-9<, 81, 1.15 µ 10^-9<<D,
Line@880, -1.15 10^-9<, 81, -1.15 10^-9<<D<D

0.2 0.4 0.6 0.8 1.0

-1. µ 10-9

-5. µ 10-10

5. µ 10-10

1. µ 10-9

Wichura's (1988) Normal Quantile Function
Here it is in Mathematica, based on the algorithm in Wichura's 1988 paper on "Algorithm AS241" The Percent-
age Points of the Normal Distribution. Applied Statistics, 37, 477-484, 1988. This is a three stage algorithm.
For 0.075 § u § 0.925, a rational approximation of type H7, 7L is employed, with a coordinate reflection. For

u > 0.925, variables are changed to r = -Log@1 - uD and then a choice is made between two further rational

approximations of type H7, 7L depending on whether r § 5 or r > 5. C source for this may be found at:

16 University College London

Here it is in Mathematica, based on the algorithm in Wichura's 1988 paper on "Algorithm AS241" The Percent-
age Points of the Normal Distribution. Applied Statistics, 37, 477-484, 1988. This is a three stage algorithm.
For 0.075 § u § 0.925, a rational approximation of type H7, 7L is employed, with a coordinate reflection. For

u > 0.925, variables are changed to r = -Log@1 - uD and then a choice is made between two further rational

approximations of type H7, 7L depending on whether r § 5 or r > 5. C source for this may be found at:

http://mpa.itc.it/markus/grass63progman/as241_8c-source.html

WichuraQuantile@u_D :=
Module@8a = 83.3871328727963666080, 133.14166789178437745,

1971.5909503065514427, 13 731.693765509461125,
45 921.953931549871457, 67 265.770927008700853,
33 430.575583588128105, 2509.0809287301226727<,

b = 842.313330701600911252, 687.18700749205790830,
5394.1960214247511077, 21 213.794301586595867,
39 307.895800092710610, 28 729.085735721942674,
5226.4952788528545610<,

c = 81.42343711074968357734, 4.63033784615654529590,
5.76949722146069140550, 3.64784832476320460504,
1.27045825245236838258, 0.241780725177450611770,
0.0227238449892691845833, 0.000774545014278341407640<,

d = 82.05319162663775882187, 1.67638483018380384940,
0.689767334985100004550, 0.148103976427480074590,
0.0151986665636164571966, 0.000547593808499534494600,
1.05075007164441684324 * 10^H-9L<,

e = 86.65790464350110377720, 5.46378491116411436990,
1.78482653991729133580, 0.296560571828504891230,
0.0265321895265761230930, 0.00124266094738807843860,
0.0000271155556874348757815,
2.01033439929228813265 * 10^H-7L<,

f = 80.599832206555887937690, 0.136929880922735805310,
0.0148753612908506148525,
0.000786869131145613259100,
1.84631831751005468180 * 10^H-5L,
1.42151175831644588870 * 10^H-7L,
2.04426310338993978564 * 10^H-15L<

<,
If@0.075 § u § 0.925,

Module@8v = u - 1 ê 2, r<,
r = 180 625 ê 10^6 - v * v;

v *

Ha@@1DD +

r *

Ha@@2DD +

r *

Ha@@3DD + r * Ha@@4DD +

r * Ha@@5DD + r * Ha@@6DD +

r * Ha@@7DD + r * a@@8DDLLLLLLL ê

H1 +

r *

Hb@@1DD +

r *

Hb@@2DD + r * Hb@@3DD +

r * Hb@@4DD + r * Hb@@5DD +

LLLLLLD,

Shaw: LGS Simulation Lectures 17

r * Hb@@4DD + r * Hb@@5DD +

r * Hb@@6DD + r * b@@7DDLLLLLLLD,
If@u < 1 ê 2, r = u, r = 1 - u D; r = Sqrt@-Log@rDD;
If@r <= 5,
Hr = r - 16 ê 10;
Sign@u - 1 ê 2D
Hc@@1DD +

r *

Hc@@2DD +

r * Hc@@3DD + r * Hc@@4DD +

r * Hc@@5DD + r * Hc@@6DD +

r * Hc@@7DD + r * c@@8DDLLLLLLL ê

H1 +

r *

Hd@@1DD +

r * Hd@@2DD + r * Hd@@3DD +

r * Hd@@4DD + r * Hd@@5DD +

r * Hd@@6DD + r * d@@7DDLLLLLLLL,
Hr = r - 5; Sign@u - 1 ê 2D

He@@1DD +

r *

He@@2DD +

r * He@@3DD + r * He@@4DD +

r * He@@5DD + r * He@@6DD +

r * He@@7DD + r * e@@8DDLLLLLLL ê

H1 +

r *

Hf@@1DD +

r * Hf@@2DD + r * Hf@@3DD +

r * Hf@@4DD + r * Hf@@5DD +

r * Hf@@6DD + r * f@@7DDLLLLLLL
LD

DD

Evaluation

WichuraQuantile@0.975D

1.95996

Plot

Plot@WichuraQuantile@uD, 8u, 0.00001, 0.99999<D;

18 University College London

Relative Error against Mathematica's internal Erf-based Quantile
So we just test the claim that the error is of order machine precision. The red lines are drawn at 10-16 and the
relative error is less than this down to less than u = 10-22.

QuantileN@u_D := Sqrt@2D InverseErf@2 u - 1D

edata = Table@8u, WichuraQuantile@uD ê N@QuantileN@uD, 200D - 1<,
8u, 10^H-6L, 1 - 10^H-6L, 1 ê 1000<D;

ListPlot@edata, PlotJoined Ø True,
Epilog Ø 8RGBColor@1, 0, 0D, Line@880, 10^-16<, 81, 10^-16<<D,

Line@880, - 10^-16<, 81, -10^-16<<D<,
PlotRange Ø 8-2 10^H-16L, 2 µ 10^-16<D

0.4 0.6 0.8

-2. µ 10-16

-1.5 µ 10-16

-1. µ 10-16

-5. µ 10-17

5. µ 10-17

1. µ 10-16

1.5 µ 10-16

2. µ 10-16

You cannot make plots like this in C/C++ unless you have invoked precision beyound double.

Modern Rejection: Ratio of Uniforms
For fast simulation WITHOUT regard to the quantile structure, you should see the rejection techniques dis-
cussed in

A.

NR III Section 7.3

B.

 A.J. Kinderman and J,F, Monahan, 1977, Computer Generation of Random Variables Using the Ratio of
Uniform Deviates, ACM Transactions on Mathematical Software, Vol. 2, pp 257-260.

C.

J.L.Leva, 1992, A Fast Normal Random Number Generator, ACM Transactions on Mathematical Software,
Vol. 18, 4, , pp 449-453.

These are fast but have a difficult interaction with deterministic space-filling methods and copula methods. The
latter relies very explicitly on having quantiles for the construction of marginals.

Shaw: LGS Simulation Lectures 19

For fast simulation WITHOUT regard to the quantile structure, you should see the rejection techniques dis-
cussed in

A.

NR III Section 7.3

B.

 A.J. Kinderman and J,F, Monahan, 1977, Computer Generation of Random Variables Using the Ratio of
Uniform Deviates, ACM Transactions on Mathematical Software, Vol. 2, pp 257-260.

C.

J.L.Leva, 1992, A Fast Normal Random Number Generator, ACM Transactions on Mathematical Software,
Vol. 18, 4, , pp 449-453.

These are fast but have a difficult interaction with deterministic space-filling methods and copula methods. The
latter relies very explicitly on having quantiles for the construction of marginals.

Student T Distribution Quantile Functions - the closed form
cases

What happens if we replace the Normal by the fatter-tailed Student for example? Strangely the Quantile
function for the Student had not received much detailed attention till I had a play with it a couple of years ago.
The details are given in a paper I published in the Journal of Computational Finance in 2006. I have given a
power series for the middle region and a tail series as well and these can be used in much the same was as the
BSM model. I now know how to tidy this up and will deal with it next lecture. Given that there is a parameter n
you cannot write down one nice rational approximation for example. There are however some amusing special
values of n when you can actually directly invert the CDF exactly. Some of you will know about the Cauchy
distribution, which is the n = 1 Student distribution.

We can give special methods for the Student T distribution CDF when the degrees of freedom n is an even
integer. A paper by E. Platen and a colleague in Applied Mathematical Finance 2006 emphasized role of T4
case as being maximum likelihood estimate of distribution of world index returns. So n = 4 is of great practical
importance. It turns out that solving the problem when n is even integer corresponds to solving a sparse polyno-
mial of degree n - 1. Hence n = 2, 4 can be solved exactly.

For the even case: First we have an iterative specification of the CDF

Clear@aD

a@0, n_D := Gamma@Hn + 1L ê 2D ê Gamma@n ê 2D ê Sqrt@n PiD;

a@k_, n_D := a@k, nD = Hn - 2 kL ê n ê H2 k + 1L a@k - 1, nD;

TCDF@n_, x_D := 1 ê 2 +

x * Sum@a@p, nD x^H2 pL, 8p, 0, n ê 2 - 1<D ê

H1 + x^2 ê nL^H1 ê 2 Hn - 1LL;

8Simplify@TCDF@2, xDD, Simplify@D@TCDF@2, xD, xDD<

:
1

2

x

x2 + 2
+ 1 ,

1

Ix2 + 2M3ê2
>

20 University College London

8Simplify@TCDF@4, xDD, Simplify@D@TCDF@4, xD, xDD<

:
x3 + 6 x + Ix2 + 4M3ê2

2 Ix2 + 4M3ê2
,

12

Ix2 + 4M5ê2
>

Solve TCDF@n, xD = u , a polynomial problem! Let a = 4 uH1 - uL and p = n + x2

P@n_, x_D := x * Sum@a@p, nD x^H2 pL, 8p, 0, n ê 2 - 1<D;

R@n_, p_D := Expand@PowerExpand@
4 * n^Hn - 1L HP@n, xDL ^2 + p^Hn - 1L Ha - 1L ê. x Ø Sqrt@p - nDDD ;

TraditionalForm@Table@82 k, R@2 k, pD ã 0<, 8k, 1, 7<DD

2 a p - 2 ‡ 0
4 a p3 - 12 p - 16 ‡ 0

6 a p5 - 135 p2 - 1215 p

4
- 2187

2
‡ 0

8 a p7 - 2240 p3 - 7168 p2 - 35 840 p - 204 800 ‡ 0

10 a p9 - 196875 p4

4
-
1640625 p3

8
-
10546875 p2

8
-
615234375 p

64
- 2392578125

32
‡ 0

12 a p11 - 1 347 192 p5 - 6 928 416 p4 - 54 561 276 p3 - 484 989 120 p2 - 4 583 147 184 p - 44 998 172 352

14 a p13 - 353299947 p6

8
-
17311697403 p5

64
-
40393960607 p4

16
-
848273172747 p3

32
-
18893357029365 p2

64
-
872873094756663

and so on. We get interesting family of sparse polynomials. Almost half the coefficients are missing. Two exact
solutions n = 2, 4, and n = 6, 8, 10, … easy by Newton-Raphson! So combining with Cauchy we can do
n = 1, 2, 4 exactly. Here are the formulae for the Quantile functions:

‡ n=1

Q@u_, 1D := Tan@Pi Hu - 1 ê 2LD

TraditionalForm@Q@u, 1DD

tan p u -
1

2

‡ n=2

Q@u_, 2D := H2 u - 1L ê Sqrt@2 u H1 - uLD

TraditionalForm@Q@u, 2DD

2 u - 1

2 H1 - uL u

Shaw: LGS Simulation Lectures 21

‡ n=4

Q@u_, 4D := Module@8a = 4 u H1 - uL, p<,
p = 4 ê Sqrt@aD Cos@1 ê 3 ArcCos@Sqrt@aDDD;
Sign@u - 1 ê 2D Sqrt@p - 4DD

(8)sgn u -
1

2
. 2 cos

1

3
cos-1I2 H1 - uL u M ìI H1 - uL u M - 4

Here they are together with the normal, clearly demonstrating the increasingly fat-tailed nature. n=4 has infinite
kurtosis, n=2 has infinite variance.

Plot@8Q@u, 1D, Q@u, 2D, Q@u, 4D, QuantileN@uD<,
8u, 0.00001, 0.99999<, PlotRange Ø 8-10, 10<D

0.2 0.4 0.6 0.8 1.0

-10

-5

5

10

These are on Wikipedia now!

Doing it better? Other Distributions?
In the case of the normal people have invested a lot of effort into one-off composite rational approximations.
This distribution has no free parameters so once the effort has been made that is it. Or it was until GPUs came
along, where examples may be processed in blocks and the block will take as long as the slowest branch. So
Formula like Acklam's and AS241 can be dominated by computation time for the longer branch. Also, what do
we do about all those other distributions with parameters?

So this is where we divert to some recent papers by your prof, on the theory of "Quantile Mechanics".....

What we do is to forget all about the messy business of functionally inverting a CDF. Instead we go back to
basics and represent these things in terms of the solutions to differential equations. Off to the EJAM paper.

22 University College London

