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Quantile mechanics
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In both modern stochastic analysis and more traditional probability and statistics, one

way of characterizing a static or dynamic probability distribution is through its quantile

function. This paper is focused on obtaining a direct understanding of this function via the

classical approach of establishing and then solving differential equations for the function. We

establish ordinary differential equations and power series for the quantile functions of several

common distributions. We then develop the partial differential equation for the evolution

of the quantile function associated with the solution of a class of stochastic differential

equations, by a transformation of the Fokker–Planck equation. We are able to utilize the

static formulation to provide elementary time-dependent and equilibrium solutions.

Such a direct understanding is important because quantile functions find important uses

in the simulation of physical and financial systems. The simplest way of simulating any non-

uniform random variable is by applying its quantile function to uniform deviates. Modern

methods of Monte–Carlo simulation, techniques based on low-discrepancy sequences and

copula methods all call for the use of quantile functions of marginal distributions. We provide

web resources for prototype implementations in computer code. These implementations may

variously be used directly in live sampling models or in a high-precision benchmarking mode

for developing fast rational approximations also for use in simulation.

1 Introduction

In both stochastic analysis and traditional probability and statistics, the quantile function

offers a useful way of characterizing a static or dynamic distribution. An understanding

of this function offers real benefits not available directly from the density or distribution

function. For example, the simplest way of simulating any non-uniform random variable

is by applying its quantile function to uniform deviates. This paper proposes to elevate

quantile functions to the same level of management as many of the classical special

functions of mathematical physics and applied analysis. That is, we form appropriate

ordinary and partial differential equations, and proceed to the development of power

series from the appropriate underlying ordinary differential equations. We shall consider

a static analysis based on ordinary differential equations (ODEs) and a dynamic analysis

based on a corresponding partial differential equation (PDE). In this paper the focus

of the dynamic analysis will be a quantilized form of the integrated Fokker–Planck
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equation arising from a stochastic differential equation (SDE), but other dynamics may

be considered in principle. We shall call this the QFPE. The management of the dynamic

QFPE will require an understanding of the solutions of the corresponding ODEs, in

much the same way as the management of, e.g., the Schröedinger equation requires

an understanding of separation of variables and solutions of the corresponding (linear)

ODEs. This will necessitate some new technology development for the static analysis.

However, the static analysis has intrinsic interest, as well shall now discuss.

1.1 Background to the static analysis

Hitherto quantile functions, in the static context, have largely just been treated as inverses

of often complicated distribution functions, and their use has largely been confined to

(a) simple exact solutions, e.g., for the exponential distribution, (b) in terms of efficient

rational approximations, usually for the normal case, and (c) as a root-finding exercise

based on the distribution function. A treatment of some approaches to quantile functions

and other sampling methods, such as rejection, is given in the classic text by Devroye

[9]. An extensive discussion of the use of quantile functions in mainstream statistics is

given in the book by Gilchrist [12], where several other examples of known simple forms

for quantile functions are given. Several rational and related approximations have been

given for the quantile function for normal case, sometimes called the probit function

after the work of Bliss [4]. Perhaps the most detailed is ‘algorithm AS241’, developed by

Wichura in 1988 [28] and is capable of machine precision in a double precision computing

environment. Quantile functions are of course in widespread use in general statistics and

often find representations in terms of lookup tables for key percentiles.

A detailed investigation of the quantile function for the Student case has been given

by Shaw [22]. However, while power and tail series were developed there for the general

case, the method relied on the inversion of series for the forward cumulative distribution

function (CDF) using computer algebra and special computational environments. A

prototype for many quantiles was given by the series solution of the non-linear ODE for

the inverse error function given by Steinbrecher [24]. Here we extend this work to the

normal distribution itself, the Student distribution, and gamma and beta distributions.

In particular we are able to facilitate the implementation of the methods of [22] for the

Student case in any computing environment to much higher accuracy. We shall argue that

this analytic approach provides useful and practical techniques for the evaluation of such

functions.

The value of quantile functions is increasingly appreciated in Monte–Carlo simula-

tion. Quantile functions work very well with both copula methods and low-discrepancy

sequences, in contrast to rejection methods based on sampling from a circle inside a

square, e.g., for sampling of the Normal. These issues are discussed by Jäckel [17]. The

use of quantile functions has however not taken root as much as it might due to the

relative intractability of the functions, which this far have been considered as inverses

of the often awkward CDFs of density functions, which are ‘special functions’ of some

computational complexity. While such CDFs and their inverses are sometimes available

in high-level mathematical computation languages such as Mathematica, these repres-

entations (e.g., using an inverse incomplete beta function in the case of the beta and
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Student distributions) are less helpful in other languages. In the case of the normal

distribution the quantile function has been managed by the use of composite rational

and polynomial approximations based on decomposing the half-unit interval into two

or more regions. The three-region approximation developed by Wichura in 1988 [28]

and commonly known as ‘AS241’ is well-suited to machine-precision computations in a

double-precision environment. Acklam’s method [2] is a very useful method based on two

levels of approximation. A simple two-region approximation provides relative accuracy of

order 10−9 for the quantile, and a single refinement based on Newton–Raphson–Halley

iteration produces machine-precision. An assessment of the merits of these schemes and

others in common use has been given by one of us [23].

Such rational and related approximations provide useful and fast implementations

in the case of the normal distribution, where much effort has been devoted to ana-

lyzing this single universal distribution with no embedded parameters, and a one-off

composite rational approximation can be developed in detail. However, other cases

of interest do involve other parameters, e.g., the degrees of freedom in the case of

the Student, and two parameters in the case of the beta distribution, and so far as

we are aware there is little known about rational or other approximations that have

error properties that are managed uniformly in the distributional parameters. One out-

come of this note is the capability to manage distributional parameters for several key

distributions.

Furthermore, the emergence of 64-bit computers and the associated 96- and 128-bit

standards of arithmetic also requires us to reconsider the use of standard existing approx-

imations for quantiles, often based on rational approximations, as providing appropriate

representations for these functions in high-precision environments. The methods we shall

present here are capable of providing both arbitrary-precision benchmarks for new high-

precision approximations, as well as components of real-time simulations.

We regard it as ‘mathematically pleasing’ because this aspect of probability theory

can also be discussed in the same setting as the classical theory of special functions.

Power series methods are at the heart of many aspects of applied mathematics. For

example, the simple solutions of the Schröedinger equation rely for their interpretation on

a discussion of their power series, and their termination to a polynomial or a certain type

of convergence behaviour leads to an understanding of energy levels. Traditionally the

interest in a power series approach to special functions has been focused on linear systems,

and where one can derive explicit formulae for coefficients in terms of some combination

of factorials. At this stage in our analysis our characterization of the the power series

coefficients will be through a non-linear recursion associated with a non-linear ordinary

differential equation. But this will allow numerical or symbolic computation to proceed.

The power series method is of course local in character. However, we shall show that

for the cases of the Student and beta distributions, just two series will suffice for global

applications. This work has the novel feature that we can treat as a non-linear ODE

through almost entirely analytical methods, leaving a computer to solve the iteration as

far as is needed and add up the series.

The use of differential equations and series methods for the analysis of quantile functions

has its origins in the earlier work of Hill and Davis [13] and Abernathy and Smith [1].

This earlier work developed differential recursions with the emphasis on Cornish–Fisher
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expansions. In contrast, our own approach will obtain direct algebraic recursions for the

quantile functions themselves, which are readily adapted for computation. Applications

to Cornish–Fisher expansions do exist and will be given elsewhere.

1.2 Background to the dynamic analysis

There are many situations in modern applied mathematics where one is interested in

a time-dependent probability distribution and many types of dynamics that might be

postulated. This paper will give just one example based on a one-dimensional SDE. We

shall derive the ‘quantilized Fokker–Planck equation’, or QPFE, by a transformation

of the ordinary Fokker–Planck equation for a one-dimensional stochastic process. Then

solutions will be developed.

The development of direct evolution equations for quantile functions seems to have a

somewhat sparse presence in the literature. The authors are aware of work by Toscani

and co-workers, and in particular a paper by Carrillo and Toscani [5]. Other discussions

have been given by Toscani and co-workers in [27], and most recently, [3]. The motivation

in that work is a one-dimensional approach to mass transportation problems. Dassios

has studied temporal quantiles – see [8] and the references therein, following on from

earlier work by Miura [19]. There is also the distinct concept of a quantile process, as

discussed in [7]. The focus of our paper is, rather, to consider the time evolution of the

spatial quantile function. The direct calculation of such spatial quantile functions would

afford a new route to Monte–Carlo simulation, and given that quantiles may be robustly

estimated from data, there is also the potential for estimating SDE structures from data,

via the use of a QFPE.

1.3 Outline of the paper

The plan of this work is as follows. In section 2 we derive non-linear ordinary differential

equations for some key distributions. In Section 3 we derive power series solutions and give

a global solution for some distributions. Section 4 gives a brief discussion on classification

aspects and the bivariate form. Section 5 gives an introduction to the dynamic analysis.

Section 6 presents conclusions and further directions, and links to web resources. A sample

detailed derivation of the non-linear recurrence for the power series coefficients is given

in Appendix A. Matters to do with some practical implementations are deferred to in

Appendix B and technical details on tails are given in Appendix C.

2 Quantile statics: ODEs for quantile functions

We will treat this very simply by working through different choices of density function.

In each case all we do is first express the derivative of the quantile function w as a the

reciprocal of the usual density function expressed in terms of w, then keep differentiating

until we obtain a closed differential relation, which is generically non-linear. In each case,

if f(x) is the probability density function, the first order quantile ODE is just

dw

du
=

1

f(w)
, (1)
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where w(u) is the quantile function considered as a function of u, with 0 � u � 1. We then

differentiate again to find, at least for some key common cases, a simple-second order

non-linear ODE.

2.1 The Normal distribution

In this case if w(u) denotes the quantile function as a function of u, then

dw

du
=

√
2π exp

(
w2

2

)
. (2)

Now we differentiate again, to obtain

d2w

du2
=

√
2π exp

(
w2

2

)
w
dw

du
= w

(
dw

du

)2

, (3)

so we end up with an ODE and ‘centre’ conditions,

d2w

du2
= w

(
dw

du

)2

,
(4)

w(1/2) = 0, w′(1/2) =
√

2π.

This ODE is equivalent to that posted for inverse erf on the web [14].

2.2 The Student distribution—direct approach

In this case if w(u) denotes the quantile function as a function of u, then

dw

du
=

√
nπ

Γ
(
n
2

)
Γ

(
n+1
2

) (1 + w2/n)
n+1
2 . (5)

Now we differentiate again, to obtain

d2w

du2
=

√
nπ

Γ
(
n
2

)
Γ

(
n+1
2

) n + 1

n
(1 + w2/n)

n−1
2 w

dw

du
=

n + 1

n

1

(1 + w2/n)
w

(
dw

du

)2

, (6)

so we end up with an ODE and ‘centre’ conditions,

(
1 +

w2

n

)
d2w

du2
=

(
1 +

1

n

)
w

(
dw

du

)2

,

(7)

w(1/2) = 0, w′(1/2) =
√
nπ

Γ
(
n
2

)
Γ

(
n+1
2

) .
This ODE and the conditions reduce to those for the normal case as n → ∞. Throughout

this paper the degrees of freedom n is a real positive parameter and is not necessarily an

integer.
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2.3 The beta distribution and indirect Student

In the case of beta distribution with parameters a, b, if w(u) denotes the quantile function

as a function of u, then

dw

du
= B(a, b)w1−a(1 − w)1−b, (8)

where B(a, b) is the (complete) beta function. A further differentiation gives us

d2w

du2
=

[(
1 − a

w

)
−

(
1 − b

1 − w

)] (
dw

du

)2

. (9)

We differentiate again, reorganize and obtain the ODE

w(1 − w)
d2w

du2
− (1 − a + w(a + b − 2))

(
dw

du

)2

= 0. (10)

This ODE is the same as that posted for the inverse beta function on the web [15].

The boundary conditions may be stated as a combination of various conditions:

w(0) = 0, w(u) ∼ [auB(a, b)]1/a as u → 0,

w(1) = 1, w(u) ∼ 1 − [b(1 − u)B(a, b)]1/b as u → 1.
(11)

The choice a = n/2, b = 1/2 is special in that by a change of variables we may recover

the Student distribution. The details of this will be given in the next section.

2.4 The Gamma distribution

In this case if w(u) denotes the quantile function as a function of u, then, for p > 0,

dw

du
= Γ (p)w1−p exp(w). (12)

Now we differentiate again, reorganize as before, and obtain the ODE

w
d2w

du2
− (w + 1 − p)

(
dw

du

)2

= 0. (13)

The boundary conditions at the origin take the form

w(0) = 0, w(u) ∼ [uΓ (p + 1)]1/p as u → 0. (14)

3 Power Series Solutions of the ODEs

In this section we explore the solution of the non-linear ODEs by the standard method

of power series. First we review the argument for the normal case, which appears to be

special in that the recursion is reducible to a quadratic relation.
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3.1 The power series for the normal quantile

There are two ways of approaching this. First we give the cubic recursion algorithm. Then

we give the simplified quadratic method of [24]. First we set

v =
√

2π(u − 1/2), (15)

and note the scale invariance of the independent variable in the ODE allowing us to write

the problem as

d2w

dv2
= w

(
dw

dv

)2

,

w(0) = 0, w′(0) = 1.

(16)

We now assume that

w =

∞∑
p=0

cpv
2p+1, (17)

and substitute into the differential equation. After some manipulations, summarized in

Appendix A, we obtain an explicit forward cubic recurrence

cp =
1

(2p)(2p + 1)

(p−1)∑
k=0

(p−k−1)∑
l=0

(2l + 1)(2p − 2k − 2l − 1)ckclcp−k−l−1. (18)

Next we review the optimized approach due to one of the [GS] noted in [24] for the error

function. Here we give the argument normalized for the quantile function. The ODE may

be recast as

d

dv

(
1

w′(v)

)
+ w(v) = 0. (19)

So now let

W (v) =

∫ v

0

w(t) dt. (20)

Integrating and using the boundary conditions gives

1

w′(v)
+ W (v) = 1, (21)

and so

w′(v) − w′(v)W (v) = 1. (22)

Hence we now have a quadratic identity. We now assume that

w =

∞∑
p=0

wp

(2p + 1)
v2p+1. (23)
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Simplification of these last two relations gives the quadratic recurrence

wp+1 =
1

2

p∑
j=0

wjwp−j

(j + 1)(2j + 1)
. (24)

This is analogous to the original expression in [24], where some trivial relative factors of

2 arise from the consideration here of the normal quantile, whereas in [24] the inverse

error function was considered.

3.2 The power series for the Student quantile

First of all we set

v =
√
nπ

Γ
(
n
2

)
Γ

(
n+1
2

) (u − 1/2), (25)

and exploit the scaling properties of our ODEs to write the problem as:

(
1 +

w2

n

)
d2w

dv2
=

(
1 +

1

n

)
w

(
dw

dv

)2

,

w(0) = 0, w′(0) = 1, (26)

dw

dv
= (1 + w2/n)

n+1
2 .

We now assume

w =

∞∑
p=0

cpv
2p+1, (27)

and substitute into the differential equation. After some algebraic manipulations we obtain

an explicit forward cubic recurrence:

(2p)(2p + 1)cp =

(p−1)∑
k=0

(p−k−1)∑
l=0

ckclcp−k−l−1

((
1 +

1

n

)
((2l + 1)(2p − 2k − 2l − 1)) − 2k(2k + 1)

n

)
. (28)

It is readily verified that the first few terms of the series obtained by this recursion

correspond to those obtained by direct inversion of the CDF power series (see e.g.,

[22]). Now it is possible to generate many more terms with ease. Similarly, cases with

closed-form solutions, n = 1, 2, 4 also confirm the recursion.

As with the normal case, the question arises as to whether there is a simpler, perhaps

quadratic, representation. If we follow the route for the Gaussian case, some manipulations
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with equation (27) show that we can write1 the system as

d

dv

[
1

(w′(v))α

]
+

(n − 1)

n
w = 0, (29)

where

α =
(n − 1)

(n + 1)
< 1. (30)

Introducing the integral W of w as before leads to

(w′(v))α
[
1 − (n − 1)

n
W (v)

]
= 1. (31)

Unfortunately this equation now requires the manipulation of fractional powers of the

power series. While this can theoretically be pursued, the cubic route is much more

tractable, so we shall confine our analysis to that route. Another minor issue is that this

representation becomes singular when n = 1, although this case of the Cauchy distribution

is already well understood. We can also rewrite this representation in other ways, such as

W ′′(v) =

(
1 − (n − 1)

n
W (v)

)−(n+1)/(n−1)

, (32)

but this also makes power series more complicated than those arising from the cubic

ODE.

3.3 The power series for the beta quantile

One can consider working from either boundary, u = 0 or u = 1. But we shall work from

u = 0 and then use symmetry to infer the u = 1 case.

w(1 − w)
d2w

du2
= (1 − a + w(a + b − 2))

(
dw

du

)2

,

w(0) = 0, w(u) ∼ [auB(a, b)]1/a as u → 0.

(33)

As before, rescaling invariance of the ODE allows us to set

v = auB(a, b), (34)

so that the system is now

w(1 − w)
d2w

dv2
= (1 − a + w(a + b − 2))

(
dw

dv

)2

,

w(0) = 0, w(u) ∼ v1/a as v → 0.

(35)

1We are grateful to an anonymous referee for pointing this out together with its motivation by

considering the Student distribution as the equilibrium of a fast diffusion problem.
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Some experimentation suggests that a power series in x = v1/a is useful, so we change

independent variable to x. We then find that, with now w = w(x),

w(1 − w)

(
d2w

dx2
+

(1 − a)

x

dw

dx

)
= (1 − a + w(a + b − 2))

(
dw

dx

)2

,

w(0) = 0, w′(0) = 1.

(36)

Our experimentation suggests that we may now substitute

w(x) =

∞∑
p=1

cpx
p, (37)

with c1 = 1, and after some manipulations we find that there is a cubic recursion of the

form, for p � 2:

cp[p
2 + (a − 2)p + (1 − a)] =

(1 − δp,2)

p−1∑
k=2

ckcp+1−k [(1 − a)k(p − k) − k(k − 1)]

+

p−1∑
k=1

p−k∑
n=1

ckcncp+1−k−n [k(k − a) + (a + b − 2)n(p + 1 − k − n)] . (38)

The quadratic term only contributes for p � 3. If we work out the first few we find that

c1 = 1, c2 =
b − 1

a + 1
,

c3 =
(b − 1)

(
a2 + (3b − 1)a + 5b − 4

)
2(a + 1)2(a + 2)

,

(39)

which is in accordance with known values [16].

3.4 The beta quantile and the Student distribution

Having established a power series for the Student quantile about u = 1/2, we consider

how to establish a series about u = 1. This will manage sampling from the positive tail

of the distribution, and by the use of symmetry, the negative tail. We achieve this by

considering the beta distribution with a = n/2 and b = 1/2. This is an important case as

it will allow us to generate the Student distribution with n degrees of freedom by another

route, complete with suitable series for optimal use in the tails. We now explain how this

works.

In the previous subsection we established the power series for the beta quantile function

w(u) with general parameters a, b. This, by construction, is a representation of the inverse

beta function,

w(u) = I−1
u (a, b). (40)

The quantile function for the Student distribution may be written, piecewise, in terms of
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this inverse beta function, as discussed in [22], by the use of the following formula2:

wTn
(u) = sgn

(
u − 1

2

)√√√√√n

⎛
⎝ 1

I−1
If[u< 1

2 ,2u,2(1−u)]

(
n
2
, 1

2

) − 1

⎞
⎠. (41)

So we see from this formula that the beta distribution covers the Student T in two pieces,

with a = n/2, b = 1/2. If we focus on the region u > 1/2, then we have

wTn
(u) =

√√√√n

(
1

I−1
2(1−u)

(
n
2
, 1

2

) − 1

)
, (42)

so we see that the series for the Student around u = 1 is given by the expansion of the

beta around u = 0, but with the substitution u → 2(1 − u). So, using the same scaling of

the independent variables as in Section (3.3) we set

x =

[
n(1 − u)B

(
n

2
,
1

2

)]2/n

, (43)

and we form the series

wβ =

∞∑
p=1

dpx
p, (44)

where d1 = 1, and for p � 2:

dp

[
p2 +

(
n

2
− 2

)
p +

(
1 − n

2

)]
=

(1 − δp,2)

p−1∑
k=2

dkdp+1−k

[(
1 − n

2

)
k(p − k) − k(k − 1)

]

+

p−1∑
k=1

p−k∑
m=1

dkdmdp+1−k−m

[
k

(
k − n

2

)
+

(
n

2
− 3

2

)
m(p + 1 − k − m)

]
. (45)

The quadratic term only contributes for p � 3. Then finally we calculate

wT (u) =
√
n(1/wβ − 1). (46)

3.5 The power series for the gamma quantile

In this case the boundary conditions at the origin indicate the change of variable

v = (uΓ (p + 1))1/p , (47)

2It was also noted in [22] that this representation is too slow for live Monte–Carlo use, but very

useful for checking other representations.
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and this maps the ODE to

w

(
d2w

dv2
+

(1 − p)

v

dw

dv

)
− (w + 1 − p)

(
dw

dv

)2

= 0. (48)

The boundary conditions at the origin take the form

w(0) = 0, w′(0) = 1. (49)

We now try a series of the form

w(v) =

∞∑
n=1

gnv
n, (50)

with g1 = 1. The non-linear recurrence is found to be:

n(n + p)gn+1 =

n∑
k=1

n−k+1∑
l=1

gkglgn−k−l+2l(n − k − l + 2)

−∆(n)

n∑
k=2

gkgn−k+2k[k − p − (1 − p)(n + 2 − k)], (51)

where ∆(n) = 0 if n < 2 and ∆(n) = 1, if n � 2. . The first few terms are

g1 = 1, g2 =
1

p + 1
, g3 =

3p + 5

2(p + 1)2(p + 2)
, (52)

and some experimentation with many terms confirms that if p = 1 then gn = 1
n

in

accordance with the exact solution, w(u) = − log(1 − u), for this case. Another important

case is that of p = 1/2, when we have the χ2
1 distribution, with v = π

4
u2, and the coefficient

sequence

gn =

{
1,

2

3
,
26

45
,
176

315
,

8138

14175
,
286816

467775
,
28631908

42567525
,
480498944

638512875
, . . .

}
. (53)

4 Classification and generalization

All of the cases considered here arise from ODEs of the form

d2w

du2
= R(w)

(
dw

du

)2

, (54)

where R(w) is a simple rational function. We shall say that the quantile is rational and

of type (p, q) if R = P/Q where P ,Q are polynomials with no common factors of degree

p, q. We can classify as follows:

• p = q = 0: exponential distribution;

• p = 1, q = 0: normal distribution;

• p = 1, q = 1: gamma distribution;
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• p = 1, q = 2: beta and Student distribution.

More generally, given a density f(w), the associated quantile function satisfies a pair of

first and second order differential equations

dw

du
=

1

f(w)
,

d2w

du2
= H(w)

(
dw

du

)2

, (55)

where

H(w) = − d

dw
log{f(w)}. (56)

Notably3, the cases where H is a rational function of type up to (1, 2) are closely related

to Pearson’s system of distributions [20, 29]. Pearson’s system, in our notation, is indeed

characterized by the choices of a, b, c, m in the function

H(w) =
w − m

a + bw + cw2
. (57)

The distributions arising from this, Pearson’s ‘Types’, are summarized on pp. 480–481 of

[9] and discussed in detail by Johnson and Kotz [18]. The function H is not rational

in general. An algebraic case is easily realized as Bagnold’s hyperbolic distribution, and

more general functions appear if we consider, for example, Barndorff–Nielsen’s generalized

hyperbolic distribution and special cases such as the variance gamma. Further work is

needed to explore the optimal routes for solving such cases, and to establish when a

power series method remains viable. These representations also open up avenues based on

numerical differential equation solution techniques that are complementary to numerical

root-finding methods based on the CDF.

4.1 Multivariate quantiles

We shall only make brief comment on the multivariate case. Chapter 13 of the book

by Gilchrist contains an excellent summary of bivariate quantile distributions. Some

clues as to how to proceed are also given in texts on copula theory in the context of

copula simulation, e.g., Chapter 6 of the book by Cherubini et al. [6]. Working in two

dimensions, the most natural approach would appear to be to consider the bivariate

extension of equation (1), in the form suggested by Gilchrist. In our notation we proceed

as follows. We form a vector quantile (w1(u1, u2), w2(u1, u2)). Then given a probability

density function f(w1, w2), the basic first order quantile ODE is then given by

∂(w1, w2)

∂(u1, u2)
=

1

f(w1, w2)
, (58)

subject to suitable boundary conditions. This of course is just the standard Jacobian

transformation for a change of variables. It is an interesting question to consider the

usefulness of taking further derivatives of this relationship. There are already two solutions

3We are grateful to Prof. Luc. Devroye for this observation.
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to equation (58) in the case of the normal distribution that are implicit in well-known

bivariate simulation methods. For example, setting

w1(u1, u2) = w0(u1), w2(u1, u2) = w0(u2)
√

1 − ρ2 + ρw0(u1), (59)

gives us a solution of equation (58), where w0 is the quantile of the normal distribution,

and f is given by

f(w1, w2) =
1

2π
√

1 − ρ2
exp

{
− 1

2(1 − ρ2)

(
w2

1 + w2
2 − 2ρw1w2

)}
. (60)

The construction of the bivariate normal based on a pair of univariate quantiles with the

Box–Muller simulation method, as discussed in Section 7.3.4 of [21], also gives a solution

of equation (58) in the independent case. In our notation the Box–Muller formula can be

considered as:

w1(u1, u2) =
√

−2 log(u1) cos(2πu2), w2(u1, u2) =
√

−2 log(u1) sin(2πu2), (61)

and correlated variables may be generated by superposition. So we can build two quite

different mappings from the unit square to the bivariate normal. In general, multivariate

and non-normal case, quantiles cannot of course be built up by such elementary super-

position. We also refer the reader to [21] for an introduction to modern methods not

employing quantiles, notably the ‘ratio of uniforms’ approach.

5 Quantile dynamics

There are many different ways in which the evolution of a time-dependent quantile

function might be controlled. Given the importance of stochastic analysis in modern

applied mathematics, we shall consider the case where the governing dynamics is defined

by an elementary stochastic differential equation, or SDE. Let xt be a stochastic process

governed by the SDE

dxt = µ(xt, t)dt + Σ(xt, t)dWt, (62)

where µ, Σ are deterministic functions of x and t, and Wt is a standard Brownian motion.

Let f(x, t) denote the probability density function consistent with this SDE. The quantile

function associated with this system is Q(u, t), where 0 � u � 1. It is defined by the

integral condition that for each value of t,

∫ Q(u,t)

−∞
f(x, t)dx = u. (63)

First we differentiate this relation with respect to u, and obtain the partial differential

constraint

f(Q(u, t), t)
∂Q(u, t)

∂u
= 1 . (64)
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We differentiate this relation again, and obtain the following second order PDE,

∂f(Q(u, t), t)

∂Q

(
∂Q(u, t)

∂u

)2

+ f(Q(u, t), t)
∂2Q(u, t)

∂u2
= 0. (65)

This may be reorganized into the equation

∂2Q(u, t)

∂u2
= −∂ log(f(Q(u, t), t))

∂Q

(
∂Q(u, t)

∂u

)2

. (66)

In the case of no time dependence, this is readily recognized as the second order non-

linear ODE derived and solved previously. In the time-dependent case we go back to the

condition of equation (63) and now differentiate with respect to time. The fundamental

theorem of calculus gives, first,

f(Q(u, t), t)
∂Q

∂t
+

∫ Q(u,t)

−∞

∂f(x, t)

∂t
dx = 0. (67)

We use equation (64) to write this as:

∂Q

∂t
= −∂Q

∂u

∫ Q(u,t)

−∞

∂f(x, t)

∂t
dx. (68)

Next we use the Fokker–Planck (forward Kolmogorov) equation in the form [10]

∂f(x, t)

∂t
=

∂

∂x

[
−µf +

1

2

∂

∂x
(Σ2f)

]
, (69)

where Σ is the volatility defined in the SDE of equation (62), and observe that we can do

the integration directly, and obtain the following:

∂Q

∂t
= −∂Q

∂u

[
−µ(Q, t)f(Q, t) +

1

2

(
Σ2(Q, t)

∂f

∂Q
+ f

∂Σ2(Q, t)

∂Q

)]
. (70)

Finally we use our previous equations (64)–(65) to eliminate f and its derivative completely,

leaving us with

∂Q

∂t
= µ(Q, t) − 1

2

∂Σ2

∂Q
+

Σ2(Q, t)

2

(
∂Q

∂u

)−2
∂2Q

∂u2
. (71)

This is the quantilized Fokker–Planck equation, or QFPE for short, associated with the

SDE of equation (62). It is a non-linear PDE, and is the form of the Carrillo-Toscani

equation [5] appropriate to solutions of an SDE.

5.1 Elementary solutions of the QFPE

Despite its non-linearities, we known that the QFPE of equation (71) must have some

elementary Gaussian solutions that will now be verified. First we explore the QFPE for

arithmetical Brownian motion. In this case we have µ and Σ constant and it is easy to
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check that

∂Q

∂t
= µ +

Σ2

2

(
∂Q

∂u

)−2
∂2Q

∂u2
(72)

has an obvious solution

Q(u, t) = c + µt + Σ
√
tw(u), (73)

where w(u) is the static normal quantile function we constructed in Section 3.1. Now

consider Σ(t) as independent of Q but time-dependent, and the class of quantiles of the

form

Q(u, t) = a(t) + b(t)w(u). (74)

Substitution into the QFPE and using equation (4) gives

da

dt
+

db

dt
w(u) = µ(a(t) + b(t)w(u), t) +

Σ2(t)

2b(t)
w(u). (75)

It is clear that this equation can be separated into two ODEs if µ is at most linear in Q.

So we assume

µ = m1(t) − m2(t)Q, (76)

and have the two ordinary differential equations

da

dt
+ m2(t)a = m1(t),

db2

dt
+ 2m2(t)b

2 = Σ2(t), (77)

that are trivially solved by the use of integrating factors. If for example m1 and m2

are constant, we obtain the anticipated quantile solution for the OU process for time-

dependent volatility in the form

Q = Q0e
−m2t +

m1

m2
(1 − e−m2t) + w(u)e−m2t

√∫ t

0

dsΣ2(s)e2m2s. (78)

5.2 Geometric Brownian motion

This follows from the analysis of arithmetical Brownian motion by taking logarithms. If

we consider a typical financial representation, and allow for deterministic time dependence,

we have

µ = θ(t)Q, Σ = σ(t)Q, (79)

and so the QFPE equation (71) becomes

∂Q

∂t
= (θ(t) − σ2(t))Q +

σ2(t)Q2

2

(
∂Q

∂u

)−2
∂2Q

∂u2
. (80)
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We make the assumption

Q(t, u) = Q0 exp{a(t) + b(t)w(u)}, (81)

and are lead quickly to the condition

da

dt
+

db

dt
w(u) = θ(t) − σ2(t) +

σ2(t)

2

(
w(u)

b
+ 1

)
= θ(t) − σ2(t)

2
+

σ2(t)

2b
w(u), (82)

with solution

a(t) =

∫ t

0

(
θ(s) − σ2(s)

2

)
ds, b(t) =

√∫ t

0

dsσ2(s). (83)

This solution, and the other Gaussian examples, are clearly what might have been expected

from a knowledge of the nature of the solution of the associated SDEs. Our purpose

here was simply to illustrate the direct solution of the QFPE using classical separation of

variables methods utilizing a knowledge of the non-linear ODEs satisfied by the Gaussian

quantile.

5.3 Equilibrium quantiles

If a solution to the SDE has reached an equilibrium distribution where ∂Q/∂t = 0, then

the QFPE reduces to

1

2

∂Σ2

∂Q
− µ(Q, t) =

Σ2(Q, t)

2

(
∂Q

∂u

)−2
∂2Q

∂u2
. (84)

We can consider Pearson’s differential classification in relation to this equilibrium structure.

We leave the reader to explore some of the better-known special cases, and consider here

the general Pearson category and a special case leading to a Student t-distribution as

the equilibrium. We consider an SDE containing independent sources of additive and

multiplicative noise, in the form

dxt = (µ1 − µ2xt)dt + σ1dW1t + σ2xtdW2t, (85)

where the Wi are correlated such that E[dW1tdW2t] = ρdt. Then equation (85) is equivalent

to a one-dimensional system in the form

dxt = (µ1 − µ2xt)dt +
(
σ2

1 + σ2
2x

2
t + 2ρσ1σ2xt

) 1
2 dWt. (86)

From this we can read off the functions in the QFPE as

µ = µ1 − µ2Q, Σ2 = σ2
1 + σ2

2Q
2 + 2ρσ1σ2Q. (87)

The equilibrium QPFE then gives the non-linear ODE

∂2Q

∂u2

(
∂Q

∂u

)−2

=
2[(ρσ1σ2 − µ1) +

(
σ2

2 + µ2

)
Q]

σ2
1 + σ2

2Q
2 + 2ρσ1σ2Q

, (88)
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which corresponds to an interesting subset of the Pearson system embodied by equa-

tions (55) and (57). A particular case of interest is obtained by considering µ1 = 0 = ρ,

so that we obtain the SDE

dxt = −µ2xtdt + σ1dW1t + σ2xtdW2t, (89)

where the Wit are independent, and the quantile ODE reduces to

∂2Q

∂u2

(
∂Q

∂u

)−2

=
2
(
σ2

2 + µ2

)
Q

σ2
1 + σ2

2Q
2

. (90)

If we compare this with equation (7), we see that we have a Student quantile with

Q =
σ1√

σ2
2 + 2µ2

w(u), (91)

where w(u) is the standard Student quantile satisfying equation (8) with degrees of freedom

n = 1 + 2
µ2

σ2
2

. (92)

So it is clear that we need µ2 > 0 for this to be a Student distribution. This of course

corresponds to the requirement that the underlying SDE mean-revert to the origin, and

this mean-reversion condition in turn allows an equilibrium to establish. This equilibrium

origination of the standard Student distribution arises naturally in the study of the simplest

linear and stochastic approximation of very complex physical systems, with manifest

turbulence and self-organized criticality character. In particular the Student distribution

arises as the equilibrium distribution, in special limiting cases of the stochastic processes

studied in [25, 26]. The faster the mean-reversion rate is compared to the multiplicative

volatility, the closer the system is to the normally distributed limit. The Student distribution

also arises naturally in the modelling of asset returns [11, 22].

6 Conclusions and resources

We have shown how to characterize the key quantile functions of mathematical statistics

through non-linear ordinary differential equations and how they may be solved via a

power series whose coefficients are determined by a non-linear, usually cubic, recurrence

relation. In the case of the Student and beta distributions, we are able to give both central

and tail series, and for these distributions the pair of relevant series provide a good basis

for numerical implementation. In the case of the normal and gamma, we have the start of

a representation valid in arbitrary precision environments. Any of these methods may be

used for precision benchmarking and for the test of rational approximations, and indeed

to augment rational methods with polynomials in the central zone.

In contrast with rational approximation theory, these power series methods allow a

meaningful mathematical extension of the concept of the quantile to the complex plane.

Whether the ‘complex quantile function’ has a useful application is an open question.
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We have also considered the non-linear integrated form of the Fokker–Planck equation,

as introduced by Carrillo and Toscani [5], and demonstrated how the resulting non-linear

PDE may be solved in some cases of interest.

6.1 Internet resources

Our intention is to provide a growing list of links to on line computational resources

for the implementation of these and related methods. Some links are provided in the

references. Specific discussions are also available as follows in Mathematica, C++ and

Fortran 95. These will evolve as our knowledge about optimal implementations grows.

• A Mathematica file with investigations of some these methods is at:

http://www.mth.kcl.ac.uk/~shaww/web page/papers/quantiles/

QuantileDemos.nb

• C++ code for the central normal power series is at:

http://www.mth.kcl.ac.uk/~shaww/web_page/papers/quantiles/

normalquantile.cpp

• Quad precision F95 code for the central normal power series is at:

http://www.mth.kcl.ac.uk/~shaww/web_page/papers/quantiles/

normalquantile.f95

• Quad precision F95 code for the Student case (central & tail) is at:

http://www.mth.kcl.ac.uk/~shaww/web_page/papers/quantiles/

studentquantile.f95

In addition a web page is being maintained with further examples and related art-

icle, with the entry point at http://www.mth.kcl.ac.uk/~shaww/web page/papers/

quantiles/Quantiles.htm

Appendix A: Derivation of a non-linear recurrence

The derivations of the various non-linear recurrence identities in Section 3 are a lengthy

but straightforward matter just requiring care of the fine detail. In this appendix we shall

give the details that establish the cubic Gaussian identity of equation (18). The ODE and

initial conditions are

d2w

dv2
= w

(
dw

dv

)2

, w(0) = 0, w′(0) = 1. (93)

Bearing in mind the symmetry and initial conditions we assume that

w =

∞∑
p=0

cpv
2p+1, (94)
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where c1 = 1. Substitution of the series into the ODE gives the following identity:

p=∞∑
p=0

(2p + 1)(2p)cpv
2p−1 =

∞∑
k=0

∞∑
l=0

∞∑
m=0

ckclcm(2l + 1)(2m + 1)v2k+1+2l+2m. (95)

We now equate powers of v2p−1 on both sides of this equation, leading to

(2p + 1)(2p)cp =

∞∑
k=0

∞∑
l=0

∞∑
m=0

ckclcm(2l + 1)(2m + 1)δ(2p−1),(2k+1+2l+2m), (96)

where δi,j is the Kronecker delta. The terms in the infinite triple sum on the right vanish

unless 2p − 1 = 2k + 1 + 2l + 2m, i.e., unless p = k + l +m+ 1. We also note that p, k, l, m

are all non-negative integers. We dispose of the innermost sum by solving for m, i.e.,

m = p − k − l − 1. With the outermost sum, the maximum possible value of k is p − 1,

and with the middle sum the maximum value of l for any given k is p − k − 1. This gives

the equation

(2p)(2p + 1)cp =

(p−1)∑
k=0

(p−k−1)∑
l=0

(2l + 1)(2p − 2k − 2l − 1)ckclcp−k−l−1 (97)

leading immediately to equation (18). The quadratic Gaussian case of Section 3.2 is rather

easier and left to the reader to reproduce. The cubic identities for other distributions

may be obtained by careful variation of the manipulations given here. In all cases the

calculation proceeds most straightforwardly by employing the δ-function, rather than

trying to ‘spot’ the relevant powers in the non-linear sum. This is in contrast to the

classical linear systems, where powers may be readily gathered by inspection.

Appendix B: Practicalities and implementations

In this section we discuss some issues related to implementation. We can consider both

symbolic and exact implementations, and implementations in traditional floating-point

arithmetic with various levels of precision.

The normal case

The raw recursions given here and in [24] will overflow or underflow floating point

number bounds eventually. Fortunately there are simple rescalings that may be used to

cure this problem. If we work in terms of the variable

v̂ = 2u − 1, (98)

then the power series will exhibit a unit radius of convergence. We know it will blow up

at u = 0 and u = 1. Then we form the power series

w =

√
π

2

∞∑
p=0

dp

(2p + 1)
v̂2p+1, (99)
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with d0 = 1. In terms of these variables the quadratic recurrence becomes

dp+1 =
π

4

p∑
j=0

djdp−j

(j + 1)(2j + 1)
. (100)

With such a scheme the ratio dp+1/dp → 1 as p → ∞, and numerical implementations

confirm this. The limits of how far the series can be taken are then just a matter of

computation time. The second observation is that the sum involves the product djdp−j

twice, so that one can optimize by summing half-way and taking care to note whether p

is odd or even. The recurrence can be written

dp+1 =
π

4

� p−1
2 �∑

j=0

djdp−j

(
1

(j + 1)(2j + 1)
+

1

(p − j + 1)(2p − 2j + 1)

)

+ If(p is even,
π

4

d2
p
2(

p
2

+ 1
)
(p + 1)

, else 0). (101)

In our initial implementations of the normal case in C++ and F95, attention has been

confined to the central power series, and with very simple series termination criteria, in-

volving termination when the next term to be computed falls below a certain level. While

this is appropriate in a rigorous sense for alternating series, it is a temporary solution

for monotone series such as those that are being considered here. The resulting error

characteristics are nevertheless encouraging, and we can cover a large proportion of the

unit interval with a precision that is more dependent on hardware and compiler choices

than on the algorithm itself. In C++ the level of precision achievable depends on the

quality of the implementation of the ‘long double’ data type. This is not, regrettably, rig-

orously specified in the C++ standard. The demonstration C++ code cited in Section 6.1

works on 0.0005 < u < 0.9995 with maximum relative error less than 1.7 × 10−15 and on

0.0035 < u < 0.9965 with maximum relative error less than 2.5 × 10−16, when using the

Bloodshed Dev C++ under Windows XP on a Pentium M. Results with other hardware

and/or compilers will vary, especially if a poor long double implementation is used. For

a more controlled implementation, we turn to quadruple precision Fortran 95. Using the

Absoft compiler for MacOS on Intel, we obtained a relative error less than 10−29 on

the interval 0.0007 < u < 0.9993. All precision calculations were assessed by reference

to the inverse error function built in to Mathematica 5.2, using 40 significant figures for

the calculations. We stress that such code is not necessarily fast enough to use in live

Monte–Carlo simulation, but, at this stage in the development, is more appropriately

viewed as a means for benchmarking a new class of fast rational approximations.

The Student case

In this case we have a pair of power series for central and tail use and we may proceed

directly to an implementation. One issue that has to be dealt with is the computation of

the rescaling factor in the formula of equation (25), which we write as

v =

√
nπ

2

Γ ( n
2
)

Γ
(
n+1
2

) (2u − 1) = γn(2u − 1). (102)
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We use the identity

γn+2 =

√
n(n + 2)

n + 1
γn (103)

to simplify the high-precision computation of this quantity. When n is an integer with

n � 10 we use a precomputed value of γn. When n is a larger integer we recurse down to

9 or 10. When n is non-integer we recurse up to a value larger than 1000 and then apply

the result that as n → ∞, γn

√
2
π

is asymptotic to

1 +
1

4n
+

1

32n2
− 5

128n3
− 21

2048n4
+

399

8192n5
+

869

65536n6
− 39325

262144n7
− 334477

8388608n8

+
28717403

33554432n9
+

59697183

268435456n10
− 8400372435

1073741824n11
− 34429291905

17179869184n12
. (104)

Appendix C: Tail issues for the normal and gamma

It is evident that we have found power series about central points (normal and Student

distributions) and about left end points (gamma and beta) and right end points (beta).

The left end-point series for the beta also gives us the tails for the Student case. This leaves

the issue of tail series for the normal and gamma. While we can use pure computational

force to figure out many terms of the power series, a better treatment of the tails is needed.

The most important case is that of the normal distribution, or, by taking its square, the

gamma distribution with p = 1/2. There are various ways of thinking about this, based

on what we have so far, but the neatest seems to be to exploit the fact that the gamma

quantile ODE is already set up for an asymptotic analysis. The ODE for the gamma

quantile with p = 1/2 is

d2w

du2
=

(
1 +

1

2w

)(
dw

du

)2

, (105)

so we can see right away that as u → 1, w → +∞ and the asymptotic behaviour must be

such that

d2w

du2
∼

(
dw

du

)2

, (106)

with a solution that we can infer from the exact solution for the exponential case, i.e.,

w ∼ − log[k(1 − u)], k > 0. (107)

Before proceeding further we look at the known asymptotic properties of the forward

gamma CDF, for further insight. For large w the forward gamma CDF with p = 1/2

gives us

u ∼ 1 − e−w

√
πw

, (108)
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or, in other words,

√
π(1 − u) ∼ e−w

√
w
, (109)

and taking logs we find that

− log(
√

π(1 − u)) ∼ w +
1

2
log(w), (110)

and we see that k =
√

π. We now change independent variables to

v = − log[
√

π(1 − u)] (111)

and establish the differential equation

d2w

dv2
+

dw

dv
=

(
1 +

1

2w

)(
dw

dv

)2

, (112)

with the asymptotic condition w ∼ v as v → ∞, i.e., as u → 1. It is possible to find asymp-

totic solutions of these relations. After some experimentation we find that asymptotic

solutions exist in the form

w ∼ v − 1

2
log(v) +

kmax∑
k=1

k+1∑
l=1

akl(log(v))l−1v−k, (113)

with a sequentially solvable set of conditions relating the coefficients akl . While it is

difficult to give an explicit formula for the recursion, the coefficients are easily determined

via symbolic computation. For example, with kmax = 3 we obtain the first few terms as

w ∼ v − log(v)

2
+

1

v

(
log(v)

4
− 1

2

)
+

1

v2

(
log2(v)

16
− 3 log(v)

8
+

7

8

)

+
1

v3

(
log3(v)

48
− 7 log2(v)

32
+

17 log(v)

16
− 107

48

)
, (114)

with v = − log[
√

π(1 − u)]. This is the asymptotic form of the quantile function for the

gamma distribution with p = 1/2. If we want the normal quantile for the positive tail, a

small change of variables is needed. In the positive normal tail, the normal quantiles wΦ

is given in terms of the gamma quantile wΓ1/2
, that we have just computed, by

wΦ(u) =
√

2wΓ1/2
(2u − 1). (115)

So to summarize for the normal case in the positive tail, the calculation is:

1. let v = − log[2
√

π(1 − u)];

2. Work about w as above;

3. calculate
√

2w for the normal quantile.
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k Order 3 asymp Mathematica AS241 Excel

3 3.089631766 3.090232306 3.090232306 3.090232306

4 3.718896182 3.719016485 3.719016485 3.719016485

5 4.264854901 4.264890794 4.264890794 4.264890794

6 4.753410708 4.753424309 4.753424309 4.753424341

7 5.199331535 5.199337582 5.199337582 5.199337618

8 5.611998229 5.612001244 5.612001244 5.612001258

9 5.997805376 5.997807015 5.997807015 5.997807018

10 6.361339949 6.361340902 6.361340902 6.361340808

11 6.706022570 6.706023155 6.706023155 6.706022335

12 7.034483450 7.034483825 7.034483825 7.034479171

13 7.348795853 7.348796103 7.348796103 7.348680374

14 7.650627921 7.650628093 7.650628093 7.650018522

15 7.941345205 7.941345326 7.941345326 7.934736689

16 8.222082128 8.222082216 8.222082216 NA

17 8.493793159 8.493793224 8.493793224 NA

18 8.757290300 8.757290349 8.757290349 NA

19 9.013271116 9.013271153 9.013271153 NA

20 9.262340061 9.262340090 9.262340090 NA

21 9.505024960 9.505024983 9.505024983 NA

22 9.741789925 9.741789943 9.741789943 NA

23 9.973045605 9.973045620 9.973045620 NA

24 10.19915741 10.19915742 10.19915742 NA

25 10.42045219 10.42045220 10.42045220 NA

26 10.63722367 10.63722368 10.63722368 NA

27 10.84973699 10.84973700 10.84973700 NA

28 11.05823241 11.05823241 11.05823241 NA

29 11.26292848 11.26292848 11.26292848 NA

30 11.46402468 11.46402469 11.46402469 NA

31 11.66170368 11.66170368 11.66170368 NA

32 11.85613321 11.85613322 11.85613322 NA

33 12.04746778 12.04746779 12.04746779 NA

34 12.23585004 12.23585005 12.23585005 NA

35 12.42141204 12.42141204 12.42141204 NA

We stress again that these are asymptotic formulae. They will turn out to be extraordinarily

accurate in the deep tail, but less practical in the near tail zone. In the following table

we look at the deep tail in more detail. Consider the quantiles associated with the

points u = 1 − 10−k , where k = 3, 4, . . . . We consider the results from the simple third

order formula above, the result from Mathematica’s internal high precision error function

(Mathematica V5.2), Wichura’s algorithm AS241 [28] and Microsoft Excel (Excel 2004

for Mac). Note that in the last case Excel did not accept numbers as close to unity as

supplied to the other algorithms. It is not designed to treat such numbers, though use of

reflection symmetry can help to improve matters. AS241 was implemented in Mathematica

in uncompiled form. The ‘deep tail’ quality of the simple asymptote becomes clear from

this table. It does better than the simple spreadsheet implementation for values of u closer

to unity that about 10−11.
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