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Abstract. For a positive integer k, we say that a graph is k-existentially complete if for every
0 6 a 6 k, and every tuple of distinct vertices x1, . . . , xa, y1, . . . , yk−a, there exists a vertex z that
is joined to all of the vertices x1, . . . , xa and to none of the vertices y1, . . . , yk−a. While it is easy
to show that the binomial random graph Gn,1/2 satisfies this property with high probability for
k = (1 − o(1)) logn, little is known about the “triangle-free” version of this problem: does there
exist a finite triangle-free graph G with a similar “extension property”? This question was first
raised by Cherlin in 1993 and remains open even in the case k = 4.

We show that there are no k-existentially complete triangle-free graphs on n vertices with
k > 8 logn

log logn
, for n sufficiently large. This gives the first non-trivial, non-existence result on this

“old chestnut” of Cherlin. We believe that this result breaks through a natural barrier in our
understanding of the problem.

1. Introduction

If one constructs a graph on vertex set N by flipping a fair, independent coin for each possible
edge {i, j} then one has constructed, with probability 1, a unique graph (up to isomorphism) which
is known as the Rado graph. This curious object, of interest to logicians and combinatorialists alike
[1, 4, 11], has the following important “universal property”: the Rado graph is the unique countable
graph G into which any countable graph H can be “greedily” embedded1.

This property is best thought of as a consequence of the fact that the Rado graph is the unique
countable graph with the k-extension property for all k. For an integer k ∈ N, say that a graph
has the k-extension property if for every 0 6 a 6 k and every tuple of distinct vertices x1, . . . , xa,
y1, . . . , yk−a there exists a vertex adjacent to all of x1, . . . , xa and none of y1, . . . , yk−a.

Interestingly, the Rado graph can be “approximated” by finite graphs in the sense that for every
k ∈ N, there exist finite graphs that have the k-extension property. Indeed, for p ∈ (0, 1), we define
the binomial random graph Gn,p to be the probability space defined on all graphs with vertex set [n],
where the edge {i, j} is included with probability p, independently of all other edges. It is not hard
to see that a graph G sampled from Gn,1/2 has the k-extension property with k = (1−on(1)) log2 n,

with probability 1− on(1), as n tends to infinity2.
A fascinating analogue of the Rado graph is the Rado graph for the class of triangle-free graphs

(this graph sometimes sports the title “the universal homogenous triangle-free graph”). More
technically, there is a unique countable, triangle-free graph G into which every countable, triangle-
free graph H can be “greedily” embedded. While a simple “random” construction is not available to
us, the construction of the triangle-free Rado graph is easy; the graph is built up in stages, starting
from a single vertex {v0} = G0 we define Gi+1 ⊆ Gi by adding a vertex with neighbourhood I ⊆ Gi,
for all independent sets I in Gi. Now define G = ∪i>1Gi.

1This means that if a finite number of vertices of a countable graph H have been embedded into the Rado graph,
one can always find further vertices to extend the embedding to all of H.

2Here we use the notation on(1) to denote a quantity that tends to 0 as n tends to infinity.
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Again, the key behind this special embedding property is a similar extension property: say
that a graph has the k-triangle-free extension property if for every 0 6 a 6 k and every tuple of
distinct vertices x1, . . . , xa, y1, . . . , yk−a there exists a vertex adjacent to all of x1, . . . , xa and none
of y1, . . . , yk−a, provided x1, . . . , xa form an independent set. In analogy with the Rado graph, this
graph has the k extention property for all k. We will say a graph with the k-triangle-free extension
property is called k-existentially complete triangle-free (and henceforth k-ECTF).

The question of whether there exist finite graphs that approximate the triangle-free Rado graph
was raised and studied by Cherlin in 1993 [2, 3] in the context of logic and model theory and has
recently made its way over to combinatorics by way of Even-Zohar and Linial [8]. More preceisley,
Cherlin asked if there exist finite k-ECTF graphs for every fixed k ∈ N. To date, this problem
remains poorly understood [3] and the state-of-the-art can be summarized as follows. The case
k = 1 is trivial; a graph is 2-ECTF if and only if it is maximal triangle-free, twin-free and not
a cycle on five vertices or a single edge; there are various (non-trivial) constructions for 3-ECTF
graphs [2, 3, 8, 9]; and the case k = 4 is open.

Our belief is along the lines of Even-Zohar and Linial, who have conjectured that no such graphs
exist for k > k0, where k0 ∈ N. In the present paper we take a step towards this conjecture by giving
a non-trivial restriction on the maximum possible value of k, relative to n, the number of vertices in
the graph. To this end, let f(n) be the largest integer k for which there exists a k-ECTF graph on
n vertices. We first note that an easy argument reveals that f(n) 6 log n, for sufficiently large n.
Indeed, if G is k-ECTF with k > log n, let I be an independent set in G of size ` = min{k, dlog ne}
(such a set always exists in a triangle-free graph - see Lemma 4) then for every subset S ⊆ I there
must exist a vertex vS in G so that vS is joined to all vertices in S and no vertices in I \ S. Each
such vertex v must be distinct and thus 2` 6 n.

Our main result gives an asymptotic improvement over this estimate, thereby giving a first
non-trivial restriction on f(n).

Theorem 1. Let n ∈ N be sufficiently large. There do not exist k-ECTF graphs on n vertices, with

k > 8 logn
log logn . That is, f(n) = O

(
logn

log logn

)
.

One might interpret Theorem 1 as giving the first concrete evidence that the triangle-free version
of the problem is substantially different than the problem without the restriction on triangles.
Indeed recall that, with high probability, G sampled from Gn,1/2 is k-existentially complete with k =
(1−on(1)) log n and thus essentially matches the trivial bound of log n, which can be proved as above
(here it suffices to pick an arbitrary set, rather than an independent one, of size min{k, dlog ne}).
Theorem 1 also makes a concrete step towards showing the non-existence of finite k-ECTF graphs.
We should mention that there have been other non-existance results [3] for k-ECTF, but these have
only been shown for graphs possessing a strong symmetry property - so called “strongly-regular
graphs”.

We point out that a related “extension property” for triangle-free graphs was raised and studied
by Erdős and Fajtlowicz [5] and later by Pach [9]. In particular, they studied graphs with the
property that every independent set of size at most k has a common neighbour, a one-sided version
of the k-TFEC property. While it is conjectured that such graphs should have strong structural
charateristics, little is known except in this case where k is large: Pach [9] gave a classification
of triangle-free graphs where all independent sets have a common neighbour. This direction was
furthered by Erdős and Pach [6] who showed that if G is a triangle-free graph with the property
that every independent of size k 6 log n has a common neighbor then G has minimum degree at
least n+1
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2. Proof of Main Theorem

2.1. Proof motivation and Sketch. As one might be lead to believe from the coin-flipping
construction of the Rado graph, we proceed with the vague intuition that a k-ECTF graph must
look random-like (in a sense).

Indeed, if we knew that our graph really looked locally like the binomial random graph, we could
argue as follows (we intentionally use the word “locally” rather vaguely here) . Given a k-ECTF
graph with large k, we start by finding a bipartite graph H = (A,B,E) in G with the property
that for every 1 6 a 6 k, and every distinct x1, . . . , xa y1, . . . , yk−a ∈ A there is a vertex in B that
is joined to all of x1, . . . , xa and none of y1, . . . , yk−a. So while the k-tuples in A are “taken care
of”, we turn our attention to how the neighborhoods of the graph cover “cross independent sets”,
independent sets of the form A′ ∪ B′ , where A′ ⊂ A and B′ ⊂ B. Now, if it were the case that
A,B were roughly of the same size and the graph between A and B looked random, then we should
expect to find many cross independent sets of size k that cannot be extended by much. That is,
we could find lots of k-tuples A′ ∪ B′ for which there are no largeish sets A′′ ⊃ A′ and B′′ ⊃ B′

for which A′′ ∪ B′′ is also independent. We now observe that if a vertex v ∈ V (G) \ V (H) covers
our cross independent k-tuple A′ ∪B′ it cannot cover too many more such tuples by the restriction
on triangles. We would now conclude that it is impossible for G to be k-ECTF for there are not
enough vertices in the graph to cover all such cross independent sets of size k.

Now, this is what we would do if things really did look random between A and B, but in reality,
we have little control over the relative sizes of A and B, and little control over the local densities
(as one has in standard notions of pseudo-randomness). The idea here is to find a more subtle
notion of the “size” (or rather of the measure) of a subset in the bipartite graph H. In particular,
we define a measure on subsets of B that will give large weight to sets that cover many k-tuples in
A.

Beyond the definition of our special measure, there are two main ingredients, captured in Lem-
mas 2 and 3 that go into the proof of Theorem 1. Lemma 2 is ultimately used to say that “large”
neighborhoods are needed to cover many k-tuples. In fact, this notion of “large” is generalized to an
arbitrary probability measure, which we will apply to our special measure. The second ingredient,
Lemma 3, says that if a set has large measure (with respect to our special measure), then it must
expand quite a bit, in the sense of having many neighbors.

We can now sketch the proof. Given our bipartite graph H = (A,B,E) as above, we have sets
B′′ ⊆ B, that have large mass in our covering measure. But there are still many independent sets
(for reasons we do not go into here) of size k which have the form A′ ∪ B′ and A′ ⊆ A, B′ ⊆ B′′.
Now a vertex v which contains A′ ∪ B′ in its neighbourhood cannot cover too many more such
cross independent sets as the edges of B′′ are expanding and so v cannot join to many vertices in
A. The conclusion is then the same as in the toy problem (when we were assuming everything to
be random like): we arrive at a contradiction as the graph would need more than n vertices to
simultaneously cover all these cross independent sets.

2.2. A few lemmas. Given a finite set X, we say that µ is a probability measure on X if µ :
P(X)→ [0, 1] where µ(A) =

∑
x∈A µ({x}), for all A ⊂ X and µ(X) = 1.

For a graph G = (V,E), and disjoint subsets X,Y ⊆ V , let G[X,Y ] denote the induced bipartite
graph on vertex set X ∪ Y , with bipartition {X,Y }, and x ∈ X adjacent to y ∈ Y if and only if
xy ∈ E.
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Let G be a bipartite graph with vertex partition {A,B}. For s, t ∈ N, we say G is (s, t)-separating
for A if, for every pair of disjoint subsets S, T ⊆ A with |S| 6 s and |T | 6 t, there exists a vertex
v ∈ B so that v is joined to all the vertices in S and none of the vertices in T .
It is easy to see that if k ∈ N and G = (A,B,E) is a bipartite graph which is (k, k)-separating

for A, where |A| > k, then |B| > 2k. The following lemma, gives a strengthened bound when we
impose a restriction on the neighbourhoods of vertices in B.

Lemma 2. For k ∈ N, let G be a bipartite graph with bipartition {A,B} with |A|, |B| > 1, and let
µ be a probability measure on A. If G is (k, 0)-separating for A and µ(N(x)) < ε for each x ∈ B,
then |B| > 1/εk.

Proof. Sample the points x1, . . . xk ∈ A independently at random and according to the distribution
µ. Then

1 = P (x1, . . . , xk ∈ N(x) for some x ∈ B)

6
∑
x∈B

P (x1, . . . , xk ∈ N(x))

=
∑
x∈B

µ(N(x))k < |B|εk,

thus completing the proof. �

For s, t ∈ N, let G = (A,B,E) be a bipartite graph that is (s, t)-separating for A. We now define
a measure on B that measures how well a given subset of B covers the s-tuples of A. In particular,
define the covering measure µG,s,A, with respect to G, by defining a way of sampling it: first sample
X1, . . . , Xs ∈ A independently and uniformly from A. Then, uniformly at random, choose a vertex
among all vertices v ∈ B so that X1, . . . , Xs ∈ N(v). A key property of this measure is that for
every B′ ⊆ B, we have that

(1) µG,s,A(B′) 6 P(X1, . . . , Xs ∈ N(x), for some x ∈ B′).
Here P denotes the uniform measure on A for the X1, . . . , Xs. The following lemma says that if
G = (A,B,E) is (s, 0)-separating for A and a set B′ ⊂ B is given large mass by µG,s,A, then the
neighbourhoods of x ∈ B′ “expand” and collectively cover many vertices of A.

Lemma 3. For k ∈ N, let G = (A,B,E) be a bipartite graph which is (k, 0)-separating for A and
let µ = µG,k,A be the covering measure defined on B. If B′ ⊆ B has µ(B′) > ε for some ε > 0, then∣∣∣∣∣ ⋃

x∈B′
N(x)

∣∣∣∣∣ >
(

1− 1

k
log
(
ε−1
))
|A|.

Proof. Write
∣∣⋃

x∈B′ N(x)
∣∣ = (1 − η)|A| for some 0 < η < 1. Then if X1, . . . , Xk are sampled

independently and uniformly from A, we have

P(X1, . . . , Xk ∈ N(x) for some x ∈ B′)

6 P

(
X1, . . . , Xk ∈

⋃
x∈B′

N(x)

)
6 (1− η)k 6 e−kη.

(2)

Now apply the observation at (1) to (2) to obtain the inequality

ε < µ(B′) 6 P
(
X1, . . . , Xk ∈ N(x) for some x ∈ B′

)
6 e−kη.
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Taking logarithms gives η < 1
k log

(
ε−1
)
, as desired. �

We also require a basic fact about triangle-free graphs, which is a special case of the quantitative
form of Ramsey’s theorem [10], first obtained by Erdős and Szekeres [7].

Lemma 4. Every triangle-free graph on n vertices contains an independent set of size > b
√
nc

Proof. If G contains a vertex of degree at least b
√
nc then the neighbourhood of this vertex is an

independent set and we are done. Otherwise, all neighbourhoods are of size at most b
√
nc − 1. In

this latter case we may greedily construct an independent set of size
√
n. �

2.3. Proof of Theorem 1. We are now in a position to give the proof of our main theorem. For
a vertex x ∈ V (G), we shall use N(x) = {y : xy ∈ E(G)} to denote the set ofvertices adjacent to
x and for a subset B ⊆ V (G) we denote NB(x) = B ∩N(x). Our logarithms are always taken in
base 2.

Proof of Theorem 1. Suppose that G is a 2k-ECTF graph on n vertices with k > 4 logn
log logn . To reduce

clutter, let ` = d 2 logn
log logne and let ε be such that log ε−1 = log logn

4 so that 1
εk

= n. Fix an independent

set I ⊆ V (G) with |I| > b
√
nc and choose x0 ∈ I. Then set J = I \ {x0}. We define a procedure

that will discover a collection of more than n distinct vertices in G, thus giving a contradiction.
Let us set α = 4

` log ε−1 and note that

α =
4

`
log ε−1 = (1 + o(1))

(log log n)2

2 log n
.

From this we derive the inequality

(3) α−` > n.

To see this, take a logarithm of the left-hand-side

` logα−1 =
2 log n

log log n
log

(
(1 + o(1))

2 log n

(log log n)2

)
= (2− o(1)) log n,

which is at least the logarithm of the right-hand-side, for sufficiently large n. We also note the
inequality

(4)
α

2
+

`√
n− 2

6 α,

which holds for n sufficiently large.
We prove the following statement by induction on t ∈ [0, n+ 1]: for each t ∈ [0, n+ 1] we may find

vertices w1, . . . , wt ∈ V (G) and a set Lt ⊆ J ` so that the following conditions hold.

(1) The vertices w1, . . . , wt are distinct.
(2) If (v1, . . . , v`) ∈ Lt, then {v1, . . . , v`} is not contained in any of the neighbourhoods {N(wi)}ti=1.

That is,

(v1, . . . , v`) 6∈
t⋃
i=1

(N(wi))
`.

(3) We have |Lt| >
(
1− tα`

)
|J |`.



6 SHOHAM LETZTER AND JULIAN SAHASRABUDHE

For the basis step (t = 0), set L0 = J `. In this case, Items (1) and (2) of the induction hypothesis
vacuously hold while Item (3) holds by definition. Now assume that t > 1 and that we have defined
distinct vertices w1, . . . , wt−1 and a set Lt−1 satisfying the above. We show that we may find
appropriate wt and Lt.
Note that |Lt−1| > 1, as |Lt−1| > |J |`(1 − (t − 1)α`) > |J |`(1 − nα`) > 0, as α−` > n, by the

inequality at (3). So we may fix y1, . . . , y` ∈ J so that (y1, . . . , y`) ∈ Lt−1. Define B ⊆ V (G) to be
the collection of vertices in G that are adjacent to x0 and not adjacent to any of y1, . . . , y`. Note
that since each vertex in B joins to x0, B is an independent set. Now put A = I \ {x0, y1, . . . , y`}
and consider G[A,B] (see Figure 2.3 for a depiction of the sets mentioned here). Observe that
G[A,B] is (`, `)-separating for A; indeed, for any choice of distinct a1, . . . , a`, b1, . . . , b` ∈ A, there
is a vertex in G that is joined to all of x0, a1, . . . , a` and to none of b1, . . . , b`, y1, . . . , y` (because G
is 2k-ECTF, and 2k > 3` + 1), and such a vetex is in B by definition. Let µ = µG[A,B],`,A be the
covering measure defined on B, with respect to the bipartite graph G[A,B].

A B

W
y1

yl

x0

wt

I
J

NB(wt)

Figure 1. Picking wt

Define W to be the set of vertices in G that are joined to all of y1, . . . , y`. Note that the graph
G[B,W ] is (`, `)-separating for B, as there are no edges between y1, . . . , y` and B and B is an
independent set in G. We now claim that there exists a vertex w ∈ W with µ(NB(w)) > ε2.
Suppose to the contrary that µ(NB(x)) < ε2 for all x ∈ W . Since G[B,W ] is (`, `)-separating for
B, we may apply Lemma 2 to learn that |W | > 1

εk
= n, which is a contradiction.

So we may choose some w ∈W with µ(NB(w)) > ε2 and apply Lemma 3 to learn that∣∣∣∣∣∣
⋃

x∈NB(w)

NA(x)

∣∣∣∣∣∣ >
(

1− 2

`
log
(
ε−1
))
|A|.

= (1− α/2) |A|.

(5)

The key here is that w is not adjacent to any of the vertices in the union on the left hand side of
(5), as this would create a triangle. Thus, (5) tells us that w is adjacent to at most α|A|/2 vertices
in A and thus w is adjacent to at most α|A|/2 + ` vertices in J . Thus the number of `-tuples that
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w covers in J is at most

(α|A|/2 + `)` = |J |`
(
α|A|
2|J |

+
`

|J |

)`
6 |J |`

(
α

2
+

`√
n− 2

)`
6 (α|J |)`

(6)

Here we have used the inequality |J | = |I| − 1 > b
√
nc − 1 and the inequality at (4). So we define

wt = w and set
Lt = Lt−1 \ {(v1, . . . , v`) : v1, . . . , v` ∈ NJ(w)} .

By induction and the bound at (6) we have |Lt| > |J |`
(
1− tα`

)
. Finally, we note that wt must

be distinct from w1, . . . , wt−1 as wt is joined to all of y1, . . . , y` which is not true of any of the
w1, . . . , wt−1, by the fact that (y1, . . . , y`) ∈ Lt−1 and Item (2) in the induction hypothesis.
So, by induction, we have constructed n+ 1 distinct vertices in a n-vertex graph; a contradiction.

This implies that there are no t-ECTF graphs with t = 2k > 8 logn
log logn , thus completing the proof of

Theorem 1. �
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