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Abstract

This article presents differential equations and solution methods for
the functions of the form A(z) = F−1(G(z)), where F and G are cumu-
lative distribution functions. Such functions allow the direct recycling of
Monte Carlo samples from one distribution into samples from another.
The method may be developed analytically for certain special cases, and
illuminate the idea that it is a more precise form of the traditional Cornish-
Fisher expansion. In this manner the model risk of distributional risk may
be assessed free of the Monte Carlo noise associated with resampling. The
method may also be regarded as providing both analytical and numerical
bases for doing more precise Cornish-Fisher transformations. Examples
are given of equations for converting normal samples to Student t, and
converting exponential to hyperbolic, variance gamma and normal. In the
case of the normal distribution, the change of variables employed allows
the sampling to take place to good accuracy based on a single rational
approximation over a very wide range of the sample space. The avoid-
ance of any branching statement is of use in optimal GPU computations,
and we give example of branch-free normal quantiles that offer perfor-
mance improvements in a GPU environment, while retaining the precision
characteristics of well-known methods. Comparisons are made on Nvidia
Quadro and GTX 285 and 480 GPU cards.
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1 Introduction

The construction of Monte Carlo samples from a distribution is facilitated if one
has a knowledge of the quantile function w(u) of a distribution. If F (x) is the
cumulative distribution function, then the quantile w(u) is the solution of the
equation

F (w(u)) = u . (1)

A knowledge of the function w(u) makes Monte Carlo simulation straightfor-
ward: given a random sample U from the uniform distribution, a sample from
the target distribution characterized by f(x), F (x) is

X = w(U) . (2)

While it is commonplace to use the uniform distribution on the unit interval
as the base distribution for sampling, there is in fact no need to do so1. In
his critique of copula theory [12], T. Mikosch stated There is no particular
mathematical or practical reason for transforming the marginals to the uniform
distribution on (0; 1) and proceeded to consider exponential and normal coor-
dinates.

For example, a great deal of intellectual effort has been expended on highly
efficient sampling from the normal and other well-known distributions. Given
such samples, can we leverage the work done to create samples from other
distributions in an efficient manner? This article will address this question in
the affirmative. In principle the answer is trivial: given a sample Z from a
distribution with CDF G(x), we first work out G(Z) which is uniform. Then
we can apply the quantile function F−1(x) associated with a target distribution
with CDF F and form F−1(G(z)) as a sample from that target distribution. In
general F , G and their inverses can be rather awkward special functions (see
e.g. [15]) , so a direct route to the object A(z) = F−1(G(z)) would be helpful.

There are at least two ways of developing this idea. One route is to postulate
interesting forms for the composite mapping. This has been explored by Shaw
and Buckley [17] based on Gilchrist’s theory of quantile transformations [8].
In this way we can find skew and kurtotic variations of any base distribution,
while avoiding, in a controlled manner, the introduction of “negative density”
problems that arise in traditional Gram-Charlier methods. The second route is
to try to simplify the mapping given a choice of F and G. Such a route can be
found by the method of differential equations for quantile functions developed
by Steinbrecher and Shaw [18]. In the next section we will give a brief review
of that approach.

A particular application of our approach will be to present new methods
of constructing the normal quantile by first filtering it through a two-sided
exponential distribution. We will show that this offers a useful performance
benefit in a GPU environment, where branching algorithms may be subject to
significant performance penalties. Our change-of-variables approach will allow
costly branching to be avoided and we will demonstrate the benefits in the
CUDA environment for programming NVIDIA GPUs.

1This rather clear observation was first made to me by Peter Jaeckel
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2 Quantile mechanics

If f(x) is the probability density function for a real random variable X, the first
order quantile ODE is obtained by differentiating Eqn. (1), to obtain:

f(w(u))
dw(u)

du
= 1, (3)

where w(u) is the quantile function considered as a function of u, with 0 ≤ u ≤ 1.
Applying the product rule with a further differentiation we obtain:

f(w(u))
d2w(u)

du2
+ f ′(w(u))

(
dw(u)

du

)2

= 0. (4)

This may be reorganized as

d2w(u)

du2
= H(w(u))

(
dw(u)

du

)2

, (5)

where

H(w) = − d

dw
log{f(w)} . (6)

and the simple rational form of H(w) for many common distributions, particu-
larly the Pearson family, allows analytical series solutions to be developed [18].
This last equation we refer to as the second order quantile equation.

2.1 The Recycling ODE

Now suppose that we make a change of independent variable in the second order
quantile equation Eqn (8). We let v = q(u), and regard w as a function of v.
We write w(u) = Q(v), where v = q(u). Elementary application of the chain
rule and some algebra gives us:

d2Q(v)

dv2
+

q′′(u)

[q′(u)]2
dQ(v)

dv
= H(Q(v))

(
dQ(v)

dv

)2

, (7)

In general this is a rather awkward differential equation. However, when we
regard q(u) as being itself a quantile function, we can make some simplifications.
If q(u) is a quantile mapping, it satisfies an ODE of the form

d2q(u)

du2
= Ĥ(q(u))

(
dq(u)

du

)2

, (8)

where

Ĥ(w) = − d

dw
log{f̂(w)} . (9)

and f̂ is the probability density function associated with the quantile q(u). So
we can simplify the ODE to

d2Q(v)

dv2
+ Ĥ(q(u))

dQ(v)

dv
= H(Q(v))

(
dQ(v)

dv

)2

, (10)
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and bearing in mind that v = q(u) we arrive at the “Recycling Ordinary Differ-
ential Equation”:

d2Q(v)

dv2
+ Ĥ(v)

dQ(v)

dv
= H(Q(v))

(
dQ(v)

dv

)2

, (11)

We now turn to two particularly interesting cases, rather inspired by Mikosch’s
suggestions [12].

2.2 The Recycling ODE for a Gaussian background

In this case we have the following obvious sequence of manipulations:

f̂(x) =
1√
2π
e−x

2/2 (12)

log f̂(x) = −1/2 log(2π)− x2/2 (13)

d

dx
log f̂(x) = −x (14)

Ĥ(v) = v (15)

and we arrive at the Recycling ODE for a Gaussian background as

d2Q(v)

dv2
+ v

dQ(v)

dv
= H(Q(v))

(
dQ(v)

dv

)2

, (16)

This is an interesting example to consider for target distributions along the
entire real line.

2.3 The Recycling ODE for a one-sided exponential back-
ground

In this case we have the following obvious sequence of manipulations:

f̂(x) = e−x, log f̂(x) = −x, d

dx
log f̂(x) = −1, Ĥ(v) = 1 (17)

and we arrive at the Recycling ODE for a exponential background as

d2Q(v)

dv2
+
dQ(v)

dv
= H(Q(v))

(
dQ(v)

dv

)2

, (18)

This is an interesting example to consider for target distributions along the
positive real line. For distributions that are asymptotically exponential in both
directions it can be used in two pieces.

3 Example with a Gaussian background

In a Gaussian background we work with the Recycling ODE in the form

Q′′ + vQ′ = H(Q)(Q′)2 (19)
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where the explicit dependence on v is suppressed for brevity, and ’ denotes d/dv.
The target distribution is encoded through the function H. Note that it is not
required in any sense that the target distribution is “close” to, or asymptotic
to a Gaussian. This is an exact relationship governing the function Q that is
the composition of the Gaussian CDF followed by the ordinary quantile of the
target distribution. But such a relationship must contain all information rele-
vant to the creation of an expansion of one distribution in terms of another. In
particular, we should be able to re-create known and new expansions of Cornish-
Fisher type. Generalized Cornish-Fisher expansions have been considered in the
notable paper by Hill and Davis [9], but the step to considering the matter as
the solution of a single differential equation is, so far as this author is aware, a
new one.

3.1 The Student distribution

This is an interesting case for several reasons:

1. We can illustrate the method;

2. We can recover a well known asymptotic series;

3. We can develop that series to arbitrary numbers of terms;

4. We can explore the limitations of the known series;

5. We can develop an alternative numerical method and explore purely nu-
merical options.

The H-function for the Student case can be written down as

HTn(Q) =

(
1 +

1

n

)
Q

1 +Q2/n
(20)

and the Recycling ODE can be written in the form(
1 +

Q2

n

)(
Q′′ + vQ′

)
=

(
1 +

1

n

)
Q(Q′)2 (21)

We note that if we let n→∞ we obtain

Q′′ + vQ′ = Q(Q′)2 (22)

and this has the desired solution Q = v. More generally we can look at series
solutions, but should be mindful of the fact that the term Q2/n is present - this
is a hint that the behaviour of series for Q�

√
n and Q�

√
n could be rather

different. Such considerations do not always apply if one is thinking in a purely
asymptotic framework. For any finite n, no matter how large, there will always
be values of Q such that the behaviour is far from Gaussian. This was alluded
to in [15], where it was noted that the known Cornish-Fisher expansion always
goes wrong in the tails as some point.

We also need to consider boundary conditions. The derivative of any ordi-
nary quantile function at a point is the inverse of the PDF at the corresponding
quantile. We first work around the point u = 1/2 which corresponds to v = 0
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in the Gaussian coordinate. If z(u) and t(u) are the ordinary quantiles then we
have

z(1/2) = 0,

z′(1/2) =
√

2π

t(1/2) = 0,

t′(1/2) =
√
nπ

Γ[n/2]

Γ[(n+ 1)/2]

(23)

It follows that the centre conditions we wish to apply to the Recycling ODE are
just:

Q(0) = 0,

Q′(0) = γ ≡
√
n

2

Γ[n/2]

Γ[(n+ 1)/2]

(24)

where the latter expression γ arises as the ratio of the derivatives.

3.2 The central expansion

We now develop a series solution about the centre, and we expect that it will be
reasonable to treat the solution as “close to Gaussian” if Q2 � n. We assume,
as both the normal and Student quantiles are symmetric, that

Q(v) ∼
∞∑
k=0

ckv
2k+1 (25)

where c0 = γ. We use the tilde notation to indicate that at this point we have
no presumption as to whether the resulting series will be convergent for all v or
form some kind of asymptotic series. We find that

c1 =
(n+ 1)γ3 − nγ

6n

c2 =

(
7n2 + 8n+ 1

)
γ5 +

(
−10n2 − 10n

)
γ3 + 3n2γ

120n2

(26)

Subsequent terms may be generated by iteration of the RODE, and in this case,
after some algebra, we find that

(2i+ 3)(2i+ 2)ci+1 =− (2i+ 1)ci

+

i∑
l=0

i−l∑
m=0

alm(n)ci−l−mclcm

− θ(i)

n

i−1∑
l=0

i−1−l∑
m=0

(2m+ 1)ci−1−l−mclcm,

(27)

where θ(0) = 0, θ(i) = 1 if i ≥ 1, and

alm(n) = (1 +
1

n
)(2l + 1)(2m+ 1)− 2

n
m(2m+ 1) (28)
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3.3 The tail expansion

We now develop a series solution about the right tail Q → ∞. We begin by
assuming that Q2 � n. The Recycling ODE becomes

Q(Q′′ + vQ′) = (n+ 1)(Q′)2 (29)

Following some experimentation, we make the change of variables

P (v) =
1

Q(v)n
(30)

and this reduces the ODE to

P ′′(v) + vP ′(v) = 0 (31)

The solution of this satisfying the condition that P (v)→ 0 as v →∞ is

P (v) ∝ erfc(
v√
2

) (32)

and we deduce that for some constant c,

Q(v) ∼ d
[

1

2
erfc(

v√
2

)

]−1/n
(33)

We see that the solution has emerged naturally as

Q(v) ∼ d
[
1− Φ(v)

]−1/n
(34)

where Φ is the Gaussian CDF. The asymptotic differential equation is scale
invariant so we have to determine d by other means. It is possible that it might
be possible to determine it by a matching argument, but it is simpler to now
appeal to other known properties of the Student distribution. In [15] the tail
behaviour of the Student CDF was determined (see Eqns. (60-62) of [15]) and
we can deduce that

d =
√
n

[
n
√
π

Γ(n/2)

Γ((n+ 1)/2)

]−1/n
(35)

If we step back from these calculations it becomes clear what is happening. The
Recycling ODE is starting to reconstruct a solution that combines the change of
variable w = 1−Φ(v) with the asymptotic power series of the ordinary Student
quantile.

3.4 Comparison with traditional asymptotics

Expansions of Cornish-Fisher type can be found in the statistics literature. One
that is reasonably well known is the expansion of the Student random variable
t in terms of the Gaussian random variable z, for larger values of the degrees of
freedom n. It is quoted, for example, as identity 26.7.5 of [3].

t =z +
z3 + z

4n
+

5z5 + 16z3 + 3z

96n2
+

3z7 + 19z5 + 17z3 − 15z

384n3

+
79z9 + 776z7 + 1482z5 − 1920z3 − 945z

92160n4
+ . . .

(36)
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An equation of true Cornish-Fisher type (cf identity 26.2.49 of [3]) can be ob-
tained by transforming (provided n > 2) to a variable s with unit variance:
s = t

√
1− 2/n and re-expanding in inverse powers of n. That Eqn. (36) is

somehow incomplete is evident by the fact that z appears in every term, z3 in
all but the first, and so on. The matter is resolved nicely by first observing that

γ = 1+
1

4n
+

1

32

(
1

n

)2

− 5

128

(
1

n

)3

−
21
(
1
n

)4
2048

+
399

(
1
n

)5
8192

+O

((
1

n

)6
)
, (37)

which sums up all the z-terms. Similarly

c2 =
1

4n
+

1

6

(
1

n

)2

+
17

384

(
1

n

)3

− 1

48

(
1

n

)4

−
17
(
1
n

)5
8192

+O

((
1

n

)6
)

(38)

and so on. So the series solution of the differential equation constitutes a re-
summation of the known asymptotic series where the coefficient of each power
of z is computed exactly.

3.5 Accuracy and numerical methods

We now turn to the quality of the results. This can be assessed precisely by the
use of an exact representation of the composite function F−1N (Φ(z)), where Φ is
the normal CDF and Fn the Student CDF. The exact formula for the Student
CDF for all real n is given in terms of inverse beta functions by Shaw [15], and
there are known simpler forms for n = 1, 2, 4. These are also given in [15] and
are also now available on the Wikipedia page on quantile functions [14]. The
case n = 4 is an interesting case as it is known exactly, is the boundary case
where kurtosis is infinite, and there is some evidence from work by Fergusson
and Platen [7] that it is a good case for modelling daily world index log-returns.
We shall therefore develop this in some detail. It turns out that working as far
as c10 is a useful point. A detailed calculation shows that the precision (i.e.
relative error) of the central power series is then less than 2× 10−5 on |z| < 4.
For this case we find that

γ =
4

3

√
2

π
∼ 1.06384608107048714 (39)

and the full C-code form for the central series is, with y = z ∗ z,

t = z*(1.06384608107048714 +

y*(0.0735313753642658509 +

y*(0.00408737916150927847 +

y*(0.000157376276663230562 +

y*(4.31939824140363509e-6 +

y*(9.56881464639227278e-8 +

y*(2.09256881803614446e-9 +

y*(3.87962938209093352e-11 +

y*(2.72326084541915671e-13 +

(2.90528930162373328e-15 +

4.59490133995901375e-16*y)*y)))))))

))
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To treat the tail regions |z| > 4 with corresponding accuracy when n = 4 it is
sufficient to use just two terms of the known tail series. This gives us, in general,
for the positive tail (the negative tail being treated by symmetry)

w = (1− Φ(z))n
√
π

Γ(n/2)

Γ((n+ 1)/2)

t =
√
nw−1/n(1− n+ 1

2(n+ 2)
w2/n)

(40)

and for the case n = 4:

w = (1− Φ(z))
16

3

t = 2w−1/4(1− 5

12
w1/2)

(41)

The optimal crossover is then in fact at z = 3.93473 with maximum relative
error less than 1.4× 10−5 over the entire range of z

3.6 Purely numerical methods

The analysis for the Student t case, although rather specialized, also allows
the appraisal of direct numerical schemes. The direct numerical solution of the
RODE can be done using standard methods. Within Mathematica version 6, the
use of NDSolve with high precision and accuracy goals, explicit Runge-Kutta
and sixth-order differences leads to an precision of better than 5× 10−8 on the
range |z| < 6, which is excellent. Of course, one must also consider sampling
efficiency issues arising from such interpolated numerical schemes, but they can
be made the basis of a further, e.g. rational approximation if speed is an issue.
Such a numerical scheme will be exploited in the examples considered below.

4 Hyperbolic and Variance Gamma

In this section we move to other distributions of interest to finance. First we
consider the hyperbolic distribution, and then the variance gamma. These will
have in common a non-normal base distribution, and will illustrate the use of a
2-sided exponential base instead.

4.1 Hyperbolic quantile from exponential base

This was originally motivated by Bagnold’s classic study of sand [4], and was
given a clear mathematical description by Barndorff-Nielsen [5], who also gen-
eralized it. The applications to finance have been explored Eberlein and Keller
[6]. A direct treatment of the quantile function for the symmetric case has
been given by Xiong [21]. He we shall explore the conversion of samples from
a suitable exponential distribution to samples from the hyperbolic. Hyperbolic
distributions can of course be sampled as random mixtures of a normal distri-
bution. Our method facilitates the use of hyperbolic marginals coupled to an
arbitrary copula, and and this example also illustrates how cleanly the choice
of a suitable base simplifies the computations of the quantile - the exponential
base regularizes the tail in an elegant way.



W.T. Shaw & N. Brickman: QM II: Changes of Variable in Monte Carlo 10

The probability density function is known explicitly as

f(x, α, β, δ, µ) =
γ

2αδK1(δγ)
exp{−α

√
δ2 + (x− µ)2 + β(x− µ)} (42)

where γ =
√
α2 − β2, with |β| < α > 0. In what follows we shall translate the

origin so that µ = 0, with density

f(x, α, β, δ) =
γ

2αδK1(δγ)
exp{−α

√
δ2 + x2 + βx} (43)

The H-function for the target distribution is given by the negative of the loga-
rithmic derivative:

H(x) = − d
dx

log f(x, α, β, δ) =
αx√
δ2 + x2

− β (44)

and it is evident that for large x,

H(x) ∼ sign(x)α− β = ±α− β . (45)

Bearing mind that the exponential distribution is characterized by a constant
H-function, we will use a pair of exponential distributions for the base case.
In order to get the proportion of the random variables that are positive and
negative correct, we let

p+ =

∫ ∞
0

dx
γ

2αδK1(δγ)
exp{−α

√
δ2 + x2 + βx}

p− =

∫ 0

−∞
dx

γ

2αδK1(δγ)
exp{−α

√
δ2 + x2 + βx}

(46)

so clearly p+ + p− = 1.

f0(x) =

{
p+(α− β)e−(α−β)x if x > 0,

p−(α+ β)e(α+β)x if x < 0,
(47)

The quantile function for sampling from f0 has the trivial form:

v = Q0(u) =

{
1

α+β log(u/p−) if u < p−,
−1
α−β log((1− u)/p+) if u > p−,

(48)

So samples from the base can be made easily. To convert them into samples
from the hyperbolic we solve a left and right differential equation. The right
problem is of the form

d2Q

dv2
+ (α− β)

dQ

dv
=

(
αQ√
δ2 +Q2

− β
)(

dQ

dv

)2

(49)

on v > 0 with the initial condition Q(0) = 0 and

dQ

dv
|v=0 =

Q′(p−)

Q′0(p−)
=
f0(0+)

f(0)
= p+(α− β)2

αδ

γ
K1(δγ)eαδ (50)
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The left problem is

d2Q

dv2
− (α+ β)

dQ

dv
=

(
αQ√
δ2 +Q2

− β
)(

dQ

dv

)2

(51)

on v < 0 with the initial condition Q(0) = 0 and

dQ

dv
|v=0 =

Q′(p−)

Q′0(p−)
=
f0(0−)

f(0)
= p−(α+ β)2

αδ

γ
K1(δγ)eαδ (52)

The solution to this differential system is readily visualized as a kind of ‘QQ’
plot. If we use a sixth-order explicit RK method as before, with parameters
α = 1 = δ, β = 0 for illustration, the result is show below, together with the
identity map (diagonal line).

-4 -2 0 2 4

-4

-2

0

2

4

Figure 1: QQ Plot for conversion of exponential to hyperbolic

4.2 VG quantile from exponential base

The variance-gamma density was introduced by Madan and Seneta [11] as a
model for share market returns. The density is given, for λ > 0, α > 0, |β| < α,
by

eβx|x|λ− 1
2

(
α2 − β2

)λ
Kλ− 1

2
(α|x|)

(2α)λ−1/2
√
πΓ(λ)

(53)

In the region x > 0 the H-function is given by

H(x) = − d
dx

log(f) =
αKλ−3/2(αx)

Kλ−1/2(αx)
−β ∼ (α−β)+

1− λ
x

+O

((
1

x

)2
)

(54)

In the region x < 0 the H-function is given by

H(x) = − d
dx

log(f) = −
αKλ−3/2(−αx)

Kλ−1/2(−αx)
−β ∼ −(α+β) +

1− λ
x

+O

((
1

x

)2
)

(55)
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These asymptotic relationships suggest that the VG model may be treated in a
similar way to the hyperbolic case, as the asymptotics are closely related with
a good match to the exponential base. This time the probabilities p± are given
by

p+ =

(
α2 − β2

)λ
(2α)λ−1/2

√
πΓ(λ)

∫ ∞
0

dxeβxxλ−
1
2Kλ− 1

2
(αx)

=
22λ−1

(
α+β
α−β

)λ
Γ
(
λ+ 1

2

)
2F1

(
2λ, λ;λ+ 1; α+ββ−α

)
√
πΓ(λ+ 1)

,

p− =

(
α2 − β2

)λ
(2α)λ−1/2

√
πΓ(λ)

∫ ∞
0

dxe−βxxλ−
1
2Kλ− 1

2
(αx)

=
22λ−1

(
α−β
α+β

)λ
Γ
(
λ+ 1

2

)
2F1

(
2λ, λ;λ+ 1; β−αα+β

)
√
πΓ(λ+ 1)

,

(56)

where we have used identity 6.621.3 from [3] to evaluate the integrals giving the
probabilities that the VG random variables is positive or negative. It is easily
checked that if β = 0 then p+ = p− = 1/2.

The difference between VG and hyperbolic is that in the case of VG the
details of what has to be done are sensitive to the value of λ. First, we note
that if λ = 1 the VG model is trivial as it is identical to the base, so that
Q(v) ≡ v. If λ > 1 matters remain reasonably straightforward, as both f and
H exist at v = 0, with H(0) = 0. The recycling ODE may be solved as before,
though many steps may be needed near v = 0 if λ remains close to and just above
1. When 0 < λ < 1 matters are more complicated, as then H(0) is divergent,
and furthermore the density becomes singular in the range 0 < λ ≤ 1/2. The
density has a log divergence when λ = 1/2, and otherwise diverges as x2λ−1.
All of these issues may in principle be addressed by doing analytical estimates
in a small neighbourhood of the origin and starting the numerical treatment
at a small distance from the origin - as noted several different cases must be
considered and full details will be given elsewhere.

5 Normal samples from exponential

The construction of the normal quantile, also known as “probit” has a long
and interesting history - see [18] and the references therein for details. Here
we consider the construction of normal samples from exponential samples, and
proceed to a detailed practical implementation. We work on the right hand
region and extend the mapping to the left region by odd symmetry. The recyling
ordinary differential equation in the right hand region, v ≥ 0 is simply

d2Q

dv2
+
dQ

dv
= Q

(
dQ

dv

)2

(57)

with the initial conditions Q(0) = 0, Q′(0) =
√
π/2. This has the formal

solution
Q(v) = Φ−1(1− 1/2e−v) (58)
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Where Φ is the normal CDF. To extract useful representations we proceed as
follows. This equation may first be solved by the method of series. However,
the resulting solution turns out to be an asymptotic series best used to a small
number of terms in a neighbourhood of the v = 0. The series solution is easily
found to be, using exact coefficients:

Q(v) =

√
π

2
v − 1

2

√
π

2
v2 +

(
2
√
π + π3/2

)
v3

12
√

2
−
(√
π + 3π3/2

)
v4

24
√

2

+

(
4
√
π + 50π3/2 + 7π5/2

)
v5

480
√

2
−
(
4
√
π + 180π3/2 + 105π5/2

)
v6

2880
√

2

+

(
8
√
π + 1204π3/2 + 1960π5/2 + 127π7/2

)
v7

40320
√

2

−
(
2
√
π + 966π3/2 + 3675π5/2 + 889π7/2

)
v8

80640
√

2

+

(
16
√
π + 24200π3/2 + 194628π5/2 + 117348π7/2 + 4369π9/2

)
v9

5806080
√

2

−
(
16
√
π + 74640π3/2 + 1190700π5/2 + 1493520π7/2 + 196605π9/2

)
v10

58060800
√

2

+O
(
v11
)

(59)

While this expression is interesting, it does not work far enough out to be of
much practical use, so a different approach is needed - if we wish to retain the
use of the above expression we would need to patch in another algorithm. One
could consider solving the differential equations about several points. However,
an important point for modern computation is to try to avoid “IF” statements
in the computer implementation. Such branches do not make use of the best
features of modern GPU systems, such as the NVIDIA Tesla system [19]. The
standard rational approximations all have breaks as follows in the positive quan-
tile region Z ≥ 0, 0.5 ≤ u < 1:

• Wichura’s AS241 [20]: two breaks, at u = 0.925 and u = 1− e−25.

• Moro [13]: breaks at u = 0.92

• Acklam Level 1[1]: breaks at u = 0.97575;

Wichura’s model is double precision, as is the iterated Acklam (Level 2) model.
The non-iterated Level 1 Acklam model is popular in financial applications and
has maximum relative error less than 1.15× 10−9. We shall use this as a target
for fast single-precision computation.

How we we avoid the break, at least for most practical computations? The
first thing to point out is that the “break” at u = 1/2 is fictitious in practical
applications. It is more sensible to work on a half region, e.g. 0.5 ≤ u < 1,
an output both Z = Φ−1(u) and −Z for simulation purposes, i.e. always work
antithetically. So we focus on the real breaks as in the list above. This break
arises in standard approaches due to the fact that the standard quantile Φ−1(u)
has rather a split personality - it is slowly varying in the central region where u
is between a half and about 0.9, and then diverges to infinity as u→ 1−. This is
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Figure 2: The normal quantile in standard coordinates

shown in Fig. 2. If we work in an exponential base the situation changes. The
function Q(v) = Φ−1(1− 1/2e−v) is shown in Fig. 3 for the region 0 ≤ v ≤ 37.
This function now has a much simpler quality and we can aim to build a single

5 10 15 20 25 30 35

2

4

6

8

Figure 3: The normal quantile in exponential coordinates

useful rational approximation. It is then a matter of picking a target range
and precision for the desired result. In Fig. 3 we have plotted the function
in the range 0 ≤ v ≤ 37, which is equivalent to the u-range [0.5, 1 − e−37] =
[0.5, 1−5.55×10−17], and the Z-range 0 ≤ Z < 8.3236. So we would not expect
to visit the region outside this for sample sizes less than about 1016. Crudely,
we are safe for samples of no bigger than a million billion. We we shall work on
v ∈ [0, 37]. For precision we shall use the Acklam level one algorithm as a target.
It is then a matter of taking a rational approximation of sufficient degree. This
was explored using the high-precision arithmetic of Mathematica to work out
the normal quantile deep into the tail, and the function MiniMaxApproximation

to create the rational approximation. The function actually approximated was

Q(v)

v
=

1

v
Φ−1(1− 1/2e−v) (60)

and the power series for Q was used in a small neighbourhood of the origin
to allow MiniMaxApproximation to work preserving precision near the origin,
where Q(0) = 0. The settings employed for the computation were

• Brake -> 10, 10;
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• WorkingPrecision -> 20;

• MaxIterations -> 300;

and a rational approximation of degree (7, 7) was found with the desired ac-
curacy. The relative error is show in Fig. 4 and is less than 1.06 × 10−9 on
0 ≤ v ≤ 37.

5 10 15 20 25 30 35

-1. ´ 10-9

-5. ´ 10-10

5. ´ 10-10

1. ´ 10-9

Figure 4: Precision of exponential-normal quantile on [0, 37].

The resulting form for Q(v) is as follows

Q(v) = v ∗ P (v)/Q(v) (61)

where P and Q are polynomials of degree 7, with nested C-forms as follows,
where we produce the higher-precision output generated by Mathematica. The
numerator P is

1.2533141359896652729 +

v*(3.0333178251950406994 +

v*(2.3884158540184385711 +

v*(0.73176759583280610539 +

v*(0.085838533424158257377 +

v*(0.0034424140686962222423 +

(0.000036313870818023761224 +

4.3304513840364031401e-8*v)*v))))

)

and the denominator Q is

1 + v*(2.9202373175993672857 +

v*(2.9373357991677046357 +

v*(1.2356513216582148689 +

v*(0.2168237095066675527 +

v*(0.014494272424798068406 +

(0.00030617264753008793976 +

1.3141263119543315917e-6*v)*v))))

)

For completeness, an algorithm for normal samples based on this under standard
conditions is (in the first two steps we give in brackets the better form using
a reflection and scaling to simplify the first part and avoid precision reduction
near unity):
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• sample u in 1/2 ≤ u < 1(or, better, 0 < u < 1);

• evaluate v = − log[2(1− u)], (then, better, v = − log[u]);

• evaluate Z = Q(v) with Q given by the rational approximation;

• output the antithetic pair Z,−Z.

If an exponential base is used we are essentially employing the last two steps.
How reasonable is it to claim that this algorithm is “essentially IF-less”?

One test is to ask what would happen if we introduce a very small u into the
algorithm above - what is then the margin of error if it is generates a value of
v > 37? The precision does then deteriorate to levels above the Acklam target,
but very slowly. Below v = 50, corresponding to u differing from an end-point
by about 10−22, the precision remains at better than 10−6. If we double the
v-range to 74, where u is O(10−33), the precision is still better than 2 × 10−5.
So we can safely use the breakless algorithm on the basis that if a fluke sample
falls outside its very wide formally-defined range the answer returned remains
very good. For example, with v = 74 the exact result is Z = 11.94047 and
the rational approximation yields Z = 11.94084. We get this stability due to
the nice behaviour of the exponentially-transformed quantile, and this is then a
safe algorithm for use with single-precision arithmetic, which is the particular
strength of a GPU.

Of course, another very simple approach to preserving precision and avoiding
an “IF” in the code is to sample the tail interval completely separately and
apply a transformed quantile to that region by itself. We now turn to what that
construction should be.

5.1 A supplementary tail model

If one does wish to penetrate the deep tail with precision preservation, the
asymptotic analysis developed in the Appendix to [18] may be used - indeed, the
exponential base is well adapted to the Gaussian tail. Converting coordinates,
and introducing just one further group of terms into the series, we find that

Q(v) =
√

2q(a, b) (62)

where
a = log(v − 1/2 log(π)) , b = log(a) (63)

and

q(a, b) ∼ a− b

2
+

b
4 −

1
2

a
+
b2 − 6b+ 14

16a2
+

2b3 − 21b2 + 102b− 214

96a3

+
3b4 − 46b3 + 348b2 − 1488b+ 2978

384a4
+O(a−5)

(64)

This again has precision better than 1.06× 10−9, now in the region v ≥ 37, and
indeed becomes more precise as v → +∞, as shown in Fig. 5.
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Figure 5: Precision of supplementary tail model in v ≥ 37.

5.2 Real-world precision in C++

The following results are indicative of what happens in practice. The quantile
was tested in the Bloodshed DEVC++ environment under Windows XP, using
the listing in the Appendix. The output was benchmarked with all variables
double against the internal high-precision quantile in Mathematica, and found
to preserve the O(10−9) precision. The plot of the precision of the C++ output
is shown in Fig. 6.

0.6 0.7 0.8 0.9 1.0

-1. ´ 10-9

-5. ´ 10-10

5. ´ 10-10

1. ´ 10-9

Figure 6: Precision of (7, 7) “breakless” C++ model in double precision.

We do not make any claim that this algorithm is universally better than
any other, regardless of whether one is working on a CPU or GPU. Rather, the
point is that we can, by a change of variable, extend the interval over which we
can cover the quantile accurately by a very large margin. The relative benefits
of avoiding any IF-statement need to be assessed on a variety of computer ar-
chitectures and compilers, and variations to the method above may be needed.
It is certainly straightforward to generate other single-patch rational approx-
imations with different properties. Each time we increase the degree of the
numerator and denominator, keeping the interval fixed, the maximum relative
error decreases by a factor of about 20. For example, a (12, 12) rational approx-
imation exists that covers the same interval 0 ≤ v ≤ 37 with maximum relative
error in Mathematica less than 5× 10−16, and in C++ with a meaningful “long
double” the error remains below 7 × 10−16. Alternatively a quite modest in-
crease in computation allows the interval to be extended significantly. An (8, 8)
approximation exists with precision about 6 × 10−10 on the range 0 ≤ v ≤ 74,
corresponding, with reflection to u ∈ [ε, 1− ε] with ε = 3.6× 10−33.
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The Mathematica notebook used to generate such schemes can be obtained
on request from WS.

5.3 Benchmark results: CPU vs GPU single precision

We now turn to a more careful analysis of performance against the popular
Acklam Level 1 method. The function given in Appendix A was re-written and
the relevant function listed in Appendix B with some natural source-level op-
timizations. We call this model ICNDfloat1. Bearing in mind that in float

(single-precision) mode typical of earlier GPUs, the precision of O(10−9) is
redundant, and we proposed for general single-precision use the listing in Ap-
pendix C. We call this ICNDfloat2. This is the algorithm we propose for optimal
GPU normal simulation based on quantiles. If implemented in double precision
the maximum relative error is less than 4 × 10−7. In practice in float form it
gave results slightly better than the float form of the Acklam result, particularly
near the branch point.

First, consider why any improvement at all might be expected. On a GPU
it is typically the case that a number of threads are executed at the same time.
However, the GPU architecture is such that the timing of such a multi-threaded
computation is influenced by the slowest outcome of any of the branches that
are executed. In the Acklam model there is a fast rational approximation with
no special function calls in the central region. In the tail there is the operation
of taking a log followed by a square root. In the Moro model a log(log())
operation is carried out in the tail region. AS241 also uses composite special
function calls. On a CPU the timing of the algorithm benefits from the fast
central algorithm and the tail algorithm slows the routine down only on (for
the Acklam case) 4.85% of calls. This is highly efficient on a CPU architecture
that processes each calculation separately. A simple timing was done using
the Bloodshed DEV C++ compiler on an Intel 2.8GHz machine. In each case
the simple internal rnd function, normalized to return values of U in the unit
interval, was run a billion times without the normal quantile call and then with
the normal quantiles we are considering2. The timings for calling the quantile
obtained by subtracting the two results on the CPU were as follows (results in
seconds):

• Acklam Level 1; CPU: 59s

• ICNDfloat1; CPU: 89s:

• ICNDfloat2; CPU: 82s

In each case the overhead of calling rnd was about 15s. These results demon-
strate clearly the efficiency of the Acklam approach in a traditional architecture.

For a proper GPU analysis the code was ported initially to an 8400GS GPU
and re-run in the same way. For a fair comparison the Acklam algorithm was
optimized. Timings for the quantile call were as follows

The benefit of working in branchless form is now clear. The improvement,
though modest, can make a difference, especially if one is solving an SDE via
many calls to a normal random variable prior to evaluating a payoff.

2The rnd() function is of course completely unsuitable for real-world use, but given that
we only need a method for sampling the various regions and subtract the overhead, its use
here is fine.
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Algorithm Timing t[s]
Acklam 5.04
ICNDfloat1 4.89
ICNDfloat2 4.64

Table 1: Single precision timings for normal quantile on GPU

In the full philosophy of this paper, one would of course use an exponential
base for many different computations and distributions and possibly pre-store
a large set of exponential samples created by efficient methods. The overhead
of converting to normal is then the evaluation of a simple rational function and
the performance benefits are magnified many times over those given in Table 1.

5.4 High precision work

One can also consider working to double precision on a modern TESLA GPU.
The first matter to establish is the quality of standard methods. There are two
well-known candidates. These are

1. Wichura’s AS241;

2. The refined Acklam method, where the level one approximation is fed once
through a Newton-Raphson-Halley method.

How do we to a quality check on such high precision methods? We will use the
Mathematica function InverseErf as our benchmark. However, this will not be
done blindly on the assumption that it is necessarily correct. The quantile based
on this has been independently assessed against the known exact solution for
the Gaussian quantile developed by Steinbrecher and Shaw [18] that is known in
series form. The formula for this in a computation-suitable representation is also
available at http://en.wikipedia.org/wiki/Probit and as a series has been coded
up both in Mathematica and quadruple-precision FORTRAN based on the Ab-
soft compiler. Based on these three implementations various cross-verifications
have been carried out. For example, the quad-precision FORTRAN code that
agrees with Mathematica’s internal InverseErf to a precision of better than
10−29 on the interval [e, 1 − e], with e = 0.0007. Near the centre of the unit
interval the truncated series written in Mathematica agrees with InverseErf to
much better than quad precision. So we have considerable confidence that our
benchmark is precise enough for any double-precision evaluation.

A precision test of AS241 was carried out in previous work [16] and the
relative precision of a Mathematica representation of AS241 is shown in Fig.
7 This confirms the double-precision quality of the algorithm. We obtained
less satisfactory results with the refined Acklam scheme. While the relative
error is typically of order 10−15 away from the middle or tail, there is a loss
of precision in the middle. The Newton-Raphson-Halley refinement was done
first exclusively in Mathematica. The precision near the middle is shown in
Fig. 8. Similar loss of precision was found in the implementation by J. Lea in
C/C++ of the refined method, using the Cody formula for the CDF. Based on
these observations we are completely satisfied that this algorithm is machine

h
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Figure 7: Precision of AS241
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Figure 8: Precision of refined Acklam - centre region

precision, though we cannot of course rule out some problem caused by our own
implementation.

We now turn attention to real-world precision and performance in C/C++
using a double type specification in AS241 and our own proposal. The C++
implementation for AS241 is that supplied by John Burkardt at

http://people.sc.fsu.edu/~burkardt/cpp_src/asa241/asa241.html

For completeness we also considered the coding of the refined Acklam algorithm
supplied by Jeremy Lea at

http://home.online.no/~pjacklam/notes/invnorm/impl/lea/lea.c

Our own suggestion for double precision work is listed in Appendix D, and is
given there in a form suitable for use as a CUDA kernel. A CPU version for
C/C++ is easily extracted with a little editing. The theoretical precision of this
algorithm when evaluated in arbitrary precision in Mathematica is O(10−15) on
the interval [ε, 1 − ε], with ε < 10−32, and so is good for any practical size

 http://people.sc.fsu.edu/~burkardt/cpp_src/asa241/asa241.html
http://home.online.no/~pjacklam/notes/invnorm/impl/lea/lea.c
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Monte Carlo3. In practice the precision in a double implementation in C/C++
is similar to AS241. Even the CPU timings are revealing and are as follows, for
half a billion samples on [0, 0.5].

Algorithm Timing t[s]
Acklam (refined)-Lea 179
AS241-Burkardt 104
GPU DP model 82

Table 2: Double precision timings for normal quantile algorithms on CPU

Due to the elimination of branches and the avoidance of calls to a sqrt(log())
operation we expect the GPU advantage to be better still. The refined Acklam
method is slow probably due to expensive calls to the error function for all ar-
guments - the GPU method is now more than twice as fast even when evaluated
on a CPU, notwithstanding our precision issues. AS241 stands up well as a high
precision benchmark but it is now possible to proceed faster. We re-iterate that
the single precision form of the Acklam method remains optimal for float-class
calculations on a CPU, but is also outrun on a GPU by an optimized algorithm.
Further optimizations may of course be possible - the codes presented here in
Appendices C and D are our current optimal forms and may be subject to fur-
ther improvement as regards speed and precision. We will also explore OpenCL
implementations.

The comparisons on a modern GPU are very interesting. We have completed
a comparison of four algorithms on three GPUS. The four algorithms are:

• Acklam’s one-pass method, but coded in double precision (DP)

• The Acklam-Lea DP method

• The breakless GPU approach (code exactly as in Appendix D)

• AS241 (Burkardt code as of early 2009)

The three GPUs consider are

• Quadro 4800

• GTX 285

• GTX 480

The host machine was in each case was a Mac Pro (2008) model running OS X
10.6.3 for the Quadro and 285 tests, and running Windows XP32 for the 285
and 480 tests. The Windows and OS X 285 numbers are almost identical so
only one set is reported. The timings in ms for the test program4

These initial results suggest that if one is working in double precision, the
breakless method is even faster than the one-step Acklam method, with rather
more precision.

3The value of ε is now so small that we could in fact add a break and a tail model without
compromising GPU efficiency, as the probability of probing the tails is now so small.

4In all cases compiled with the CUDA 1.3 compute architecture so the numbers may be
conservative for the GTX 480, a 2.0 CUDA device.
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Algorithm/ Timing t[ms] Timing t[ms] Timing t[ms]
/GPU Quadro 4800 GTX 285 GTX 480
Acklam single as double 3999 2588 1106
Acklam double 9405 6064 2735
BreaklessGPU 3499 2240 1046
AS241 5051 3237 1476

Such forms of the quantile have been exploited by Joshi [10] in the GPU form
of an Asian option model. We also wish to point out that the almost breakless
form here might not be the optimal thing to do. One can consider putting the
break in a less extreme location and having shorter rational approximations in
two regions.5 We hope to explore the possibilities more fully in future studies.

6 Conclusions

In the post-credit-crunch environment, risk simulations depend critically on hav-
ing a realistic (fat-tailed) model of asset returns. The methods developed here
allow traditional Gaussian samples to be converted to other distributions via the
application of the solution differential equation to the samples. The differential
equation is the recycling ODE for transforming samples from a density f1 to a
density f2, and is

d2Q(v)

dv2
+H1(v)

dQ(v)

dv
= H2(Q(v))

(
dQ(v)

dv

)2

,

where

Hi = − d
dx

log[fi(x)]

We have given an explicit example for the Student t case, where a power series
emerges coupled to a tail model. Other more complicated distributions with
an explicit density may be handled similarly or numerically, and other base
distributions may be treated. In particular we can use changes of variable to
construct “essentially IF-less” algorithms for objects like the normal quantile.
The efficiency of such algorithms in GPU computation is of interest, and the
methods introduced here can be considered for other target distributions. In
contrast to the normal case, where there are no parameters beyond the transla-
tion and scale, we must first solve the RODE with the relevant parameters and
then develop a suitable fast approximation.

These methods also simplify the use of a Gaussian or T-copula, since the
two steps of mapping to the unit hypercube and back to the marginals may be
folded together into one operation, where the solution to the RODE is applied
directly in one step.

Of course, the methods developed here rely on the ability to compute the log-
arithmic derivatives of the target and base densities. Where the target density
is not known explicitly, but whose characteristic function is known, other meth-
ods must be used. Investigations of the resulting integro-differential equations
will be reported elsewhere.

5M. Giles, private communication
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We have reported a new formula for the normal quantile and demonstrated
a modest performance benefit on a GPU architecture by working in a branchless
form for single precision work. Initial CPU tests on Double precision variations
suggest more significant performance enhancements.
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Appendix A: C++ listing for precision testing

This is the C++ listing for the test program for the “breakless” positive normal
quantile used to generate the output in Fig. 6, when compared with the internal
high-precision quantile in Mathematica.

//breaklessquantile.cpp

#include <cmath>

#include <iostream>

#include <fstream>

using namespace std;

double BreaklessQuantile(double u)

{

http://en.wikipedia.org/wiki/Quantile_function
http://www.mth.kcl.ac.uk/~shaww/web_page/papers/NormalQuantile1.nb
http://www.mth.kcl.ac.uk/~shaww/web_page/papers/NormalQuantile1.nb
http://arxiv.org/abs/0901.0434v1
http://arxiv.org/abs/0901.0434v1
http://www.nvidia.com/object/tesla_computing_solutions.html
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double v=-log(2*(1-u));

double P = 1.2533141359896652729 +

v*(3.0333178251950406994 +

v*(2.3884158540184385711 +

v*(0.73176759583280610539 +

v*(0.085838533424158257377 +

v*(0.0034424140686962222423 +

(0.000036313870818023761224 +

4.3304513840364031401e-8*v)*v)))));

double Q=1+v*(2.9202373175993672857 +

v*(2.9373357991677046357 +

v*(1.2356513216582148689 +

v*(0.2168237095066675527 +

v*(0.014494272424798068406 +

(0.00030617264753008793976 +

1.3141263119543315917e-6*v)*v)))));

return v*P/Q;

};

// The function is all above - that below is the simple test program.

int main()

{

double q;

double quantile;

char name[5];

int k,m;

cout << "Outputting test values of breakless quantiles " << "\n";

ofstream out("breaklessquantiles.txt");

for (k=5000; k<=9999; k++)

{q = k/10000.;

quantile = BreaklessQuantile(q);

out.precision(12);

out << q <<","<< quantile << "\n";}

cout << "Output written to breaklessquantiles.txt \n";

cout << "Hit any key to quit \n";

cin >> name;

return(0);

}

Appendix B: ICNDfloat1 listing

Here is full quantile form of the function in Appendix A in a form suitable for
GPU work under CUDA.

#include <cmath>



W.T. Shaw & N. Brickman: QM II: Changes of Variable in Monte Carlo 26

using namespace std;

#define BQP(v) (P1+v*(P2+v*(P3+v*(P4+v*(P5+v*(P6+(P7+P8*v)*v))))))

#define BQQ(v) (Q1+v*(Q2+v*(Q3+v*(Q4+v*(Q5+v*(Q6+(Q7+Q8*v)*v))))))

float ICNDfloat1(float v)

{

const float P1 = 1.2533141359896652729;

const float P2 = 3.0333178251950406994;

const float P3 = 2.3884158540184385711;

const float P4 = 0.73176759583280610539;

const float P5 = 0.085838533424158257377;

const float P6 = 0.0034424140686962222423;

const float P7 = 0.000036313870818023761224;

const float P8 = 4.3304513840364031401e-8;

const float Q1 = 1.0;

const float Q2 = 2.9202373175993672857;

const float Q3 = 2.9373357991677046357;

const float Q4 = 1.2356513216582148689;

const float Q5 = 0.2168237095066675527;

const float Q6 = 0.014494272424798068406;

const float Q7 = 0.00030617264753008793976;

const float Q8 = 1.3141263119543315917e-6;

float z;

int sgn;

sgn = (v >= 0.5);

sgn = sgn - !sgn;

z = -logf(1.0 - (sgn * ((2.0 * v) - 1.0)));

return sgn * z * BQP(z) / BQQ(z);

}

Appendix C: ICNDfloat2 listing

Here is full quantile form of the optimized single precision algorithm in a form
suitable for GPU work under CUDA.

#include <cmath>

using namespace std;

#define CQP(v) (P1+v*(P2+v*(P3+v*(P4+(P5+P6*v)*v))))

#define CQQ(v) (Q1+v*(Q2+v*(Q3+v*(Q4+(Q5+Q6*v)*v))))

float ICNDfloat2(float v)

{

const float P1 = 1.2533136835212087879;

const float P2 = 1.9797154223229267471;

const float P3 = 0.80002295072483916762;

const float P4 = 0.087403248265958578062;

const float P5 = 0.0020751409553756572917;

const float P6 = 4.744820732427972462e-6;

const float Q1 = 1.0;

const float Q2 = 2.0795584360534589311;
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const float Q3 = 1.2499328117341603014;

const float Q4 = 0.23668431621373705623;

const float Q5 = 0.0120098270559197768;

const float Q6 = 0.00010590620919921025259;

float z;

int sgn;

sgn = (v >= 0.5);

sgn = sgn - !sgn;

z = -logf(1.0 - (sgn * ((2.0 * v) - 1.0)));

return sgn * z * CQP(z) / CQQ(z);

}

Appendix D: Double branchless quantile

Here is optimized double precision branchless algorithm in a form suitable for
CUDA kernel use.

extern "C" __global__ void EDPBreaklessInvCNDgpu(FP * aa, FP * bb, int N)

{

const double P1 = 1.2533141373154989811;

const double P2 = 5.5870183514814983104;

const double P3 = 9.9373788223105148469;

const double P4 = 9.11745910783758368;

const double P5 = 4.6865666928347513004;

const double P6 = 1.3841649695441184484;

const double P7 = 0.23434950424605615377;

const double P8 = 0.022306824510199724768;

const double P9 = 0.0011538603964070818722;

const double P10 = 0.000030796620691411567563;

const double P11 = 3.9115723028719510263e-7;

const double P12 = 2.0589573468131996933e-9;

const double P13 = 3.3944224725087481454e-12;

const double P14 = 7.3936480912071325978e-16;

const double Q1 = 1.00000000000000000000;

const double Q2 = 4.9577956835689939051;

const double Q3 = 9.9793129245112074476;

const double Q4 = 10.574454910639356539;

const double Q5 = 6.4247521669505779535;

const double Q6 = 2.3008904864351121026;

const double Q7 = 0.48545999687461771635;

const double Q8 = 0.059283082737079006352;

const double Q9 = 0.0040618506206078995821;

const double Q10 = 0.00014919732843986856251;

const double Q11 = 2.7477061392049947066e-6;

const double Q12 = 2.2815008011613816939e-8;

const double Q13 = 7.0445790305953963457e-11;

const double Q14 = 5.1535907808963289678e-14;
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double v,z,vv;

int sgn;

int idx = blockIdx.x * blockDim.x + threadIdx.x;

v = aa[idx];

sgn = (v >= 0.5);

sgn = sgn - !sgn;

if (sgn == -1) {vv = v;} else {vv = 1.0-v;}

z = -log(2.0*vv);

double num =(P1+z*(P2+z*(P3+z*(P4+z*(P5+z*(P6+z*(P7+z*(P8+z*(P9+z*(P10+z*(P11+z*

(P12+z*(P13+P14*z)))))))))))));

double den =(Q1+z*(Q2+z*(Q3+z*(Q4+z*(Q5+z*(Q6+z*(Q7+z*(Q8+z*(Q9+z*(Q10+z*(Q11+z*

(Q12+z*(Q13+Q14*z)))))))))))));

bb[idx] = sgn*z*num/den;

}
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