LTCC course: Euler systems and Iwasawa Theory COURSE WORK 2

Submission date: December 5

Please send comments and corrections to *s.zerbes@ucl.ac.uk*.

1. Let $N \ge 1$, and let ℓ be prime. Denote by $\pi : Y_1(N\ell) \longrightarrow Y_1(N)$ the natural quotient map. Show that

$$\pi_*(cg_{0,1/N\ell}) = \begin{cases} cg_{0,1/N} & \text{if } \ell | N \\ cg_{0,1/N} \cdot (cg_{0,u/N})^{-1} & \text{if } \ell \nmid N \end{cases}$$

where *u* is the inverse of $\ell \pmod{N}$.

- 2. Let $M, N \ge 1$ such that M|N, and let ℓ be a prime not dividing N. Denote by $\pi : Y(M, N\ell) \rightarrow Y(M, N)$ the natural quotient map. Calculate $(\pi \times \pi)_*({}_c \operatorname{REis}_{M,N\ell})$.
- 3. Let M, N, ℓ be integers with ℓ prime, $\ell \nmid M$ and $M\ell | N$. Denote by $\tau_{\ell} : Y(M\ell, N) \rightarrow Y(M, N)$ the map constructed in lectures.
 - (a) Let $a \in \mathbb{Z}/M\ell\mathbb{Z}$ be the unique lift of $1 \in \mathbb{Z}/M\mathbb{Z}$ to an element of $\mathbb{Z}/M\ell\mathbb{Z}$ divisible by ℓ .
 - (b) Show that the matrix $\begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix}$ defines an embedding of $Y(M(\ell), N)$ into $Y(M(\ell), N)^2$.
 - (c) Show that the following diagram is Cartesian:

Here, the vertical maps are just the natural degeneracy maps.

4. Let f, g be cuspidal modular eigenforms of weight 2 and level $\Gamma_1(N)$; write $f = \sum a_n q^n$ and $g = \sum b_n q^n$. Assume that $a_n, b_n \in \mathbb{Q}$ for all n. Let p be a prime, and denote by $V_p(f)$, $V_p(g)$ the p-adic representations attached to f and g, respectively. Assume¹ that the image of $Gal(\overline{\mathbb{Q}}/\mathbb{Q})$ in $GL(V_p(\star))$ is open for $\star \in \{f, g\}$. Show that $V_p(f) \otimes V_p(g)$ is irreducible as a $Gal(\overline{\mathbb{Q}}/\mathbb{Q})$ -representation unless there exists a character χ such that

$$a_{\ell} = b_{\ell} \chi(\ell) \quad \text{for } \ell \nmid N.$$

¹This is true when f and g are not of CM type.