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Introduction

The theory of Euler systems is one of the most powerful tools available for studying the arithmetic of global
Galois representations. However, constructing Euler systems is a difficult problem, and the list of known
constructions was until recently accordingly rather short. In these lecture notes, we outline a general strategy
for constructing new Euler systems in the cohomology of Shimura varieties: these Euler systems arise via
pushforward of certain units on subvarieties.

We study in detail two special cases of this construction: the Euler system of Beilinson–Flach elements,
where the underlying Shimura variety is the fibre product of two modular curves; and the Euler system of
Lemma–Flach elements, arising in the cohomology of Siegel modular threefolds.

The lecture notes are structured as follows.

• In Chapter 1, we will review the definition of Euler systems for Galois representations, and their
arithmetic application to the Bloch–Kato conjecture.
• In Chapter 2, we introduce some general tools for constructing global cohomology classes for Galois

representations arising in geometry, assuming the existence of a supply of subvarieties of appropriate
codimension and units on them. We also introduce Siegel units, which are the key for all the Euler
system constructions to follow.
• Chapter 3 is largely motivational (and can be skipped at a first reading): it explains how one can

use Rankin–Selberg-type integral formulas for L-functions as a guide to where to look for Euler
systems.
• Chapter 4 is devoted to the construction of the Beilinson–Flach Euler system for pairs of modular

forms of weight 2; and in Chapter 5, we discuss how to adapt this construction to pairs of modular
forms of higher weight, using cohomology with coefficients.
• In Chapter 6 we explain the construction of the Lemma–Flach Euler system for genus 2 Siegel

modular forms of parallel weight 3.
• In the concluding Chapter 7 we outline some projects.

Updated 13/2/2018, incorporating corrections from Chi-Yun Hsu.
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CHAPTER 1

Galois representations and Galois cohomology

References: for §§1.1—1.2, an excellent source is Bellaiche’s CMI notes on the Bloch–Kato conjecture.

1.1. Galois representations

Definition. Let K be a number field or a finite extension of Q` for some finite prime `, K its algebraic
closure, GK = Gal(K/K); and let p be a prime, and E a finite extension of Qp.

Definition. A p-adic representation of GK is a finite-dimensional E-vector space V with a continuous
action of GK . Here, GK is equipped with the profinite topology and V with the p-adic topology.

Remark. If V is a p-adic representation, then so is its dual V ∗ = HomQp
(V,Qp). �

Examples.

The representation Zp(1). Let µpn = {x ∈ K× : xp
n

= 1}. Then µpn is finite cyclic of order pn and GK
acts on it.

The p-power map sends µpn+1 → µpn and we define

Zp(1) := lim←−
n

µpn , Qp(1) := Zp(1)⊗Qp.

This is a 1-dimensional continuous Qp-linear representation, unramified outside the primes dividing p; GK
acts by “cyclotomic character” χcyc : GK → Z×p .

Notation. If V is a p-adic representation and n ∈ Z, let V (n) = V ⊗Qp(1)⊗n.

Tate modules of elliptic curves. A/K elliptic curve⇒ A(K) abelian group with GK-action. Let A(K)[pn]
subgroup of pn-torsion points.

Define the p-adic Tate module of A

Tp(A) := lim←−
n

A(K)[pn] (w.r.t. multiplication-by-p maps), Vp(A) := Tp(A)⊗Qp.

This is a 2-dimensional p-adic representation of GK .

Etale cohomology. Let X/K be a smooth algebraic variety. We can define vector spaces

Hi
ét(XK ,Qp) for 0 ≤ i ≤ 2 dimX,

which are finite-dimensional p-adic Galois representations.

Representations coming from geometry. Our second example is a special case of the third: for an
elliptic curve A, it turns out that we have Vp(A) ∼= H1

ét(AK ,Qp)(1).

Definition. We say an E-linear Galois rep V comes from geometry if it is a subquotient of Hi
ét(XK ,Qp)(j)⊗Qp

E, for some variety X/K and some integers i, j.

So all my examples come from geometry. In these lectures we’re only ever going to be interested in repre-
sentations coming from geometry.
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1.2. Galois cohomology

1.2.1. Setup. A good reference for Galois cohomology is [NSW08].

Again we assume that K is either a number field of a finite extension of Q` for some finite prime `. There is a
cohomology theory for Galois representations1: for V an E-linear GK-rep, we get E-vector spaces Hi(GK , V )
(where we will usually shorten the notation to Hi(K,V )), zero unless i = 0, 1, 2. Mostly we care about H0

and H1, which are given as follows

H0(K,V ) = V GK

H1(K,V ) =
{cts functions s : GK → V such that s(gh) = s(g) + gs(h)}
{functions of the form s(g) = gv − v for some v ∈ V }

.

Remark. The group H1(K,V ) classifies extensions V ′ of V by the trivial representation, i.e. it classifies
isomorphism classes of short exact sequences of GK-representations

0 - V - V ′ - E - 0,

where E is equipped with the trivial action of GK . �

These are well-behaved:

(1) if 0 - U - V - W - 0 is a short exact sequence of GK-modules, then we obtain a
long exact sequence

. . . - Hi−1(K,W ) - Hi(K,U) - Hi(K,V ) - Hi(K,W ) - . . .

(2) if L ⊂ K is a finite Galois extension of K, then we have a corestriction map

cores : Hi(L, V ) - Hi(K,V ).

(3) for any subgroup H ⊂ GK , we have a restriction map

res : Hi(GK , V ) - Hi(H,V ).

1.2.2. The Kummer map. For V = Qp(1) the Galois cohomology is related to the multiplicative
group K∗. To see this, we have to first think a bit about cohomology with finite coefficients.

For any n, we have a short exact sequence

0 - µpn - K
× [pn]- K

× - 0

which leads to a long exact sequence

0 - µGKpn - K×
[pn]- K× - H1(K,µpn)

and thus an injection2

K× ⊗ Z/pnZ ⊂ - H1(K,µpn).

Passing to the inverse limit we get a map (Kummer map)

κp : K× ⊗ Zp ⊂ - H1(K,Zp(1)) or K× ⊗Qp
⊂ - H1(K,Qp(1)).

Remark. This already shows that if K is a number field, then H1(K,Qp(1)) can’t be finite-dimensional,
because K× has countably infinite rank. �

The same argument works for elliptic curves: we get an embedding

E(K)⊗Qp
⊂
κ- H1(K,Vp(E)).

1Technical point: our representations are all continuous, so we shall work with cohomology defined by continuous cochains,
which is slightly different from the cohomology of GK as an abstract group.

2In fact this is an isomorphism, because H1(K,K
×

) is zero (“Hilbert’s theorem 90”)
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1.2.3. Local Galois cohomology. Assume now that K is a finite extension of Q`, and let V be a
p-adic representation of GK . We assume that V is defined over Qp; the case of general coefficients is obtained
by ⊗Qp

E.

The following result is due to Tate:

Theorem 1. (1) Let i ≥ 0. Then Hi(K,V ) is a finite-dimensional Q`-vector space, and it is zero for
i > 2.

(2) (Tate local duality) For i ∈ {0, 1, 2}, the cup product induces a perfect duality

Hi(K,V )×H2−i(K,V ∗(1)) - H2(K,Qp(1)) ∼= Qp.

1.2.4. Subspaces of H1(Q`, V ): the case ` 6= p. Reference: [Rub00a]

Assume now that K is a finite extension of Q` with ` 6= p. Denote by I the inertia subgroup of GQ`
.

Definition. Say that V is unramified if I acts trivially on V . Define the subgroup of unramified cohomology
classes H1

ur(Q`, V ) ⊂ H1(Q`, V ) by

H1
ur(K,V ) = ker

(
H1(K,V ) - H1(I, V )

)
.

Proposition 1. Under local Tate duality, we have

H1
ur(K,V )⊥ = H1

ur(K,V
∗(1)).

Proposition 2. We have

dimQp
H1

ur(K,V ) = dimQp
(V GK ),

dimQp

(
H1(K,V )

H1
ur(K,V )

)
= dimQp

H2(K,V ).

1.2.5. Subspaces of H1(Qp, V ). References: [Ber04] for the definitions and properties of Fontaine’s
rings of periods, [BK90] for the definitions of the subspaces

Let K be a finite extension of Qp. Defining interesting subspaces of H1(K,V ) is more complicated, since

ker
(
H1(K,V ) - H1(I, V )

)
= 0

for almost all V ! In order to define a good analogue of H1
ur(K,V ), we use Fontaine’s classification of p-adic

representations.

Fontaine’s classification. Fontaine has defined subcategories of the category of p-adic representations of
GK using so-called rings of periods: let B be a topological Qp-algebra with a continuous and linear action
of GK and some additional structures (e.g. filtration, Frobenius, monodromy operator) compactible with
the action of GK . Assume that B is GK-regular, i.e. if b ∈ B is such that Qp.b is GK-stable, then b ∈ B×.
(Exercise: this implies that BGK is a field.)

Definition. Let DB(V ) = (V ⊗B)GK . Then dimBGK DB(V ) ≤ dimQp V (exercise), and we say that V is
B-admissible if equality holds.

Example. (1) B = K: V is B-adimissible if and only if the action of GK factors through a finite
quotient;

(2) B = K̂: V is B-admissible if and only if the action of the inertia subgroup of GK factors through
a finite quotient (Ax–Sen–Tate theorem).

�

Fonaine has constructed several rings of periods; here are two of them:

• BdR: this is a field, equipped with a filtration, and BGK
dR = K

• Bcris: this is a subring of BdR, equipped with a filtration and a Frobenius operator ϕ; we have
BGK

cris = K0, which is the maximal unramified extension of Qp in K.
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• Bst: this is (non-canonically) a subring of BdR, equipped with a filtration, a monodromy operator

N and a Frobenius operator ϕ; we have BGK
st = K0, which is the maximal unramified extension of

Qp in K.

The B-admissible representations are respectively called de Rham, crystalline and semistable, and the DB(V )
are denoted DdR(V ), Dcris(V ) and Dst(V ).

Remark. crystalline ⇒ semistable ⇒ de Rham �

Theorem 2. (Faltings) Let X be a smooth proper variety over K. Then V = Hi
ét(XK ,Qp) is de Rham, and

DdR(V ) ∼= Hi
dR(X/K) as filtered GK-vector spaces.

There are similar comparison theorems with crystalline and log-crystalline cohomology (Tsuji, Niziol,...),
involving Bcris and Bst.

Example. Let A be an abelian variety over K, and let V = Vp(A). Then Faltings’ theorem implies that V
is de Rham. Is it crystalline or semistable? One can show that

• (Iovita) V is crystalline if and only if A has good reduction;
• (Breuil) V is semistable if and only if it has semistable reduction.

This is a p-adic version of the Neron-Ogg-Shafarevich criterion and justifies the claim that crystalline is
a good p-adic analogue of unramified. (Recall that the Neron–Ogg-Shafarevich criterion states that when
` 6= p, then TpA is unramified if and only if A has good reduction (mod `).) �

The two rings are related by the following result:

Proposition 3. We have a short exact sequence of GK-modules

0 - Qp
- Bcris

((1−ϕ)x,x)- Bcris ⊕BdR/Fil0B+
dR

- 0.

Definition of the subspaces of H1(K,V ).

Definition. Denote by H1
f (K,V ) (resp. H1

g (K,V )) the classes of extensions of V by Qp which are crys-

talline (respectively de Rham).

Remark. The subspace H1
f (K,V ) turns out to be the right analogue of H1

ur(K,V ) when K is a finite
extension of Qp. �

Lemma 1. If V is crystalline, then

H1
f (K,V ) = ker

(
H1(K,V ) - H1(K,V ⊗Bcris)

)
.

Definition. Define

H1
e (K,V ) = ker(H1(K,V ) - H1(V ⊗Bϕ=1

cris ).

Theorem 3. If V is crystalline, then

H1
f (K,V )⊥ = H1

f (K,V ∗(1)) and H1
e (K,V )⊥ = H1

g (K,V ∗(1)),

where the orthogonal complement is taken with repect to Tate local duality.

We can use Proposition 3 to calculate the dimensions of H1
? (K,V ):

Proposition 4. We have

• dimH1
f (K,V ) = [K : Qp]

(
dimQp

V − dimK Fil0DdR(V )
)

+ dimQp
V GK ,

• dimH1
e (K,V ) = dimH1

f (K,V )− dimQp
Dcris(V )ϕ=1,

• dimH1
g (K,V ) = dimH1

f (K,V ) + dimQp Dcris(V
∗(1))ϕ=1.

Remark. (1) These subspaces were defined by Bloch–Kato in their formulation of the global Tama-
gawa number conjecture; see [BK90].
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(2) It is clear that H1
e ⊆ H1

f ⊆ H1
g . It is conjectured that in most cases, these subspaces should be

equal; this is known when V = Vp(A) for A/Qp an abelian variety. One of the few cases when the
subspaces fail to be equal is V = Qp(r) for r ∈ Z: see [BK90, Example 3.9].

�

The Bloch–Kato exponential map. From the exact sequence in Proposition 3, we obtain the short exact
sequence

0 - Qp
- Bϕ=1

cris
- BdR/Fil0 BdR

- 0.

Let V be a de Rham representation of GK ; note that(
V ⊗BdR/Fil0 BdR

)GK
= DdR(V )/Fil0DdR(V ).

Tensoring the exact sequence with V and taking GK-cohomology, we obtain a connection homomorphism

expV : DdR(V )/Fil0DdR(V ) - H1(K,V ),

which is called the Bloch–Kato exponential map.

Lemma 2. The image of expV is contained in H1
e (K,V ).

Proof. Immediate from the long exact sequence of Galois cohomology. �

Remark. When V = Vp(A) for some elliptic curve (or more generally an abelian variety) A, then the quotient

DdR(V )/Fil0DdR(V ) can be identified with the tangent space tan(A), and the Bloch–Kato exponential map
is closely related to the usual exponential map:

tan(A)
exp - Q⊗A(OK)

DdR(Vp(A))

=

? expVp(A)- H1(K,Vp(A)).

κA

?

�

1.2.6. Selmer groups. Assume now that K is a number field. The group H1(K,V ) can be infinite-
dimensional, so it’s useful to “cut down to size” by imposing extra conditions on our H1 elements. We’ll do
this by localising at primes of K. Note that we have restriction maps

resv : Hi(K,V )→ Hi(Kv, V ) for all primes v,

and the local groups Hi(Kv, V ) are finite-dimensional.

Assumption. We assume that V is unramified outside a finite set of primes, i.e. that for almost all v, Iv
acts trivially on V |GKv . This is true for all representations arising from geometry.

Remark. Conjecturally the representations coming from geometry should be exactly those which are con-
tinuous, unramified almost everywhere, and potentially semistable at the primes above p. (‘Semistable’
means that it is Bst-admissible, where Bst is another one of Fontaine’s rings. ‘Potentially semistable’ means
that the representation becomes semistable over a finite extension.) This is called the Fontaine–Mazur
conjecture. �

Definition. A local condition on V at prime v is an E-linear subspace Fv ⊆ H1(Kv, V ).

Examples:

• strict local condition Fv,strict = {0}
• relaxed local condition Fv,relaxed = H1(Kv, V )
• unramified local condition Fv,ur = H1

ur(Kv, V ) for v - p
• Bloch–Kato “finite” local condition Fv,BK = H1

f (Kv, V ) for v | p
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• a Greenberg local condition (for v | p)
Fv,Gr = image

(
H1(Kv, V

+) - H1(Kv, V )
)
,

for some GKv -stable subrepresentation V + of V (c.f. [Gre89])

Example. Let A be an elliptic curve over Q, and suppose that A has good ordinary reduction at p. Let
Â (resp. Ã) denote the formal group attached to A over Qp (resp. the reduction of A (mod p)). Then we
have a short exact sequence of GQp

-modules

0 - VpÂ - VpA - VpÃ - 0,

so we can define a Greenberg local condition by taking V + = VpÂ. �

Definition. A Selmer structure is a collection F = (Fv)v prime of K , satisfying the following condition: for
almost all v we have Fv = Fv,ur. If F is a Selmer structure we define the corresponding Selmer group by

SelF (K,V ) = {x ∈ H1(K,V ) : locv(x) ∈ Fv ∀v}.

Theorem 4 (Tate). For any Selmer structure F , the space SelF (K,V ) is finite-dimensional over Qp.

Sketch of proof. It’s easy to see that if this statement is true for one F , it’s true for any F , since the
local Galois cohomology groups H1(Kv, V ) are all finite-dimensional. We now choose a particular Selmer
structure F : let Σ be a finite set of primes containing all infinite places, all places above p, and all places
where V is ramified, and consider the Selmer structure

Fv =

{
H1

ur(Kv, V ) if v 6∈ Σ

H1(Kv, V ) if v ∈ Σ

Then Tate has shown that the Selmer group associated to this Selmer structure is finite-dimensional. (It
turns out that one can identify this Selmer group with the Galois cohomology group H1(Gal(KΣ/K), V ),
where KΣ is the maximal extension of K in K unramified outside Σ. For the details, see [Rub00b, Lemma
5.3].) �

We’re mostly interested in three specific choices of Selmer structure, differing only in the choices of the Fv
at primes v | p: we define the strict Selmer group

Selstrict(K,V ) =

{
Fv,ur if v - p
Fv,strict if v ∈ Σ

and similarly the relaxed Selmer group and Bloch–Kato Selmer group.

Hence the strict, relaxed, and Bloch–Kato Selmer groups satisfy

Selstrict(K,V ) ⊆ SelBK(K,V ) ⊆ Selrelaxed(K,V ).

Remark. As will soon become clear, it is SelBK(K,V ) which is the most important of all. We care about
Selstrict(K,V ) and Selrelaxed(K,V ) because they are easier to study, and will give us a stepping-stone towards
SelBK(K,V ). �

Example. Recall that for V = Qp(1) we have the Kummer map

K× ⊗Qp
⊂ - H1(K,Qp(1)).

One can check that this induces isomorphisms

OK [1/p]× ⊗Qp

∼=- Selrelaxed(K,Qp(1)),(1)

O×K ⊗Qp

∼=- SelBK(K,Qp(1)).(2)

The strict Selmer group, on the other hand, should be zero; this is exactly Leopoldt’s conjecture for K. �

Remark. There is a global duality (called Poitou–Tate duality) relating Selmer groups for V and for V ∗(1)
with ‘dual’ local conditions. A good reference is [Rub00b]. �
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1.3. L-functions of Galois representations

1.3.1. Local Euler factors. Let V as above, v unramified prime. Then ρ(Frobv) is well-defined up to
conjugacy, where Frobv is the arithmetic Frobenius.

Definition. The local Euler factor of V at v is the polynomial

Pv(V, t) := det(1− t · ρ(Frob−1
v )) ∈ E[t].

Examples:

V Pv(V, t)
Qp 1− t

Qp(n) 1− t
qnv
, qv = #Fv

H1(AK ,Qp) 1− av(A)t+ qvt
2, av(A) := 1 + qv −#A(Fv)

Remark. Chebotarev density theorem⇒ if V and W are irreducible and have same Euler factors at almost
all v, then V ∼= W . �

1.3.2. Global L-functions (sketch). Assume V comes from geometry, and V is semisimple (direct
sum of irreducibles). Then Pv(V, t) has coefficients in Q (Deligne); and there is a way of defining Pv(V, t)
for bad primes v (case v | p is hardest).

Fix an embedding ι : Q ↪→ C. Then we consider the product

L(V, s) :=
∏

v prime

Pv(V, q
−s
v )−1.

Miraculously, this converges for <(s)� 0.

Example. (1) V = Qp(n), K = Q: L(V, s) = ζ(s+ n);
(2) V = Qp(n), K a number field: L(V, s) = ζK(s+ n), where ζK(s) is the Dedekind zeta function of

K;
(3) V = H1(AK ,Qp), A/K an elliptic curve: L(V, s) is the Hasse–Weil L-function L(A/K, s)

�

Conjecture 1. For V semisimple and coming from geometry, L(V, s) has meromorphic continuation to
s ∈ C with finitely many poles, and satisfies a functional equation relating L(V, s) and L(V ∗, 1− s).

Note that if V is semisimple and comes from geometry, the same is true3 of V ∗, so the conjecture is well-
posed. This conjecture is of course very hard – the only cases where it is known is where we can relate V
to something automorphic, e.g. a modular form or a genus 2 Siegel modular form. The latter was proven
recently by Boxer–Calegary–Gee–Pilloni.

There are lots of conjectures (and a rather smaller set of theorems) relating properties of arithmetic objects
to values of their L-functions; the Birch–Swinnerton-Dyer conjecture is perhaps the best-known of these.
As we’ve just seen, all the information about an elliptic curve you need to define its L-function is encoded
in the Galois action on its Tate module; so can we express the BSD conjecture purely in terms of Galois
representations? This will be the topic of the next section.4

1.4. The Bloch–Kato conjecture

Let K be a number field, and let V be a p-adic representation of GK coming from geometry.

3It is not obvious if this holds without the semisimplicity assumption.
4Actually the answer is “no, we can’t” – as far as I’m aware, there is no purely Galois-representation-theoretic statement

that is precisely equivalent to BSD. But we can get pretty close, as we’ll shortly see.
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Conjecture 2 (Bloch–Kato). We have

dim SelBK(K,V )− dimH0(K,V ) = ords=0 L(V ∗(1), s).

Remark. There are refined versions using Zp-modules in place of Qp-vector spaces, which predict the leading
term of the L-function up to a unit; but we won’t go into these here. �

Let’s look at what the conjecture says in some example cases.

Example 1: V = Qp. Here

L(V ∗(1), s) = L(Qp, s+ 1) = ζK(s+ 1),

so the right-hand side is the order of vanishing of ζK(s) at s = 1, which is −1 (there’s a simple pole). The
left-hand side is dim SelBK(K,Qp)− 1, so the conjecture predicts that SelBK(K,Qp) = 0.

Exercise: Prove this. You’ll need to use the finiteness of the ideal class group of K, together with the fact
that for this representation the local condition Fv,BK agrees with Fv,ur for primes v | p.

Example 2: V = Qp(1). Here L(V ∗(1), s) = ζK(s). We recall the functional equation for ζK(s): let

ΓR(s) = π−
s
2 Γ
(s

2

)
,

ΓC(s) = 2(2π)−sΓ (s) .

and denote by ∆K the discriminant of K. Let

ΛK(s) = |∆K |
s
2 Γr1RΓC(s)r2ζK(s),

where r1 (resp. 2r2) denote the number of real (resp. complex) embeddings of K. Then

ΛK(s) = ΛK(1− s).
From this we can deduce ords=0 ζK(s): we know that Γ(s) has a simple pole at s = 0 and is nonzero at
s = 1

2 and s = 1, and that ζK has a simple pole at s = 1. Hence

ords=0 ζK(s) = r1 + r2 − 1.

Remark. For K = Q, then ζ(0) = − 1
2 is finite and non-zero. �

On the algebraic side, we have H0(K,Qp(1)) = 0 and

dim SelBK(K,V ) = dimQp

(
O×K ⊗Qp

)
= rankO×K

by (2). (For details, see [Rub00b, Prop. 6.1].) Hence the Bloch–Kato conjecture here is exactly Dirichlet’s
unit theorem.

Example 3: Elliptic curves. If V is Vp(E) for an elliptic curve E, then:

• H0(K,V ) = 0;
• the Kummer map lands inside the SelBK(K,V ) by Lemma 2, and it gives an embedding

E(K)⊗Qp ↪→ SelBK(K,V ),

so that dim SelBK ≥ rank(E/K), with equality iff the p-part of Sha is finite;
• ords=0 L(V ∗(1), s) = ords=1 L(E/K, s).

Hence the Bloch–Kato conjecture predicts that

ords=1 L(E/K, s) = SelBK(K,V ),

which is closely related to (but slightly weaker than) the Birch–Swinnerton-Dyer conjecture.

Remark. Notice that L(V ∗(1), s) is expected to be related to L(V,−s) via a functional equation; but this
functional equation will involve various Γ functions as factors, which can have poles, so the orders of vanishing
of the two functions at 0 are not the same in general, as we saw for Qp and Qp(1). On the Selmer-group
side there’s a corresponding relation between SelBK(K,V ) and SelBK(K,V ∗(1)) coming from the Poitou–
Tate global duality theorem in Galois cohomology. One can check that these factors precisely cancel out: if
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L(V, s) has a functional equation of the expected form, then the Bloch–Kato conjecture holds for V ∗(1) if
and only if it holds for V . This is a wonderful (but rather involved) exercise. �

1.5. Euler systems

We’ll now introduce the key subject of these lectures: Euler systems, which are tools for studying and control-
ling Selmer groups. In this section we’ll give the abstract definition of an Euler system, and explain (without
proofs) why the existence of an Euler system for some Galois representation has powerful consequences for
Selmer groups.

References: The standard work on this topic is Karl Rubin’s orange book Euler Systems [Rub00b]. There
are also two alternative accounts in Rubin’s 2004 Park City lecture notes, and in the book Kolyvagin Systems
[MR04] by Mazur and Rubin.

1.5.1. The definition. Let:

• V a GQ-representation (for simplicity)
• T ⊂ V a GQ-stable Zp-lattice
• Σ a finite set of primes containing p and all ramified primes for V

Since V is a GQ-rep, we can consider it as a GK-rep for any number field K and form Hi(K,V ), and there
are corestriction or norm maps

normL
K : Hi(L, V )→ Hi(K,V ) if L ⊃ K.

If K is Galois, Hi(K,V ) is a module over Qp[Gal(K/Q)]. Similarly for cohomology of lattices Hi(K,T ).

Definition. An Euler system for (T,Σ) is a collection c = (cm)m≥1, where cm ∈ H1(Q(µm), T ), satisfying
the following compatibility for any m ≥ 1 and ` prime:

norm
Q(µm`)
Q(µm) (cm`) =

{
cm if ` ∈ Σ or ` | m
P`(V

∗(1), σ−1
` ) · cm otherwise

where σ` is the image of Frob` in Gal(Q(µm)/Q). An Euler system for V is an Euler system for (T,Σ), for
some T ⊂ V and some Σ.

This definition is not very transparent, I admit! Fear not: we’ll see an example before too long. Intuitively,
each class cm has “something to do with” the L-function L(V ∗(1), s) with its Euler factors at primes dividing
mΣ missing5; so when we compare elements for different m, the Euler factors appear.

The main reason to care about these objects is the following theorem, which is due to Rubin [Rub00b],
building on earlier work of Kato [Kat04], Kolyvagin [Kol91], and Thaine [Tha88]:

Theorem 5. [Rub00a, Theorem 2.3] Suppose c is an Euler system for (T,Σ) with c1 non-zero, and suppose
V satisfies various technical conditions. Then Selstrict(Q, V

∗(1)) is zero.

For the purposes of these lectures we don’t need to know how this theorem is proved – our goal is to
understand how to build Euler systems, which is a separate problem. If you do want to know about the
proof, then see the references listed above.

Remark.

• The technical conditions are to do with the image of GQ in GL(V ). This needs to be “large enough”
in the following sense:
(1) V is irreducible as a Qp[GQ]-module;

(2) there exists τ ∈ Gal
(
Q/Q(µp∞)

)
such that dim (V/(τ − 1)V ) = 1.

5This becomes more precise if you work with the equivariant L-function L(V ∗(1),Q(µm)/Q, s) which is a Dirichlet series

taking values in the group ring C[(Z/mZ)×] rather than just in C, encoding the L-values of V twisted by Dirichlet characters
modulo m. The definition of this function only makes sense if you drop the Euler factors at primes dividing m.
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• For the proof of the theorem, we don’t actually need cm to be defined for all m; it’s enough to have
cm for all integers m of the form pkm0, where k ≥ 0 and m0 is a square-free product of primes not
in Σ.

• More generally, one can also define Euler systems for GK-representations, for K a number field.
In place of cyclotomic fields, one has to have classes over different ray class fields of K. However,
we’ll only work with K = Q here.

• There is also a notion of “anticyclotomic Euler system”, which applies when you have a represen-
tation V of GK , a quadratic extension L/K, and cohomology classes for V over the anticyclotomic
extensions of L, which are the abelian extensions of L such that conjugation by Gal(L/K) acts
on their Galois groups by −1. The most important example of an anticyclotomic Euler system
is Kolyvagin’s Euler system of Heegner points [Kol91], where K = Q, V = Vp(E) for E
an elliptic curve, and L is an imaginary quadratic field. Other examples of anticyclotomic Euler
systems have recently been found by Cornut, and by Jetchev and his collaborators.

�

1.5.2. Cyclotomic units. We’re going to build an Euler system for V = Qp(1). Recall that we have
Kummer maps K× ↪→ H1(K,Zp(1)). Also, for L/K finite, we have a commutative square

L×
κp- H1(L,Zp(1))

K×

normL
K

?
κp- H1(K,Zp(1))

normL
K

?

where the left-hand norm map is the usual field norm, and the right-hand one is the Galois corestriction.
So we have to find good elements of the multiplicative groups of cyclotomic fields, satisfying compatibilities
under the norm maps.

Fix an embedding Q ↪→ C× and let ζm = ι−1(e2πi/m) ∈ µm.

Definition. For m > 1, set um = 1− ζm ∈ Q(µm)×.

A pleasant computation (exercise!) shows that6

norm
Q(µm`)
Q(µm) um` =


um if ` | m
(1− σ−1

` ) · um if ` - m and m > 1

` if m = 1

This is almost what we need for an Euler system, but there are two problems: firstly, there is no sensible
way to define u1; secondly, we are seeing Euler factors at all primes, whereas we only want to see them for
primes outside Σ (and Σ can’t be empty because it has to contain p). We can get around both of these
problems by setting

vm =

{
um if p | m,
norm

Q(µpm)

Q(µm) (upm) if p - m (including m = 1).

Theorem 6. The classes cm = κp(vm) are an Euler system for (Zp(1), {p}). �

1.5.3. Soulé twists. Rubin’s theorem applied directly to the cyclotomic unit Euler system isn’t actu-
ally very interesting (it follows easily from class field theory that Selstrict(Q,Qp) = 0). However, there is a
notion of twisting for Euler systems.

6This is stated in Rubin’s book “Euler Systems”, §3.2, but with a sign error: he sets um = ζm − 1, which doesn’t quite

work, since norm
Q(µ8)
Q(µ4)

(ζ8 − 1) 6= ζ4 − 1.
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Theorem 7. Let χ : GQ → Z×p be a continuous character unramified outside Σ (e.g. any power of the
cyclotomic character). Then there is a canonical bijection c 7→ cχ between Euler systems for T and for the
twist T (χ).

Let me sketch how to prove this when χ is the cyclotomic character. Let e be a basis of Zp(1), and write
en for e (mod pn). Suppose we have an Euler system (cm)m≥1 with cm ∈ H1(Q(µm), T ), where T ⊂ V is a
GQ-stable Zp-lattice. We then have natural map

twn : H1(Q(µmpn), T/pnT )
⊗en- H1(Q(µmpn), T/pnT )⊗ en ∼= H1(Q(µmpn), T/pnT (1));

the second equality is true because Gal(Q/Q(µmpn)) acts trivially on en. Note that if cmpn,n denotes the
image of cmpn in H1(Q(µmpn), T/pnT ), then

twn(cmpn,n) ∈ H1(Q(µmpn), T/pnT (1)).

Define
cχm = lim←−

n

norm
Q(µmpn )

Q(µm) twn(cm,n);

note that cχm ∈ lim←−nH
1(Q(µm), T/pnT (1)) ∼= H1(Q(µm), T (1)). On can show that these classes form an

Euler system for V (1).

Remark. Note that the “bottom class” cχ1 in the twisted Euler system depends on the collection of classes
{cpn}n≥1, not just on c1. So even if c1 6= 0 we might have cχ1 = 0, and we have to check carefully that the
twisted Euler system satisfies the conditions for Rubin’s theorem. �

The twists of the cyclotomic unit Euler system have many applications in number theory; see e.g. §3.2 of
[Rub00b]. For instance, they play a major role in Huber and Kings’ proof of the Bloch–Kato conjecture for
Qp(n) for all n ∈ Z, an account of which can be found in [CRSS15].
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CHAPTER 2

A toolkit for building Euler systems

2.1. Etale cohomology and the Hochschild–Serre spectral sequence

(References: not as many as there should be. Jannsen’s article “Continuous étale cohomology” [Jan88] has
the details, but it is not an easy read.)

We saw before that, for a variety X/K, the étale cohomology groups Hi
ét (XK ,Qp) were an interesting source

of Galois representations.

But this isn’t the only thing we can do with étale cohomology. Rather than base-extending to K, we can also
take étale cohomology of X/K directly1; there are groups Hi

ét(X,Qp(m)) for all i and m. These “absolute”
étale cohomology groups are not themselves Galois representations, but it turns out that these are related
to the Galois cohomology of the étale cohomology over K:

Theorem 8 (Jannsen). For any variety X/K, and any n, there is a convergent “Hochschild–Serre” spectral
sequence

Eij2 = Hi
(
K,Hj

ét(XK ,Qp)(n)
)
⇒ Hi+j

ét (X,Qp(n)).

In particular, we get edge maps Hi(X,Qp(n))→ Hi(XK ,Qp(n))GK , and if F 1Hi denotes the kernel of this
map (the “homologically trivial” classes), there is a map

F 1Hi(X,Qp(n))→ H1
(
K,Hi−1(XK ,Qp)(n)

)
.

So, if X is defined over Q and V is the Galois representation Hi−1(XQ) (or a direct summand of it), we can

try to construct an Euler system for V by building classes in F 1Hi(XQ(µm)) for varying m.

How will we do this? We’ll use geometry! To be precise, we’ll rely on the following rather simple bag of
tricks:

• Cup products: étale cohomology has cup-product maps

Hi(X,Qp(m))×Hj(X,Qp(n))→ Hi+j(X,Qp(m+ n)).

• Kummer maps: if f ∈ O(X)× is a unit in the ring of rational functions on X, then there is a
class κp(f) ∈ H1(X,Qp(1)).

• Pushforward maps: if Z ⊂ X is a closed subvariety of codimension d (and X and Z are both
smooth), then there are pushforward maps

Hi(Z,Qp(n))→ Hi+2d(X,Qp(n+ d)).

In particular, the pushforward of the identity class 1Z ∈ H0(Z,Qp(0)) is a class in H2d(X,Qp(d)),
the cycle class of Z.

So if we have a good supply of units on X, or of subvarieties of X (or of subvarieties of X with units on
them, etc) then we have some objects to play with; and we can try to write down classes landing in the
“right” cohomological degree to map into H1 of our target Galois representation.

1Technical point: what we actually want here is “continuous étale cohomology” in the sense of Jannsen. This is consistent
with our use of continuous cochains to define cohomology of Galois representations.
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If you have a random variety, it’s not clear how to find lots of subvarieties, or lots of units, on it; but we’re
going to home in on the case where X is a Shimura variety – a variety coming from automorphic theory,
such as a modular curve. Then we can try and write down units and subvarieties using automorphic ideas.

2.2. Modular curves and modular forms

(References: Diamond–Shurman [DS05], Darmon–Diamond–Taylor [DDT97].)

We’re particularly interested in the Galois representations associated to modular forms, which come from
geometry via modular curves. We’ll consider weight 2 modular forms first, as these are the simplest to
handle.

2.2.1. Modular curves. For N ≥ 1 let

Γ1(N) =

{(
a b
c d

)
∈ SL2(Z) : c = 0, d = 1 mod N

}
.

This acts on the upper half-plane H via τ 7→ aτ+b
cτ+d . It turns out that the quotient is naturally an algebraic

variety:

Theorem 9. For N ≥ 4 there is an algebraic variety Y1(N) over Q with the following properties:

• Y1(N) is a smooth geometrically connected affine curve.
• For any field extension2 F/Q, the F -points of Y1(N) biject with isomorphism classes of pairs (E,P ),

where E/F is an elliptic curve and P ∈ E(F ) is a point of order N on E.
• Y1(N)(C) ∼= Γ1(N)\H, via the map sending τ ∈ H to (Eτ , Pτ ) where Eτ = C/(Z + Zτ) and
Pτ = 1/N mod Z + Zτ .

(Much stronger theorems are known – for instance, Y1(N) has a canonical smooth model over Z[1/N ] – but
we won’t need this just now.)

Remark. There are two different choices of conventions for Q-models for Y1(N); everyone agrees what Y1(N)
means over C, but there are two different ways to descend it to Q, classifying elliptic curves with either a
point of order N (our convention) or an embedding of the group scheme µN (the alternative convention). �

2.2.2. Galois representations. We can use these rational models of modular curves to attach Galois
representations to modular forms. Let f =

∑
anq

n be a cuspidal modular eigenform of weight 2 and level
Γ1(N), normalised so that a1 = 1. By a theorem of Shimura, there is a number field L such that all an ∈ L.
We shall fix an embedding ι : L ↪→ Qp, and assume that our p-adic coefficient field E/Qp contains the image
of ι.

Definition. We let Vp(f) be the largest subspace of H1
ét(Y1(N)Q,Qp) ⊗ E on which the Hecke operators

T (`), for ` - N , act as multiplication by a`(f).

By construction, Vp(f) is an E-linear Galois representation coming from geometry. However, one can also
show that

(1) Vp(f) is 2-dimensional and irreducible.
(2) Vp(f) is a direct summand of H1

ét (not just a subspace).

(3) For ` - pN , Vp(f) is unramified at ` and the trace of Frob−1
` on Vp(f) is a`(f). More precisely, the

local Euler factor is given by

P`(Vp(f), t) = 1− a`(f)t+ `χ(`)t2,

where χ is the character of f .
(4) Vp(f)∗ = Vp(f ⊗ χ−1)(1).

2Any Q-algebra, in fact; this is important if you want to make precise the idea that Y1(N) represents a functor.
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It follows from (3) that (up to finitely many bad Euler factors at primes ` | pN)3 the global L-series
L(Vp(f), s) is just the L-series of f ,

L(f, s) =
∑

an(f)n−s.

In particular if L = Q, so that f corresponds to an elliptic curve A, then we have Vp(f) ∼= H1
ét

(
AQ,Qp

)
∼=

Vp(A)(−1).

Remark. Warning: in Diamond–Shurman chapter 9, the representation they denote by ρf,p is the dual
of our Vp(f), which is compensated for by the fact that they use arithmetic Frobenius Frobp rather than

geometric Frobenius Frob−1
p to define the Euler factor. The same applies to Romyar Sharifi’s notes at this

Arizona Winter School: the representation (ρf , Vf ) defined in §3.5 of his notes is the dual of our Vp(f). �

2.2.3. Tensor products. Later on, we’ll be interested in tensor products of Galois representations
associated to modular forms. If you take two newforms f , g (both with coefficients in E) and let V be
the four-dimensional Galois representation V = Vp(f) ⊗ Vp(g), then using the Kunneth formula for étale

cohomology you can show that V is a direct summand of H2
ét

(
Y1(N)2

Q
,Qp

)
⊗E, for any N divisible by Nf

and Ng.

The L-function attached to this tensor product representation is a rather classical object: it’s the so-called
Rankin–Selberg convolution L-function of f and g, denoted by L(f ⊗ g, s). Up to finitely many bad Euler
factors, this agrees with the Dirichlet series

(‡) L(χfχg, 2s− 2)
∑
n≥1

an(f)an(g)n−s.

2.3. Numerology

For instance, let’s suppose we want to build an Euler system for Vp(f), where f is a modular form of weight
2. Since we can twist Euler systems, we can choose to work with Vp(f)(n) for any integer n.

Because Y = Y1(N)Q is affine, we have H2
ét(YQ,Qp) = 0, and H1

ét(YQ,Qp)(n) contains Vp(f)(n) as a direct
summand. So the Hochschild–Serre spectral sequence gives us a map

H2
ét(Y,Qp(n))→ H1

(
Q, H1

ét(YQ,Qp)(n)
)
→ H1(Q, Vp(f)(n)).

How can we get at the groups H2
ét(Y,Qp(n)) using our geometric toolkit?

• For n ≤ 0 this is hopeless, because our toolkit will only ever give classes in Hi(−,Qp(n)) for n ≥ i
2

(check this!)
• For n = 1, you can use cycle classes of codimension 1 subvarieties of Y – i.e., points. This is

Kolyvagin’s original approach [Kol91]: to build an Euler system using cycle classes of Heegner
points. However, this gives an anticyclotomic Euler system (relative to some choice of imaginary
quadratic field), not a full Euler system in the sense of §1.5.1.4.
• For n = 2, you can use cup-products of units: the Kummer map gives you classes in H1

ét(Y,Qp(1)),
and the cup-product of two such classes lands in H2

ét(Y,Qp(2)). This is Kato’s approach [Kat04].
• n ≥ 3 can also be made to work similarly (but gives no more information than for n = 2).

We can also ask the same question for Vp(f)⊗ Vp(g), using the geometry of Y × Y . Again, different twists
n give very different geometric setups; and taking n too small is hopeless – you want n ≥ 2 at least. The
sensible choices are:

3In fact, if f is a newform, then L(f, s) and L(Vp(f), s) have the same Euler factors at the bad primes too, although this is

much harder to check. This doesn’t work for the Rankin–Selberg L-function; the “naive” Rankin–Selberg L-series (‡) frequently
has the wrong local factors at the bad primes, even if f and g are newforms.

4This is an instance of a general phenomenon. We have seen that one needs i ≤ 2n for geometric techniques to work. It

turns out that in the boundary case i = 2n, one can only work with cycle classes of subvarieties (not with units); and these
cannot give a full Euler system, only an anticyclotomic one.
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• n = 3: we can get classes here as cup-products κp(f1) ∪ κp(f2) ∪ κp(f3), where f1, f2, f3 are units
on Y × Y .

• n = 2: we can get classes by taking a curve Z ⊂ Y ×Y and a unit f ∈ O(Z)×, and pushing forward
κp(f) ∈ H1

ét (Z,Qp(1)) along the embedding Z ↪→ Y × Y .

The n = 3 approach has, I believe, never been carried out (and people have tried very hard to make it work
without success). The n = 2 approach leads to the Euler system of Beilinson–Flach elements, which we’ll
discuss later in these lectures.

2.4. Changing the field and changing the level

To build an Euler system using the Hochschild–Serre spectral sequence, we need to build classes inHi(XK ,Qp(n))
as K varies over cyclotomic fields. It turns out that, for modular curves, we can “sneak up” on this field
extension by varying the level of our modular curves instead.

Definition. We write µ◦m for the Q-variety of primitive m-th roots of unity.

Concretely, this is the 0-dimensional subvariety of the affine line cut out by Φm(X) = 0, where Φm is the
m-th cyclotomic polynomial. This variety is connected (since the cyclotomic polynomials are irreducible
over Q) but not, of course, geometrically connected once m > 2.

Hence, for any variety X/Q, we can consider the product variety X × µ◦m, which is also a variety over Q.

Proposition 5. For any i,m, n, we have isomorphisms of GQ-representations

Hi
ét

(
(X × µ◦m)Q,Qp

)
∼= Ind

GQ

GQ(µm)
Hi

ét

(
XQ,Qp

)
and isomorphisms of Qp-vector spaces

Hi
ét

(
XQ(µm),Qp(n)

) ∼= Hi
ét (X × µ◦m,Qp(n)) .

(This is a form of Shapiro’s lemma; it corresponds to the fact that µ◦m = Spec Q(µm), and hence XQ × µ◦m
is the image of XQ(µm) under the forgetful functor from Q(µm)-varieties to Q-varieties.)

This is useful to us because, if X = Y1(N), the base-extension Y1(N) × µ◦m is also a modular curve. More
precisely, for any open compact subgroup U ⊂ GL2(Af), there is an algebraic curve Y (U) defined over Q,
whose C-points are the quotient

(3) Y (U)(C) = GL+
2 (Q)\

[
GL2(Af)×H

]
/U.

(Here the left action of GL+
2 (Q) is on both factors of GL2(Af)×H, while U acts only on GL2(Af).)

If U is the subgroup

U1(N) :=

{(
a b
c d

)
∈ GL2(Ẑ) : c = 0, d = 1 mod N Ẑ

}
then Y (U) is just Y1(N). However, if we set U ′ = {u ∈ U1(N) : det(u) = 1 mod m}, then Y (U ′) is
canonically isomorphic to Y1(N)× µ◦m, and the action of the quotient U/U ′ on Y (U ′) matches up with the
Galois action via the usual isomorphism Gal(Q(µm)/Q) ∼= (Z/mZ)∗.

This transports our problem – constructing cohomology classes for Y1(N) over varying cyclotomic fields –
into a more “automorphic” problem: constructing cohomology classes for modular curves over Q of varying
levels.

Remark. To some extent this is just a superficial change of language. However, it seems to be a helpful
one, as will be clear from our proofs of norm relations later in these lectures. �
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2.5. Siegel units

As we saw above, we can get potentially useful cohomology classes if we have a source of units in the
coordinate rings of our varieties. Fortunately, for modular curves, we have lots of nice units at our disposal.
(References: §§1–2 of [Kat04] are the definitive source; [Lan87] is also useful.)

2.5.1. The construction. Let U be an open compact subgroup of GL2(Af) (such as the group U1(N)
from the previous section).

Definition. A modular unit of level U is a unit in the coordinate ring of the algebraic variety Y (U).

This definition is very clean, but hard to work with concretely. So we’ll unwrap it a bit. Recall that Y (U)(C)
is defined as a quotient of H×GL2(Af), so the image of H×{1} in this quotient is a connected component
of Y (U)(C). It turns out that this image is exactly Γ\H, where Γ is the discrete group U ∩GL+

2 (Q) (which
is commensurable with SL2(Z)). So we get a map(

modular units
of level U

)
-
(

nowhere-zero holomorphic fcns
on Γ\H with finite-order poles at cusps

)
.

Fact : This map is injective, because the Galois group acts transitively on the components of Y (U). �

For a general subgroup U the image is a little fiddly to describe. However, for some nice subgroups we can
make it very concrete:

Proposition 6. Let U(N) ⊂ GL2(Ẑ) be the kernel of the reduction map GL2(Ẑ) → GL2(Z/NZ), and
Γ(N) = U(N)∩SL2(Z). Then the modular units of level U(N) are precisely the functions on Γ(N)\H which
are holomorphic and nonzero away from the cusps, are meromorphic at the cusps, and have q-expansion
coefficients in Q(µN ). �

We’re going to construct some “special” modular units of level U(N), using nothing but classical 19th-
century elliptic function theory. These functions are called Siegel units and they are really amazingly
powerful gadgets. In fact, you can recover virtually every known example of an Euler system by starting
from Siegel units!

Definition. Let α, β ∈ Q/Z, not both zero. Define the function gα,β : H → C as follows: write (α, β) =
(a/N, b/N) for some N ≥ 1 and a, b ∈ Z, with 0 ≤ a < N without loss of generality. Then

gα,β(τ) = qw
∏
n≥0

(
1− qn+a/NζbN

) ∏
n≥1

(
1− qn−a/Nζ−bN

)
,

where q = e2πiτ and w = 1
12 −

a
N + a2

2N2 .

This is well-defined (independent of the choice of common denominator N). We’d like to say it’s modular
of level N , but this doesn’t quite work: acting on it by an element of Γ(N) multiplies it by a root of unity.
These error terms can be killed by a very simple modification:

Definition (Siegel units). For c > 1 coprime to 6 and to the order of α, β in Q/Z, let

cgα,β =
(gα,β)c

2

gcα,cβ
.

Proposition 7. The functions cgα,β, for (α, β) ∈ ( 1
NZ/Z)⊕2 − {(0, 0)}, are modular units of level U(N).

The left action of GL2(Z/NZ) on Y (U(N)) transforms these units via the rule

cgα,β | σ = cgα′,β′ , where (α′, β′) = (α, β)σ. �

In particular, because (0, 1
N ) is preserved by right-multiplication by matrices of the form

(
x y
0 1

)
, which

give the action of the quotient U1(N)/U(N), we see that:

Proposition 8. The function cg0,1/N is a modular unit of level U1(N). �

23



2.5.2. Changing the level: the basic norm relation.

Theorem 10. Let α, β ∈ Q/Z, not both zero, and let A ≥ 1. Then we have the three relations∏
α′:Aα′=α

cgα′,β(τ) = cgα,β(A−1τ),(4) ∏
β′:Aβ′=β

cgα,β′(τ) = cgα,β(Aτ),(5)

∏
α′,β′

A(α′,β′)=(α,β)

cgα′,β′(τ) = cgα,β(τ).(6)

Sketch of proof. Note that (1) and (2) imply (3), and (2) follows from (1) via the action of

(
0 −1
1 0

)
;

so it suffices to prove (1). This can be bashed out directly from the infinite product formula, but there is
a much slicker argument in[Kat04], involving a 2-variable theta function cθ(τ, z) such that cθ(τ, ατ + β) =

cgαβ . �

The most important relation is (3), which can be written in a more conceptual way using push-forward
maps between modular curves. Suppose ` is a prime; then there’s a quotient map π : Y1(N`)→ Y1(N), and
associated to this is a norm map π∗ : O(Y1(N`))× → O(Y1(N))×, characterised by

(π∗f)(x) =
∏

y∈π−1(x)

f(y) for x ∈ Γ1(N)\H.

Corollary 1. The Siegel units satisfy

π∗(cg0,1/N`) =

cg0,1/N if ` | N,

cg0,1/N ·
(
cg0,u/N

)−1
if ` - N.

where u is the inverse of ` modulo N . �

Proof. Exercise. �

This is hugely important, because it’s the underlying input for all of the Euler systems we will build out of
Siegel units.
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CHAPTER 3

The Beilinson–Flach Euler system

In this section we’re going to write down the classes, and prove the “p-direction” norm relations, for one
important example of an Euler system: the Euler system of Beilinson–Flach elements. That is, we’ll define
classes over the fields Q(µm) for all integers m, and we’ll show that if m is of the form pr, then these classes
are compatible under the norm maps for varying r.

References for this lecture: here there is really no alternative to the original papers [LLZ14], [KLZ15] and
[KLZ17].

3.1. Beilinson–Flach elements

As we’ve seen in Sections 2.2 and 4.1, we can find this Galois representations attached to Rankin–Selberg
convolutions of pairs of weight 2 modular forms in the geometry of Y1(N)2, for a suitable integer N . Suppose
now that both modular forms have weight 2. Then we want to construct classes in the cohomology groups

H3
ét (Y1(N)× Y1(N)× µ◦m,Zp(2))

for m ≥ 1. Notice that we have only one copy of µ◦m here, not two; so this is best interpreted not as a
Shimura variety for GL2×GL2, but for the fibre product

GL2×GL1
GL2 = {(g1, g2) ∈ GL2×GL2 : det(g1) = det(g2)}.

3.1.1. Strategy. In the “Numerology” section above, we saw that one natural line of attack is to find
curves C ⊂ Y × Y , where Y = Y1(N), and units on C. This approach goes back to Beilinson in 1984 (and
was further refined by Flach in 1992, hence the name).

An obvious first guess is to take C to be the diagonally-embedded copy of Y in Y ×Y , and then put modular
units on C. This is exactly what we’ll do for m = 1: we define

c BF1,N = ι∗
(
cg0,1/N

)
,

where ι is the diagonal embedding, and c > 1 is some integer coprime to everything in sight.

However, how will we get classes over Q(µm) for m > 1? If we had modular units on the curves Y1(N)×µ◦m
which were norm-compatible in m, then we could just push these forward in the same way. However, units
with this kind of norm-compatibility seem to be hard to find; the Siegel units have very good compatibility
properties in the “N -direction”, but no interesting compatibility in the “m-direction”.

So we have to make the curve C vary too, and get some contribution to our norm-compatibility this way
instead. This is the first hint at a rather powerful general machine that can turn easy norm relations on a
small group into “hard” norm relations on a larger group.

We’ll have a lot of use for the following basic lemma relating pushforward and pullback maps in étale
cohomology:
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Proposition 9 (Push-pull lemma). Suppose we have a commutative diagram of morphisms of smooth va-
rieties

X
α- Y

Z

β
?

δ
- W,

γ
?

in which the horizontal maps α and δ are closed embeddings of codimension c, and the vertical maps β and γ
are unramified coverings of equal degrees. Then the morphisms Hi

ét(Z,Zp(n)) → Hi+2c
ét (Y,Zp(n + c)) given

by α∗ ◦ β∗ and γ∗ ◦ δ∗ coincide. �

This is a simple instance of a much more general result: the hypotheses imply that the diagram is Cartesian,
identifying X with the fibre product Y ×W Z. The identity of push-pull and pull-push maps holds for any
Cartesian diagram, although we’ll only use diagrams of this simple kind.

3.1.2. Rankin–Eisenstein classes.

Definition. For integers M | N , let

U(M,N) =

{(
a b
c d

)
∈ GL2(Ẑ) :

a = 1, b = 0 mod M,
c = 0, d = 1 mod N

}
.

A more compact notation for the same thing, which I’ll use henceforth, is that U(M,N) is the subgroup of

level

(
M M
N N

)
. The definition makes perfect sense without assuming M | N , of course, but we will only

use it in this case. We write Y (M,N) for the corresponding modular curve. Notice that we’ve already seen
two special cases: we have U(1, N) = U1(N), and U(N,N) = U(N).

The following is an easy check:

Proposition 10. If M | N , the group U(M,N) is normalised by the element

(
1 1
0 1

)
∈ GL2(Ẑ). �

So we can make the following definition:

Definition. Let ιM,N be the embedding Y (M,N) ↪→ Y (M,N)2 given by

P 7→
(
P,

(
1 1
0 1

)
· P
)
.

Notice that this corresponds to τ 7→ (τ, τ + 1) on the upper half-plane.

Definition. The Rankin–Eisenstein class cREisM,N is the image of cg0,1/N under (ιM,N )∗.

3.1.3. Beilinson–Flach elements. The final piece of the puzzle is to descend from the higher-level
modular curves where the Rankin–Eisenstein classes live to Y1(N)×µ◦M . As above, we’re identifying Y1(N)×
µ◦M with the Shimura variety of level U ′ = {

(
a b
c d

)
: c = 0, d = 1 mod N, ad− bc = 0 mod M}.

One checks easily that (
1 0
0 M

)
U(M,MN)

(
1 0
0 M

)−1

⊆ U ′,

so there is a map sM : Y (M,MN) → Y1(N) × µ◦M corresponding to τ 7→ τ/M on H. This gives us a
pushforward map in cohomology, (sM × sM )∗.

Definition. We define the Beilinson–Flach class as the class

cBFM,N = (sM × sM )∗ (cREisM,MN ) ∈ H3
ét

(
Y1(N)2 × µ◦M ,Qp(2)

)
.
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These are the classes we really want to study. However, it turns out that proving the norm-compatibility re-
lations for the Beilinson–Flach elements directly is difficult; it’s easiest to investigate the norm-compatibility
of the auxiliary classes cREisM,N first, and deduce norm-compatibility relations for the classes cBFM,N as a
consequence. This is what we’ll do in the next section.

3.2. Norm-compatibility for the Rankin–Eisenstein classes

It’s easy to see that Rankin–Eisenstein classes “inherit” from the Siegel units good norm-compatibility
properties in the N -aspect.

Proposition 11. Let ` be a prime dividing N , and let π` denote the natural quotient map Y (M,N`) →
Y (M,N). Then we have

(π` × π`)∗ (cREisM,`N ) = cREisM,N

when ` | N .

Proof. We have a commutative diagram

Y (M,N`)
ιM,N-̀ Y (M,N`)2

Y (M,N)

π`

? ιM,N- Y (M,N)2

π` × π`
?

from which we deduce that
(ιM,N ◦ π`)∗ = ((π` × π`) ◦ ιM,N`)∗.

By the functoriality of pushforward in etale cohomology, we deduce that

(ιM,N )∗ ◦ (π`)∗ = (π` × π`)∗ ◦ (ιM,N`)∗.

We saw in Corollary 1 that (π`)∗(cg0,1/N`) = cg0,1/N . Hence

(ιM,N )∗(cg0,1/N ) = (π2
` )∗ ◦ (ιM,N`)∗(cg0,1/N`)(7)

⇔cREisM,N = (π` × π`)∗ (cREisM,`N ) .(8)

�

Remark. There is a similar formula when ` - N . (exercise) �

The Rankin–Eisenstein classes have also, miraculously, acquired an extra norm-compatibility in the M -
aspect, which the Siegel units do not have. We define a twisted degeneracy map τ` : Y (M`,N)→ Y (M,N)
as follows.

Let U(M(`), N) be the group of level

(
M M`
N N

)
. Then there is a natural quotient map Y (M`,N) →

Y (M(`), N); and there are two maps

π̂1,`, π̂2,` : Y (M(`), N)→ Y (M,N),

where π̂1,` is the natural quotient map, and π̂2,` corresponds to τ 7→ τ/` on H.

Remark. The map π̂2,` is well-defined, since(
1

`

)
U(M(`), N)

(
1

`

)−1

⊆ U(M,N).

�

Definition. We write τ` for the composite

Y (M`,N)→ Y (M(`), N)
π̂2,`- Y (M,N).
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Theorem 11. If M,N, ` are integers with ` prime, ` | M and M` | N , then the Rankin–Eisenstein classes
satisfy

(τ` × τ`)∗ (cREis`M,N ) = (U ′(`)× U ′(`)) · cREisM,N .

Here U ′(`) is the transpose of the usual Hecke operator U(`). The proof of this involves a very important
commutative diagram of maps of algebraic varieties over Q:

Y (`M,N) ⊂
ι`M,N- Y (`M,N)2

Y (`M,N)

wwwwwwwwwwwwwwwwwww
ι′ - Y (M(`), N)2

?

♦

Y (M,N)
?

⊂
ιM,N - Y (M,N)2

π̂
1
,` ×

π̂
1
,`

?

Y (M,N)2

τ
` ×

τ
`

-

π̂
2,` ×

π̂
2,`

-

Here the two diagonal maps are the ones introduced in the previous section, and the vertical maps are
the natural quotient maps. The commutativity of the diagram is obvious by construction; the two really
important and nonobvious properties are the following:

Proposition 12. Under the hypotheses of the theorem, the map ι′ is a closed embedding, and the lower left
square marked ♦ is a Cartesian diagram of the kind described in Proposition 9.

Proof. It’s easy to see that the image of ι′ is precisely the modular curve associated to the group

U(M(`), N) ∩
(

1 1
0 1

)−1

U(M(`), N)

(
1 1
0 1

)
.

However, a straightforward matrix computation shows that this intersection is nothing but U(`M,N) itself.
So ι′ is a closed embedding.

Since both horizontal maps in the square ♦ are closed embeddings, and the vertical maps are automatically
finite coverings, it suffices to check that the degrees of the vertical maps agree. These degrees are equal to the
indices of corresponding inclusions of level groups: on the left-hand side we have [U(M,N) : U(`M,N)] = `2,
and on the right-hand side [U(M,N)2 : U(M(`), N)2] = `2. �

Corollary 2. The following two classes in H3
ét(Y (M(`), N)2,Zp(2)) coincide:

• the pushforward of cREis`M,N along the upper vertical arrow Y (`M,N)2 → Y (M(`), N)2;
• the pullback of cREisM,N along the lower vertical arrow Y (M(`), N)2 → Y (M,N)2.

Proof. This is exactly the “push-pull” lemma applied to the square � (since the unit cg0,1/N on
Y (`M,N) is, by definition, the pullback of the unit with the same name on Y (M,N).) �

Since these two classes are equal on Y (M(`), N)2, they certainly must have the same pushforward along
the diagonal map to Y (M,N)2. So we obtain an equality between (τ` × τ`)∗ (cREis`M,N ) and the image
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of cREis`M,N under pullback and pushforward around the triangle. This composite of pushforward and
pullback maps is exactly the Hecke operator U ′(`)× U ′(`), so we have proved the theorem. �

Exercise. Show that if M,N, ` are integers with ` prime, ` - M and M` | N , then the Rankin–Eisenstein
classes satisfy

(9) (τ` × τ`)∗ (cREis`M,N ) = (U ′(`)× U ′(`)−∆∗` ) · cREisM,N ,

where ∆` denotes any element of GL2(Z/MNZ)2 of the form

((
x

1

)
,

(
x

1

))
with x ≡ ` (mod M).

Remark. Note that the assumption `M | N is essential, since otherwise the definition of the Rankin–
Eisenstein element doesn’t even make sense. �

3.3. Norm-compatibility for the Beilinson–Flach classes

We can now state and prove the main theorem:

Theorem 12. If ` is prime with ` |M and ` | N , then we have

norm
Q(µ`M )
Q(µM ) (cBF`M,N ) = [U ′(`)× U ′(`)] · cBFM,N .

Proof. This follows from the commutativity of the diagram

Y (`M, `MN)
τ-̀ Y (M, `MN)

π-̀ Y (M,MN)

Y1(N)× µ◦`M

s`M

?
- Y1(N)× µ◦M ,

sM

?

and the following compatibilities:

• Theorem 11, which we use to compare REis`M,`MN with REisM,M`N ;
• Proposition 11, which allows us to compare REisM,M`N with REisM,MN ;
• the fact that U ′(`) commutes with the pushforward along the maps π` and sM . �

Exercise. Using (9), formulate and prove the analogous statement in the case when ` -M and ` | N .

Remarks.

(i) It is also possible to describe the class cBFM,N directly at level N (rather than going via the higher-
level curves Y (M,MN) as we have done). The curve image(ιM,MN ) ⊂ Y (M,MN)2 maps down via
sM × sM to a curve CM,N ⊂ Y1(N)2 × µ◦M , and our class can be characterised as the pushforward of
a unit on CM,N . However, the curve CM,N is rather messy (it can have many self-intersections, for
instance), which makes it more difficult to prove the norm relation by this approach.

(ii) The compatibility of U ′(`) with pushforwards may seem like a minor point, but I want to emphasise it
here, because this is the point where the proof breaks down in the case ` - MN . In this case, there is
an operator U ′(`) on Y (M, `MN), and an operator T ′(`) on Y (M,MN), but these aren’t compatible
under π∗. So to complete the argument we would need to relate

(π × π)∗

[
(U ′(`)× U ′(`)) · cREisM,N`

]
to the objects we know about on Y (M,MN). This can be done – in fact there are at least three
separate approaches – but it isn’t easy. The eventual outcome is that for ` -MN we have a formula

norm
Q(µ`M )
Q(µM ) (cBF`M,N ) = Q`(σ

−1
` ) · cBFM,N ,

where Q`(X) is a degree 4 polynomial with coefficients in the Hecke algebra. �
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3.4. Projection to the (f, g) component

We now bring the eigenforms f and g into the picture. It’s important to impose some local conditions at
p. We take f and g to be eigenforms of some level N , with p | N , whose U(p)-eigenvalues αf , αg are p-adic
units (we say f and g are ordinary at p).

Remark. If we start with some form f of level N0 with p - N0, then we replace f with one of the two
U(p)-eigenforms of level N = pN0 which have the same Hecke eigenvalues away from p. This process is
called p-stabilisation. This doesn’t change the Galois representations: the Galois representations attached
to the p-stabilisations of f are isomorphic to that of the original form f , although they live on a different
modular curve. �

The quotient

H1
ét

(
Y1(N)Q,Qp(1)

)
/

〈
T ′(`)− a`(f) ∀` - N,
U ′(`)− a`(f) ∀` | N

〉
turns out to be isomorphic to the dual1 V ∗f of Vf . The image of the cohomology with Zp-coefficients gives
a lattice T ∗f in V ∗f . Doing this for both f and g, and combining this with the Hochschild–Serre spectral
sequence, we get a projection map

Prf,g : H3
ét(Y1(N)× µ◦M ,Zp(2))→ H1(Q(µM ), T ∗f ⊗ T ∗g ).

By construction, the Hecke operator U ′(`) × U ′(`) on the source corresponds to multiplication by αfαg on
the target. This gives us the following theorem:

Proposition 13. The classes

(αfαg)
−r Prf,g (cBFpr,N,1) ∈ H1

(
Q(µpr ), T

∗
f ⊗ T ∗g

)
are norm-compatible for r ≥ 1. �

Notice that it’s crucial that αf , αg are p-adic units, since otherwise these renormalised classes wouldn’t land
in T ∗f ⊗ T ∗g any more.

Exercise. Show that if p | N , then

cores
Q(µp)
Q Prf,g (cBFp,N ) = (αfαg − 1) Prf,g (cBF1,N ) .

The exercise shows that the case r = 0 doesn’t quite work; there is an unwanted Euler factor appearing, just
as in the case of cyclotomic units. Exactly as in that case, we can get rid of this error term by re-defining
the r = 0 class to be the norm of the r = 1 class. This gives an element of the module

H1
Iw

(
Q(µp∞), T ∗f ⊗ T ∗g

)
:= lim←−

r≥0

H1
(
Q(µpr ), T

∗
f ⊗ T ∗g

)
,

which is the Iwasawa cohomology of T ∗f ⊗ T ∗g .

3.4.1. Euler factors. Having got this far, we can ask what happens if ` doesn’t divide M and N . If
` | N but ` -M then a slight modification of the argument gives

norm
Q(µ`M )
Q(µM ) (cξ`M,N ) = (U(`)′ − σ`) · cξM,N .

If ` - N things get quite a lot more difficult, because one has to keep track of the difference between the
Hecke operators U(`)′ at level `N and T (`)′ at level N . The eventual result is that

norm
Q(µ`M )
Q(µM ) (cξ`M,N ) = −σ`Q`(σ−1

` ) · cξM,N

where Q` is a degree 4 polynomial with coefficients in the Hecke algebra.

1The dual appears here because the T ′(`) are the adjoints of the T (`) under Poincaré duality.

30



Remark. We expected that Q` would act on the (f, g)-eigenspace as the Euler factor of V ∗(1), where
V = Vp(f) ⊗ Vp(g)(2) is our Galois representation. But this isn’t the polynomial we get: if P` is the
polynomial giving the Euler factor, then Q`(X) = P`(X) + (` − 1)R`(X

2), where R` is the Euler factor of
χfχg.

David and I spent a week in the summer of 2012 repeatedly checking and re-checking the calculations thinking
that this error term was a mistake. We eventually concluded that it really is there. We later understood
that this is again a consequence of our Euler system being a “shadow” of a conjectural rank 2 Euler system.
For applications, the error term is not an issue: fortunately, it is zero modulo `− 1, and one always chooses
the primes ` in Euler system arguments to be congruent to 1 modulo high powers of p so the error term
can be neglected. (A similar phenomenon occurs for the Euler system of Stickelberger elements, cf. §3.4 of
Rubin’s book.) �
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CHAPTER 4

Modular forms of higher weight

4.1. Galois representations

When we defined Galois representations attached to modular forms, we assumed that the modular forms has
weight 2. Let’s now see how this extends to other weights.

Assume now that f is a cuspidal modular eigenform of level Γ1(N) and weight k + 2 for some k ≥ 0. (We
say that f has cohomological weight.) It turns out that we can still attach a Galois representation to f , but
if k > 0, then we have to consider étale cohomology with coefficients.

It follows from Theorem 9 that there is a universal elliptic curve over Y1(N), say π : E → Y1(N). Denote
by H the étale sheaf Vp(E) on Y1(N); this is a locally constant sheaf of Qp-vector spaces of dimension 2,
whose fibre at any geometric point x is canonically identified with the Tate module Vp(Ex) of the elliptic

curve Ex/K.

Remark. We have a functor

(?) {algebraic representations of GL2 /Qp} → {étale Qp-sheaves on Y1(N)}.
The sheaf H is the image under this functor of the defining 2-dimensional representation of GL2. �

Definition. We let Vp(f) be the largest subspace of H1
ét(Y1(N)Q,Symk H (−k)) on which the Hecke oper-

ators T (`), for ` - N , act as multiplication by a`(f).

Then Vp(f) has the expected properties (generalising those we had above for k = 0):

(1) Vp(f) is 2-dimensional and irreducible.
(2) Vp(f) is a direct summand of H1

ét (not just a subspace).
(3) For ` - pN , Vp(f) is unramified at ` and the the local Euler factor is

P`(Vp(f), t) = 1− a`(f)t+ `k+1χ(`)t2.

(4) Vp(f)∗ = Vp(f ⊗ χ−1)(k + 1).

Remark. There are also Galois representations attached to weight 1 modular forms, but these are harder
to construct – they don’t show up in étale cohomology with coefficients in any reasonable sheaf. �

In much the same way, if we have a pair of integers (k, k′) ≥ 0 we can form a sheaf Symk H � Symk′ H on
Y1(N)2, and the tensor product V (f)⊗ V (g), for f and g eigenforms of weight k + 2 and k′ + 2, appears as
a direct summand of the space

H2
ét

(
Y1(N)2

Q
, (Symk H � Symk′ H )(−k − k′)

)
.

4.2. Eisenstein classes

The Kummer images of Siegel units give us classes in H1
ét(Y1(N),Qp(1)). What should our higher-weight

analogues of this be?

It turns out that for any k ≥ 0 and N ≥ 4, and c > 1 coprime to 6pN , there exists an étale Eisenstein class

c Eisk0,1/N ∈ H1
ét

(
Y1(N),Symk H (1)

)
,
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which in the case k = 0 agrees with the Kummer-map image of the Siegel unit. These étale Eisenstein
symbols satisfy similar basic relations (Theorem 10) to those of the Siegel units.

Remark. One can make sense of “motivic cohomology with coefficients in H ”, and then one finds that
these Eisenstein classes are the étale images of motivic Eisenstein classes, whose images under the Beilinson
regulator are non-holomorphic Eisenstein series of weight −k. This is a higher-weight generalisation of the
Kronecker limit formula, since for k = 0 the Beilinson regulator map on H1

mot(Y1(N),Z(1)) ∼= O(Y1(N))×

maps a unit u to the function log |u| : Y1(N)(C)→ R. �

4.3. The Euler system for higher weight modular forms

We can adapt the above construction for pairs of modular forms of higher weight. Suppose that f and g
have weights k + 2 and k′ + 2 with k, k′ ≥ 2. Then it follows from Section 4.1, we need to construct classes
in the cohomology groups

H3
ét

(
Y1(N)× Y1(N)× µ◦m,Symk H � Symk′ H (n)

)
,

for some appropriate n ∈ Z, and these classes should arise via pushforward from the cohomology of Y1(N).
Assume that m = 1, so we want to pushforward along the diagonal embedding ι : Y1(N)→ Y1(N)2. (Once
we have understood this case, we can construct classes for m > 1 using the methods from the previous
sections.)

4.3.1. Pushforward with coefficients. It turns out that pushforward maps “work” with coefficients:
there’s a natural map

ι∗ : H1
ét (Y1(N), ι∗(L )(1))→ H3

ét

(
Y1(N)2,L (2)

)
for any étale sheaf L , with the case above being L the constant sheaf Qp. Here ι∗L is just the pullback

of L to Y1(N). So what does the sheaf ι∗
(

Symk H � Symk′ H
)

look like?

Since H and its symmetric powers arise from irreducible algebraic representations of GL2, we can use group
theory to answer this question. Let V denote the standard 2-dimensional Qp-representation of GL2. Then

the sheaf Symk H � Symk′ H on Y1(N)2 arises from the irreducible representation Symk V � Symk′ V of
G := GL2×GL1

GL2. If H ⊂ G denotes the diagonally-embedded copy of GL2, then the restriction of this
G-representation to H breaks up as a sum of irreducible H-representations; and we have a corresponding

decomposition of the pullback ι∗
(

Symk H � Symk′ H
)

in the category of sheaves on Y1(N).

Remark. A posh way of stating this compatibility is that we have a commutative diagram of functors

RepG - sheaves /Y1(N)2

RepH

resGH

?
- sheaves /Y1(N)

ι∗

?

where RepG and RepH are the categories of representations of G and its subgroup H, resGH is restriction of
representations, and the horizontal arrows are the functors (?) for G and H. An analogue of this naturality
property has been established for motivic cohomology in recent works of Ancona and Torzewski. �

The decomposition of resGH

(
Symk V � Symk′ V

)
= Symk V ⊗ Symk′ V into irreducible representations of H

is described by the Clebsch–Gordan formula:

Symk V ⊗ Symk′ V =

min{k,k′}⊕
j=0

Symk+k′−2j V ⊗ det j ,
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so for every 0 ≤ j ≤ min{k, k′}, we have a GL2-equivariant map

Symk+k′−2j V ⊗ det j - ι∗
(

Symk V � Symk′ V
)
.

The representation detj of GL2 corresponds to the sheaf Qp(j), so this means that for every 0 ≤ j ≤
min{k, k′} we get a map of sheaves on Y1(N),

Symk+k′−2j H - ι∗
(

Symk H � Symk′ H (−j)
)
,

which induces a map in étale cohomology

ι∗ : H1
ét

(
Y1(N),Symk+k′−2j H (1)

)
- H3

ét

(
Y1(N)2,Symk H � Symk′ H (2− j)

)
.

4.3.2. Definition of the classes. As we saw above, there is a special element inH1
ét

(
Y1(N),Symk+k′−2j H (1)

)
,

the étale Eisenstein class c Eis
(k+k′−2j)
0,1/N ∈ H1

ét

(
Y1(N),Symk+k′−2j H (1)

)
.

Definition. Let 0 ≤ j ≤ min{k, k′}. We define the Rankin–Eisenstein class

c REis
(k,k′,j)
1,N = ι∗

(
c Eis

(k+k′−2j)
0,1/N

)
,

which is an element of H3
ét

(
Y1(N)2,Symk H � Symk′ H (2− j)

)
.

Using the same methods as in Sections 3.1.2 and 3.1.3, we more generally define Rankin–Eisenstein classes

c REis
(k,k′,j)
M,N for M |N ; and (finally) Beilinson–Flach classes

c BF
(k,k′,j)
m,N ∈ H3

ét

(
Y1(N)2 × µ◦m,Symk H ⊗ Symk′ H (2− j)

)
as the image of c REis

(k,k′,j)
m,mN under the map1 (sm × sm)∗.

Now let f and g be eigenforms of weights k + 2, k′ + 2 ≥ 2 with k, k′ ≥ 0 and level N , where p | N , both of
which are ordinary at p. It then follows from Section 4.1 and the arguments in Section 3.4 that we have a
projection map

Pr f,g : H3
ét

(
Y1(N)2 × µ◦m,Symk H ⊗ Symk′ H (2− j)

)
- H1(Q(µm), (Vf ⊗ Vg)∗(−j)),

and as in the parallel weight 2 case one can show that the images of the Beilinson–Flach classes
(
c BF

(k,k′,j)
m,N

)
m≥1

under this projection map have the same properties under corestriction maps as in Proposition 13.

Remark. We also have to check that these objects land in a Zp-lattice independent of m. To do this, we

need to find good integral lattices in Symk H . There is a natural Zp-lattice subsheaf HZp ⊂ H , but a

small complication arises because with Zp-coefficients the Symk functor is not compatible with duality unless

p > k. To repair this one has to introduce a slightly different sheaf, the sheaf TSymk HZp of symmetric

tensors, which is only isomorphic to Symk HZp if p > k. �

4.4. Twist-compatibility

The upshot of this construction is that for a fixed pair of forms f and g, we have not one but 1 + min{k, k′}
different Euler systems, which live in different cyclotomic twists of the representation V ∗f ⊗ V ∗g . However,
as we’ve seen above, Soulé’s twisting construction gives an isomorphism between the space of Euler systems
for V and for V (m) for any m ∈ Z, so it makes sense to compare these Euler systems to each other.

1One needs to be a bit careful here with extending sm to a map on cohomology with coefficients, but we don’t discuss this
issue here. For reference, see [KLZ17, §6.1].
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Theorem 13. The Beilinson–Flach Euler systems associated to different values of j in the range 0 ≤ j ≤
min{k, k′} are all compatible under the Soulé twist.

This simple-looking statement turns out to be deceptively hard. See [KLZ17, §6].

Remark. A similar issue arises for Kato’s Euler system associated to a single modular form, and in this
case one even has infinitely many potentially different Euler systems! More precisely, for a weight 2 form f ,
one can use cup-products of two weight n Eisenstein classes, for any n ≥ 0, to construct an Euler system
with values in Vp(f)∗(1 + n).

Naturally, one expects that the Euler system thus constructed for any n ≥ 1 should coincide with the n-th
Soulé twist of the n = 0 Euler system. This was checked in the PhD thesis of Matthew Gealy [Gea06]. �

4.5. An adelic modification

Just in order to motivate some of the constructions we’ll use in later chapters, it’s worth pointing out that
one can make a slight modification to the construction. Since we have defined our modular curves Y (U)
as quotients of GL2(Af ) × H (c.f. (3)), where Af are the finite adéles, we have a (right) action of the
normaliser of GL2(Af ) on the tower of curves Y (U) for varying U . This is compatible with the action of

GL+
2 (Q) ⊂ GL2(Af ) via Möbius transformations on H, after modifying by an inverse to interchange left

and right actions.

With these conventions, we can define our Hecke operators, and our degeneracy maps τ`, sM etc, using
elements of GL2(Af ) which are the identity outside the place `. This does not change anything major (the
difference between the “old” and “new” elements is given by the action of an element of Gal(Q(µm)/Q))
but the adelic presentation makes it a little easier to leverage results from representation theory.
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CHAPTER 5

Finding Euler systems: motivic cohomology and period integrals

Note: This chapter is provided only for motivation, and involves some very deep and advanced concepts;
these will not be needed in the following sections, so you may wish to skip this part at a first reading.

We’ve seen in the last section that:

• Interesting Galois representations often appear in the étale cohomology (over Q) of Shimura vari-
eties.
• One can build classes in H1 of these Galois representations via Hochschild–Serre, using cup-

products, pushforwards from subvarieties, and the Kummer map.
• We have a supply of interesting units on modular curves to use as input to the Kummer map.

For example, if we want to build Euler systems for tensor products Vf ⊗Vg, we want classes in H3
ét(Y1(N)×

Y1(N),Zp(2)); and we can get these by choosing curves Z ⊂ Y1(N)2, and pushing forward κp(u) for some
u ∈ O(Z)×. A natural thing to try, of course, is to take Z to be the diagonal copy of Y1(N), and u = cg0,1/N

the Siegel unit.

However, why should this construction give interesting classes? How are we going to relate them to the
special values of L-functions?

5.1. The Rankin–Selberg integral formula

Here’s a very classical result, discovered independently by Rankin and by Selberg in the 1930s.

Theorem 14. Let N ≥ 1, and for s ∈ C with <(s) � 0, let Es be the (non-holomorphic) function on the
upper half-plane H defined by

Es(τ) = π−sΓ(s)
∑

(c,d)∈Z2

=(τ)s

|cτ + d+ 1/N |2s
.

Then, for any two newforms f, g of level N and weight 2, we have

〈f̄ , gEs〉 =

∫
Γ1(N)\H

f(−τ̄)g(τ)Es(τ) dτ ∧ dτ̄ = (∗) · L(Vf ⊗ Vg, s+ 1),

where (∗) is an explicit factor.

This is surprisingly simple to prove: after interchanging summation and integration, you get the integral of
f(−τ̄)g(τ)=(τ)−s over the region {x + iy : 0 ≤ x ≤ 1, 0 ≤ y ≤ ∞}, and substituting in the q-expansions of
f and g and integrating term-by-term gives the result. However, it has a lot of important consequences; for
instance, it follows easily from this formula and the properties of Es that L(Vf ⊗ Vg, s) has meromorphic
continuation to all s ∈ C (with well-understood poles) and satisfies a functional equation relating s and
3− s.
However, the reason I want to consider it here is the following classical result (“Kronecker’s second limit
formula”)1

Theorem 15 (Kronecker). We have E0(τ) = − log |g0,1/N |.

1I did say this was 19th-century stuff; Kronecker died in 1891.
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So there’s some connection between E0(τ) and Siegel units, and on the other hand between Es(τ) and
Rankin–Selberg convolutions. In order to state this properly, we need to introduce another cohomology
theory.

5.2. Motivic cohomology

References: Mazza–Voevodsky–Weibel, Lecture notes on motivic cohomology [MVW06]; Beilinson, Higher
regulators and values of L-functions [Bĕı84].

There is a cohomology theory for algebraic varieties called motivic cohomology, introduced by Beilinson and
greatly refined by the late Vladimir Voevodsky. It gives groups Hi

mot(X,Z(n)), and for each prime p, there
are maps (étale regulators)

rét : Hi
mot(X,Z(n))⊗ Zp → Hi

ét(X,Zp(n)).

For small i and n the motivic cohomology groups have explicit descriptions. H1
mot(X,Z(1)) is literally equal

to O(X)×, and the étale regulator on this group is the Kummer map κp.

Remark. The étale regulator is compatible with pushforward and cup-products, so in fact our entire toolkit
for building elements of étale cohomology factors through motivic cohomology. This also explains why our
tools can’t get at Hi

ét(X,Zp(n)) when i > 2n: in this range the group Hi
mot(X,Z(n)) is zero. �

Theorem 16 (Landsburg [Lan91]). If S is an algebraic surface over a field k, H3
mot(S,Z(2)) is isomorphic

to the quotient 
formal sums

∑
i

(Zi, ui), Zi ⊂ S irreducible curve,

ui ∈ k(Zi)
×, with

∑
i

div ui = 0

 / ∼

where ∼ is some equivalence relation.

In particular, if we have a curve Z ⊂ S and an element u ∈ O(Z)×, then div u is trivial, so (Z, u) defines a
class in H3

mot(S,Z(2)); and (unsurprisingly) the image of this class in H3
ét(X,Zp(2)) is just ι∗ (κp(u)), where

ι : Z ↪→ S is the inclusion morphism.

However, as well as the étale regulator rét, there’s a second regulator map defined on H3
mot(S,Z(2)) ⊗ R,

the Beilinson regulator rC: if ω is a (sufficiently nice) differential 2-form on S(C), we can map an element
z =

∑
i(Zi, ui) to

(†)
∑
i

∫
Zi

ω log |ui|.

This is clearly linear in ω, so we get a map from H3
mot(S,Z(2)) to the dual space of a space of differential

forms – more precisely, to
(
Fil1H2

dR(SC)
)∗

.

Combining this with what we know about logs of Siegel units, something magical happens: if S = Y1(N)×
Y1(N) and z is the class of (diagonal, cg0,1/N ), and we take ω = (f(−τ̄) dτ̄)∧ (g(τ) dτ), then the integral (†)
is exactly the Rankin–Selberg integral at s = 1! So, to sum up,

• the class we’ve built inH3
ét(Y1(N)2,Zp(2)) is naturally the image of something inH3

mot(Y1(N)2,Z(2)),
• the Beilinson regulator of this class, paired with a differential coming from f and g, computes a

value of the L-function L(f ⊗ g, s).

This is pretty strong evidence that the Galois cohomology class we’re building (the Beilinson–Flach class)
is the right class to consider: it’s the image under the étale regulator of a motivic class which is a “motivic
incarnation” of the Rankin–Selberg integral.

Remark. (1) It follows from the Beilinson regulator formula that the motivic class z = (diagonal, cg0,1/N ) ∈
H3

mot(S,Z(2)) is non-zero. If the étale regulator from here to H3
ét(S,Zp(2)) were injective, then we

could actually deduce that our class in H3
ét(S,Zp(2)) was non-zero, and we’d be in a good position

to apply Rubin’s theorem.
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Sadly, we don’t know this. We can replace S with an integral model S defined over Z[1/pN ]. It’s
known that H3

mot(S,Z(2))/pk maps injectively to H3
ét(S,Zp(2))/pk for every k; but unfortunately

we don’t know any finite generation properties for H3
mot(S,Z(2)), so z might potentially be infinitely

p-divisible, and hence zero in H3
mot(S,Z(2))/pk for every k. It’s conjectured that the motivic

cohomology groups of a scheme of finite type over Z should always be finitely generated, which
would rule out this pathology, but unfortunately this conjecture is wide open.

(2) In order to show that our étale class is non-zero, one uses another kind of regulator, the so-called
syntomic regulator from motivic cohomology. I will discuss this in the next section.

�

5.3. P-adic regulators

So we have a strategy for building Galois cohomology classes which “really ought to be” non-zero, in the
sense that they are the étale images of non-zero motivic cohomology classes. However, since we can’t prove
that the map from motivic to étale cohomology is injective, how can we be sure these Galois cohomology
classes aren’t all zero?

To do this, we introduce yet another regulator map defined2 on H3(S,Z(2)), besides the étale and Beilinson
regulators: the p-adic syntomic regulator [Bes00], which is defined using p-adic rigid geometry, assuming
p - N . The two key properties of this regulator are that

- like Beilinson’s, it can be made explicit enough to compute with: there is a formula for the p-adic
regulator map for a surface, due to Besser [Bes12], which is very closely analogous to (†), with the
integral understood via Coleman’s p-adic integration theory.

- unlike Beilinson’s, it can be compared to the étale regulator: a very deep theorem in p-adic Hodge
theory, due (independently3) to Nizio l and Nekovǎŕ [Niz97, Nek98], shows that there is a com-
mutative diagram relating the étale and syntomic regulators via the Bloch–Kato logarithm map of
p-adic Hodge theory.

motivic coh

de Rham coh / C �........................
(no relation)

-
�

rC

de Rham coh / Qp

rsyn

?
�logBK étale coh

ŕ
et

-

Putting these pieces together, if we can build a class z ∈ H3(S,Z(2)) and show that the syntomic regulator of
z is non-zero, then its etale regulator must also be non-zero. This programme was carried out in the Rankin–
Selberg setting by Bertolini, Darmon and Rotger [BDR15], using Besser’s formula [Bes12] to prove that
the syntomic regulators of the Beilinson–Flach classes were p-adic L-values.

2This is not quite true: it is defined on the part of H3(S,Z(2)) coming from a smooth model S over Zp. This is a non-trivial
restriction; the work of Flach on adjoint Selmer groups of modular forms relies strongly on the existence of motivic cohomology
classes for S which don’t extend to S.

3Stronger results have subsequently been proved by these two authors jointly, in [NN16], which treats the case of varieties
with bad reduction at p.
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5.4. Other Rankin–Selberg formulae

The Rankin–Selberg integral is only the first of a very wide class of formulae, which express the L-values of
an automorphic form for some reductive group G in terms of its integral against an Eisenstein series on some
subgroup H (a “period integral”). There is a survey article by Bump [Bum05]) which catalogues dozens of
constructions of this kind.

So we can play the following game: if we want to build an Euler system for some class of automorphic Galois
representations, then we can look for known formulae expressing the L-function of our representation in
terms of periods of automorphic forms. Then we can stare at the resulting integrals and try to recognise
them as Beilinson regulators of motivic cohomology classes. If we can do this, then the étale versions of these
classes should be non-zero (although we can’t prove this), and they are clearly the right building blocks for
an Euler system for our representation.

Remark. This won’t always work, sadly. Firstly, in many of the known Rankin–Selberg formulae the
groups G and H do not have Shimura varieties, so they lie outside the world of algebraic geometry; there is
a perfectly good Rankin–Selberg integral for GLm×GLn for any integers (m,n), but it doesn’t correspond
to anything motivic unless m = n = 2.

Even if G corresponds to a Shimura variety (and H to a Shimura subvariety), then there can be more subtle
obstacles. One major stumbling block is the Eisenstein series appearing in the formulae; these are often
not just Eisenstein series for GL2 but for more general reductive groups, and we need a way to relate these
to motivic cohomology, generalising the way that GL2 Eisenstein series are related to units via Kronecker’s
limit formula. This seems to be a difficult problem in general.

Despite these apparently gloomy remarks, all is not lost: there are surprisingly many Rankin–Selberg formu-
lae in which only GL2 Eisenstein series appear! There’s now an ongoing project, being pursued by several
research groups, to build Euler systems for each such integral formula. Some examples are

• an Euler system for the Asai representation attached to quadratic Hilbert modular forms, with
H = GL2 and G = ResFQ GL2, where F is a real quadratic field [LLZ16];
• an Euler system for the spin representations attached to genus 2 Siegel modular forms, with H =

GL2×GL1
GL2 and G = GSp4 ([LSZ17]; I will discuss this briefly in Chapter 6);

• an Euler system for the spin representation of genus 3 Siegel modular forms, with

H = GL2×GL1
GL2×GL1

GL2

and G = GSp6, which is studied by Antonio Cauchi and Joaquin Rodrigues [CR18];
• an Euler system for Picard modular forms (work in progress with David Loeffler and Chris Skinner),

with H = GL2×GL1ResKQ GL1 and G = GU(2, 1), where K is an imaginary quadratic field and
GU(2, 1) a unitary group split over K. In this case, we get an Euler system over K: in other words,
we construct cohomology classes over all the finite abelian extensions of K.

�
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CHAPTER 6

An Euler system for Siegel modular forms

We will describe the construction of the Euler system using the adelic approach, as described in Section 4.5.
This is consistent with the approach taken in the main reference for this chapter [LSZ17].

6.1. Siegel modular 3-folds

Definition. Let J be the skew-symmetric 4× 4-matrix

(
1

1
−1

−1

)
. Define GSp4 to be the group scheme

over Z such that for any Z-algebra R, we have

GSp4(R) = {(g, ν) ∈ GL4(R)×R× : gJgt = νJ}.
We let Sp4 be the subgroup of elements with ν = 1.

The group GSp+
4 (R) (the elements of GSp4(R) with ν > 0) acts on the genus 2 Siegel upper half space

H2 = {Z ∈M2(C) : Z = ( y zx y ) , =(( x yy z )) is positive definite}
via (A B

C D ) · Z = (AZ +B)(CZ +D)−1.

Remark. If we use a slightly different model of GSp4, as matrices satisfying gJ ′gt = νJ ′ where J ′ =(
I2

−I2

)
, then we can define H2 more tidily, as the space of symmetric complex matrices with positive-

definite imaginary part. However, defining GSp4 using the anti-diagonal matrix J , as we have done, is more
convenient for representation theory (as the intersection of GSp4 with the upper-triangular matrices in GL4

is a Borel subgroup). �

If U is an open compact subgroup of GSp4(Af ), then we can define the double quotient analogous to (3),

Ỹ (U) = GSp+
4 (Q)\

[
GSp4(Af)×H2

]
/U.

This is a 3-dimensional complex manifold, with finitely many components, each of which looks like Γ\H2 for
some discrete subgroup Γ ⊂ Sp4(Q).

Theorem 17. If U is sufficiently small, then Ỹ (U) is the C-points of a smooth algebraic variety Ỹ (N)
defined over Q (a Siegel 3-fold), which is a moduli space for principally polarised abelian surfaces with some
level structure.

Of course, the kind of level structure that emerges depends on the group U we choose. A particularly
important case is when

U = U1(N) := {(g, ν) ∈ GSp4(Ẑ) : g = ( ∗ ∗02 I2 ) mod N}

(where 02 and I2 are the 2× 2 zero and identity matrices respectively). The corresponding threefold Ỹ1(N)
parametrises triples (A, λ, P,Q) where A is an abelian surface, λ is a principal polarisation on A, and
P,Q ∈ A[N ] are two points of exact order N satisfying 〈P,Q〉 = 0 (where 〈, 〉 is the Weil pairing induced by
the polarisation λ).

As in the case of modular curves, we can identify the basechange Ỹ1(N)× µ◦m with a Shimura variety Ỹ (U)
for some modified level m. More precisely, if we let

U = {(g, ν) ∈ U1(N) : ν = 1 mod m}
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then Ỹ (U) is canonically isomorphic to Ỹ1(N)× µ◦m as a Q-variety.

Remark. In terms of moduli spaces, the projection to µ◦m is given by the Weil pairing. �

6.2. Genus 2 Siegel modular forms

References: van der Geer’s article [vdG08] is an excellent introduction; more details (particularly on Hecke
operators) can be found in Andrianov’s book [And87].

6.2.1. Definitions.

Definition. Let Γ̃1(N) = Sp4(Z)∩ Ũ1(N). A Siegel modular form of genus 2, level N and weight (k, k) is a

holomorphic function F : H2 → C such that F (g · Z) = det(CZ +D)kF(Z) for all g =

(
A B
C D

)
∈ Γ̃1(N)

and Z ∈ H2. We write M
(2)
k,k(Γ̃1(N)) for the space of such functions.

Note the similarity to the familiar definition of modular forms (which are automorphic forms for GSp2
∼=

GL2).

Remark. There is a more general notion of Siegel modular forms of weight (k1, k2) for integers k1 ≥ k2; these
are holomorphic functions on H2, taking values the space Ck1−k2+1, and the transformation law involves the
action of CZ + D via the representation Symk1−k2 ⊗ detk2 of GL2(C). When k1 > k2 these are sometimes
called vector-valued Siegel modular forms, and the forms for k1 = k2 are called scalar-valued. �

As for usual modular forms, the space M
(2)
k1,k2

(Γ̃1(N)) is finite-dimensional over C, and has a subspace

S
(2)
k1,k2

(Γ̃1(N)) of cuspidal forms.

6.2.2. Hecke operators. We can also describe M
(2)
k1,k2

(Γ̃1(N)) and S
(2)
k1,k2

(Γ̃1(N)) adelically, using the
isomorphism

Γ̃1(N)\H2
∼= GSp+

4 (Q)\ (GSp4(Af )×H2) /U1(N).

From this interpretation, we get an action on these spaces of the Hecke algebra of double cosets U1(N)gU1(N),
g ∈ GSp4(Af ). This decomposes as a product of local Hecke algebras for each prime `.

For ` - N , the local Hecke algebra is generated by three operators T (`), T1(`2), and R(`), corresponding to

the double cosets of

(
1

1
`
`

)
,

(
1
`
`
`2

)
, and

(
`
`
`
`

)
(considered as elements of GSp4(Q`) ⊂ GSp4(Af ),

with components at all places other than ` being the identity).

Definition. If F ∈ S(2)
k1,k2

(Γ̃1(N)) is an eigenform for the above three operators, with eigenvalues t(`), t1(`2), r(`)
respectively, then the spin L-factor of F at ` is the degree 4 polynomial

Pspin,`(F , X) = 1− t(`)X + `
(
t1(`2) + (`2 + 1)r(`)

)
X2 − `3t(`)r(`)X3 + `6r(`)2X4.

(Often we work with the renormalised polynomial Pspin,`(F , `−3/2X), which has the advantage that its roots
all have absolute value 1.)

This is, of course, crying out to be made into an Euler product

Lspin(F , s) =
∏

` prime

Pspin,`

(
F , `−s−

3
2

)−1

,

the spin L-function of F , although this only makes sense if we have a good definition of the local factors at
primes ` | N . Under some mild hypotheses on F , a suitable recipe for these factors was found by Piatetski-
Shapiro and Novodvorsky in the 1970s (although not published until 1997 [PS97]), and they showed that
the resulting function has meromorphic continuation with a functional equation of the form s 7→ 1− s.
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Remark. As well as the spin L-function, there is another L-function associated to F , confusingly called the
standard L-function, given by a different Euler product in which the local factors at the good primes are
reciprocals of polynomials in `−s of degree 5. The terminology “standard” is unfortunate for GSp4, since
the spin L-function is a much more fundamental object than the standard one, but it reflects the fact that
the standard L-function generalises more easily to GSp2n for general n. �

6.3. Galois representations

Let F be a genus 2 cuspidal Siegel modular form of weight (3, 3) and level N which is an eigenform for the
Hecke operators away from N . The following result shows that one can associate to F a Galois representation.

Theorem 18 (Weissauer, [Wei05]). There exists a finite extension E of Qp and a 4-dimensional Galois
representation VF over E, such that for all primes ` coprime to pN we have

det
(
1−X Frob−1

`

∣∣ VF) = Pspin,` (F , X) .

Perhaps surprisingly, these representations aren’t always irreducible, even if F is cuspidal. This is because
there are certain special types of cuspidal Siegel eigenforms that are “lifts” of automorphic forms on smaller
groups; these are said to be endoscopic. There are several types of these, but only two which can occur in
weight (3, 3), namely Yoshida lifts and Saito–Kurokawa lifts.

If F is non-endoscopic, and p is large enough1 then the representation VF is irreducible.

Theorem 19. If F is non-endoscopic, then VF appears in the etale cohomology of the level N Siegel 3-fold.
More precisely, we have a projection map

PrF : H3
ét

(
Ỹ1(N)Q,Qp(3)

)
⊗ E -- V ∗F .

We can similarly construct Galois representations for Siegel modular forms of weight (k1, k2) whenever
k1 ≥ k2 ≥ 3, using étale cohomology with coefficients in sheaves coming from algebraic representations of
the group GSp4.

Remark. Note that weight (2, 2) forms are not cohomological – they still have spin Galois representations,
but these can’t be seen in the cohomology of the Siegel threefold. This is unfortunate, since there is
a conjecture due to Brumer and Kramer, the Paramodular Conjecture, predicting that (certain) abelian
surfaces over Q correspond to Siegel eigenforms of weight (2, 2). It would be very interesting to try to build
Euler systems for these non-cohomological eigenforms, by deforming the constructions of this chapter in a
p-adic family. �

6.4. Lemma-Flach elements

References: [Lem15, Lem17, LSZ17].

6.4.1. Strategy. As we have seen above, the spin Galois representation of a genus 2 Siegel modular
form can be found in the étale cohomology of the Siegel 3-fold Ỹ1(N), for a suitable N . We therefore want to

construct cohomology classes in H4
ét(Ỹ1(N)× µ◦m,Zp(3)) for m ≥ 1, satisfying norm-compatibility relations

as m changes (for a fixed N).

To do this, we note that we have a natural embedding

ι : GL2×GL1
GL2

- GSp4,

which is given explicitly by [(
a b
c d

)
,

(
a′ b′

c′ d′

)]
7→


a b

a′ b′

c′ d′

c d

 .

1It’s expected to be irreducible for all p, but this is only known if we assume that p ≥ 5 and p - N .
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This embedding induces a map from the product of two modular curves into a Siegel 3-fold with compatible
level structures; for instance, we get maps

Y1(N)× Y1(N)→ Ỹ1(N),

which are injective if N is large enough. This in turn induces a pushforward map on the étale cohomology
groups

ι∗ : Hi
ét(Y1(N)2,Zp(j)) - Hi+2(Ỹ1(N),Zp(j + 1)).

Consider the case when i = j = 2: Then the exterior cup product of two Siegel units cg0,1/N tdg0,1/N defines

an element of H2
ét(Y1(N)2,Zp(2)), and we define the Lemma–Flach element for m = 1 to be

c,d LF1,N = ι∗(cg0,1/N t dg0,1/N ).

6.4.2. Relation to an integral formula. As in Chapter 5 above, there is a good motivation for why
this class c,d LF1,N should be interesting.

There is an integral formula for the spin L-function of GSp4, which is due to Piatetskii-Shapiro. If F is
a non-endoscopic, holomorphic eigenform of weight (3, 3) (or of any cohomological weight), then we can
consider the integral ∫

(Γ1(N)\H)2
E(τ1, s)E(τ2, s)F(τ1, τ2)dA

where E(τ, s) is a suitably-chosen family of Eisenstein series, and dA = dτ1∧dτ̄1∧dτ2∧dτ̄2
=(τ1)=(τ2) is the invariant

measure on (Γ1(N)\H)2. The general theory tells us that this unfolds into a product of local integrals, and
the local integral at a finite place computes the spin L-factor.

The problem is that the local integral at ∞ is always zero! This can be fixed by replacing the holomorphic
eigenform F with an “evil twin” Fg, which is a real-analytic but non-holomorphic function on Ỹ1(N)(C)
with the same Hecke eigenvalues as F ; this doesn’t change the local integrals at the finite places, but gives
us a non-vanishing archimedean integral.

As in the Rankin–Selberg setting, the Lemma–Flach class we’ve defined is naturally the image under the
étale regulator of a motivic cohomology class. The main result of [Lem17] shows that the Beilinson regulator

of this motivic class, paired with an appropriate differential on Ỹ1(N)(C) coming from Fg, gives Piatetskii-
Shapiro’s integral for Lspin(F , s) at s = − 1

2 .

Remark. The g stands for “generic”. Representation-theoretically, the problem is that the discrete-series
representations of GSp4(R) come in pairs (“local L-packets”), consisting of a holomorphic representation
and a non-holomorphic one, and it is the non-holomorphic one which is generic (admits a Whittaker model)
and thus can contribute to the integral formula.

One can also replace Y1(N)×Y1(N) with a symmetric space associated to GL2 /K, where K is an imaginary
quadratic field; this gives an alternative integral representation which does involve the holomorphic eigenform
F . However, it seems to be impossible to interpret this integral as the regulator of a motivic cohomology
class, since the symmetric space for GL2 /K is not an algebraic variety. �

6.4.3. Lemma–Eisenstein classes. Our task is now to extend this to an Euler system: that is, to
define classes c,d LFm,N for m > 1 satisfying good norm-compatibility properties. As before, we’ll start
by defining classes on higher-level modular varities, which are easier to work with, and proving norm-
compatibility relations for these auxiliary classes.

Let us define U(M,N) =
{
γ ∈ GSp4(Ẑ) : γ =

(
I2 02

02 I2

)
mod (M M

N N )
}

, and Ỹ (M,N) the corresponding Siegel

threefold.

Lemma 3. If M |N , the group U(M,N) is normalised by the element u =

(
1 1

1 1
1

1

)
.

Define ιM,N : Y (M,N)2 → Ỹ (M,N) to be the composite

Y (M,N)2 ⊂
ι- Ỹ (M,N)

u- Ỹ (M,N).
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Here, Y (M,N)2 denotes as above the fibre product of two copies of Y (M,N) over µ◦M .

Definition. The Lemma-Eisenstein class c,d LEisM,N is the image of cg0,1/Ntdg0,1/N under (ιM,N )∗. Here,

we regard cg0,1/N t dg0,1/N as an element of H2
ét(Y (M,N)2,Zp(2)) via pullback.

6.4.4. Norm relations. Exactly as before, one sees straightforwardly that the Lemma–Eisenstein
classes satisfy norm relations as N changes.

Proposition 14. Suppose that M |N and ` is a prime with ` | N . Then

(pr1)∗(c,d LEisM,`N ) = c,d LEisM,N ,

where pr1 is the natural quotient map Ỹ (M,N`)→ Ỹ (M,N). �

(Exercise: formulate and prove a similar formula for ` - N .)

The second norm relation: changing M . Let us write τ` for the “non-standard” degeneracy map

Ỹ (`M,N) to Ỹ (M,N), given by the right-translation action of

(
`
`

1
1

)
∈ GSp4(Q`) ⊂ GSp4(Af ). Note

that τ` factors as

Ỹ (`M,N) - Ỹ (M(`), N)
π̃2,`- Ỹ (M,N),

where the first map is the natural degeneracy map.

Theorem 20. Suppose `|M and `M | N . Then we have

(τ`)∗ (c,d LEis`M,N ) = U ′` · c,d LEisM,N .

Here, U ′` is the Hecke correspondence on Ỹ (M,N) given by the element of GSp4(Af ) which is

(
`
`

1
1

)
at

`, and the identity elsewhere.

Remark. Again, there is a similar but slightly more complicated formula in the case when ` - M (but still
`M | N). �

Proof. We erect the following commutative diagram, in which all vertical arrows are the natural de-
generacy maps:

Y (`M,N)2 ⊂
ι`M,N- Ỹ (`M,N)

Y (`M,N)2

wwwwwwwwwwwwwwwwww
- Ỹ (M(`), N))

?

♦

Y (M,N)2
?

⊂
ιM,N - Ỹ (M,N)

π̃1,`

?

Ỹ (M,N)

τ
`

-

π̃
2,`

-

We claim that the middle arrow is actually injective. This is equivalent to the claim that

H(Af ) ∩ uŨ(M(`), N)u−1 = U(M`,N)2,
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which is an easy matrix computation.

When ` | M , we see that the square marked ♦ has both horizontal arrows closed immersions, and both
vertical arrows of degree `3. So it is Cartesian, and we may conclude that the image of c,d LEis`M,N under

pushforward to Ỹ (M(`), N) coincides with the pullback of c,d LEisM,N . The result now follows by pushing
both of these elements forward along the diagonal arrow and observing that U ′` = (π̃2,`)∗ ◦ (π̃1,`)

∗. �

6.4.5. Lemma-Flach classes and their norm relations. Let m ≥ 1. We let $m denote the element

of A×f whose `-th component is `v`(m). Then right translation by the element

(
$m

$m
1

1

)
∈ GSp4(Af )

induces a map
sm : Ỹ (m,mN)→ Ỹ1(N)× µ◦m.

Definition. We define the Lemma-Flach element c,d LFm,N to be the image of c,d LEism,mN under (sm)∗.

Theorem 21. Let ` be prime such that `|M and `|N . Then we have

norm
Q(µ`m)
Q(µm) (c,d LF`m,N ) = U ′` · c,d LFm,N .

Proof. Analogous to the proof of the corresponding statement for Beilinson–Flach elements. �
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