LTCC course: Euler systems and Iwasawa Theory: COURSE WORK 1

Submission date: November 5

Please send comments and corrections to s.zerbes@ucl.ac.uk.

- 1. Let *K* be a finite extension of \mathbf{Q}_p , and let *B* be a topological \mathbf{Q}_p -algebra with a continuous, semilinear action of $G_K = \text{Gal}(\bar{K}/K)$. Assume that *B* is G_K -regular, i.e. if $b \in B$ is non-zero and $\mathbf{Q}_p.b$ is G_K -stable, then $b \in B^{\times}$.
 - (a) Show that B^{G_K} is a field.
 - (b) Assume that *B* is a field, and let $F = B^{G_K}$. Let *V* be a finite-dimensional \mathbf{Q}_p -vector space with a continuous action of G_K . Show that

$$\dim_F \left(V \otimes_{\mathbf{Q}_p} B \right)^{G_K} \leq \dim_{\mathbf{Q}_p} V.$$

2. Let *K* be a field, and let *V* be a *p*-adic representation of $G_K = \text{Gal}(\bar{K}/K)$ with coefficient field \mathbf{Q}_p . Recall that

$$H^{1}(K, V) = \frac{\text{cts. functions } s: G_{K} \to V \text{ such that } s(gh) = s(g) + hs(h) \text{ for all } g, h \in G_{K}}{\text{functions } s: G_{K} \to V \text{ of the form } s(g) = gv - v}.$$

(a) Show that there is a bijection between $H^1(K, V)$ and equivalence classes of short exact sequences of G_K -representations

$$0 \rightarrow V \rightarrow V' \rightarrow \mathbf{Q}_p \rightarrow 0$$
,

where the term \mathbf{Q}_p is the trivial representation.

- (b) Show that if *V* is crystalline, then $H_f^1(K, V)$ classifies those equivalence classes of short exact sequences where *V'* is crystalline.
- 3. Let *K* be a number field, and let $V = \mathbf{Q}_p$, quipped with the trivial action of G_K . Show that $\operatorname{Sel}_{BK}(K, V) = 0$. You may use without proof that $\mathcal{F}_{v,BK} = \mathcal{F}_{v,ur}$ for all v|p.
- 4. For $m \ge 1$, let $\zeta_m = e^{2\pi i/m}$, and let $u_m = 1 \zeta_m$. Write μ_m for the group of *m*th roots of unity.
 - (a) Let ℓ be a prime. Show that

$$\operatorname{norm}_{\mathbf{Q}(\mu_m)}^{\mathbf{Q}(\mu_{\ell m})} u_{\ell m} = \begin{cases} u_m & \text{if } \ell | m \\ (1 - \sigma_{\ell}^{-1}) u_m & \text{if } \ell \nmid m \text{ and } m > 1 \\ l & \text{if } m = 1 \end{cases}$$

(b) Let *p* be a prime, and let

$$v_m \begin{cases} u_m & \text{if } p | m \\ \operatorname{norm}_{\mathbf{Q}(\mu_m)}^{\mathbf{Q}(\mu_{pm})} u_{pm} & \text{if } p \nmid m \text{ (including if } m = 1 \end{cases}$$

Denote by κ_p the Kummer map. Show that the classes $\kappa_p(v_m)$ are an Euler system for the representation $\mathbf{Q}_p(1)$.