
Finite-Difference Schemes for the Black-
Scholes Equation with Non-smooth Payoff 
Initial Conditions

Issues with the Greeks in simple schemes

Introduction
[This lecture will be supplemented with C++ code in a lab session provided separately.]

In previous lectures I gave some examples which show how various commonly used finite-difference 
schemes behave with simple smooth "payoffs". With smooth payoffs the Douglas finite-difference scheme 
gives much better results than Crank-Nicolson. In this session we will look at how these methods behave 
when applied to real-world option-pricing problems. This will highlight the potentially nasty behaviour of 
both Crank-Nicolson and Douglas finite-difference schemes when applied to simple option-pricing prob-
lems. The discontinuous nature of the payoff or its derivative in the neighbourhood of the strike induces 
slowly decaying oscillations into the solution of the finite-difference equations, when we use a larger time-
step (which is the main point of introducing FD schemes in the first place.)  These introduce small errors 
into the valuation itself, and undermine attempts to compute d, G and other "derivative" quantities in the 
neighbourhood of the strike. Note that, even with the oscillatory components small in the valuation error, 
the effect on the slope of the function is larger (generating larger errors in d), and there are even larger 
errors in G.

In this session I also look at the three-time-level version of the Douglas scheme. This chapter shows how 
the problem of larger errors in the Greeks can be cured, in that the oscillations can be removed, at least for 
our test payoffs, and the method ("three-time-level Douglas") will be used initially as the basis of our 
programme to define benchmark numerical algorithms. Later we shall look at some recent work by Evans 
and Chawla, and Giles and Carter.

The problems with the Crank-Nicolson scheme, and its resolution, are exemplified by a test problem with a 
= 8. Although the error in the valuation is small, we get an error in G near the strike of 12% of its exact 
value, and an error in q of 200%. In the corresponding three-time-level Douglas solution, the error in G 
near the strike is reduced to 0.2%, and that in q to 2.6%.
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Finite-Difference Schemes with Three Time-Levels
Various schemes have been proposed for treating problems introduced by considering discontinuous or non-
smooth boundary/initial conditions. These schemes aim to damp fast oscillations more effectively, by 
adjusting the spectrum of eigenvalues of the difference matrix. Richtmyer and Morton (1957) give a list of 
14 difference schemes for the diffusion equation, and recommend schemes (their numbering) 9, 11 and 13 
for non-smooth initial data. Schemes 9 and 13 are also recommended for these purposes by Smith (1985). 
These two schemes may be regarded as the three-time-level versions of the Crank-Nicolson scheme and the 
Douglas scheme, since they have truncation errors of a similar character to their two-time-level counter-
parts. We already know that the truncation error characteristics of the Douglas scheme make it preferable, 
so we shall use this. As in previous lectures, we let m denote the time-step, and n denote the x-step. The 
three time-level Douglas scheme is then given by

(1)

1

8
- a Iun-1

m+1 + un+1
m+1M +

5

4
+ 2 a unm+1

=
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6
Iun-1
m + un+1

m + 10 unmM -
1

24
Iun-1
m-1 + un+1

m-1 + 10 unm-1M

This type of process requires a kick-off procedure, since initially we only know u1. We use the ordinary 
Douglas two-time-level scheme:

(2)H1 - 6 aL Iun-1
m+1 + un+1

m+1M + H10 + 12 aL unm+1 = H1 + 6 aL Iun-1
m + un+1

m M + H10 - 12 aL unm

once with a Ø a ê4 , then the three-time-level scheme once with a ê4 and then again with a ê2. 

This gives us our vector pair of vectors to allow the three-time-level iteration to proceed normally there-
after. 

Some Required Functions from previous lectures
I am going to define many functions with similar sounding names so I will ask Mathematica to not give 
spelling warnings (only do this if you have sure there are no mistakes in function names!)

Off@General::spell1D
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ExplicitSolver =

Compile@88initial, _Real, 1<, 8lower, _Real, 1<,

8upper, _Real, 1<, alpha<,
Module@8wold = initial, wnew = initial, wvold = initial,

m, k, tsize = Length@lowerD, xsize = Length@initialD<,
For@m = 2, m <= tsize, m++,

Hwvold = wold; wold = wnew;
For@k = 2, k < xsize, k++,

Hwnew@@kDD = alpha Hwold@@k - 1DD + wold@@k + 1DDL +

H1 - 2 alphaL wold@@kDDLD;
wnew@@1DD = lower@@mDD;
wnew@@xsizeDD = upper@@mDDLD;

8wvold, wold, wnew<D
D;

CompTridiagSolve =

Compile@88a, _Real, 1<, 8b, _Real, 1<, 8c, _Real, 1<,

8r, _Real, 1<<,
Module@8len = Length@rD, solution = r, aux = 1 ê Hb@@1DDL,

aux1 = r, a1 = Prepend@a, 0.0D, iter<,
solution@@1DD = aux * r@@1DD;
Do@aux1@@iterDD = c@@iter - 1DD aux;

aux = 1 ê Hb@@iterDD - a1@@iterDD * aux1@@iterDDL;
solution@@iterDD =

Hr@@iterDD - a1@@iterDD solution@@iter - 1DDL aux,
8iter, 2, len<D;

Do@solution@@iterDD -= aux1@@iter + 1DD solution@@iter + 1DD,
8iter, len - 1, 1, -1<D;

solutionDD;

Adjustment for non-zero boundary conditions
Our implicit schemes involve the solution of a matrix problem A.x = r where A has the tridiagonal form : 
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A = 88b0, c0, 0, …, …, 0, 0<, 8a1, b1, c1, 0, …, …, 0<,
80, a2, b2, c2, …, …, 0<, 80, …, ¸⋱, ¸⋱, ¸⋱, ¸⋱, 0<,
80, …, …, 0, a"N-2", b"N-2", c"N-2"<,
80, …, …, …, 0, a"N-1", b"N-1"<<;

MatrixForm@AD

b0 c0 0 … … 0 0
a1 b1 c1 0 … … 0
0 a2 b2 c2 … … 0
0 … ¸⋱ ¸⋱ ¸⋱ ¸⋱ 0
0 … … 0 aN-2 bN-2 cN-2
0 … … … 0 aN-1 bN-1

In the particular case, for example, of a fully implicit scheme, we have the matrix whose diagonal and off-
diagonal terms are

A = 881 + 2 a, -a, 0, …, …, 0, 0<, 8-a, 1 + 2 a, -a, 0, …, …, 0<,
80, -a, 1 + 2 a, -a, …, …, 0<, 80, …, ¸⋱, ¸⋱, ¸⋱, ¸⋱, 0<,
80, …, …, 0, -a, 1 + 2 a, -a<, 80, …, …, …, 0, -a, 1 + 2 a<<;

MatrixForm@AD

1 + 2 a -a 0 … … 0 0
-a 1 + 2 a -a 0 … … 0
0 -a 1 + 2 a -a … … 0
0 … ¸⋱ ¸⋱ ¸⋱ ¸⋱ 0
0 … … 0 -a 1 + 2 a -a
0 … … … 0 -a 1 + 2 a

This came from the difference equation

(3)H1 + 2 a L unm+1 - a Iun-1
m+1 + un+1

m+1M = unm

When we are at the edge of the grid we need to allow for the possibly non-zero value of the boundary 
condition at the top at bottom end. In the fully implicit case we correct the first and last entries on the right 
hand side by +a upm+1where p = 1 or Nmax . Similarly with other schemes. In the general q-method case the 
discrete problem is

(4)H1 + 2 a qL unm+1 - a q Iun-1
m+1 + un+1

m+1M = H1 - 2 a H1 - qLL unm + a H1 - qL Iun-1
m + un+1

m M

and we will add a term +a q upm+1 + aH1 - qL upm at the edges of the grid.NEEDS CARE - possible source 
of error. You need to think about boundary conditions. Usually such thought pays off. Sometimes a 
misplaced love of trees can arise from wanting to avoid thinking about boundary conditions. (But then you 
get bitten by exotics - see Boyle's work on barriers.)
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of error. You need to think about boundary conditions. Usually such thought pays off. Sometimes a 
misplaced love of trees can arise from wanting to avoid thinking about boundary conditions. (But then you 
get bitten by exotics - see Boyle's work on barriers.)

In our calculations we shall just use some simple lists

FullyImpCMatrix[alpha_, nminus_, nplus_] :=
Sequence[Table[-alpha, {nplus+nminus-2}], 
Table[1+2*alpha, {nplus+nminus-1}],
Table[-alpha, {nplus+nminus-2}]]

FullyImpCMatrix@a, 2, 2D

Sequence@8-a, -a<, 81 + 2 a, 1 + 2 a, 1 + 2 a<, 8-a, -a<D

Case Study: the Vanilla European Put Option
We now begin a detailed study of the first of two examples that we have picked for detailed investigation. 
You might wonder why we are considering such a trivial case for which there is a known analytic solution. 
Our goal here is to try out various difference schemes and find out what works well, by testing them on a 
case for which the solution is known and where the errors can be precisely described. In this way we can 
see what is happening without all the complications of other real-world effects.

Factors Common to All Our FD Schemes
The Black-Scholes differential equation

(5)
1

2
S2

¶∂2V

¶∂S2
s2 - r V + Hr - qL S

¶∂V

¶∂S
+
¶∂V

¶∂ t
= 0

with constant coefficients (in particular r is a constant) can be transformed into the diffusion equation (1) 
by a standard change of variables, as given by Wilmott et al (Chapter 17, equations 17.1, 17.2). We can 
therefore implement our four standard schemes on the problem, and use solutions of (3) with known 
payoffs. In the following example we use the vanilla European Put. 

Standardization of Variables
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Standardization of Variables
With a strike K and constant parameters r, q, s, we make the changes of variables

(6)
t =

s2 HT - tL

2
k1 =

2 r

s2
k2 =

2 Hr - qL

s2

VHS, tL = K ‰
-
1
2
Ik2-1M x-K

1
4
Ik2-1M

2+k1O t uHx, tL

The Mathematica implementation of this requires the following functions.

NonDimExpiry@T_, s_D :=
s2 T

2
;

kone@r_, s_D :=
2 r

s2
; ktwo@r_, q_, sd_D :=

2 Hr - qL

sd2
;

ValuationMultiplier@strike_, r_, q_, x_, tau_, sd_D :=
strike

ExpB-
1

2
Hktwo@r, q, sdD - 1L x -

1

4
Hktwo@r, q, sdD - 1L2 + kone@r, sdD tauF

Initial (Expiry) Conditions

(7)
VHS, TL = K ‰

-
1
2
Ik2-1M x uHx, 0L

CHS, TL = MaxHS - K, 0L
PHS, TL = MaxHK - S, 0L

So, e.g. for a Put

(8)uPHx, 0L = ‰
+
1
2
Ik2-1M x 1 êK MaxHK - S, 0L = ‰

+
1
2
Ik2-1M x MaxH1 - S êK, 0L = ‰

+
1
2
Ik2-1M x MaxH1 - ‰x, 0L

and for a Call

(9)uCHx, 0L = ‰
+
1
2
Ik2-1M x 1 êK MaxHS - K, 0L = ‰

+
1
2
Ik2-1M x MaxHS êK - 1, 0L = ‰

+
1
2
Ik2-1M x MaxH‰x - 1, 0L

The Mathematica functions to do this are:
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CallExercise@x_, r_, q_, sd_D :=

MaxBExpB
1

2
Hktwo@r, q, sdD - 1L xF HExp@xD - 1L, 0F;

PutExercise@x_, r_, q_, sd_D :=

MaxBExpB
1

2
Hktwo@r, q, sdD - 1L xF H1 - Exp@xDL, 0F;

Black-Scholes Model for Verification
From last time - nothing new here:

Ncdf[(z_)?NumberQ] := N[0.5*Erf[z/Sqrt[2]] + 0.5]; 
Ncdf[x_] := (1 + Erf[x/Sqrt[2]])/2;
done[s_, s_, k_, t_, r_, q_] := 
((r - q)*t + Log[s/k])/(s*Sqrt[t]) + (s*Sqrt[t])/2; 
dtwo[s_, s_, k_, t_, r_, q_] := 
((r - q)*t + Log[s/k])/(s*Sqrt[t]) - (s*Sqrt[t])/2; 

BlackScholesCall[s_, k_, s_, r_, q_, t_] := 
s*Exp[-q*t]*Ncdf[done[s, s, k, t, r, q]] - k*Exp[-r*t]*Ncdf[dtwo[s, s, k, t, r, q]]; 
BlackScholesPut[s_, k_, s_, r_, q_, t_] := 
k*Exp[-r*t]*Ncdf[-dtwo[s, s, k, t, r, q]] - s*Exp[-q*t]*Ncdf[-done[s, s, k, t, r, q]]

Just check the function calls are working:

8BlackScholesCall@8, 10, 0.2, 0.05, 0, 3D,
BlackScholesPut@8, 10, 0.2, 0.05, 0, 3D<

80.86337, 1.47045<
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Build Greeks automatically for verification
In Mathematica we can just calculcate the derivatives automatically

BlackScholesCallDelta[s_,k_, v_, r_, q_, t_]= 
Evaluate[Simplify[D[BlackScholesCall[s,k, v, r, q, t], s]]];

BlackScholesPutDelta[s_,k_, v_, r_, q_, t_]= 
Evaluate[Simplify[D[BlackScholesPut[s,k, v, r, q, t], s]]];

BlackScholesCallGamma[s_,k_, v_, r_, q_, t_]= 
Evaluate[D[BlackScholesCall[s,k, v, r, q, t], {s, 2}]];

BlackScholesPutGamma[s_,k_, v_, r_, q_, t_]= 
Evaluate[D[BlackScholesPut[s,k, v, r, q, t], {s, 2}]];

BlackScholesCallTheta[s_,k_, v_, r_, q_, t_]= 
-Evaluate[D[BlackScholesCall[s,k, v, r, q, t], t]];

BlackScholesPutTheta[s_,k_, v_, r_, q_, t_]= 
-Evaluate[D[BlackScholesPut[s,k, v, r, q, t], t]];

BlackScholesCallRho[s_,k_, v_, r_, q_, t_]= 
Evaluate[D[BlackScholesCall[s,k, v, r, q, t], r]];

BlackScholesPutRho[s_,k_, v_, r_, q_, t_]= 
Evaluate[D[BlackScholesPut[s,k, v, r, q, t], r]];

BlackScholesCallVega[s_,k_, v_, r_, q_, t_]= 
Evaluate[D[BlackScholesCall[s,k, v, r, q, t], v]];

BlackScholesPutVega[s_,k_, v_, r_, q_, t_]= 
Evaluate[D[BlackScholesPut[s,k, v, r, q, t], v]];
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Put Boundary Conditions
For our boundary conditions the upper boundary condition is to set the function to zero, while the lower 
takes what we expect to be the Put value as the stock price approaches zero. In general the determination of 
suitable boundary conditions can take quite a bit of thought. It is also a common source of error, though 
sometimes a bad choice might be washed out by a payoff constraint in the interior of the solution. (Not a 
good idea to ever repy on that!) So what is the Put value as S becomes small, or equivalently as x becomes 
large and negative? If S is very small compared to K the Put will be exercised at maturity with a probability 
that tends to 1 as S tends to zero, so that we can take the present value of K - ST . This present value (or 
solve the BS equation) is given by

(10)‰-r HT-tL K - ‰-q HT-tL S

and if we make the transformation to u (I messed this up in my book - the bits below do satisfy the 
diffusion equation!) you get

(11)‰
1
4
t Ik2-1M

2+
1
2
x Ik2-1M - ‰

1
4
t Ik2+1M

2+
1
2
x Ik2+1M;

Note that as x gets large and negative the second term is exponentially small compared to the first, but best 
not to use just the K piece as you have not yet thought about where to truncate the grid.

g@x_, tau_, r_, q_, sd_D := 0;

f@x_, tau_, r_, q_, sd_D :=

ExpB
1

2
Hktwo@r, q, sdD - 1L x +

1

4
Hktwo@r, q, sdD - 1L2 tauF -

ExpB
1

2
Hktwo@r, q, sdD + 1L x +

1

4
Hktwo@r, q, sdD + 1L2 tauF;

Explicit Scheme for Put

dx = 0.025; dtau = 0.00025; alpha =
dtau

dx2
;
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M = 400; nminus = 160; nplus = 160;

‡ Setting the Initial (Expiry) Condition and Boundary Conditions

initial = Table@PutExercise@Hk - 1 - nminusL dx, 0.05, 0, 0.2D,
8k, nminus + nplus + 1<D;

lower = Table@f@-nminus dx, Hm - 1L dtau, 0.05, 0, 0.2D, 8m, 1, M + 1<D;
upper = Table@g@+nplus dx, Hm - 1L dtau, 0.05, 0, 0.2D, 8m, 1, M + 1<D;

Note that the payoff looks slightly odd in these coordinates - the main point to notice is the discontinuity in 
slope at the strike.

ListPlot@initialD

50 100 150 200 250 300

0.05

0.10

0.15

0.20

0.25

0.30

Solving the PDE (Explicit Method)
We use the same functions as we used for our smooth test problem in Chapter 14 - load the function 
ExplicitSolver now if you are using the electronic form:

soln = ExplicitSolver@initial, lower, upper, alpha D;

Interpolating to Supply a Continuous Function
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Interpolating to Supply a Continuous Function

interpoldata = Table@8Hk - nminus - 1L dx, soln@@3, kDD<,
8k, 1, nminus + nplus + 1<D;

ufunc = Interpolation@interpoldata, InterpolationOrder Ø 3D;

Valuation@strike_, r_, q_, S_, T_, sd_D :=

ValuationMultiplierBstrike, r, q, LogB
S

strike
F,

sd2 T

2
, sdF

ufuncBLogB
S

strike
FF

Error Plot

Plot@Valuation@10, 0.05`, 0, S, 5, 0.2`D -

BlackScholesPut@S, 10, 0.2`, 0.05`, 0, 5D, 8S, 1, 20<,
PlotPoints Ø 50, PlotRange Ø AllD

290 15. Finite-Differences and Black-Scholes

290



10 15 20

-0.0005

-0.0004

-0.0003

-0.0002

-0.0001

0.0001
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samples = TableForm@Join@88"S", "Explicit FD", "Exact", "Error"<<,
Table@HPaddedForm@N@Ò1D, 85, 5<D &L êü

8S, Valuation@10, 0.05, 0, S, 5, 0.2D,
BlackScholesPut@S, 10, 0.2, 0.05, 0, 5D,

Valuation@10, 0.05, 0, S, 5, 0.2D -

BlackScholesPut@S, 10, 0.2, 0.05, 0, 5D<,
8S, 2, 16, 1<

DDD

S Explicit FD Exact Error
2.00000 5.78870 5.78860 0.00010
3.00000 4.80050 4.80050 -2.16410 µ 10-6

4.00000 3.86130 3.86150 -0.00023
5.00000 3.02040 3.02090 -0.00042
6.00000 2.31040 2.31080 -0.00048
7.00000 1.73820 1.73870 -0.00044
8.00000 1.29290 1.29320 -0.00035
9.00000 0.95451 0.95478 -0.00027
10.00000 0.70167 0.70187 -0.00020
11.00000 0.51477 0.51492 -0.00015
12.00000 0.37754 0.37766 -0.00012
13.00000 0.27715 0.27726 -0.00011
14.00000 0.20384 0.20394 -0.00010
15.00000 0.15030 0.15040 -0.00010
16.00000 0.11116 0.11125 -0.00010

292 15. Finite-Differences and Black-Scholes

292



Fully Implicit Scheme for Put
These algorithms are by now self-explanatory - first the initialization:

dx = 0.025; dtau = 0.00025; alpha =
dtau

dx2
;

M = 400; nminus = 160; nplus = 160;

initial = Table@PutExercise@Hk - 1 - nminusL dx, 0.05, 0, 0.2D,
8k, nminus + nplus + 1<D;

lower = Table@f@-nminus dx, Hm - 1L dtau, 0.05, 0, 0.2D, 8m, 1, M + 1<D;
upper = Table@g@+nplus dx, Hm - 1L dtau, 0.05, 0, 0.2D, 8m, 1, M + 1<D;
wold = initial;
wvold = wold; wnew = wold;

CMat = FullyImpCMatrix@alpha, nminus, nplusD;

Evolving the solution (this may take some time):

For[m=2, m<=M+1, m++,
(wvold = wold;
wold = wnew;
(* Adjust the rhs for non-zero BCs *)
rhs = Take[wold, {2, -2}]+
Table[
Which[
k==1, alpha*lower[[m]],
k== nplus + nminus-1,  alpha*upper[[m]],
True, 0],
{k, 1, nplus + nminus-1}];
temp = CompTridiagSolve[CMat, rhs];
wnew = Join[{lower[[m]]}, temp, {upper[[m]]}])
]

Interpolation and construction of valuation function:

interpoldata = Table[{(k - nminus - 1)*dx, wnew[[k]]}, 
    {k, 1, nminus + nplus + 1}]; 
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ufuncb = Interpolation[interpoldata, InterpolationOrder -> 3];

Valuation[strike_, r_, q_, S_, T_, sd_] := 
  ValuationMultiplier[strike, r, q, Log[S/strike], (sd^2*T)/2, sd]*
   ufuncb[Log[S/strike]]

Error Plot

Plot@Valuation@10, 0.05`, 0, S, 5, 0.2`D -

BlackScholesPut@S, 10, 0.2`, 0.05`, 0, 5D, 8S, 1, 20<,
PlotPoints Ø 50, PlotRange Ø AllD

10 15 20

-0.0006

-0.0004

-0.0002

0.0002

0.0004
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samples = TableForm@Join@88"S", "Implicit FD", "Exact", "Error"<<,
Table@HPaddedForm@N@Ò1D, 85, 5<D &L êü

8S, Valuation@10, 0.05, 0, S, 5, 0.2D,

BlackScholesPut@S, 10, 0.2, 0.05, 0, 5D,
Valuation@10, 0.05, 0, S, 5, 0.2D -

BlackScholesPut@S, 10, 0.2, 0.05, 0, 5D<, 8S, 2, 16, 1<DDD

S Implicit FD Exact Error
2.00000 5.78830 5.78860 -0.00024
3.00000 4.80040 4.80050 -0.00007
4.00000 3.86180 3.86150 0.00028
5.00000 3.02130 3.02090 0.00043
6.00000 2.31110 2.31080 0.00028
7.00000 1.73860 1.73870 -0.00005
8.00000 1.29290 1.29320 -0.00037
9.00000 0.95419 0.95478 -0.00059
10.00000 0.70118 0.70187 -0.00069
11.00000 0.51422 0.51492 -0.00070
12.00000 0.37702 0.37766 -0.00064
13.00000 0.27672 0.27726 -0.00054
14.00000 0.20351 0.20394 -0.00044
15.00000 0.15007 0.15040 -0.00033
16.00000 0.11101 0.11125 -0.00024

Note that we obtain no improvement in accuracy over the explicit scheme. The only advantage of the fully 
implicit scheme over the explicit scheme is the fact that we can, if we wish, increase a, that is, the time-
step for a given price-step, without the system going unstable.

Crank-Nicolson
We now increase the time-step by a factor of 20, so that a = 8. Otherwise all this proceeds as before:

Initialization:
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M=20; nminus = 160; nplus = 160;
dx = 0.025; dtau = 0.005; alpha = dtau/dx^2

8.

initial = Table@PutExercise@Hk - 1 - nminusL dx, 0.05, 0, 0.2D,
8k, nminus + nplus + 1<D;

lower = Table@f@-nminus dx, Hm - 1L dtau, 0.05, 0, 0.2D, 8m, 1, M + 1<D;
upper = Table@g@+nplus dx, Hm - 1L dtau, 0.05, 0, 0.2D, 8m, 1, M + 1<D;
wold = initial;
wvold = wold;
wnew = wold;

CNCMatrix@alpha_, nminus_, nplus_D :=
Sequence@Table@-alpha ê 2, 8nplus + nminus - 2<D,
Table@1 + alpha, 8nplus + nminus - 1<D,
Table@-alpha ê 2, 8nplus + nminus - 2<DD;

CNDMatrix@alpha_, vec_ListD := Module@8temp<,
temp = H1 - alphaL * vec +

Halpha ê 2L * HRotateRight@vecD + RotateLeft@vecDL;
temp@@1DD = Simplify@First@tempD -

alpha * Last@vecD ê 2D;
temp@@-1DD = Simplify@Last@tempD - alpha * First@vecD ê 2D;
tempD;

CMat = CNCMatrix@alpha, nminus, nplusD;

Evolution:
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For[m=2, m<=M+1, m++,
(wvold = wold;
wold = wnew;
rhs = CNDMatrix[alpha, Take[wold, {2, -2}]]+
Table[
Which[
k==1, alpha*(lower[[m-1]] + lower[[m]])/2,
k== nplus + nminus-1,  alpha*(upper[[m-1]] + upper[[m]])/2,
True, 0],
{k, 1, nplus + nminus-1}];
temp = CompTridiagSolve[CMat, rhs];
wnew = Join[{lower[[m]]}, temp, {upper[[m]]}])
]

Interpolation

interpoldatab = 
Table[{(k - nminus - 1)*dx, wnew[[k]]}, {k, 1, nminus+nplus+1}]; 

ufuncb = Interpolation[interpoldatab, InterpolationOrder -> 3];

Valuation[strike_, r_, q_, S_, T_, sd_] :=
ValuationMultiplier[strike, r, q, Log[S/strike], (sd^2*T)/2, sd]*ufuncb[Log[S/strike]]
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Error Plot

Plot@Valuation@10, 0.05`, 0, S, 5, 0.2`D -

BlackScholesPut@S, 10, 0.2`, 0.05`, 0, 5D, 8S, 1, 20<,
PlotPoints Ø 50, PlotRange Ø AllD
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-0.0015

-0.0010

-0.0005

0.0005
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samples = TableForm@Join@88"S", "Crank-Nic", "Exact", "Error"<<,
Table@HPaddedForm@N@Ò1D, 85, 5<D &L êü

8S, Valuation@10, 0.05, 0, S, 5, 0.2D,

BlackScholesPut@S, 10, 0.2, 0.05, 0, 5D,
Valuation@10, 0.05, 0, S, 5, 0.2D -

BlackScholesPut@S, 10, 0.2, 0.05, 0, 5D<, 8S, 2, 16, 1<DDD

S Crank-Nic Exact Error
2.00000 5.78850 5.78860 -0.00006
3.00000 4.80050 4.80050 0.00002
4.00000 3.86160 3.86150 0.00003
5.00000 3.02080 3.02090 -0.00008
6.00000 2.31060 2.31080 -0.00022
7.00000 1.73830 1.73870 -0.00032
8.00000 1.29290 1.29320 -0.00036
9.00000 0.95445 0.95478 -0.00033
10.00000 0.70016 0.70187 -0.00171
11.00000 0.51461 0.51492 -0.00031
12.00000 0.37735 0.37766 -0.00032
13.00000 0.27698 0.27726 -0.00028
14.00000 0.20370 0.20394 -0.00024
15.00000 0.15019 0.15040 -0.00021
16.00000 0.11108 0.11125 -0.00018

Note that we obtain comparable accuracy to the explicit method with 1/20 the number of time-steps, but 
near the strike things are becoming "interesting". We obtain a sharply oscillatory error in the neighbour-
hood of the strike. Note that the size of the error is quite small, but it is steeply sloped. Bearing in mind the 
warnings given in our early lecture this is where we need to start thinking about getting the Greeks 
numerically..

Construction and Verification of Interpolated Valuation and Greeks
We begin by writing down a function that does numerical differentiation of a list. This function uses a 
simple central difference algorithm for points in the interior of the list. The end points are treated using a 
special difference algorithm. 
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listd[data_, step_] :=
Module[{dleft,dright,len},
len = Length[data];
dleft = (4*data[[2]]-3*data[[1]]-data[[3]])/(2*step);
dright = (3*data[[len]]-4*data[[len-1]]+data[[len-2]])/(2*step);
Join[{dleft}, Take[RotateLeft[data]-RotateRight[data], {2, -2}]/(2*step), {dright}]
]

Next we fix the values of the k-parameters:

kt = ktwo@0.05, 0, 0.2D;
ko = kone@0.05, 0.2D;

deltadata = listd@wnew, dxD -
1

2
Hkt - 1L wnew;

gammadata = listd@deltadata, dxD -
1

2
Hkt + 1L deltadata;

thetadata =
3 wnew - 4 wold + wvold

2 dtau
-

1

4
Hkt - 1L2 + ko wnew;

points = Table[(k - nminus - 1)*dx, {k, 1, nminus + nplus + 1}]; 

deltainterpoldata = Transpose@8points, deltadata<D;
gammainterpoldata = Transpose@8points, gammadata<D;
thetainterpoldata = Transpose@8points, thetadata<D;

dfunc = Interpolation@deltainterpoldata, InterpolationOrder Ø 3D;
gfunc = Interpolation@gammainterpoldata, InterpolationOrder Ø 3D;
tfunc = Interpolation@thetainterpoldata, InterpolationOrder Ø 3D;
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CNDelta@strike_, r_, q_, S_, T_, sd_D :=

1

S
ValuationMultiplierBstrike, r, q, LogB

S

strike
F,

sd2 T

2
, sdF

dfuncBLogB
S

strike
FF

CNGamma@strike_, r_, q_, S_, T_, sd_D :=

1

S2
ValuationMultiplierBstrike, r, q, LogB

S

strike
F,

sd2 T

2
, sdF

gfuncBLogB
S

strike
FF

CNTheta@strike_, r_, q_, S_, T_, sd_D :=

-
1

2
sd2 ValuationMultiplierBstrike, r, q, LogB

S

strike
F,

sd2 T

2
, sdF

tfuncBLogB
S

strike
FF

Delta Analysis
To investigate the errors in Delta we make a comparison with the exact solution, which we have already 
loaded as a function:

? BlackScholesPutDelta

Global`BlackScholesPutDelta

BlackScholesPutDelta@s_, k_, v_, r_, q_, t_D =

- 1

2
‰-q t 1 + ErfB-

t J-2 q+2 r+v2N+2 LogB
s
k
F

2 2 t v
F

We make a table of values of the percentage errors in delta, given in the last column of the following table:
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deltasamples = TableForm[
Table[Map[PaddedForm[N[#], {5, 4}]&, 
{S, CNDelta[10, 0.05, 0, S, 5, 0.2],
BlackScholesPutDelta[S,10,0.2,0.05,0, 5],
100*(CNDelta[10,0.05,0,S,5,0.2]/BlackScholesPutDelta[S,10,0.2,0.05,0, 5]-1)}],
{S, 2, 16, 1}]]

2.0000 -0.9979 -0.9976 0.0324
3.0000 -0.9721 -0.9719 0.0234
4.0000 -0.8975 -0.8973 0.0205
5.0000 -0.7786 -0.7785 0.0130
6.0000 -0.6404 -0.6404 -0.0004
7.0000 -0.5059 -0.5060 -0.0147
8.0000 -0.3882 -0.3883 -0.0256
9.0000 -0.2921 -0.2922 -0.0166
10.0000 -0.2168 -0.2169 -0.0631
11.0000 -0.1594 -0.1597 -0.2056
12.0000 -0.1169 -0.1170 -0.0505
13.0000 -0.0854 -0.0855 -0.0394
14.0000 -0.0624 -0.0624 -0.0436
15.0000 -0.0456 -0.0456 -0.0467
16.0000 -0.0333 -0.0334 -0.0518

The error in Delta is at most 0.2 % of the exact value, near the strike. This is still not too bad, and we can 
plot the error in Delta.

‡ Plot of Computed and Exact Delta

If we overlay the computed and exact Delta, the wobbles are starting to show:

Plot@8CNDelta@10, 0.05`, 0, S, 5, 0.2`D,
BlackScholesPutDelta@S, 10, 0.2`, 0.05`, 0, 5D<, 8S, 8, 12<,

PlotPoints Ø 50, PlotRange Ø AllD
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Plotting the difference makes the problem clear:

Plot@CNDelta@10, 0.05`, 0, S, 5, 0.2`D -

BlackScholesPutDelta@S, 10, 0.2`, 0.05`, 0, 5D, 8S, 8, 12<,
PlotPoints Ø 50, PlotRange Ø AllD

9 10 11 12

-0.002

-0.001

0.001

0.002
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Gamma Analysis
Here we tabulate the exact and numerical solution, with the percentage error in Gamma in the last column:

gammasamples = TableForm[Table[Map[PaddedForm[N[#], {5, 4}]&, 
{S, CNGamma[10, 0.05, 0, S, 5, 0.2],
BlackScholesPutGamma[S,10,0.2,0.05,0, 5],
100*(CNGamma[10,0.05,0,S,5,0.2]/BlackScholesPutGamma[S,10,0.2,0.05,0,5]-1)}],{S, 2, 16, 1}]]

2.0000 0.0084 0.0085 -1.2307
3.0000 0.0481 0.0480 0.2056
4.0000 0.1002 0.1000 0.2123
5.0000 0.1332 0.1329 0.1812
6.0000 0.1395 0.1394 0.1186
7.0000 0.1275 0.1274 0.0496
8.0000 0.1070 0.1071 -0.0589
9.0000 0.0830 0.0853 -2.7845
10.0000 0.0738 0.0657 12.4110
11.0000 0.0490 0.0494 -0.8800
12.0000 0.0366 0.0366 -0.0030
13.0000 0.0269 0.0269 -0.0717
14.0000 0.0196 0.0196 -0.0693
15.0000 0.0143 0.0143 -0.0595
16.0000 0.0104 0.0104 -0.0500

The error in G is 12.4% of the exact value at the strike.
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‡ Gamma Plot

The wobbles in G are now manifest in a plot of the computed and exact version - the error is of a similar 
scale to the value of G:

Plot@8CNGamma@10, 0.05`, 0, S, 5, 0.2`D,
BlackScholesPutGamma@S, 10, 0.2`, 0.05`, 0, 5D<, 8S, 8, 12<,

PlotPoints Ø 50, PlotRange Ø AllD
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Theta Analysis
Now we make a table of percentage errors with the Crank-Nicolson scheme:

thetasamples = TableForm[
Table[Map[PaddedForm[N[#], {5, 4}]&, 
{S, CNTheta[10, 0.05, 0, S, 5, 0.2],
BlackScholesPutTheta[S,10,0.2,0.05,0, 5],
100*(CNTheta[10,0.05,0,S,5,0.2]/BlackScholesPutTheta[S,10,0.2,0.05,0,5]-1)}], {S, 2, 16, 1}]]
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2.0000 0.3885 0.3885 0.0008
3.0000 0.3772 0.3772 0.0125
4.0000 0.3406 0.3405 0.0134
5.0000 0.2792 0.2792 -0.0157
6.0000 0.2072 0.2073 -0.0541
7.0000 0.1390 0.1391 -0.0780
8.0000 0.0828 0.0829 -0.1037
9.0000 0.0401 0.0410 -2.2123
10.0000 0.0362 0.0122 196.8900
11.0000 -0.0065 -0.0060 8.7857
12.0000 -0.0163 -0.0164 -0.5050
13.0000 -0.0214 -0.0214 -0.0244
14.0000 -0.0230 -0.0230 0.0136
15.0000 -0.0226 -0.0225 0.0668
16.0000 -0.0209 -0.0209 0.1011

Near the strike the error in Theta peaks at 197% of the exact value.

‡ Theta Plots

Plot@8CNTheta@10, 0.05`, 0, S, 5, 0.2`D,
BlackScholesPutTheta@S, 10, 0.2`, 0.05`, 0, 5D<, 8S, 8, 12<,

PlotPoints Ø 50, PlotRange Ø AllD

9 10 11 12

0.02

0.04

0.06

0.08

Remark on Two-Time-Level Douglas
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Remark on Two-Time-Level Douglas
This time, there is no benefit in going to the simple Douglas scheme as described in Chapter 14. The 
oscillations in the neighbourhood of the strike are just as bad. For example, here is the error in valuation 
with a = 8, for comparison. There are corresponding problems in the Greeks.

2.5 7.5 10 12.5 15 17.5 20

-0.003

-0.002

-0.001

0.001

0.002

Douglas Three-Time-Level Solution
We have to work a little harder to develop a scheme that eliminates the oscillation problem. What we do is 
to implement the three-time-level extension of the Douglas scheme discussed previously. We shall not go 
into a detailed theoretical discussion of this algorithm - we shall content ourselves with an explicit demon-
stration that it works.

‡ Necessary Functions

DougCMatrix[alpha_, nminus_, nplus_] :=
Sequence[Table[1-6*alpha, {nplus+nminus-2}], Table[10+12*alpha, {nplus+nminus-1}],
Table[1-6*alpha, {nplus+nminus-2}]]

DougCCMatrix[alpha_, nminus_, nplus_] :=
Sequence[Table[1/8-alpha, {nplus+nminus-2}], 
Table[5/4+2*alpha, {nplus+nminus-1}],
Table[1/8-alpha, {nplus+nminus-2}]]

308 15. Finite-Differences and Black-Scholes

308



DougDMatrix[alpha_, vec_List] := Module[{temp},
temp = (10 - 12*alpha)*vec + (1+6*alpha)*(RotateRight[vec] + RotateLeft[vec]);
temp[[1]] = Simplify[First[temp] - !(1+6*alpha)*Last[vec]];
temp[[-1]] = Simplify[Last[temp] - (1 + 6*alpha)*First[vec]];
temp]

DougDDMatrix[vec_List] := Module[{temp},
temp = (10*vec + RotateRight[vec] + RotateLeft[vec]);
temp[[1]] = Simplify[First[temp] - Last[vec]];
temp[[-1]] = Simplify[Last[temp] - First[vec]];
temp/6]

 Douglas Three Time-Level Solution Evolution
The initialization consists of defining the grid parameters, setting boundary and initial conditions and 
defining the various matrices.

dx = 0.025;
dtau = 0.005;
alpha = dtau/dx^2;
M=20;
nminus = 160;
nplus = 160;
alpha

8.

initial = Table@PutExercise@Hk - 1 - nminusL dx, 0.05, 0, 0.2D,
8k, nminus + nplus + 1<D;

lower = Table@f@-nminus dx, Hm - 1L dtau, 0.05, 0, 0.2D, 8m, 1, M + 1<D;
upper = Table@g@+nplus dx, Hm - 1L dtau, 0.05, 0, 0.2D, 8m, 1, M + 1<D;

w = Table[0, {m, 1, 3},   {k, 1, nminus+nplus+1}];

vold = Take[initial, {2, -2}];
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w[[1,1]] = f[-nminus*dx, dtau/4, 0.05, 0, 0.2];
w[[1, nminus+nplus+1]] = g[nplus*dx, dtau/4, 0.05, 0, 0.2];
w[[2,1]] = f[-nminus*dx, dtau/2, 0.05, 0, 0.2];
w[[2, nminus+nplus+1]] = g[nplus*dx, dtau/2, 0.05, 0, 0.2];
w[[3,1]] = f[-nminus*dx, dtau, 0.05, 0, 0.2];
w[[3, nminus+nplus+1]] = g[nplus*dx, dtau, 0.05, 0, 0.2];

CMat = DougCMatrix[alpha,nminus,nplus];
CCMat = DougCCMatrix[alpha,nminus,nplus];

CMatQ = DougCMatrix[alpha/4,nminus,nplus];
CMatH = DougCMatrix[alpha/2,nminus,nplus];

CCMatQ = DougCCMatrix[alpha/4,nminus,nplus];
CCMatH = DougCCMatrix[alpha/2,nminus,nplus];

‡ Kick-Off Phase

This begins with the simple Douglas scheme with two time-levels and 1/4 the basic time-step.

rhs = DougDMatrix[alpha/4, vold]+
Table[
Which[
k==1, (6*alpha/4+1)*lower[[1]] + (6*alpha/4-1)*w[[1, 1]],
k== nplus + nminus-1,  (6*alpha/4+1)*upper[[1]] +
(6*alpha/4-1)*w[[1, nplus+nminus+1]],
True, 0],
{k, 1, nplus + nminus-1}];
vnew = CompTridiagSolve[CMatQ, rhs];
w[[1]] = Join[{w[[1,1]]}, vnew, {w[[1,nplus+nminus+1]]}];
vvold = vold;
vold = vnew;

Now we have two iterations of the three-time-level Douglas system, doubling the time-step at each stage:
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rhs = DougDDMatrix[vold] - DougDDMatrix[vvold]/4 + 
Table[
Which[
k==1, (alpha/4-1/8)*w[[2, 1]] + w[[1,1]]/6 - lower[[1]]/24,
k==nplus + nminus-1,  (alpha/4-1/8)*w[[2, nplus+nminus+1]] + 
w[[1,nplus+nminus+1]]/6 - upper[[1]]/24,
True, 0],
{k, 1, nplus + nminus-1}];
vnew = CompTridiagSolve[CCMatQ, rhs];
w[[2]] = Join[{w[[2,1]]}, vnew, {w[[2,nplus+nminus+1]]}];
vold = vnew;

rhs = DougDDMatrix[vold] - DougDDMatrix[vvold]/4 + 
Table[
Which[
k==1, (alpha/2-1/8)*w[[3, 1]] + w[[2,1]]/6 - lower[[1]]/24,
k==nplus + nminus-1,  (alpha/2-1/8)*w[[3, nplus+nminus+1]] + 
w[[2,nplus+nminus+1]]/6 - upper[[1]]/24,
True, 0],
{k, 1, nplus + nminus-1}];
vnew = CompTridiagSolve[CCMatH, rhs];
w[[3]] = Join[{w[[3,1]]}, vnew, {w[[3,nplus+nminus+1]]}];
wold = initial;
wvold = initial;
wnew = w[[3]];
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‡ Main Evolution Phase and Interpolation of Solution

For[m=3, m<=M+1, m++,
(wvold = wold;
wold = wnew;
rhs = DougDDMatrix[Take[wold, {2, -2}]] -
DougDDMatrix[Take[wvold, {2, -2}]]/4 + 
Table[
Which[
k==1, 
(alpha-1/8)*lower[[m]] + lower[[m-1]]/6 - lower[[m-2]]/24,
k==nplus + nminus-1, 
(alpha-1/8)*upper[[m]] + upper[[m-1]]/6 - upper[[m-2]]/24,
True, 0],
{k, 1, nplus + nminus-1}];
temp = CompTridiagSolve[CCMat, rhs];
wnew = Join[{lower[[m]]}, temp, {upper[[m]]}])
]

points = Table@Hk - nminus - 1L * dx,
8k, 1, nplus + nminus + 1<D;

finalstep = wnew;

prevstep = wold;

pprevstep = wvold;

interpoldata = Transpose@8points, finalstep<D;

ufunc = Interpolation[interpoldata, InterpolationOrder -> 3];

Valuation[strike_, r_, q_, S_, T_, sd_] :=
ValuationMultiplier[strike, r, q, Log[S/strike], sd^2*T/2, sd]*
ufunc[Log[S/strike]]

Valuation Analysis
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Valuation Analysis

Plot@Valuation@10, 0.05`, 0, S, 5, 0.2`D -

BlackScholesPut@S, 10, 0.2`, 0.05`, 0, 5D, 8S, 1, 20<,
PlotPoints Ø 50, PlotRange Ø AllD
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samples = TableForm[
Table[Map[PaddedForm[N[#], {5, 4}]&, {S, Valuation[10, 0.05, 0, S, 5, 0.2],
BlackScholesPut[S,10,0.2,0.05,0,5],
Valuation[10, 0.05, 0, S, 5, 0.2]-
BlackScholesPut[S,10,0.2,0.05,0,5]}],
{S, 2, 16, 1}]]

2.0000 5.7886 5.7886 0.0000
3.0000 4.8007 4.8005 0.0002
4.0000 3.8615 3.8615 -0.0000
5.0000 3.0204 3.0209 -0.0005
6.0000 2.3101 2.3108 -0.0007
7.0000 1.7380 1.7387 -0.0006
8.0000 1.2928 1.2932 -0.0004
9.0000 0.9546 0.9548 -0.0002
10.0000 0.7019 0.7019 -0.0000
11.0000 0.5149 0.5149 0.0000
12.0000 0.3777 0.3777 7.4967 µ 10-6

13.0000 0.2772 0.2773 -0.0000
14.0000 0.2038 0.2039 -0.0001
15.0000 0.1503 0.1504 -0.0001
16.0000 0.1111 0.1113 -0.0002

Construction and Verification of Interpolated Valuation and Greeks
In this section we define some functions to compute Delta, Gamma and Theta directly from the finite-
difference grid.

listd[data_, step_] :=
Module[{dleft,dright,len},
len = Length[data];
dleft = (4*data[[2]]-3*data[[1]]-data[[3]])/(2*step);
dright = (3*data[[len]]-4*data[[len-1]]+data[[len-2]])/(2*step);
Join[{dleft}, Take[RotateLeft[data]-RotateRight[data], {2, -2}]/(2*step), {dright}]
]

kt = ktwo@0.05, 0, 0.2D;
ko = kone@0.05, 0.2D;
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deltadata = listd@finalstep, dxD -
1

2
Hkt - 1L finalstep;

gammadata = listd@deltadata, dxD -
1

2
Hkt + 1L deltadata;

thetadata =
3 finalstep - 4 prevstep + pprevstep

2 dtau
-

1

4
Hkt - 1L2 + ko finalstep;

deltainterpoldata = Transpose@8points, deltadata<D;
gammainterpoldata = Transpose@8points, gammadata<D;
thetainterpoldata = Transpose@8points, thetadata<D;

dfunc = Interpolation@deltainterpoldata, InterpolationOrder Ø 3D;
gfunc = Interpolation@gammainterpoldata, InterpolationOrder Ø 3D;
tfunc = Interpolation@thetainterpoldata, InterpolationOrder Ø 3D;

DougDelta@strike_, r_, q_, S_, T_, sd_D :=

1

S
ValuationMultiplierBstrike, r, q, LogB

S

strike
F,

sd2 T

2
, sdF

dfuncBLogB
S

strike
FF

DougGamma@strike_, r_, q_, S_, T_, sd_D :=

1

S2
ValuationMultiplierBstrike, r, q, LogB

S

strike
F,

sd2 T

2
, sdF

gfuncBLogB
S

strike
FF
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DougTheta@strike_, r_, q_, S_, T_, sd_D :=

-
1

2
sd2 ValuationMultiplierBstrike, r, q, LogB

S

strike
F,

sd2 T

2
, sdF

tfuncBLogB
S

strike
FF

Delta Analysis
The percentage error in Delta is given in the last column of the following table.

deltasamples = TableForm[
Table[Map[PaddedForm[N[#], {5, 4}]&, 
{S, DougDelta[10, 0.05, 0, S, 5, 0.2],
BlackScholesPutDelta[S,10,0.2,0.05,0,5],
100*(DougDelta[10,0.05,0,S,5,0.2]/BlackScholesPutDelta[S,10,0.2,0.05,0,5]-1)}],
{S, 2, 16, 1}]]

2.0000 -0.9978 -0.9976 0.0186
3.0000 -0.9722 -0.9719 0.0288
4.0000 -0.8979 -0.8973 0.0634
5.0000 -0.7789 -0.7785 0.0464
6.0000 -0.6404 -0.6404 -0.0119
7.0000 -0.5056 -0.5060 -0.0693
8.0000 -0.3879 -0.3883 -0.0997
9.0000 -0.2919 -0.2922 -0.0978
10.0000 -0.2168 -0.2169 -0.0695
11.0000 -0.1596 -0.1597 -0.0258
12.0000 -0.1170 -0.1170 0.0225
13.0000 -0.0855 -0.0855 0.0660
14.0000 -0.0625 -0.0624 0.0975
15.0000 -0.0456 -0.0456 0.1126
16.0000 -0.0334 -0.0334 0.1088

The error in Delta is at most 0.1% of the exact value.
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‡ Delta Plots

Plot@8DougDelta@10, 0.05`, 0, S, 5, 0.2`D,
BlackScholesPutDelta@S, 10, 0.2`, 0.05`, 0, 5D<, 8S, 8, 12<,

PlotPoints Ø 50, PlotRange Ø AllD
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Gamma Analysis
The percentage error in Gamma is given by the last column of the following table:

gammasamples = TableForm[Table[Map[PaddedForm[N[#], {5, 4}]&, 
{S, DougGamma[10, 0.05, 0, S, 5, 0.2],
BlackScholesPutGamma[S,10,0.2,0.05,0,5],
100*(DougGamma[10,0.05,0,S,5,0.2]/BlackScholesPutGamma[S,10,0.2,0.05,0,5]-1)}],
{S,2,16,1}]]
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2.0000 0.0084 0.0085 -0.3310
3.0000 0.0477 0.0480 -0.6616
4.0000 0.1001 0.1000 0.0932
5.0000 0.1335 0.1329 0.4113
6.0000 0.1398 0.1394 0.3334
7.0000 0.1276 0.1274 0.1276
8.0000 0.1070 0.1071 -0.0616
9.0000 0.0852 0.0853 -0.1835
10.0000 0.0655 0.0657 -0.2327
11.0000 0.0493 0.0494 -0.2225
12.0000 0.0365 0.0366 -0.1710
13.0000 0.0268 0.0269 -0.0961
14.0000 0.0196 0.0196 -0.0127
15.0000 0.0143 0.0143 0.0671
16.0000 0.0104 0.0104 0.1348

The error is at most 0.7% of the exact value - near the strike it is now only 0.2%.

‡ Plot of Computed and Exact Gamma

Plot@8DougGamma@10, 0.05`, 0, S, 5, 0.2`D,
BlackScholesPutGamma@S, 10, 0.2`, 0.05`, 0, 5D<, 8S, 8, 12<,

PlotPoints Ø 50, PlotRange Ø AllD
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Theta Analysis
The percentage error in Theta is given by the last column of the following table:

thetasamples = TableForm[
Table[Map[PaddedForm[N[#], {5, 4}]&, 
{S, DougTheta[10, 0.05, 0, S, 5, 0.2],
BlackScholesPutTheta[S,10,0.2,0.05,0,5],
100*(DougTheta[10,0.05,0,S,5,0.2]/BlackScholesPutTheta[S,10,0.2,0.05,0,5]-1)}],
{S, 2, 16, 1}]]
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2.0000 0.3885 0.3885 -0.0085
3.0000 0.3773 0.3772 0.0260
4.0000 0.3407 0.3405 0.0498
5.0000 0.2792 0.2792 -0.0232
6.0000 0.2071 0.2073 -0.1296
7.0000 0.1389 0.1391 -0.1795
8.0000 0.0828 0.0829 -0.1116
9.0000 0.0410 0.0410 0.1566
10.0000 0.0124 0.0122 1.2132
11.0000 -0.0058 -0.0060 -2.5962
12.0000 -0.0163 -0.0164 -0.6827
13.0000 -0.0214 -0.0214 -0.2323
14.0000 -0.0230 -0.0230 0.0372
15.0000 -0.0226 -0.0225 0.2296
16.0000 -0.0210 -0.0209 0.3672

320 15. Finite-Differences and Black-Scholes

320



Near the strike the error in q peaks at 2.6% of the exact value. Note that with the two-time-level Crank-
Nicolson scheme the error was almost 200%.

Theta Plots

Plot@8DougTheta@10, 0.05`, 0, S, 5, 0.2`D,
BlackScholesPutTheta@S, 10, 0.2`, 0.05`, 0, 5D<, 8S, 8, 12<,

PlotPoints Ø 50, PlotRange Ø AllD
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As a reminder, here is the corresponding plot for the Crank-Nicolson scheme.
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Summary
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Summary
The introduction of implicit schemes is motivated by the desire to get accurate and stable solutions for 
larger values of a. When we need to compute the values of both a function and its first and second 
derivatives, popular schemes such as the ordinary two-time-level Crank-Nicolson scheme are unsuitable for 
option-pricing problems, unless small to moderate values of a are used. This is because of the fact that non-
smoothness in initial data (almost always present in option payoffs) propagates through the solution 
causing small oscillatory errors. When amplified by the process of differentiation, these may cause 
substantial errors in the Greeks. The errors in the valuation may be deceptively small - to quote Wilmott et 
al (1993) when discussing a verification example with the Crank-Nicolson scheme, they remark that "Even 
with a = 10, the numerical and exact results differ only marginally." This is absolutely right, at least when 
we just look at the valuation. When we inspect the Greeks a rather more disturbing picture emerges. We 
have given an example where estimates of q from a computation with a = 8 are in error by about 200%. 

The oscillation problem and the resulting corruption of the Greeks can be cured by the use of a more 
suitable difference scheme. When the initial data were smooth, we saw previously that the two-time-level 
Douglas scheme was sufficient, but in the presence of non-smooth data the corresponding three-time-level 
Douglas scheme cures the problems quite dramatically. 

The transition to such a scheme for practitioners should not be a great leap. We have already seen that the 
two-time-level Douglas scheme is the natural implicit generalization of the trinomial model, when carried 
out on a grid rather than a tree. The next step to a three-time-level scheme allows larger time steps still to 
be taken without a loss of accuracy or corruption of the Greeks. 
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