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Waffle
Lecture 1

Let H = {z ∈ C|=(z) > 0}, so SL2(R) is acting on H by Mobius transformations:(
a b
c d

)
: z 7→ az + b

cz + d
.

Note. This action factors through PSL2(Z) = SL2(Z)/{±I}.

Let Γ be a subgroup of SL2(Z) of finite index. Examples of such groups are

Γ(N) =

{(
a b
c d

)
∈ SL2(Z) :

(
a b
c d

)
≡
(

1 0
0 1

)
(mod N)

}
,

Γ0(N) =

{(
a b
c d

)
∈ SL2(Z) : c ≡ 0 (mod N)

}
,

Γ1(N) =

{(
a b
c d

)
∈ SL2(Z) : a, d ≡ 1 (mod N), c ≡ 0 (mod N)

}
.

Let Y (Γ) = Γ\H. We will equip Y (Γ) with various interesting structures.

Definition. A congruence subgroup of SL2(Z) is a subgroup which contains Γ(N) for some N ≥ 1.

Remark. Every congruence subgroup is of finite index in SL2(Z), but not every subgroup of SL2(Z) of
finite index is a congruence subgroup!
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2 SARAH ZERBES

0.1. Recap of modular forms. Fix Γ < SL2(Z) of finite index (level), and let k ∈ Z. Then there
exists a space Mk(Γ), which is defined to be the set of holomorphic functions F : H → C such that

f

(
az + b

cz + d

)
= (cz + d)kf(z) ∀

(
a b
c d

)
∈ Γ

and a growth condition on the boudary. One can define the subspace SK(Γ) ⊂Mk(Γ) of cusp forms.

Remark. Both Sk(Γ) and Mk(Γ) can be shown to be finite-dimensional C-vector spaces.

Any modular form has a q-expension

f(z) =
∑
n≥0

anq
n,

where an ∈ C ∀n and q = e
2πiz
h . Here, h is the smallest positive integer such that

(
1 h
0 1

)
∈ Γ.

1. Modular curves as Riemann surfaces

1.1. Modular curves as topological spaces. Clearly H has a topology, so Y (Γ) inherits a quotient
topology, which is the strongest topology such that the map π : H → Y (Γ) is continuous.

Note. Quotient topologies can be pretty nasty, e.g. if we consider Q acting on R by translation, then
the quotient R/Q has the indiscrete topology.

Proposition 1.1.1. For any τ1, τ2 ∈ H, there exist neighbourhoods U1 and U2 of τ1 and τ2, respectively,
such that if γ ∈ SL2(Z) satisfies γ(U1) ∩ U2 6= ∅, then γ(τ1) = τ2. We say that SL2(Z) acts properly
discontinuously on H.

Proof. See Diamond + Shurman, Proposition 2.1.1. �

Corollary 1.1.2. Y (Γ) is a Hausdorff topological space.

Proof. Let P1 6= P2 be two points of Y (Γ), and choose τ1, τ2 ∈ H lifting the Pi. Let U1, U2 be neigh-
bourhoods of the τi as in Proposition 1.1.1. I claim that if we define Vi = π(Ui) , then V1 and V2 are
open neighbourhoods of P1 and P2, respectively, such that V1 ∩ V2 = ∅.

Suppose that v1 ∩ V2 6= ∅. Then

π−1(V1) ∩ π−1(V2) 6= ∅ ⇔
⋃
γ∈Γ

γU1 ∩
⋃
γ′∈Γ

γ′U2 6= ∅.

Hence there exist γ, γ′ ∈ Γ such that γU1 ∩ γ′U2 6= ∅, i.e.

(γ′)−1γU1 ∩ U2 6= ∅.
Hence (γ′)−1γτ1 = τ2 by our assumption on the Ui, which gives a contradiction as P1 6= P2. �

We are also interested in the slightly larger space X(Γ) which is a compactification of Y (Γ).

Definition. Let X(Γ) = Y (Γ) ∪ C(Γ), where C(Γ) = Γ\P1(Q). We call C(Γ) the cusps of Γ.

Example. C(SL2(Z)) = {∞}.

Let H∗ = H ∪P1(Q), and give H∗ a topology extending that of H as follows:

• the neighburhoods of ∞ are the sets {z|=(z) > R} for some R > 0;
• the neighbourhoods of x ∈ Q are the circles tangent to R at x.

It is then easy to check that the action of Γ on H∗ is still properly discontinuous, so X(Γ) is Hausdorff.

Proposition 1.1.3. X(Γ) is compact.

Proof. It suffices to find a compact subset of H∗ mapping surjectively onto X(Γ). Let

D∗ = {∞} ∪
{
z ∈ H : −1

2
≤ <(z) ≤ 1

2
, |z| > 1

}
.

It is a standard fact that D∗ contains an element of every SL2(Z)-orbit on H, and it is easy to check
that D∗ is compact. It follows that if γ1, . . . , γn are coset representatives for Γ\ SL2(Z), then

⋃n
i=1 γiD

∗

is compact and surjects onto X(Γ). �
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1.2. Riemann surfaces: recap.

Definition 1.2.1. A Riemann surface consists of the following data:

• a topological space X (Hausdorff and second-countable);
• a collection (Ui, Vi, φi)i∈I where the Vi ⊂ X are opens forming a cover of X, the Ui are opens in

C, and φi : Xi → Ui are homeomorphisms,

such that if Vi ∩ Vj 6= ∅, the map

Ui ∩ φ−1(Vi ∩ Vj)
φ−1
j ◦φi- Uj ∩ φ−1

j (Vi ∩ Vj)

is holomorphic.

Roughly, a Riemann surface is the least amount of structure on X needed to make sense of a function
f : X → C being holomorphic.

Definition 1.2.2. We say that P ∈ Y (Γ) is an elliptic point if for some (hence any) τ ∈ H lifting P ,
StabΓ̄(τ) 6= {1}. Here, Γ̄ denotes the image of Γ in PSL2(Z) = Γ/(Γ ∩ {±1}).

Note. If P is elliptic for Γ, then it maps to an elliptic point of Y (SL2(Z)), and there are only two of

these: the orbits of i and of ρ = e
2πi
3 ; their stabilizers in PSL2(Z) have orders 2 and 3, respectively. The

set of elliptic points for any Γ is therefore finite.

Proposition 1.2.3. There exist Riemann surface structures (clearly unique) on Y (Γ) and X(Γ) such
that π : H → Y (Γ) is holomorphic.

Proof. If P is not elliptic and not a cusp, then we can easily find a chart around P : take τ to be a lifting
of P to H, and apply Proposition 1.1.1 with τ1 = τ2 = τ . Let U = U1 ∩U2. Then U is a neighbourhood
of τ such that γU ∩ U = ∅ for any γ 6= 1 ∈ Γ̄. If V is the image of U in Y (Γ), then φ = π|U is a
homeomorphism U ∼= V .

Suppose now that P is elliptic. Proposition 1.1.1 gives us a U contining τ such that U ∩ γU 6= ∅
if and only if γ ∈ StabΓ̄(τ). The group StabΓ̄(τ) is finite, so (by replacing U with the open subset⋂
γ∈StabΓ̄(τ) γU) we may assume that U is fixed by this group. Then, if V is the image of U in Y (Γ), the

restriction of π to U is a homeomorphism StabΓ̄(τ)\U → V .
Choose δ ∈ SL2(C) sending τ 7→ 0 and τ̄ 7→ ∞, and let U ′ be the image of U . (Such a δ always

exists.) This conjugates StabΓ̄(τ) onto a finite group of Möbius transformations fixing 0 and ∞, which
is therefore a cyclic group C of rotations by e2πi/n where n ∈ {2, 3} is the order of the elliptic point. We
therefore have a diagram (where all arrows are homeomorphisms)

StabΓ̄(τ)\U - C\U ′

V
?

-

However, two points in U ′ are in the same C-orbit if and only if they map to the same point under
z 7→ zn. So we can extend this to a diagram

StabΓ̄(τ)\U - C\U ′ z 7→zn- U ′′

V
?�

-

and the right diagonal arrow U ′′ → V gives a coordinate chart around P .
Lastly, if P is a cusp, we argue similarly: choose δ mapping P to∞. Then StabδΓ̄δ−1(∞) is the group

of translations by hZ, for some h ∈ N, and z 7→ e2πiz/h gives the local coordinate.
It’s easy to see that all the above coordinate charts are compatible on overlaps. �
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1.3. Genus, ramification, Riemann-Hurwitz. Fact: Riemann surfaces are connected orientable
smooth 2-manifolds, and there are not very many of these. The compact ones “look like doughnuts”:
they are all homeomorphic to g-holed tori, for some integer g ≥ 0.

Definition 1.3.1. Define the genus of a compact connected Riemann surface M as the unique integer
g = g(M) such that

H1(M,Z) ∼= Z2g.

The genus is closely connected to the Euler characteristic

χ(M) =
∑
i≥0

(−1)i rkHi(M,Z) :

if M is as in the definition, then H0(M,Z) ∼= H2(M,Z) ∼= Z and Hi(M,Z) = 0 for i ≥ 3, so χ(M) =
2− 2g.

We need the following result from the theory of Riemann surfaces:

Proposition 1.3.2. Let X be a compact Riemann surface, and let f : X → P1(C) be a non-constant
meromorphic function. Then there exists an integer n > 0 (called the valence of f) such that f takes
each value with multiplicity n.

Proposition 1.3.3. For Γ = SL2(Z), the space X(Γ) is isomorphic (as a Riemann surface, so in
particular as a 2-manifold) to P1(C) ∼= S2.

Proof. The j-invariant

j(z) = q−1 + 744 + 196884q + . . .

is SL2(Z)-invariant and descends to a meromorphic map

X(SL2(Z)) - P1(C).

Then j has valence 1 (one can show that it is holomorphic on Y (SL2(Z)), and it clearly has a simple
pole at ∞), so (by the Open Mapping Theorem of complex analysis) it has a holomorphic inverse. �

Convention. All Riemann surfaces are assumed to be connected.
Recap. We want to find g(X(Γ)) for all Γ. We know that X(SL2(Z)) ∼= P1(C) has genus 0. For all

Γ, we have a map

X(Γ) - X(SL2(Z)).

Definition 1.3.4. (1) For f : X → Y and P ∈ X, the ramification degree eP (f) is the unique
integer e ≥ 1 such that f looks like z 7→ ze locally around P . Note that points where eP (f) > 1
are isolated. Note also that in any neighbourhood of P , one can find e(P ) distinct points having
the same image under f : f is locally e(p)-to-1.

(2) If X,Y are compact, then the sum ∑
P∈f−1(Q)

eP (f)

is independent of Q ∈ Y ; it is called the degree of f .

Remark. The degree of the map X(Γ)→ X(SL2(Z)) is [PSL2(Z) : Γ̄].

Theorem 1.3.5 (Riemann-Hurwitz). For f : X → Y non-constant of degree N , X,Y compact, we have

2g(X)− 2 = N · (2g(Y )− 2) +
∑
P∈X

(eP (f)− 1).

Corollary 1.3.6. For any Γ, we have

g(X(Γ)) = 1 +
[PSL2(Z) : Γ̄]

12
− ε2

4
− ε3

3
− ε∞

2
,

where ε2 (resp. ε3) is the number of elliptic points of order 2 (resp. order 3) and ε∞ is the number of
cusps.

Proof. We need to analyse ramfication of f : X(Γ)→ X(SL2(Z)) at each P ∈ X(Γ).
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• If P ∈ Y (Γ) is not in the SL2(Z)-orbit of i or ρ. Let τ ∈ H be any lift of P , and let U
be a neighbourhood of τ as in Proposition ... As StabΓ̄(τ) = StabPSL2(Z)(τ) = {1}, U maps
isomorphically to a neighbourhood of P in X(Γ), resp. to a neighbourhood of f(P ) in X(SL2(Z)),
so eP (f) = 1.

H

��
α

��

Y (Γ)

��
Y (SL2(Z))

The map α is unramified at any τ lifting a non elliptic point of Y (SL2(Z)), so eP (f) = 1.
• If P maps to [i]: all such P are either non-elliptic or elliptic of order 2. If P is elliptic of order 2,

then Y (Γ) → Y (SL2(Z) is locally an isomorphism at P so eP (f) = 1. If P is non-elliptic, then
local coordinate for SL2(Z) is square of that for Γ, so eP (f) = 2. We use the definition of the
degree to count the number of points above [i]. We have N = 1 · ε2 + 2 · (number of non-elliptic
points of Y [Γ] above [i]). Hence, the number of non-elliptic points above [i] is (N − ε2)/2. So∑

P∈f−1([i])

(eP − 1) =
N − ε2

2
.

• If P maps to [ρ], (where ρ = e2πi/3). Then

eP (f) =

{
1 if P is elliptic

3 if P is not elliptic
.

We use the same argument as before, using the definition of degree, to get that the number of
non-elliptic points above [ρ] is (N − ε3)/3. Hence∑

P∈f−1([ρ])

(eP − 1) =
2(N − ε3)

3

• If P is a cusp: let h be the width of the cusp P (that is the integer such that e2πiz/h is a local
coordinate for X(Γ) at P ). A local coordinate for X(SL2(Z) at [∞] is (e2πiz/h)h, so ep(f) = h.
Thus ∑

P∈f−1([∞])

(eP − 1) =

 ∑
P∈f−1([∞])

eP

− e∞ = N − e∞

Putting all of this together, we get

2g(X(Γ))− 2 = (−2)N +
N − ε2

2
+

2(N − ε3)

3
+ (N − ε∞)

g(X(Γ)) = 1 +
N

12
− ε2

4
− ε3

3
− ε∞

2

�

Example. Consider Γ = Γ0(11). Then N = 12, ε∞ = 2 ([0] and [∞]), ε2 = ε3 = 0 (exercise, c.f. Diamond
and Shurman), so

g = 1 +
12

12
− 0− 0− 2

2
= 1.

Exercise. (1) Verify that ε2 = ε3 = 0 for X0(11).
(2) Show that the only primes p such that g(X(Γ0(p))) = 0 are {2, 3, 5, 7, 13}.

Remark. For any g, there exists finitely many congruence subgroups Γ of PSL2(Z) of genus g. (J.G.
Thompson)
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1.4. Sheaves and Riemann-Roch. Now let X be a Riemann surface, and let OX be its structure
sheaf, so OX(U) are holomorphic functions U → C. This is a sheaf of rings, so we can make sense of a
sheaf of OX -modules.

Definition 1.4.1. An invertible sheaf on X is a sheaf of OX -modules that is locally free of rank 1. This
is equivalent to it having an inverse with respect to the tensor product of OX -modules.

Note. Invertible sheaves ↔ line bundles with holomorphic structure.

We now specialise to the case when X is compact. We then have the notion of meromorphic sections
of an invertible sheaf F (= sections of F ⊗OX {sheaf of meromorphic functions}).

Theorem 1.4.2 (Riemann existence theorem). An invertible sheaf on a compact Riemann surface has
a non-zero global meromorphic section.

Remark. This implies that there is the notion of the degree of an invertible sheaf, which is the sum of
orders of vanishing of any non-zero meromorphic section. Note that this is well-defined, as the sum of
the orders of the zeros and poles of a meromorphic function is 0.

We have

deg(F ⊗ G) = deg(F) + deg(G),

deg(F−1) = −deg(F).

Moreover, invertible sheaves are a group under ⊗, with OX as identity, and deg is a homomorphism to
Z.

Theorem 1.4.3. [Riemann-Roch] Let X be a compact Riemann surface and F an invertible sheaf on
X. Then

(1) H0(X,F) := F(X) is finite-dimensional over C;
(2) dimH0(X,F) − dimH0(X,Ω ⊗ F−1) = 1 − g + deg(F), where Ω is the sheaf of holomorphic

differentials on X.
Lecture 2

Corollary 1.4.4. (1) If F is an invertible sheaf and deg(F) < 0, then F does not have any non-zero
global sections.

(2) If deg(F)� 0, then H0(X,Ω⊗F−1) = 0, and we get a formula for H0(X,F).
(3) We have dimH0(X,Ω) = g(X).
(4) We have deg(Ω) = 2g − 2.

Proof. (1) Any global section would have to have a pole and hence can’t be holomorphic.
(2) If deg(F)� 0, then

deg(Ω⊗F−1) = deg(Ω)− deg(F) < 0,

so we conclude by (1).
(3) Take F = OX and observe that the only functions on a compact Riemann surface which are

evrywhere holomorphic are the constants, so H0(X,OX) = 1.
(4) Take F = Ω �

Remark. There exists a cohomology theory for sheaves for which H0(X,F) is global sections. Then
Riemann-Roch is a combination of two things:

• a formula for

χ(F) =
∑
i≥0

(−1)i dimHi(X,F);

• Serre duality:

Hi(X,F) = H1−i(X,Ω⊗F−1)∗.

We call Ω the dualizing sheaf.
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1.5. The Katz sheaf. Let X = X(Γ) for some Γ, and let k ∈ Z.

Definition 1.5.1. Let ωk be the sheaf defined by

ωk(V ) = {holomorphic functions f on π−1(V ) ⊂ H satisfying f(γz) = j(γ, z)kf(z) ∀γ ∈ Γ}.

Here, if γ =

(
a b
c d

)
, then j(γ, z) = cz + d.

This is a sheaf of OX -modules. If k is odd and −1 ∈ Γ, then it is the zero sheaf. Assume that this is
not the case.

Definition. Let L be a sheaf of OX -modules, and let D =
∑
i niDi be a divisor. Define

L(D)(V ) = {meromorphic sections x of L over V with div(x) +D ≥ 0}.
We think of L(P ) as ‘allowing a simple pole at P ’ and L(−P ) as ‘sections vanishing at P ’.

Theorem 1.5.2. (i) ωk is invertible;
(ii) ω2 = ΩX(cusps).

Proof. (i) This is a case by case check. We just need to show it on a open neighbourhood of every
P ∈ X(Γ).

For P non-elliptic, not cusp, we can find V 3 P open such that π−1(V ) = tγ∈ΓγU and

ωk(V ) ∼= OH(U) ∼= OX(V ).
Other case: we want to show that for any P ∈ X(Γ) there exists a neighbourhood V of P and

b ∈ ωK(V ) such that

ωk(V ) = OX(V ) · b.
Choose τ ∈ H∗ lifting P and U ⊂ H∗ open such that U is fixed by StabΓ̄(τ) and

π−1(V ) = qγ∈Γ̄/ StabΓ̄(τ)γU,

where V = π(U). So

ωk(V ) = {f : U → C holomorphic and wt. k invariant under StabΓ̄(τ)},
while

OX(V ){f : U → C holomorphic and wt. 0 invariant under StabΓ̄(τ)}.
It follows that if StabΓ̄(τ) = 1,then we can take b = 1.

If τ is elliptic, conjugate onto τ = 0 as before. We have seen that StabΓ̄(τ) is isomorphic to the

cyclic group 〈e 2πi
n 〉, where n ∈ {2, 3}. This element e

2πi
n corresponds to the matrix

(
e
iπ
n 0

0 e−
iπ
n

)
(check), so a function U → C is weight k invariant under {e 2πi

n } if and only if it satisfies

f
(
e

2πi
n z
)

= e−
πik
n f(z),

which happens if and only if f is of the form

z 7→ zaf(zn),

where a is the least non-negative integer such that a ≡ k
2 (mod n), and b = za works.

Note:
• if 2n|k, then b = 1 is a local basis;
• if there exists an elliptic point of order 2, then there are no non-trivial modular forms of

odd weight.

If τ is a cusp, we take without loss of generality τ = ∞. If ∞ is a regular cusp (i.e. if its

stabilizer is generated by

(
1 h
0 1

)
for some h ∈ Z), or k is even, then the weight k and weight

0 actions of the stabilizer coincide and b = 1 works. In the remaining case, the stabilizer is

generated by −
(

1 h
0 1

)
for some h ∈ Z, and we have

OX(V ) = {f : U → C holomorphic, f(z + h) = f(z)}
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and

ωk(V ) = {f : U → C holomorphic, f(z + h) = −f(z)},

so we can take b(z) = eiπz/h as our local basis.
(ii) Clearly f 7→ f(z)dz gives a bijection OH ∼= Ω1

H commuting with the action of Γ, if we give OH
the weight 2 action and Ω1

H the natural action; so passing to invariants we have ω2|Y (Γ)
∼= ΩY (Γ).

Thus we only need to worry about cusps, and it suffices to treat the cusp ∞ as usual.

In a sufficiently small neighbourhood V of∞, the local coordinate is q = e
2πiz
h , so dq = 2πi

h q dz.

Thus dz = h
2πi

dq
q , and so we have

ω2(V ) = OX(V )dz = OX(V )
dq

q
=

1

q
Ω1(V )

and so holomorphic sections of ω2 give differentials with simple poles.
�

Note. By construction, we have

H0(X(Γ), ωk) = Mk(Γ) and H0 (X(Γ), ωk(−cusps)) = Sk(Γ),

so we’ve “brought modular forms into the world of sheaves”.

Proposition 1.5.3. Let r be the least common multiple of the set

{# StabΓ(P ) : P ∈ H} ∪ {2 if ∃ irregular cusps, 1 otherwise}.

(Thus 1 ≤ r ≤ 12.) Then ωk+r = ωk ⊗ ωr for all k ∈ Z. In particular, if r = 1 then ωk = (ω1)⊗r.

Proof. Our definition of r implies that all the local bases of ωr in the previous proof were 1, and the
local bases of ωk depended only on k modulo r. So (local basis of ωr) × (local basis of ωk) = (local basis
of ωk+r) at every point. �

Definition 1.5.4. If r = 1 above (i.e. −1 /∈ Γ, all cusps are regular and there are no elliptic points)
then we say Γ is neat.

Corollary 1.5.5. If Γ is neat, then for any k ≥ 2 we have

dimMk(Γ) = (k − 1)(g − 1) +
k

2
ε∞.

Proof. We have

deg(ω) =
1

2
deg(ω⊗2)

=
1

2
(deg(Ω) + ε∞) by Theorem1.4.3 (ii)

=
1

2
(2g − 2 + ε∞),

so if k ≥ 2, then deg(ω⊗k) > 2g − 2, so

deg
(
Ω⊗ (ω⊗k)−1

)
= deg(Ω)− deg(ω⊗k) < 0

and hence Ω⊗ (ω⊗k)−1 has no global holomorphic sections. Therefore Riemann-Roch implies that

dimH0(X(Γ), ω⊗k) = k
(
g − 1 +

1

2
ε∞
)
− g + 1

= (k − 1)(g − 1) +
k

2
ε∞.

�

There are similar (but messier) formulae for non-neat Γ, cf. chapter 3 of Diamond+Shurman.
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1.6. An extended example. We start with the following result:

Lemma 1.6.1. Let Γ be a level and let γ1, . . . , γr be such that SL2 Z =
⊔
j Γγj. Then [γji] ∈ Y (Γ) is

elliptic if and only if γj

(
0 −1
1 0

)
γ−1
j ∈ Γ.

Proof. The stabiliser of γji in SL2 Z is just γj StabSL2 Z(i)γ−1
j , which is the cyclic group generated by

γj

(
0 −1
1 0

)
γ−1
j . The orbit of γji is an elliptic point of Y (Γ) if and only if this subgroup is contained in

Γ, i.e. if and only if γj

(
0 −1
1 0

)
γ−1
j ∈ Γ. �

Corollary 1.6.2. Let p be an odd prime. Then Y0(p) has two elliptic points of order 2 if p ≡ 1 (mod 4),
and none if p ≡ 3 (mod 4).

Proof. In the case Γ = Γ0(p) we may take a set of coset representatives to be γj =

(
1 0
j 1

)
for 0 ≤ j < p

and γp =

(
0 −1
1 0

)
. Then γj

(
0 −1
1 0

)
γ−1
j is

(
j −1

1 + j2 −j

)
, which is in Γ if and only if j < p and

1 + j2 = 0 mod p. So if p = 3 mod 4 there are no elliptic points of order 2, while if p = 1 mod 4 there is
at least one.

To see that there are two when p = 1 mod 4, we must check that the elliptic points γji and γ−ji,
where j is the square root of -1 modulo p, are distinct; but if γji and γ−ji (where −j is taken modulo p)

are in the same orbit, then we must have γ−j

(
0 −1
1 0

)
γj ∈ Γ. But this matrix has bottom left corner

1− j2 = 2 6= 0. �

We can similarly prove the analogous result for elliptic points of order 3 (exercise):

Corollary 1.6.3. Let p be an odd prime. Then Y0(p) has two elliptic points of order 3 if p ≡ 1 (mod 3),
and none if p ≡ 2 (mod 3).

We now consider Γ = Γ0(5).

Lemma 1.6.4. X0(5) has two cusps, so its genus is 0.

Proof. We claim that the cusps are [0] and [∞]. To see that the cusps are distinct, assume that there

exists γ =

(
a b
c d

)
∈ Γ0(5) such that γ.0 = ∞. Then d = 0, but this gives a contradiction as c ≡ 0

(mod 5).
Now let m

n ∈ Q∗; assume that (m,n) = 1. If 5 - n, then we can find a, c ∈ Z such that an− 5cm = 1.

Then γ =

(
a m
5c n

)
is in Γ0(5) and satisfies γ.0 = m

n . If d|n, then we can find b, d ∈ Z such that

md− nb = 1, and then γ =

(
m b
n d

)
is in Γ0(5) and satisfies γ.∞ = m

n .

We deduce from the previous two corollaries that X0(5) has two elliptic points of order 2 and no elliptic
points of order 3. Moreover, we know from last lecture that the degree of the map X(SL2(Z))→ X0(5)
is equal to [PSL2(Z) : Γ̄0(5)] = [SL2(Z) : Γ0(5)], which is equal to 6. We therefore deduce from the
Riemann-Hurwitz formula that g(X0(5)) = 0. �

Proposition 1.6.5. The space S4(Γ) is one-dimensional, and if F is a basis vector of S4(Γ), then
multiplication by F is an isomorphism Mk(Γ)→ Sk+4(Γ) for all k ∈ Z.

Proof. Since there are no elliptic points of order 3, we deduce from Proposition 1.5.3 that the sheaves
ωk satisfy ωk+4 = ωk ⊗ ω4, and hence

ωk+4(−cusps) = ωk ⊗ ω4(−cusps)

for all k ∈ Z. So it suffices to show that dimH0(X,ω4(−cusps)) = 1. This will follow if ω4(−cusps) has

degree 0, as then deg
(

Ω⊗ (ω4(−cusps))
−1
)

= −2, so Ω ⊗ (ω4(−cusps))
−1

has no global holomorphic

sections by Corollary 1.4.4, and we deduce the result from Riemann-Roch (Theorem 1.4.3).



10 SARAH ZERBES

However, we know ω2(−cusps) ∼= Ω1 has degree 2g−2 = −2, so ω2 has degree 0 and thus (as the degree
is a group homomorphism) ω2

2 also degree 0. Let τ ∈ H be a lift of one of the elliptic points, and conjugate
τ to 0. Then as shown in the proof of Theorem 1.5.2, a section of ω4 around P looks like f(z2) in a
neighbourhood of τ . Similarly, a section of ω2

2 around P looks like zf(z2) in a neighbourhood of τ , and
it is easy to check that the two sheaves are locally isomorphic everywhere else. Hence ω2

2 = ω4(−ell.pts),
and so degω4(−ell.pts) = 0.

Finally, there are 2 elliptic points and 2 cusps, so we have degω4(−cusps) = degω4(−ell.pts) = 0 as
required. �

2. Modular curves as algebraic curves

2.1. Modular curves over C.

Theorem 2.1.1. (1) The C-points of a smooth connected projective algebraic curve over C are
canonically a Riemann surface; X 7→ Xan.

(2) Every compact Riemann surface is Xan for a unique X.
(3) There exists an equaivalence of categories

{loc. free sheaves of OX-modules} ⇔ {loc. free sheaves of OXan-modules}.
Lecture 3

Remark. (1) is basically the implicit function theorem. We will later see a bit about the proof of (2).
(3) is Serre’s GAGA theorem. The functors are on the one hand

F 7→ OXan ⊗OX F
and on the other hand

F 7→ {subsheaf of F whose sections over U are elts. of F(U) extending to merom. sections on X}.

We deduce that for every Γ there is an algebraic variety X(Γ)C and invertible sheaves ωk on it such
that

Mk(Γ) = H0(X(Γ)C, ωk).

Here is an alternative (nicer) construction:

Theorem 2.1.2. X(Γ)C ∼= Proj
(⊕

k≥0Mk(Γ)
)
.

(Cf. Hartshorne §II.2 for the definition of Proj of a graded ring.)

Proof. One knows that for any Noetherian graded C-algebra S with S0
∼= C,

Proj(S) = Proj(Sn•) for any n ≥ 1,

where Sn• =
⊕

k≥0 Snk.
Choose n to be the r from the last section, so

Sn• =
⊕
k≥0

H0(X(Γ), ω⊗kn ).

We now quote a standard fact in algebraic geometry: invertible sheaves of positive degree on curves are
ample, so their sections give an embedding into projective space. �

Remark. In fact, the same argument can be used to prove Theorem 2.1.1 (ii): take any ample invertible
sheaf on a Riemann surface, then its sections give an embedding into PN for N � 0.

2.2. Descending the base field.

Question. Does there exist an algebraic curve over some number field K such that we get X(Γ)C by
base extension? (a “descent” of X(Γ)C to K?)

Let’s think a bit about what this means.

• Clearly not all varieties over C are definable over number fields: consider the elliptic curve
y2 = X3 +X + π. This is not defined over any number field, as its j-invariant is 6192

27π2+4 .

• Sometimes descents exist for nonobvious reasons: e.g. πY 2 = X3 +X has a descent to Q, even
though its defining equations aren’t rational, because it’s isomorphic over C to Y 2 = X3 +X.

• Even if a descent exists, it may not be unique: e.g. P1
Q and {X2 + Y 2 + 2Z2} ⊂ P2

Q become
isomorphic over C.
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So we need to ask: is there a descent to a number field that means something?

The curves – fields correspondence. For any field k, there is a bijection

smooth connected curves/k ↔ field extensions K/k of transcendence deg. 1 with k̄ ∩K = k.

In particular, for X/C a curve and k ⊆ C,

models of X/k ↔ subfields K of Rat(X) generating it /C and st. K ∩ k̄ = k.

This gives a promising candidate: we can try to find a good subfield of Rat(X(Γ)) (=meromorphic wt.
0 modular functions) and use this to descend to smaller fields.

Note. We have seen that the j-invariant gives an isomorphism j : X(SL2(Z)) ∼= P1(C). It follows that
C(j(z)) is the function field of X(SL2(Z)).

The following result hands us a Q-model ofX0(N) on a plate: the model with function field Q(j(z), j(Nz)).
One can handle X1(N) and X(N) similarly, but it won’t be very illuminating, and we have lost sight of
a vital ingredient: the sheaf ω.

Theorem 2.2.1. Let N ≥ 2. Then

(1) C(X0(N)) = C(j(z), j(Nz));
(2) The minimal polynomial of j(Nz) over C(j(z)) has coefficients in Z[j(z)], and it is equal to

ΦN (j(z), j(Nz)) for ΦN a symmetric polynomial.
(3) If N = p is prime, then Φp(X,Y ) ≡ (Y p −X)(Y −Xp) (mod p).

Proof. Note that j(Nz) is a meromorphic function on X0(N) if and only if j(Nγ.z) = j(Nz) for all

γ ∈ Γ0(N). Write γ =

(
a b
Nc d

)
. Then

j(Nγ.z) = j

(
Naz +Nb

Ncz + d

)
= j

(
a(Nz) +Nb

c(Nz) + d

)
= j(Nz)

as

(
a Nb
c d

)
∈ SL2(Z). Hence C(j(z), j(Nz)) ⊆ C(X0(N)). Moreover, C(X0(N)) has degree[

PSL2(Z) : Γ0(N)
]

= [SL2(Z) : Γ0(N)] =: m

over C(j).
Let γ1, . . . , γm ∈ SL2(Z) be such that

SL2(Z) = qiΓ0(N)γi.

Then the functions z 7→ j(Nγiz) are all meromorphic functions on H, and they are conjugate to j(Nz)
under an automorphism leaving j(z) fixed (namely z 7→ γiz). If we can show that they are distinct, then
Galois theory implies that [C(j(z), j(Nz)) : C(j(z))] = m, so (1) would follow.

Suppose j(Nγiz) = j(Nγjz) for all z ∈ H and for some i 6= j. Since j defines an isomorphism
j : SL2(Z)H∗ ∼= P1(C), this implies that there exists g ∈ SL2(Z) such that Nγi.z = gNγj .z for all z, so(

N 0
0 1

)
γi = ±g

(
N 0
0 1

)
γj

⇒ γiγ
−1
j ∈ SL2(Z) ∩

(
N 0
0 1

)−1

SL2(Z)

(
N 0
0 1

)
.

But

SL2(Z) ∩
(
N 0
0 1

)−1

SL2(Z)

(
N 0
0 1

)
= Γ0(N),

which contradicts the assumption that γi and γj lie in different cosets. Hence the j(Nγiz) are distinct
as required.

We now prove (2). We know from (1) that the minimal polynomial of j(Nz) over C(j) is

ΦN (j(z), Y ) =
∏
i

(Y − j(Nγiz)).
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The coefficients are symmetric polynomials in the functions j(Nγiz) (and hence invariant under z 7→
γi.z); in particular they are holomorphic on H. As they are rational runctions in j(z), they must in fact
be polynomials. So ΦN (X,Y ) ∈ C[X,Y ]. It remains to show that the polynomial has coefficients in Z.

We know that j(z) = q−1 +
∑
n≥0 anq

n with ai ∈ Z. Moreover, by writing down coset representatives

γi explicitly, one can show that all j(Nγiz) are of the form j
(
az+b
d

)
with ad = N (exercise). As

e
2πi(az+b)

d = e2πiza/de2πib/d,

we see that j(Nγiz) has q-expansion in Z[ζN ]((q
1
N )) for all i.

Hence the coefficients of ΦN (j, Y ) are elements of C[j] (polynomials in j) whose q-expension lie in

Z[ζN ]((q)). We claim that this implies that they lie in Z[ζN ][j]. Let P (j) =
∑k
n=1 bnj

n be one of these
coefficients, and suppose that the q-expansion of P (j(z)) is in Z[ζN ]((q)). Looking at the lowest-order
term, we see that bk ∈ Z[ζN ]. Induction now gives that all bn ∈ Z[ζN ].

Hence ΦN (X,Y ) ∈ Z[ζN ][X,Y ], say ΦN (X,Y ) =
∑
cr,sX

rY s. By construction, c0,m = 1 and cr,m = 0
for r > 0. Substitute the q-expansion of j(z) (which has coefficients in Q). We get a grotesque mess
of infinitely many linear equations in the cr,s with coefficients in Q. This has a unique solution in C
(because of the uniqueness of the monic minimal polynomial), but it must be Galois invariant, so it takes
values in Q. But Q ∩ Z[ζN ] = Z.

Let us finally show that ΦN (X,Y ) is symmetric. We have ΦN (j(z), j(Nz)) = 0 for all z, so

ΦN

(
j
(
− 1

Nz

)
, j
(
− N

Nz

))
= 0 ⇔ ΦN (j(Nz), j(z)) = 0

for all z. Thus ΦN (Y,X) is a constant multiple of ΦN (X,Y ), necessarily ±1. But if ΦN (Y,X) =
−ΦN (X,Y ), then ΦN (X,X) = 0, so (Y −X) is a factor of ΦN (X,Y ). This contradicts the irreducibility
of ΦN (j, Y ) ∈ C(j)[Y ]. This proves (2).

Finally, let’s do (3), which is included since (a) it is the key to understanding (mod p) reductions of
modular curves, and (b) it’s very cool.

For N = p, we can write down the γi explicitly (see last lecture), and we have

{j(pγiz) : 1 ≤ i ≤ m} = {j(pz)} ∪
{
j

(
z + i

p

)
: 0 ≤ i < p

}
.

Hence

Φp(j(z), Y ) = (Y − j(pz))
p−1∏
i=0

(
Y − j

(
z + i

p

))
.

As elements of Z[ζp]((q)), the j
(
z+i
p

)
for 0 ≤ i < p are all congruent modulo the unique prime ideal ℘

above p in Z[ζp], so

Φp(j(z), Y ) ≡(Y − j(pz))(Y − j(z/p))p (mod ℘Z[ζp]((q)))

≡(Y − j(z)p)(Y p − j(z)) (mod ℘Z[ζN ]((q))).

But the coefficients of (Y − j(z)p)(Y p − j(z)) are in Z((q)), so the congruence is (mod pZ((z))). Since
we can read off coefficients of Φp(X,Y ) from q-expansions, this implies

Φp(X,Y ) ≡ (Y −Xp)(Y p −X) (mod p).

�

Remark. (1) This does not mean that X0(N)C is the projective curve defined by ΦN (X,Y ) = 0.
This curve is highly singular in general; the statement is that the smooth curve X0(N)C is
birational to this curve.

(2) The coefficients of ΦN are huge. For instance, for N = 2 we have

ΦN (X,Y ) = X3 + Y 3 −X2Y 2 + 1488XY (X2Y + Y 2X)− 162000(X2 + Y 2)

+ 40773375XY + 8748000000(X + Y )− 157464000000000.

Other examples can be found at https://math.mit.edu/∼drew/ClassicalModPolys.html.
(3) Note that the modp curve defined by Φp is reducible: it is two intersecting copies of P1.

Definition. Define X0(N) to be the unique smooth projective curve /Q which has function field
Q(X)[Y ]/ΦN (X,Y ).
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Remark. The map X0(N)C → X0(1)C = P1 descends to Q, which is a good sign.

Lemma 2.2.2. The cusp and the elliptic points of X0(1) are defined over Q.

Proof. This is clear for the cusp, as it is just the Q-point ∞ of X0(1). To see that the elliptic points are
defined over Q, note that the isomorphism j : H/ SL2(Z)→ X0(1)C send [i] to 1 and [ρ] to 0. �

Theorem 2.2.3. There is a sheaf ωk,Q on X0(N)Q whose base-extension to C is ωk.

Proof. Since −1 ∈ Γ0(N), ωk,C is the zero sheaf for odd k, so we may assume k is even.
We saw above that ω2

∼= Ω1
X0(N)C

(cusps). More generally, by comparing local bases using Theorem

1.5.2, we see that

ω2k =
(

Ω1
X0(N)C

)⊗k
(Dk),

where Dk is a Z-linear combination of the divisors (cusps), (elliptic points of order 2) and (elliptic points
of order 3).

Claim: These three divisors are defined over Q.
For (cusps) this is easy, since the cusps of X0(N) are just the preimages of the Q-point ∞ of X0(1)Q.

For (elliptic points of order 2) this is slightly harder, since not all preimages of the order 2 elliptic point
[i] ∈ X0(1)Q are elliptic. But the elliptic points of X0(N) are exactly the preimages of [i] at which
the projection map X0(N) → X0(1) is ramified, and the ramification degree of a map defined over Q
depends only on the Galois orbit, so we’re fine. Similarly for elliptic points of order 3.

Now, we obviously have

Ω1
X0(N)C

= C⊗Q Ω1
X0(N)Q

and we’ve seen that the Dk are defined over Q, so we can take

(1) ω2k,Q =
(

Ω1
X0(N)Q

)⊗k
(Dk).

�

Corollary 2.2.4. For any k ≥ 2 even and any N ≥ 1, the spaces Sk(Γ0(N)), Mk(Γ0(N)) have a basis
consisting of forms whose q-expensions have coefficients in Q.

Proof. We give the argument for Mk; the case of Sk is similar.

Mk(Γ0(N)) = H0(X0(N)C, ωk)

= C⊗H0(X0(N)Q, ωk,Q)

Claim. The image of H0(X0(N)Q, ωk,Q) consists of functions with q-expansions in (2πi)
k
2 Q[[q]].

By (1), any section of ωk,Q is a meromorphic section of
(
Ω1
X0(N)Q

)⊗ k2 , so it can be written as an

element of Q(X0(N)Q) multiplied by (dj)⊗
k
2 . As the q-expansions of j(z) and j(Nz) have coefficients in

Q, the same is true for an element of Q(X0(N)Q). It therefore suffices to calculate

dj = j′(z)dz = J ′(q) · 2πiq · dz
where J(q) ∈ Q((q)). Hence dj ∈ 2πi ·Q((q))dz, as required. �

Remark. Unfortunately this method does not extend to other Γ: it is hard to write down C(X(Γ))
explicitly, and even harder to get one’s hands on ωk for odd k when −1 6∈ Γ. Hence we need a different
method.

3. Modular curves as moduli spaces

3.1. Lattices and level structures. Let Λ be a lattice in C (i.e. a discrete subgroup isomorphic to
Z2).

Definition. Two lattices Λ1, Λ2 are homothetic if there exists α ∈ C× such that Λ2 = αΛ1.

Lemma 3.1.1. Every lattice Λ is homothetic to a lattice of the form

Λτ = Z + Zτ, τ ∈ H.
Moreover, τ is unique modulo SL2(Z).
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Proof. Exercise. �

We also need the following result:

Lemma 3.1.2. • Every elliptic curve over C is isomorphic to Eτ := C/(Z+Zτ), for some τ ∈ H
• Two elliptic curves Eτ and Eτ ′ are isomorphic if and only if τ and τ ′ are in the same SL2(Z)-

orbit, in which case any γ =

(
a b
c d

)
mapping τ to τ ′ gives an isomorphism C/(Z + Zτ ′) →

C/(Z + Zτ) via z 7→ (cτ + d)z on C.

Corollary 3.1.3. We have

Y (SL2(Z)) = {homothety classes of lattices} = {iso. classes of elliptic curves/C}.

Proposition 3.1.4. (1) The map τ 7→ (C/(Z + Zτ), 1
NZ) gives a bijection between Γ0(N)\H and

the set of equivalence classes of pairs (E,C), where E is an elliptic curve over C and C is a
cyclic subgroup of E of order N .

(2) The map τ 7→ (C/(Z + Zτ), 1
N ) gives a bijection between Γ1(N)\H and the set of equivalence

classes of pairs (E,P ), where E is an elliptic curve over C and P is a point of E of exact order
N .

Proof. Exercise. �

Note. In (2), (Λ, P ) is always equivalent to (Λ,−P ). In (1) there are lots more exceptional cases coming
from elliptic points.

We have a similar description for X(N): Let E be an elliptic curve over C, and N > 1. The Weil
pairing is a perfect pairing

E[N ]× E[N ]→ µN .

Fact: if E = C/(Z + Zτ), then 〈τ/N, 1/N〉E[N ] = e2πi/N .

Proposition 3.1.5. The map τ 7→ (C/(Z + Zτ), τN ,
1
N ) gives a bijection between Γ(N)\H and the set

of equivalence classes of triples (E,P,Q) with E an elliptic curve over C and P,Q two points of order
N on E with 〈P,Q〉E[N ] = e2πi/N .

Proof. Using a similar argument to the one above, we see that the natural map Eγτ → Eτ sends 1/NLecture 4

to cτ+d
N and τ/N to aτ+b

N modulo Z + Zτ . This shows that the map is injective (and well-defined).
Given a triple (E,P,Q), we may assume without loss of generality that E = Eτ for some τ . We

have P,Q = aτ+b
N , cτ+d

N for some a, b, c, d ∈ Z/NZ, and since 〈P,Q〉 = e2πi/N , we know that

(
a b
c d

)
∈

SL2(Z/NZ). It is a known result that SL2(Z) surjects onto SL2(Z/NZ), so so we can choose some

γ ∈ SL2(Z) such that γ =

(
a b
c d

)
mod N . Then the map Eγτ → Eτ sends (τ/N, 1/N) to P,Q, and

hence (E,P,Q) ∼ (Eτ ′ , τ
′/N, 1/N) where τ ′ = γτ . �

Natural question: If x ∈ Y0(N)Q(Q), then does (E,C), E the elliptic curve C/Λx, descend to Q?
This is the right sort of question to ask to understand the arithmetic of modular curves.

Remark. This actual question is vacuous for N � 0 as Y0(N)(Q) is actually empty by a theorem of
Mazur, but we don’t know this yet!

3.2. Moduli spaces and representable functors. We have categories Ring (all rings are assumed
commutative and unital here), R−Alg (algebras over a fixed ring R, a “slice category” of Ring) and
Set.

Remark. These categories are large – the collections of their objects are not sets – but we won’t worry
too much about foundational issues here.

“Most sets that naturally arise in algebraic geometry” (whatever that means) are actually functors
Ring → Set, or R−Alg → Set for some R. E.g.

(1) Sets of points of varieties or schemes
(2) Sets of varieties of a certain kind, or structures on such varieties.



MODULAR CURVES 15

A lot of the fun and power of algebraic geometry comes from the fact that many instances of example
(2) are actually instances of example (1) in disguise! These are the so-called moduli spaces: geometric
objects that parametrize other geometric objects.

We now discuss some properties of functors and representable functors.

Definition. Let C be a locally small category (homomorphisms between any two objects are a set). For
an object X in C, denote by hX the functor (covariant Hom-functor)

Hom(X,∼) : C - Set.

A covariant functor F : C → Set is representable if there exists an isomorphism of functors F ∼= hX for
some X ∈ Ob(C).

How do we specify the isomorphism F ∼= hX? Note that hX(X) has a canonical element: idX . Let x
be the element of F(X) corresponding to idX under the isomorphism hX(X) ∼= F(X).

Note. The choice of x determines an element of F(Y ) for every homomorphism α : X → Y : take
F(α)(x).

Proposition 3.2.1 (Yoneda’s lemma). This construction gives a bijection

{nat. transformations hX → F} ∼- F(X)

for any F : C → Set and X ∈ Ob(C).

Corollary 3.2.2. If F is representable, then the bijection F(Y ) ∼= hX(Y ) is determined by an object
x ∈ F(X).

In other words, for every Y ∈ Ob(C) and y ∈ F(Y ), there exists a unique homomorphism α : X → Y
such that F(α)(x) = y. We say that (X,x) represents F . Note that x is an essential part of the data!

Remark. We have assume that F is covariant, but we get the same for contravariant functors by replacing
C with Copp. In other words, if G : C → Set is a contravariant functor, then (X,x) represents G if for
every Y ∈ Ob(C) and y ∈ G(Y ), there exists a unique homomorphism α : Y → X such that G(α)(x) = y.

Examples. Let C = Ring.

• F(R) = R (the ‘forgetful functor’) is represented by (Z[T ], T ): for any ring R, r ∈ R, there exists
a unique α : Z[T ]→ R such that α(T ) = r;

• F(R) = R× is represented by (Z[T, T−1], T );
• F(R) = {nth roots of unity in R} is represented by Z[T ]/(Tn − 1), T ). (Caveat: ‘primitive nth

roots of 1’ is not a functor on R.)
• Consider the contravariant functor G : Top→ Sets which maps a topological space T to the set

of open subsets of T . Then G is represented by ({x, y}, x), where the two-point space {x, y} has
the topology for which the open sets are {∅, {x}, {x, y}}. To check this, note that if f : A→ B
is a continuous map, then G(f) sends an open subset of B to its preimage under f . Now let A
be a topological space, and let C ⊆ A be open. Define f : A→ {x, y} by

f(z) =

{
x if z ∈ C
y otherwise

.

Then f is continuous (so it is a morphism in Top ), and G(f)(x) = f−1({x}) = C, as required.

Non-example. (taken from some online notes by Zach Norwood) The functor F(R) = {squares in R}
is not representable: suppose that F is represented by (A, a) for some ring A and a ∈ A with a = b2

for some b ∈ A. The for any ring S and an element s ∈ S which is a square, there exists a unique
homomorphism α : A → S such that α(a) = s. But: take S = Z[T ] and s = T 2. Then there exists a
unique α : A → Z[T ] with α(a) = T 2, so α(b) ∈ {±T}. Let σ : S → S be T → −T , so σ(s) = s. Then
σ ◦ α ∈ Hom(A,S) also sends a to s, but σ ◦ α 6= α as σ ◦ α(b) 6= α(b). The contradicts the uniqueness
of α.

The moral of this non-example: automorphisms are bad for representability! Here is a second non-
example.



16 SARAH ZERBES

Lemma 3.2.3. Let F be a representable functor Ring → Set, and let (Ri)i≥1 is a projective system
of rings (i.e. a collection of rings Ri and morphisms Ri+1 → Ri). Set R = lim←−Rn. Then F(R) =

lim←−n F(Rn).

Proof. It suffices to show that if S is any ring then there is a bijection hom(S, lim←−iRi)→ lim←−i hom(S,Ri).

But this is just the definition of the inverse limit. �

Proposition 3.2.4. The functor F : Ring → Set mapping a ring R to the set of roots of unity in R is
not representable.

Proof. Fix a prime p and consider the rings Ri = Z/pi. Since Ri is finite, every invertible element of Ri
is a root of unity, so lim←−i F(Ri) = lim←−iR

×
i = Z×p . But 1 + p is an element of Z×p which is not a root of

unity in Zp, so F(Zp) 6= Z×p , and hence F can’t be representable by Lemma 3.2.3. �

3.3. Elliptic curves over general base schemes. We will define the notion of elliptic curves over S,
where S is a scheme.

Definition 3.3.1. Let S be a scheme. An elliptic curve over S is a scheme E with a morphism π : E → S
(an S-scheme) such that π is proper and flat and all fibres are smooth genus 1 curves, given with a section
“0” : S → E .

Note. If E is an elliptic curve over S and R → S is a morphism of schemes, then E ′ = R ×S E together
with the natural section R→ E ′ is an elliptic curve over R. In other words, the functor

Sch - Set

S 7→ {elliptic curves E/S}

is contravariant.

Example. In Silverman’s book, there is the equation

Y 2 +XY = X3 − 36

j − 1728
X − 1

j − 1728
.

The associated homogeneous cubic

Y 2Z +XY Z = X3 − 36

j − 1728
XZ2 − 1

j − 1728
Z3

is a subscheme of P2/R, where R is the ring Z[j, j−1, (j−1728)−1]. This is an elliptic curve over Spec(R),

with discriminant ∆ = j2

(j−1728)3 .

Think of this as a family of elliptic curves: one for every j 6= 0, 1728, varying in an ‘algebraic way’.

Definition. For E/S an elliptic curve,

E(S) = HomS−Sch(S, E)

are the sections of π : E → S picking out a point on each fibre.

Warning. If P ∈ E(S) has order N , i.e. N ·P = 0 and M ·P 6= 0 for all 1 ≤M < N , it is not necessarily
true that Px has order N on Ex for every x ∈ S! For example, if E/Spec(Zp), can have points of order
p reducing (mod p) to 0 (at closed point of Spec(Zp)).

Lemma 3.3.2. Let ωE/S = π∗
(
Ω1
E/S
)
. Then ωE/S is an invertible sheaf on S.

Proof. The invertibility of π∗
(
Ω1
E/S
)

comes from a calculation in sheaf cohomology, c.f. p.53 of Mumford’s

‘Abelian varieties’. �

Remark. If S = Spec(K) where K is a field, then a basis of ωE/S is the invariant differential on E .

Proposition 3.3.3. If E/S is an elliptic curve, then E has a Weierstrass equation locally on S, i.e.
there exists a covering qUi → S in the Zariski topology such that E|Ui has a Weierstrass equation for all
i. More precisely, any local basis ω of ωE/S (over some U ⊂ S open) determines a Weierstrass equation

over U . If 2 is invertible on S, we can do this in such a way that ω = −dx
2y .
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Sketch. Given U and ω a basis of π∗(Ω
1
E/U ), we can choose a local parameter on E at 0 such that

ω = dT · (1 + higher order terms);

T is a local parameter adapted to ω.
Also, it follows from Riemann-Roch that π∗OE(n(0)) is locally free of rank n over U for all n > 0.

Hence, if U = Spec(A) is affine, then π∗OE((0)) ∼= A·1, and π∗OE(2(0)) ∼= A·(1, x), where x = 1
T 2 (1+. . . ).

Similarly,

π∗OE(3(0)) = A · (1, x, y), where y =
1

T 3
+ . . .,

π∗OE(4(0)) = A · (1, x, y, x2),

π∗OE(5(0)) = A · (1, x, y, x2, xy).

Now y2 − x3 ∈ π∗OE(5(0)), so y2 − x3 ∈ A · (1, x, y, x2, xy), and that is a Weierstrass equation over
A[x, y]. Moreover, dx = − 2dT

T 3 + . . . and y = 1
T 3 + . . ., so if 2 is invertible on S, then

ω =
−dx
2y

(mod TdT ),

which implies ω = −dx
2y as π∗(Ω

1
E/U ) is a rank 1 A-module.

(We don’t have such a nice characterisation of the Weierstrass equation if 2 is not invertible on S.) �

Definition 3.3.4. For S a scheme, α, β ∈ Γ(S,OS), let E(α, β) be the subscheme of P2
S defined by

Y 2Z + αXY Z + βY Z2 = X3 + βX2Z,

and let
∆(α, β) = β3(α4 − α3 + 8α2β − 36αβ + 16β2 + 27β)

be its discriminant. If ∆(α, β) ∈ Γ(S,OS)×, this is an elliptic curve over S.

Remark. If ∆(α, β) ∈ Γ(s,OS)×, then the elliptic curve E(α, β) has j-invariant

j(α, β) =

(
(α+ 4β)2 − 24αβ

)3
∆

.

Note that P = (0 : 0 : 1) ∈ E(S), and we calculate

−P = (0 : −β : 1),

2P = (−β : β(α− 1) : 1),

−2P = (−β : 0 : 1),

3P = (1− α : α− β − 1 : 1),

−3P = (1− α : (α− 1)2 : 1),

. . .

so P does not have order 1, 2 or 3 in any fibre.

Proposition 3.3.5. For any scheme S, E/S an elliptic curve and P ∈ E(S) such that P, 2P, 3P 6= 0 in
any fibre, there exist unique α, β ∈ Γ(S,OS) such that ∆(α, β) ∈ Γ(S,OS)× and a unique isomorphism
E(α, β) ∼= E mapping (0 : 0 : 1) to P .

Proof. First, assume that E has a Weierstrass equation over S. By a translation x 7→ x+ s, y 7→ y + t,
we can assume that P = (0, 0), so the Weierstrass equation for E is of the form

y2 + a1xy + a3y = x3 + a2x
2 + a4x.

Since P does not have order 2 in any fibre, the gradient r of tangent line at P is in Γ(S,OS) (exercise),
so by replacing y with y + rx we can put the equation into the form

y2 + a1xy + a3y = x3 + a2x
2

for some ai ∈ Γ(S,OS). Since P does not have order 3 in any fibre, (0, 0) is not an inflexion point,
which implies that a2 ∈ Γ(S,OS)×. (Check that the tangent at (0, 0) intersects the curve in two points
which are distinct in every fibre.) So by scaling x 7→ u2x, y 7→ u3y with u = a3/a2, we can arrange that
a2 = a3. Then E = E(a1, a2). This gives an isomorphism to a curve in Tate normal form.
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Now consider a general E/S. We know that there exists an affine covering S =
⋃
i Ui, such that

E|Ui has a Weierstrass equation over Γ(Ui, OUi), so we get αi, βi ∈ Γ(Ui, OS) such that E|Ui , PUi) ∼=
(E(αi, βi), (0, 0)). Since αi, βi are unique, the must agree on Ui ∩ Uj . The sheaf property of OS then
implies that there exist α, β ∈ Γ(S,OS) such that resUi(α) = αi and resUi(β) = βi. Then (E,P ) ∼=
(E(α, β), (0, 0)). �

Remark. The last step used in an essential way the uniqueness of (α, β); “local uniqueness gives global
existence”.

Corollary 3.3.6. Denote by Sch the category of schemes.

• The pair (
Spec Z[A,B,∆(A,B)−1],

(
E(A,B), (0 : 0 : 1)

))
represents the functor F : Schopp - Set,

S 7→
{

eq. classes of pairs (E,P ), E/S elliptic curve, P ∈ E(S) a point not of order 1, 2, 3 in any fibre
}
.

• The pair (
Spec Z[B,∆(1 +B,B)−1],

(
E(1 +B,B), (0 : 0 : 1)

))
represents the functor

S 7→
{

(E,P ), E/S elliptic curve, P a point of exact order 5 in every fibre
}
.

Proof. For (i), we need to check that if E → S is an elliptic curve and P ∈ E(S) a point not of order
1, 2, 3 in any fibre, then there exists a unique homomorphism

S → Spec Z[A,B,∆(A,B)−1]

such that E = S×SpecZ[A,B,∆(A,B)−1]E(A,B) and P is the pullback of (0 : 0 : 1). But this is a restatement
of Proposition 3.3.5. For (ii), just equate 3P = −2P :

3P = (1−A,A−B − 1),

−2P = (−B, 0).

�

Note. Note that ∆(1 +B,B) = B5(B2 + 11B − 1), and the dicriminant of the quadratic is 53.

1st attempt: define Y1(5)Z to be Spec Z[B,∆(1 +B,B)−1].

Problem. There is no β ∈ F5 such that ∆(1 + β, β) 6= 0 and j(1 + β, β) = 0. Hence the map

j : Y1(5)Z - A1
Z

is not surjective, since it fails to hit 0 in the fibre above F5. (The reason is that there exist elliptic
curves over F5 with j-invariant 0, but these do not have a point of exact order 5; they are supersingular.)
However, we want the j-invariant be surjective, so the answer seems to be to restrict the domain and
codomain of j.

Definition 3.3.7. We set

Y1(5)Z[ 1
5 ] = Spec Z

[1
5
, B,∆(1 +B,B)−1

]
.

This represents the same functor as before in the category of Z
[

1
5

]
-schemes.

More generally, we have the following definition:

Definition. (continued) For N ≥ 4, let YN be the closed subscheme of Y = Spec Z[A,B,∆(A,B)−1]
cut out by the equation N · (0 : 0 : 1) = (0 : 1 : 0), and let

Y1(N)Z[ 1
N ] =

YN − ⋃
d|N,4≤d<N

Yd

×SpecZ Spec Z
[ 1

N

]
.
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Remark. Note that Y1(N)Z[ 1
N ] has a universal elliptic curve E over it by restricting E(α, β)/Y, and this

has a point (0 : 0 : 1) which is of precise order N . The triple
(
Y1(N)Z[ 1

N ], E , (0 : 0 : 1)
)

represents the

functor
S 7→

{
elliptic curves E/S with point of exact order N

}
on the category of Z

[
1
N

]
-schemes.

Remark. Y1(N)Z[ 1
N ] is equipped with an action of the group (Z/NZ)×. More precisely, the group acts

on the scheme by Spec
(
Z[ 1

5 ]
)
-automorphisms. This observation will be important later.

There are two natural questions:

(1) What does Y1(N)Z[ 1
N ] look like— Is it non-singular?

(2) There exists a bijection of sets between Y1(N)Z[ 1
N ](C) and Γ1(N)\H. Is it a map of algebraic

varieties over C?
Lecture 5

3.4. Smoothness.

Definition 3.4.1. A morphism of schemes φ : X → Y is smooth if it is locally of finite presentation,
flat, and for every point y ∈ Y , the fibre φ−1(y) is a smooth variety over k(y).

Remark. Our definition of elliptic curves over S requires that S → S be a smooth morphism.

Lemma 3.4.2. (1) The composition of smooth morphisms is smooth.
(2) If E/S is an elliptic curve and N ≥ is invertible on S, then [N ] : E → E is smooth.

Proof. (i) is standard (see EGA – follow the trail of references from Wikipedia).
(ii) The morphism [N ] multiplies a global differential by N , so it induces an isomorphism of tangent

space. In other words, it is an étale morphism, and étale morphisms are smooth. �

Proposition 3.4.3. (Functorial criterion for smoothness) Let X → Spec(R) be a scheme of finite type
over R, where R is noetherian. Then the map X → Spec(R) is a smooth morphism if and only if it is
formally smooth, i.e. for any local R-algebra A and a nilpotent ideal I ⊂ A, the map

HomSch/R(SpecA,X)→ HomSch/R(SpecA0, X)

is surjective, where A0 = A/I.

Proof. See Stacks Project §36.9. �

Remark. If we replace surjective with bijective, then we get th enotion of ‘formally étale’.

Theorem 3.4.4. Y1(N)Z[ 1
N ] is smooth over Z

[
1
N

]
.

Proof. Let A be a local Z
[

1
N

]
–algebra, and let I ⊂ A be nilpotent. Let (E0, P0) ∈ Y1(N)(A0). The ring

A0 is local, so E0 has a Weierstrass equation over Spec(A0). Lift coefficients arbitrarily to A to get E/A
lifiting E0; note that ∆(E) ∈ A× since its image in A0 is in A×0 .

Can we lift P0 to an N -torsion point of E, i.e. is E[N ] smooth? Yes, since [N ] : E → E is smooth,
and a composition of smooth mrophisms is smooth. (We apply this to [N ] composed with the structure
map E → SpecA.) Hence (E0, P0) lifts to (E,P ), and we are done. �

Note. The schemes YN/Z are very rarely smooth; it was true for N = 5 essentially by accident.

3.5. Quotients and Y0(N).

Proposition 3.5.1. Let X be a quasiprojective S-scheme (for some base scheme S), and let G be a
finite group acting on X by S-automorphisms. Then there exists a unique S-scheme X/G and a unique
morphism X → X/G representing the functor

Y 7→
(
morphisms of S-schemes X → Y commuting the the G-action

)
.

Here, we consider Y as a G-module with the trivial action.

Remark. Explicitly, this means that given any scheme Y and α : X → Y a morphism of S-schemes such
that α(g.x) = α(x) for all x ∈ X and g ∈ G, there exists a unique S-morphism f : X/G→ Y such that
α factors as

X - X/G
f- Y.
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Proof. Uniqueness is obvious (representing a functor). Existence: for X = Spec(A) affine, we can take
Spec(AG) and the map Spec(A)→ Spec(AG) induced by the inclusion AG ↪→ A, and one can show that
these patch nicely. (One needs quasiprojectiveness and finiteness of G here.) �

Remark. It is clear from the construction that points on X in the same G-orbit map to the same point
in X/G ,which justifies the notation.

Remember from last lecture that Y1(N)Z[ 1
N ] is equipped with an action of the group (Z/N)×.

Definition 3.5.2. For N ≥ 4, let Y0(N) = Y1(N)/(Z/N)× (as a Z
[

1
N

]
-scheme).

Note. The C-points of this are Γ0(N)\H.

Proposition 3.5.3. Y0(N) is smooth over Z
[

1
N

]
Does this definition agree with the explicit model of X0(N) that we constructed in Section 2.2?

Proposition 3.5.4. Y0(N) agrees with our earlier construction as the unique smooth projective curve
over Q with function field Q(X)[Y ]/ΦN (X,Y ), where ΦN (j(z), Y ) is the minimal polynomial of j(Nz)
over Q(j(z)).

Proof. (Sketch) Let G = (Z/N)×. It suffices to show that Q(j(z), j(Nz)) ⊆ Q(Y1(N))G, i.e. that the
functions j(τ) and `(τ) := j(Nτ) lie in Q(Y1(N))G. First note that by definition, j(τ) = j(Eτ ), where
Eτ ∼= C/(Z + τZ), and

j(Nτ) = j(ENτ ) = j(E/〈1/N〉),
since C/(Z + τNZ) ∼= Eτ/〈1/N〉.

Now j and ` clearly define complex-valued functions on the complex points of Y1(N), and we know
from Proposition 3.1.4 that the complex points on Y1(N) are in bijection with pairs (Eτ ,

1
N ). We deduce

from the previous discussion that

j ((Eτ , 1/N)) = j(τ) and ` ((Eτ , 1/N) = j(Eτ/〈1/N〉).

Now an element g ∈ G = (Z/NZ)× acts on Y1(N) by (E,P ) 7→ (E, g.P ). As 〈P 〉 = 〈g.P 〉, it is clear
that j(τ) and j(Nτ) are invariant under the action of G. �

Question. Is Y0(N) a moduli space for elliptic curves with a subgroup of order N?

Proposition 3.5.5. Let S be a Z
[

1
N

]
-scheme. There is a natural map

iso. classes of pairs (E,C):
E/S ell. curve, C ⊂ E

subgroup-scheme, étale loc.
isom. to Z/N

 - Y0(N)(S)

Proof. We define the map as follows: let (E,C) be an element of LHS. Then there exists S′ → S étale
and P ∈ E(S′) such that C = 〈P 〉, and this gives a point of Y1(N)(S′). Changing P changes this by an
elements of G = (Z/N)×, so we get a G-orbit of elements of Y1(N)(S′). By a scary lemma (étale descent
of morphisms) this gives an S-point of Y0(N). Thus we have a well-defined map

ιS : {(E,C)/S} - Y0(N)(S).

�

Problem. The map ιS is in general neither injective nor surjective.
Injectivity. If L/K is a finite field extension, then Y0(N)(K)→ Y0(N)(L) is obviously injective, but(

(E,C)/K
)
-
(
(E,C)/L

)
is not injective, as the following example shows.

Example. Let E be an elliptic curve over Q. Let K be a quadratic extension of Q, and denote by E′ the
twist of E be the corresponding quadratic character, so E and E′ are not isomorphic over Q, but they
become isomorphic over K. Let ϕ : E → E′ be an isomorphism over K. It is then easy to check that if
σ ∈ Gal(K/Q) is non-trivial, then σ ◦ ϕ = −ϕ.



MODULAR CURVES 21

Let C ⊂ E(Q) be a subgroup of order N , and assume that C is defined over Q (which means that
any σ ∈ Gal(Q/Q) permutes the elements of C). Then C ′ = ϕ(C) is also defined over Q: if x ∈ C and
τ ∈ Gal(Q/Q), then

τ(ϕ.x) = ϕτ .τ(x) = −ϕ(τ.x) = ϕ(−τ.x) ∈ ϕ(C).

Hence (E,C) and (E′, C ′) are isomorphic over K but not over Q.

However, if k is a field, then one can check that the image (ιSpec(k)) is the set of pairs (E,C) defined

over k modulo isomorphisms over k̄.

Surjectivity. One can show that for k a field, ιk is surjective. (This is fairly hard, c.f. Proposition
VI.3.2 of Deligne-Rapoport.) However, for a non-field S, surjectivity can also fail. For example, if
S = Y0(N), then in general there is no elliptic curve over S corresponding to the identity homomorphism

[S → Y0(N)] ∈ Y0(N)(S) = HomS−Sch(S, Y0(N)).

(One can try to use E/(Z/N)× where E is the universal elliptic curve over Y1(N), but fibres over points
with non-trivial stabilizers might not be elliptic curves!)

Is there a conceptual way of understanding the failure of Y0(N) to classify elliptic curves with level
structure? We will investigate this question in the next section.

3.6. General modular curves. (following Katz-Mazur)

Definition 3.6.1. Let R be a ring.

(1) Let Ell/R be the following category:

• objects are diagrams
E
↓
S

, where S is some R-scheme and E is an elliptic curve over S;

• morphisms are squares
E - E′

S
?

- T
?

where E ∼= E′ ×T S.
(2) A moduli problem for elliptic curves over R is a contravariant functor P : Ell/R→ Set.

(3) If P is a moduli problem, let P̃ : Sch/R→ Set be the functor

P̃ : S 7→
(
pairs (E,α), E/S elliptic curve, α ∈ P(E/S)

)
.

Example. Here are some examples of moduli problems for elliptic curves over R:

• (E → S) 7→ {points on E(S) of exact order N};
• (E → S) 7→ {subgroups of E(S) of order N in every fibre}.

Note that these functors really are contravariant: for example, if T is an S-scheme and P = (S → E) ∈
E(S)[N ], then we can basechange P to T → (E ×S T ) ∈ (E ×S T )(T )[N ].

Then the associated functors Sch/S → Set are precisely the ones that we studied in the previous
chapters.

Fact 3.6.2. Fix N and a subgroup H ⊂ GL2(Z/N). Then there exists a moduli problem PH on Ell/Z
[

1
N

]
such that if k̄ is algebraically closed, E/k̄ ∈ Ob(Ell/Z

[
1
N

]
), then

PH(E/k̄) = {H-orbits of isomorphisms (Z/N)2
∼=- E[N ]}.

For H =

〈(
1 0
0 1

)〉
, this is Γ(N),

E/S 7→
(
pairs of sections P,Q ∈ E[S] generating E[N ] in every fibre

)
.

For H =

{(
? ?
0 1

)}
, this is Γ1(N); for H =

{(
? ?
0 ?

)}
, this is Γ0(N).
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Remark. If k is a field, then E/k is the image of PH(E/k) in PH(E/k̄) is

{H-orbits of bases of E[N ](k̄) in which image of Gal(k̄/k) lands in H}.

Definition. A moduli problem P is representable if P is representable as a functor. In other words, P
is a representable moduli problem if there exists an elliptic curve E over some scheme S and α ∈ P(E/S)
such that for any (E → T ) and any β ∈ P(E/T ) there exists a unique morphism T → S such that
E ∼= E ×S T and β = P(π)(α), where π is the stucture map E ×S T → E .

Example. We saw in the proof of Corollary 3.3.6 that the functor

(E → S) 7→ {points on E(S) which are of exact order 5 in every fibre}
is representable by (E(1 +B,B), (0 : 0 : 1)). This was the crucial step in proving that the functor

S 7→ {iso. classes (E,P ): E an elliptic curve /S, P of exact order 5 in every fibre}
is representable. As the following result shows, this is a general principle.

Proposition 3.6.3. If P is representable on Ell/R, then P̃ is representable on Sch/R.

Proof. If (E/S, α) represents P, then one can check that (S, (E,α)) represents P̃. �

We would like to quantify when a moduli problem is representable. For this, we introduce a much
weaker concept, relative representability.

Definition. A moduli problem P is relatively representable if, for every E/S ∈ Ob(Ell/R), the functor

Sch/S → Set, T 7→ P(E ×S T/T ) is representable.

Proposition 3.6.4. Let N ≥ 1, and let H ⊂ GL2(Z/N). Then the moduli problem PH is relatively
representable and étale over Ell/Z

[
1
N

]
. In other words, for all E/S ∈ Ob(Ell/Z

[
1
N

]
), the functor

T 7→ PH(E ×S T )is represented by an étale S-scheme.

Proof. For H = {1} and E and elliptic curve over S, we can find an explicit S-scheme representing PH
on Sch/S; it is an open subscheme Z of E[N ]×S E[N ] given by a condition on the Weil pairing in every
fibre: the condition is that the Weil pairing of two sections is a primitive Nth root of unity in every fibre.
To see that Z has the required properties, let T be an S-scheme, and let P,Q ∈ E ×S T be generating
(E ×S T )[N ] in every fibre. Define α : T → Z as the composition

α = (π × π) ◦ (P,Q),

where

(P,Q) : T → (E ×S T )[N ]× (E ×S T )[N ]

and π : E ×S T → E is the natural projection. Then it is easily seen that α has the required property.
For general H just take the quotient of Z by H. �

So what prevents a relatively representable moduli problem from being representable?

Definition 3.6.5. P is rigid if for all E/S ∈ Ob(Ell/R), Aut(E/S) acts on P(E/S) without fixed
points.

Example. The moduli problem

(E → S) 7→ {subgroups C of E(S) which have exact order N in every fibre}
is not rigid: the element [−1] ∈ Aut(E/S) sends such a subgroup to itself.

We also know from the previous section together with Proposition 3.6.3 that this moduli problem
is not representable. The following result of Katz-Mazur that in the case of a relatively representable
moduli problem, these kinds obstructions are the only ones:

Theorem 3.6.6. (Katz-Mazur) P is representable if and only if it is relatively representable and rigid.

Proof. (Sketch) Start from two basic moduli problems:

• ‘naive level Γ(3)’ over Z
[

1
3

]
;

• ‘Legendre moduli problem’ (Γ(2) with choice of differential) over Z
[

1
2

]
.



MODULAR CURVES 23

Both have group actions (GL2(F3) and GL2(F2) × {±1}). Given P relatively representable and rigid,
construct one object by taking E/Y (3) – relative representability gives us a scheme over Y (3) – and this
has a GL2(F3)-action. Take invariants (this is OK since P is rigid), so we get an object E/S represnting
P on Ell/R

[
1
3

]
.

Legendre gives an object over R
[

1
2

]
similarly. By rigidity these agree over R

[
1
6

]
, so we get a repre-

senting object over R. �

It turns out that one can determine precisely for which subgroups of SL2(Z/NZ) the moduli problem
PH is rigid:

Proposition 3.6.7. PH is rigid on Ell/R
[

1
6

]
if and only if the preimage in SL2(Z) of H ∩ SL2(Z/N)

contains no elements of finite order (i.e. has no elliptic points and does not contain −1).

Proof. (Sketch) Over C this is routine. To prove the statement in general it suffices to check it on objects
E/k̄, where k̄ is algebraically closed and not too large. If k̄ has characteristic 0, we can embed it into C.

One can show: if k has finite characteristic ≥ 5, E/k is an elliptic curve, φ ∈ Aut(E), then the pair
(E, φ) lifts to characteristic 0. (This is shown somewhere in chapter VI of Deligne-Rapoport.) �

Corollary 3.6.8. If H satisfies the hypotheses of Proposition 3.6.7, there is a scheme Y = YPH , an
elliptic curve E/Y and an α ∈ PH(E/Y ) representing the functor PH . One can check that YPH is smooth
over Z[1/N ].

Remarks.

(1) If H does not satisfy the hypotheses of Proposition 3.6.7, then the functors PH and P̃H are
not representable, but one can show that there is a scheme YPH over Z[1/N ] that is “the best

possible approximation” to representing the functor P̃H : there are maps

P̃H(S)→ YPH (S)

which are surjective for S a field, and bijective if S is algebraically closed, as in the special case
of Y0(N) (Proposition 3.5.5). These schemes YPH for non-rigid PH are sometimes called coarse
moduli spaces (while the YPH for rigid H, which do represent functors, are sometimes called fine
moduli spaces).

(2) The complex points of YPH are closely related to Γ\H, where Γ is the preimage of H in SL2(Z),
but they are not always equal. The correct statement is that YPH (C) is a possibly discon-
nected Riemann surface, whose components biject with the quotient (Z/N)×/ det(H), and the
component corresponding to the coset of 1 ∈ (Z/N)× is Γ\H.

If you are happy with adèles you can write this more intrisically as

YPH (C) = GL2(Q)\GL2(A)/ (R>0 · SO2(R) · U)

where U is the preimage of H in GL2(Ẑ) (an open subgroup of GL2(Afin)).

4. Leftovers

4.1. Katz modular forms. Recall that we defined, for E/S an elliptic curve, ωE/S = π∗(Ω
1
E/S). Write

ωKatz for the line bundle from Definition 1.5.1.

Proposition 4.1.1. If S = YPH for some H as before, E/S universal elliptic curve, then ωE/S is the
Katz sheaf ω1 from Chapter 2.

Proof. Exercise (You need to show that both line bundles have the same pullbacks to H and the actions
of Γ agree.) �

Definition 4.1.2. For Γ a torsion free congruence subgroup of level N , R a Z
[

1
N

]
-algebra, define

KMk(Γ, R) = H0
(
Y (Γ)×R,ωkE/Y (Γ)

)
(an R-module).

Concretely: a Katz modular form of weight k over R is a rule attaching to each triple (E/S, α, ω) (S
an R-scheme, E/S elliptic curve, α ∈ PH(E/S), ω a basis of Γ(E,ωE/S)) an element of Γ(S,OS) such
that
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• it is compatible with base change in S,
• it is homogeneous of weight k in ω.

(Compare with Katz “p-adic properties of modular schemes and modular forms, Springer LNM 330.)
Fun thing: over R = Z

[
1
6

]
, for an elliptic curve E/R and ω ∈ Ω1, there exists a unique Weierstrass

equation such that ω = dX
y , and E4 (resp. E6) are the maps which send (E,ω) to the a4- (resp.

a6-)coefficient of this equation.

4.2. Cusps and the Tate curve. Consider the ring

Z((q)) =

{ ∞∑
n=−N

anq
n : an ∈ Z

}
.

We will define an elliptic curve over this ring together with a differential such that evaluating at this
pair gives the q-expansion of a Katz modular form.

Definition 4.2.1. Tate(q) is the elliptic curve

y2 + xy = x3 + a4x+ a6,

where

a4 = −
∑
n≥1

5n3qn

1− qn
,

a6 = −
∑
n≥1

1

12
· (7n5 + 5n3)qn

1− qn
.

Note that a4, a6 ∈ Z[[q]].

We find that the dicriminant of Tate(q) is exactly the q-expansion of ∆ (weight 12 cusp form) in
q + q2Z[[q]] ⊂ Z((q))×. Hence Tate(q) is an elliptic curve:

Tate(q) = “q-expansion of C/(Z + Zτ)”

= C×/qZ.

Proposition 4.2.2. If τ ∈ H, then the series defining Tate(1) converges at q = e2πiτ and defines a
curve ∼= C/(Z + Zτ).

Remark. Convergence is easy, and we chack that j(Tate(q)) is the q-expansion of j(τ).

Proposition 4.2.3. There exist series X(u, q), Y (u, q) in Z[u, u−1(1− u)−1] such that

(2)
(
X(u, q), Y (u, q)

)
⊕
(
X(v, q), Y (v, q)

)
=
(
X(uv, q), Y (uv, q)

)
.

Here, ⊕ denotes the group law on Tate(q). (We interpret
(
X(u, q), Y (u, q)

)
as ∞ if u = 1.)

Proof. Take

X(u, q) =
u

(1− u)2
+
∑
d≥1

∑
m|d

m(um + u−m − 2)

 qd,

Y (u, q) =
u2

(1− u)3
+
∑
d≥1

∑
m|d

m(m− 1)

2
um − m(m+ 1)

2
u−m +m

 qd.

Sneaky part: there exists a straightforward change of coordinates from Tate(q) to

y2 = x3 − g4(τ)x− g6(τ)

which is C/(Z + Zτ) via
(
℘(z, τ), ℘′(z, τ)

)
. X and Y are just ℘ and ℘′ as power series in u = e2πiz and

q = e2πiτ . So the identity (2) holds for all u, q in an open subset of C×C, so it holds as an identity of
power series. �
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Remark. In other words, the map
Gm/Z((q))

- Tate(q)

given by u 7→ (X(u, q), Y (u, q)) is a group homomorphism, and it can be shown to factor through qZ.
(This map does not actually exist, since the power series X(u, q) and Y (u, q) do not converge for general
u ∈ Z(q)), but it explains why the Tate curve is often written as Gm/qZ.)

Proposition 4.2.4. Cusps of YPH correspond to{
PH-level structures on Tate(q) over Z[[q

1
N , ζN ]] mod. automorphisms q

1
N → ζaNq

± 1
N

}
.

Note. We thus get an action of Gal(Q(µN )/Q) on the set of cusps.

Example. Y1(5): the points of order 5 on Tate(q) over Z
[

1
5 , ζ5

]
[[q

1
5 ]] are the images of q

a
5 ζb5, with a, b ∈

(Z/5)2 − {(0, 0)}.
These do not all give distinct cusps, because we need to keep track of the automorphisms. We find

that there are 4 cusps

{ζ5, ζ4
5}, {ζ2

5 , ζ
3
5}, {q±1/5ζa5 : a ∈ Z/5Z}, {q±2/5ζa5 : a ∈ Z/5Z}.

The action of Gal(Q(µ5)/Q) on the cusps is now easy to see: it factors through Gal(Q(µ5)+/Q) ∼= C2,
and the nontrivial element swaps {ζ5, ζ4

5} with {ζ2
5 , ζ

3
5} and fixes the other two cusps.
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