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Abstract

In this paper, we study Ramsey-type problems for directed graphs. We first consider the k-colour

oriented Ramsey number of H, denoted by −→r (H, k), which is the least n for which every k-edge-

coloured tournament on n vertices contains a monochromatic copy of H. We prove that −→r (T, k) ≤
ck|T |k for any oriented tree T . This is a generalisation of a similar result for directed paths by

Chvátal and by Gyárfás and Lehel, and answers a question of Yuster. In general, it is tight up to

a constant factor.

We also consider the k-colour directed Ramsey number ←→r (H, k) of H, which is defined as above,

but, instead of colouring tournaments, we colour the complete directed graph of order n. Here we

show that←→r (T, k) ≤ ck|T |k−1 for any oriented tree T , which is again tight up to a constant factor,

and it generalises a result by Williamson and by Gyárfás and Lehel who determined the 2-colour

directed Ramsey number of directed paths.

1 Introduction

An oriented graph is a directed graph in which between any two vertices there is at most one edge.

The underlying graph of a directed graph is the graph obtained by removing orientation from its edges.

One of the most classical results in the theory of directed graphs is the Gallai-Hasse-Roy-Vitaver

theorem [16, 21, 27, 29], abbreviated here as the GHRV theorem, which states that any directed

graph, whose underlying graph has chromatic number1 at least n, contains a directed path of length

n− 1. Note that, by the length of a path we mean the number of edges in the path.

It is natural to ask if there are directed graphs, other than the directed path, which are guaranteed

to exist in any n-chromatic oriented graph. We note that if H is a directed graph whose underlying

graph contains a cycle, then for every k, the graph H is not guaranteed to be a subgraph of every

k-chromatic directed graph, due to the existence of graphs with arbitrarily large girth and chromatic

number. Furthermore, if H contains a bidirected edge, it is clearly not a subgraph of any oriented

graph. Hence, we remain with oriented trees (and forests). This question was first asked by Burr [7] in

1980, who conjectured that every (2n− 2)-chromatic digraph contains every oriented tree of order n.

If true, this is best possible, as a regular tournament on 2n− 3 vertices is clearly (2n− 3)-chromatic,

but has maximum out-degree n − 2, so it does not contain an out-directed star on n vertices. The

conjecture is still widely open and even a weaker version of it, where 2n−2 is replaced by cn for a large

constant c, is not known. Burr showed that the statement holds for (n− 1)2-chromatic digraphs, and

the best general result in this direction is due to Addario-Berry, Havet, Sales, Reed and Thomassé [2]
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1



who proved it for (n2/2− n/2 + 1)-chromatic digraphs. It is of note that the conjecture is open even

for relatively simple trees, such as arbitrarily oriented paths (though the very special case of directed

paths with two blocks is solved [1, 15]).

The GHRV theorem has the following interesting application to Ramsey theory: any 2-edge-colouring

of a tournament on n2 + 1 vertices contains a monochromatic directed path of length n. Indeed,

denote the subgraph of red edges by TR and the subgraph of blue edges by TB. The union TR ∪ TB
has chromatic number n2 + 1. Recall that the chromatic number of a union of two graphs F and H

is at most the product of the chromatic numbers of F and H. Thus, without loss of generality, the

chromatic number of TR is at least n + 1, so by the GHRV theorem, it contains a directed path of

length n. In particular, there is a monochromatic directed path of length n.

The above argument extends easily to more colours, showing that every k-edge-colouring of any tour-

nament on nk + 1 vertices contains a monochromatic path of length n. This was observed by Chvátal

[10] and Gyárfás and Lehel [18] who also obtained a similar result for paths of different lengths.

Gyárfás and Lehel also observed that there is a simple grid construction that shows that the bound

nk + 1 is tight.

Generalising this example, we define the k-colour oriented Ramsey number of an oriented graph H,

denoted by−→r (H, k), to be the least integer n, for which every k-edge-coloured tournament on n vertices

contains a monochromatic copy of H. The aforementioned results show that −→r (
−→
Pn, k) = (n− 1)k + 1,

where
−→
Pn is the directed path of order n.

It is natural to consider the extension of the above example to oriented trees. Namely, what can one

say about the k-colour oriented Ramsey number of trees? Even for k = 1, this questions is interesting

and difficult. The celebrated conjecture of Sumner from 1971, states that any tournament on 2n− 2

vertices contains any oriented tree on n vertices (where n ≥ 2; note that this is a special case of Burr’s

conjecture). It is clear that we cannot hope for a better result in general, because, as before, a regular

tournament on 2n−3 vertices does not contains an out-directed star of order n. Thomason [28] proved

that for sufficiently large n, every tournament on n+ 1 vertices contains every orientation of a path of

order n, thus proving Sumner’s conjecture for oriented paths (and large n). Häggkvist and Thomason

[19] were the first to show that the statement for general trees holds for tournaments on at least cn

vertices, where c is a constant. Following improvements by Havet [22] and Havet and Thomassé [23],

El Sahili [14] used the notion of median orders, first used as a tool for Sumner’s conjecture in [23], to

show that the statement holds for tournaments on 3n − 3 vertices; this is currently the best known

upper bound for general n. More recently, Sumner’s conjecture was proved for sufficiently large n by

Kühn, Mycroft and Osthus [24].

We note that Burr’s conjecture, if true, would imply that −→r (T, k) ≤ ck|T |k for every oriented tree,

where ck is a constant that depends only on k. Indeed, consider a k-edge-colouring of a tournament

on (2n− 3)k + 1 vertices. Let Gi be the subgraph consisting of all edges in colour i, for i ∈ [k]. Then

there exists i ∈ [k] for which Gi has chromatic number at least 2n − 2; hence, by Burr’s conjecture,

Gi contains a copy of T . In this paper we prove that −→r (T, k) ≤ ck|T |k using a different approach.

Theorem 1.1. There is a constant ck such that for any oriented tree T the following holds.

−→r (T, k) ≤ ck|T |k.

This result is tight up to a constant factor for some trees, including directed paths. With Theorem 1.1

we make progress towards answering a question of Yuster [31], who asked the following question: given

k and t, what is the minimum n such that −→r (T, k) ≤ n for every oriented tree T of order at most t.
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Indeed, we show that this minimum is at most ckt
k, which is a constant factor away from the lower

bound (t − 1)k which follows from Theorem 1.2 below. We note that Yuster proved that this lower

bound is tight when k ≥ t log t. Note that if we fix the number of colours then Yuster’s result only

applies for trees of relatively small order, while our result applies for trees of any order. In the case of

arbitrarily oriented paths, our proof of Theorem 1.1 simplifies significantly and we obtain a stronger

bound. Given an oriented path P , we denote by l(P ) the length of the longest directed subpath of P .

Our second theorem provides a tight upper bound (up to a constant factor) on the oriented Ramsey

number of an arbitrarily oriented path P , in terms of l(P ) and its length n = |P | − 1.

Theorem 1.2. Let P be a path of length n with l = l(P ). Then the following holds for ck = 8k · k!.

n · lk−1 ≤ −→r (P, k) ≤ ck · n · lk−1.

It is worth noting that this result is generally stronger than the bound which would be implied by

Burr’s conjecture.

An important distinction between the usual notion of Ramsey theory, and the variant of oriented

Ramsey that we have introduced, is the fact that there is only one complete graph on n vertices, while

there are many tournaments on n vertices. In particular, the answer to how large a monochromatic

tree we can find in an edge colouring of a tournament T on n vertices, depends on T as well as the

colouring. For example, if T is the transitive tournament on n vertices, there is a 2-edge-colouring

with no monochromatic directed path of length
√
n. Contrasting this, in a recent paper [6], we prove

that if T is a random tournament on n vertices then, with high probability, in every 2-edge-colouring

of T there is a monochromatic path of length at least cn√
logn

, where c > 0 is an absolute constant.

Keeping this in mind, an underlying structure more analogous to undirected Ramsey case is the

complete directed graph on n vertices, which we denote by
←→
Kn. Following Bermond [5], we define the

k-colour directed Ramsey number of an oriented graph H, denoted by←→r (H, k), to be the least integer

n for which every k-edge-colouring of
←→
Kn contains a monochromatic copy of H; we emphasize that

the edges xy and yx are allowed to have different colours. It is easy to see that the k-colour directed

Ramsey number of a directed graph G, for k ≥ 2, is finite if and only if G is acyclic.

Very few directed Ramsey numbers are known; here we outline some of the few results in this area.

Harary and Hell [20] introduced the notion of directed Ramsey numbers (for two colours) and deter-

mined its value for certain small graphs. Gyárfás and Lehel [18] and independently Williamson [30],

deduce from a result of Raynaud [25] that ←→r (
−→
Pn, 2) = 2n − 3 for n ≥ 3. Bermond studied a related

question for more colours; specifically, he considered the directed Ramsey number of a Hamiltonian

graph (in one colour) vs. directed paths (of distinct lengths; in the remaining colours). He obtained a

sharp bound for this Ramsey number, but his methods are not applicable, say, to the Ramsey number

of directed paths.

In this paper we determine the directed Ramsey number of trees, up to a constant factor.

Theorem 1.3. For every k ≥ 2 there is a constant ck, such that the following holds for every oriented

tree T .

←→r (T, k) ≤ ck|T |k−1.

It is very interesting to note the different behaviour in comparison with the oriented case, where the

Ramsey number of T is ck|T |k. This is best illustrated by noticing that for two colours, the directed

Ramsey number of a tree is linear in its order, while in the oriented setting it is quadratic. This

difference prevents the usage of GHRV Theorem or of Burr’s conjecture, even if it were true. Perhaps
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for this reason, our proof of Theorem 1.3 is longer and more difficult than the proof of Theorem 1.1,

and requires additional ideas.

1.1 Organisation of the paper

In the following section, Section 2, we present our results for oriented Ramsey numbers; in particular,

we prove Theorems 1.1 and 1.2. We turn our focus to directed Ramsey in Section 3, where we prove

Theorem 1.3; to do so, we built up on ideas that appear in Section 2 but we also require new ingredients.

We conclude the paper in Section 4 with some remarks and open problems.

Throughout this paper, by a colouring of a graph we mean an edge-colouring. Whenever we have

a k-colouring, we denote the colours by [k] = {1, 2, . . . , k}, and when k = 2 we call the colours red

and blue. If a directed tree contains a bidirected edge, then both its oriented and directed Ramsey

numbers, for k ≥ 2, are infinite. Hence, throughout the paper, all the paths and trees are assumed to

be oriented, i.e. they contain no bidirected edges. For a similar reason, we assume that there are no

loops. A directed path is a path in which all edges follow the same direction, while by saying oriented

path, we stress that the edges are allowed to be oriented arbitrarily.

2 Colouring Tournaments

In this section we focus on oriented Ramsey numbers; in particular, we prove Theorems 1.1 and 1.2.

2.1 Preliminaries

We start by recalling the GHRV theorem, mentioned in the introduction.

Theorem 2.1 (Gallai [16], Hasse [21], Roy [27], Vitaver [29]). Every directed graph whose underlying

graph has chromatic number at least n contains a directed path of length n− 1.

We also recall El-Sahili’s result regarding Sumner’s conjecture.

Theorem 2.2 (El Sahili [14]). Every tournament on 3n − 3 vertices contains every oriented tree of

order n.

In order to enable inductive arguments, we need to work with asymmetric Ramsey numbers. To this

end we define −→r (G1, G2, . . . , Gk) to be the least n such that in any tournament of order n whose edges

are k-coloured, there is an i such that we can find a copy of Gi in the i-th colour.

Let lf(T ) denote the number of leaves of a tree T . We shall need the following definition.

Definition 2.3. Given a rooted oriented2 tree T we define the k-core of T to be the subtree T ′ of T

consisting of all vertices with more than 1
k |T | descendants. Note that T ′ can have at most k leaves, as

each non-root leaf has more than 1
k |T | descendants and these sets of descendants are mutually disjoint,

so there are at most k − 1 such leaves. Including the possibility of the root being a leaf, there are at

most k leaves in total.

The following definition and a simple lemma, first proved in [8], will be very useful for the study of

both the oriented and the directed Ramsey numbers.

2In fact, this definition will be independent of the orientation of the edges.
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Figure 1: A 5-core of a tree on 19 vertices.

Definition 2.4. Given a graph G and two disjoint subsets of vertices X and Y , we say that the pair

(X,Y ) is a k-mindegree pair of G if every vertex in X has at least k out-neighbours in Y and every

vertex in Y has at least k in-neighbours in X.

Lemma 2.5. Let G be a directed graph on n vertices with at least ε
(
n
2

)
edges. Then G contains an

εn
8 -mindegree pair.

Proof. Given two sets A and B, we denote the number of edges directed from A to B by e(A,B).

Let {A,B} be a partition of the vertices, obtained by putting each vertex in A independently with

probability 1/2 (and putting it in B otherwise). It is easy to see that the expected number of edges from

A to B is e(G)/4. Hence, there is a choice of a partition {A,B} where e(A,B) ≥ e(G)/4 ≥ εn(n−1)/8.

We now consider the bipartite graph that consists of edges of G going from A to B, from which we

remove orientations. As long as we can, we remove a vertex of degree less than εn
8 in the current

subgraph. Denote the sets of vertices remaining in A and B by X and Y , respectively. We note that

less than (n− 1) · εn8 ≤ e(A,B) edges were removed in this process (since after n− 1 steps we are left

with only a single vertex, so no edges), hence both X and Y are non-empty. It follows that (X,Y ) is

an εn
8 -mindegree pair.

Let
−→
P n1,...,nt denote an oriented path consisting of t blocks of maximal directed subpaths, the i-th of

which has order ni ≥ 2 (see Figure 2). The following lemma is one of the main tools that we use in

our proofs of Theorems 1.1 and 1.2 (recall that l(P ) is the length of the longest directed subpath of

P ).

Lemma 2.6. Let G be an oriented graph and let P be an oriented path of length n, with l = l(P ). If

G has a k-mindegree pair, then either P is a subgraph of G, or G contains an independent set of size

at least k−n
l .

Proof. Assume, for the sake of contradiction, that G contains no independent set of size at least k−n
l .

For every subset S of more than k − n vertices of G, such that the chromatic number of the induced

subgraph G[S] is at least |S|/k−nl > l, Theorem 2.1 implies that G[S] contains a directed path of

length l.

Let P =
−→
P n1,...,nt ; without loss of generality, we assume that the first edge of P is directed away from

the first vertex of P .

Let (X,Y ) be a k-mindegree pair in G, and let u0 ∈ X. Since u0 has at least k out-neighbours in Y

and n1 − 1 ≤ l, we can find a
−−−→
Pn1−1 within the out-neighbourhood of u0 in Y , which together with

u0 forms a
−→
Pn1 . Let u1 be the last vertex of this path. Continuing this process for i steps, suppose

that we already embedded
−→
P n1,...,ni such that the last vertex ui is in X if i is even, and in Y if i is
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−→
P4

−→
P3

−→
P4

Figure 2:
−→
P 4,3,4.

odd. We assume that i is even, so ui ∈ X; the case where i is odd can be treated similarly. Let S be

the set of out-neighbours of ui in Y that do not belong to
−→
P n1,...,ni . Then, by the k-mindegree pair

assumption |S| > k− n, as at most n− 1 vertices of Y belong to
−→
P n1,...,ni . Thus, as explained above,

S contains a
−−−−−→
Pni+1−1. By connecting ui to the first vertex of this path we obtain a copy of

−→
P n1,...,ni+1

whose last vertex is in Y (see Figure 3 for an illustration of this process). By continuing this process

until i = t we obtain a copy of P , as required.

X

Y

u0

u1

−−−→
Pn1−1

u2

−−−→
Pn2−1

u3

−−−→
Pn3−1

u4

−−−→
Pn4−1

S
−−−→
Pn5−1

u5

> k − n< n

Figure 3: The setting of the above argument.

2.2 Oriented paths

In this subsection we prove Theorem 1.2.

Theorem 1.2. Let P be a path of length n with l = l(P ). Then the following holds for ck = 8k · k!.

n · lk−1 ≤ −→r (P, k) ≤ ck · n · lk−1.

Proof. We start with the lower bound. Let T be the tournament on vertex set [l]k−1× [n] with edges

oriented according to the lexicographic order, i.e. if x = (xi)i∈[k] and y = (yi)i∈[k] are distinct vertices,

and i is the first coordinate in which they differ, then xy is an edge in T if and only if xi < yi (so, T

is a transitive tournament). We colour an edge xy with colour i ∈ [k] if the first coordinate in which

x and y differ is i. Note that edges of colour k form a disjoint union of n-vertex tournaments, hence

there is no copy of P in colour k. Moreover, given a directed path whose edges have colour i < k then

the i-th coordinates of the vertices of the path are increasing, hence there is no i-coloured directed

path of length l. It follows that there is no monochromatic copy of P .

For the upper bound, we proceed by induction on k, proving the result with ak = (8k − 2) · k! in place

of ck. If k = 1, the statement follows from Theorem 2.2 (and in fact from an earlier, slightly better

result which only applies for paths in [26]). Assuming k ≥ 2 and that the statement holds for k − 1

we proceed.
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Figure 4: A depiction of the above example for k = 3, l = 2, n = 3.

Let m = ak · n · lk−1, and let T be a k-coloured m-vertex tournament. Let c be the majority colour,

and let Tc be the subgraph of T consisting of edges in T whose colour is c. Then e(Tc) ≥ 1
k

(
m
2

)
. By

Lemma 2.5, with ε = 1
k , Tc contains an m

8k -mindegree pair.

By Lemma 2.6, Tc either has a copy of P , in which case we are done, or it contains an independent

set of size at least
m
8k − n
l

≥
m
8k − lk−1n

l
=
(ak

8k
− 1
)
lk−2n ≥ ak−1l

k−2n.

This independent set corresponds to a subtournament T ′ of T whose edges avoid colour c, so they use

only k − 1 colours. Hence, by induction, T ′ contains a monochromatic copy of P , as required.

Our argument easily extends to prove the following asymmetric version of Theorem 1.2.

Theorem 2.7. Let P1, . . . , Pk be oriented paths, and denote li = l(Pi) and Li = |Pi| − 1. Then the

following holds, where ck > 0 is a constant that depends only on k.

l1 · . . . · lk ·max
i∈[k]

{
Li
li

}
≤ −→r (P1, . . . , Pk) ≤ ck · l1 · . . . · lk ·max

i∈[k]

{
Li
li

}
.

2.3 Trees

In this subsection we prove Theorem 1.1. We shall prove the following lemma; taking l = 0 and

T1 = . . . = Tk = T , Theorem 1.1 follows.

Lemma 2.8. Let 0 ≤ l ≤ k. There exists a function f(k, l) such that the following holds for any

collection of oriented trees T1, . . . , Tk,

−→r (T1, . . . , Tk) ≤ fk,l
(

lf(T1), . . . , lf(Tl)
)
· |T1| · · · |Tk|. (1)

Proof. Let a = ak = (8k)k; we will prove the statement of Lemma 2.8 with fk,l(x1, . . . , xl) =

(2a)x1+...+xl+(k−l)(2a+1). The proof is by induction over triples
(
k, k − l, lf(T1) + . . .+ lf(Tl) + |Tl+1|+

. . . + |Tk|
)

ordered lexicographically. We denote by Ak,l(T1, . . . , Tk) the inductive claim (1), with

parameters k, l, Ti.

As the basis, we note that for k = 1 the result follows from Theorem 2.2 which gives −→r (T1) ≤
3|T1|. We now assume k ≥ 2. For the step of the induction we will prove Ak,l(T1, . . . , Tk) while

assuming that the following inequalities holds: Ak−1,l′(T ′1, . . . , T
′
k−1) for any l′ ≤ k − 1 and any trees

T ′i ; Ak,l+1(T
′
1, . . . , T

′
k) for any trees T ′i , unless l = k; and Ak,l(T

′
1, . . . , T

′
k) for any trees T ′i satisfying

lf(T ′1) + . . .+ lf(T ′l ) + |T ′l+1|+ . . .+ |T ′k| < lf(T1) + . . .+ lf(Tl) + |Tl+1|+ . . .+ |Tk|.
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We note that when any Ti is a single vertex the claim is trivial, so we assume lf(Ti) ≥ 2 for all i.

Let n = fk,l
(

lf(T1), . . . , lf(Tl)
)
· |T1| · · · |Tk| and let us assume, for the sake of contradiction, that T is

a tournament on n vertices, whose edges are k-coloured such that there is no Ti in colour i for any i.

Consider the following process, which finds a sequence of colours ci and a sequence of pairs (Xi, Yi) of

sets of vertices (for convenience, let X0 denote the set of vertices in the tournament). Suppose that

cj and (Xj , Yj) have been defined for j < i. Let ci be a majority colour in the tournament induced by

Xi−1; by Lemma 2.5, we may pick a |Xi−1|
8k -mindegree pair (Xi, Yi) in the subgraph of Xi−1 consisting

of all edges in colour ci. If ci ≤ l, or if ci = cj for some j < i, we stop. Note that this process will go on

for at most k − l + 1 iterations; denote by i the number of steps taken until the process was stopped.

Additionally, note that |Xj | ≥ n
(8k)j

for j ≤ i. If ci ≤ l, we may assume, without loss of generality,

that ci = 1, which leads us to Case 1 below. Otherwise, we have ci = cj > l, for some j < i; without

loss of generality, ci = k, as in Case 2 below.

Case 1. we found an n
(8k)k

-mindegree pair (Xi, Yi) for colour 1.

Recall that a = (8k)k, so (Xi, Yi) is an n
a -mindegree pair.

If lf(T1) > 2, let v be a leaf of T1 and let u be the closest vertex to v which has degree at least 3 in

the underlying graph. In particular, v is joined to u by a path P ; let T ′1 be the subtree obtained from

T1 by removing the vertices of P , except for u. Then lf(T ′1) = lf(T1)− 1, as u does not become a leaf

upon removal of P − u. Without loss of generality, let us assume that the first edge (looking from u

to v) of P is directed away from u.

We have

|Xi| ≥
n

a
= 2 · (2a)lf(T1)−1+...+lf(Tl)+(k−l)(2a+1)|T1| · · · |Tk|

> (2a)lf(T
′
1)+...+lf(Tl)+(k−l)(2a+1)|T ′1| · · · |Tk|.

Hence, using Ak,l(T
′
1, T2 . . . , Tk) and our assumption that there is no copy of Ti in colour i, for i > 1,

there is a copy of T ′1 in colour 1 within Xi.

Let u′ ∈ Xi be the vertex corresponding to u in this embedding of T ′1, then u′ has at least n
a out-

neighbours in Yi. So applying Ak,l(P − u, T2, . . . , Tk) within this neighbourhood, as there is no Ti
in colour i, we can find P − u in colour 1 within this neighbourhood (see Figure 5). The inductive

assumption applies as lf(P − u) = 2 < lf(T1) and n
a ≥ fk,l (2, lf(T2), . . . , lf(Tl)) |P − u| · |T2| · · · |Tk|.

Using the out-edge from u′ to the first vertex of the embedded P − u and appending P − u we find a

copy of T1 in colour 1, a contradiction.

If lf(T1) = 2, then T1 is a path, so by Lemma 2.6 we can find an independent set S, with respect to

colour 1, of size at least the following.
n
a − |T1|
|T1|

= 2 · (2a)lf(T1)−1+...+lf(Tl)+(k−l)(2a+1)|T2| · · · |Tk| − 1

≥ (2a)lf(T2)+...+lf(Tl)+(k−l)(2a+1)|T2| · · · |Tk|.

By Ak−1,l−1(T2, . . . , Tk), applied to the set S, we find a copy of Tl in colour l for some 2 ≤ l ≤ k, a

contradiction to our assumption.

Case 2. we found i < j such that ci = cj = k.

Let X = Xj , Y = Yj , Z = Yi, then because (Xi, Yi) and (Xj , Yj) are n
a -mindegree pairs for edges of

colour k, every vertex in Y has at least n/a in-neighbours in X and at least n/a out-neighbours in Z

8



Xi

Yi

u′

T ′
1T
′
1

≥ n/a

P − u

v

Figure 5: The setting of the argument in Case 1.

(since Y ⊆ Xi and (Xi, Yi) is a n
a -mindegree pair), with respect to colour k.

We consider the 2a-core of Tk (with respect to an arbitrary root r of Tk; see Definition 2.3), which we

denote by T ′k. We know that lf(T ′k) ≤ 2a, so the following holds.
n

a
= 2 · (2a)lf(T1)+...+lf(Tl)+(k−l)(2a+1)−1 · |T1| · · · |Tk|

> (2a)lf(T1)+...+lf(Tl)+2a+(k−l−1)(2a+1) · |T1| · · · |Tk|
≥ (2a)lf(T1)+...+lf(Tl)+lf(T ′k)+(k−l−1)(2a+1) · |T1| · · · |Tk−1| · |T ′k|.

Hence, we can find T ′k in colour k within Y , using Ak,l+1(T1, . . . , Tl, T
′
k) (note that we have l < k in

this case, as when k = l we automatically end up in Case 1).

Within a subset of vertices of size t ≥ n
2a , we can always find, in colour k, any tree T ′′k of order up to

|Tk|
2a . This follows from Ak,l(T1, . . . , Tk−1, T ′′k ), which in turn follows as

t ≥ n

2a
= fk,l

(
lf(T1), . . . , lf(Tl)

)
· |T1| · · · |Tk−1| ·

|Tk|
2a

≥ fk,l
(

lf(T1), . . . , lf(Tl)
)
· |T1| · · · |Tk−1| · |T ′′k |.

Now given a vertex x of T ′k, we can embed its children (in Tk, with respect to r), not already in T ′k,
together with their subtrees in Tk, as follows. Let y be an out-child of x which is not in T ′k, and denote

its subtree in Tk by S. Consider the set U of out-neighbours of x in Z (with respect to colour k) which

were not already used. Then |U | ≥ n
a − |Tk| ≥ n

2a , hence we may find a copy of S in colour k, in U , as

|S| ≤ |Tk|/2a by the definition of a 2a-core (see Figure 6). If y is an in-child of x, one can similarly

embed its subtree in colour k within the in-neighbourhood of x in X. We thus obtain a copy of Tk of

colour k, a contradiction to our assumptions.

3 Ramsey number on the complete directed graph

We start by defining the asymmetric directed Ramsey numbers; let←→r (G1, G2, . . . , Gk) be the smallest

integer n such that in any k-colouring of
←→
Kn there is an i such that there is a copy of Gi in colour i.

The main result of this section is the following generalisation of Theorem 1.3 to asymmetric directed

Ramsey numbers.
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X Z

Y

x

n/a

|Tk|

y

U
S

T ′
k

Figure 6: The setting of the argument in Case 2.

Theorem 3.1. Let k ≥ 2, there is a constant ck such that for any oriented trees T1, . . . , Tk, we have

←→r (T1, . . . , Tk) ≤ ck|T1| · · · |Tk|
(

k∑
i=1

1

|Ti|

)
.

We say that a tree T is out-directed if there is a vertex r, which we call the root, such that all edges

of T are directed away from r. Similarly, T is an in-directed tree if all its edges are directed towards

a certain vertex r (see Figure 7).

r r

Figure 7: An out-directed tree and an in-directed tree.

Our proof strategy goes as follows.

1. In the following subsection, 3.1, we state and prove several preliminaries that we shall use

throughout the proof. An important part of the preliminaries is a lemma that shows that, by

paying a constant factor, we can focus our attention on out- or in-directed trees.

2. In Subsection 3.2, we prove the very special case of Theorem 3.1, of a directed path vs. an in-

or out-directed tree. This requires considerable effort, especially when the path is fairly long

in comparison with the tree, in which case we first find a cut with no red edges (where red is

the colour of the required path), and then embed the tree in blue. Using the preliminary result

mentioned above, this extends easily to the case when T1 is an arbitrary oriented path and T2
an arbitrary oriented tree.

3. In the subsequent subsection, 3.3, we prove Theorem 3.1 for any two trees T1 and T2. We do

so by first proving that ←→r (T1, T2) ≤ c(|T1| + |T2|) while allowing c to depend on the number

of leaves of T1. Then, considering cores and using some simple properties of the structure of a

potential colouring, we remove the dependency on the number of leaves.
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4. In the final subsection, 3.4, we show how to extend the result to more colours, thus completing

the proof of Theorem 3.1. The proof here follows an argument which is morally similar to the

corresponding proof in the oriented case, but we need an additional tool, namely the Ramsey

number of an out-tree with constantly many leaves vs. a complete graph.

3.1 Preliminaries

We will use the following result of Gyárfás and Lehel [18] and Williamson [30], which finds the exact

Ramsey number for two directed paths, in several places in our proof, although our methods would

give an independent argument for a linear bound on this Ramsey number. Note that this is a special

case of Theorem 3.1 for two colours and directed paths.

Theorem 3.2 (Gyárfás, Lehel [18], Williamson [30]). ←→r (
−→
Pn,
−→
Pm) =


n+m− 3 n,m ≥ 3

n+m− 2 n = 2 or m = 2

1 n = 1 or m = 1.

The following simple embedding lemmas will prove surprisingly useful in controlling the number of

vertices with small out or in-degree in a single colour.

Lemma 3.3. Let ε > 0, n ≥ 2, given a colouring of
←→
Kn in which there are at least (1 + ε)

(
n
2

)
blue

edges, then there exists any directed tree of order at most d εn2 e in blue.

Proof. As there are
(
n
2

)
pairs of vertices, there are at least ε

(
n
2

)
bidirected blue edges. Now remove,

one by one, vertices that are incident with fewer than εn/2 bidirected blue edges. Since we remove

fewer than (n− 1)εn/2 edges in this process, we remain with a non-empty set of vertices in which the

minimum blue bidirected degree is at least dεn/2e. It is now easy to see that any blue directed tree

on at most dεn/2e vertices can be embedded.

We will only use the ceiling in the above lemma to gain a tight result in the following lemma.

Lemma 3.4. Given a 2-colouring of a complete digraph, if there are at least 2k + 2l vertices with at

most k red out-neighbours, then there is a blue copy of any directed tree on at most l vertices.

Proof. Suppose that S is a set of 2k + 2l vertices with red out-degree at most k. Then the number

of red edges in S is at most k|S|, hence the number of blue edges in S is at least |S|(|S| − 1)− k|S| =(
2− 2k

|S|−1

) (|S|
2

)
. By Lemma 3.3, there is a blue copy of any tree of order at most

⌈(
1− 2k

|S|−1

)
|S|
2

⌉
≥ l,

where the inequality follows as
(

1− 2k
|S|−1

)
|S|
2 = k + l − k − k

|S|−1 > l − 1, as required.

The following lemma, based on the Depth-first-search (DFS) algorithm, is an easy generalisation, for

trees, of the version for paths introduced by Ben-Eliezer, Krivelevich and Sudakov [3, 4]; it will be

very useful in several parts of this section.

Lemma 3.5 (DFS). Let G be a directed graph and T an out-directed tree, which is not a subgraph of

G. Then there is a partition {U,X, Y } of V (G) such that U is the vertex set of a subgraph of G which

is isomorphic to a subtree of T , |X| = |Y |, and every vertex in X has fewer than |T | out-neighbours

in Y .
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Proof. We construct the required X, Y and U using the following process. We maintain a partition

{U,X, Y } of V (G) and an embedding T ′ of a subtree of T in G, with vertex set U . We keep the

following properties invariant.

(P1) |Y | ≥ |X|.

(P2) T ′ is a subgraph of G, which is isomorphic to a subtree of T rooted at the same root, such that

every vertex of T ′ either has the same number of children as in T or is an out-leaf (a leaf with

out-degree 0) of T ′.

(P3) Any vertex in X has fewer than |T | out-neighbours in Y .

We start with X = ∅, Y = V and U = ∅. At each step, if |X| = |Y | we stop the process; otherwise we

perform the following procedure.

1. If T ′ is empty, we remove an arbitrary vertex u from Y , and put it in U , thus letting T ′ be a

single vertex that corresponds to the root of T .

2. Otherwise, we pick an out-leaf v of T ′, which does not correspond to a leaf of T ; denote its

out-degree in T by d.

a) If v has at least d out-neighbours in Y we append them to T ′ via v and remove them from

Y , unless this would cause |Y | to be smaller than |X|, in which case we only embed as

many as needed to make |X| = |Y | and stop.

b) Otherwise, v has at most d−1 out-neighbours in Y , so we add v to X and put every vertex

of U back to Y .

We note that (P1) is preserved throughout this process. Property (P2) also holds throughout the

process, with a possible exception at the very end of the process (if case 2a occurs at the end, and

removing d vertices from Y would cause a violation of (P1)), where U is still the vertex set of a subtree

T ′ of T , but one of the vertices may not be an out-leaf or have all its children present. Finally, it is

easy to see that (P3) is preserved, as a vertex x is moved to X only in Case 2b, in which case it has

at most |T ′| + d − 1 < |T | out-neighbours in Y , where T ′ is a subtree of T in which x is present but

none of its children is, and d is the out-degree of x in T .

Finally, we note that in each step |X| does not decrease, and either |X| increases by 1, or |Y | − |X|
decreases. Thus the process cannot run indefinitely, and once it terminates, we obtain a partition

{U,X, Y } with the required properties.

Given oriented trees T1, . . . , Tk, let Si(T1, . . . , Tk) denote the out- or in-directed subtree S of Ti that

maximises ←→r (T1, . . . , Ti−1, S, Ti+1, . . . , Tk). The following results allow us to focus our attention on

out- or in-directed trees.

Lemma 3.6. Let ε > 0, let T1, . . . , Tk be oriented trees and let Sj = Sj(T1, . . . , Tk). Let G be a

k-colouring of
←→
Kn such that n ≥ 8ε−1 (←→r (T1, . . . , Tj−1, Sj , Tj+1, . . . , Tk) + |Tj |) and there are at least

ε
(
n
2

)
edges of colour j. Then there is a copy of Ti in colour i, for some i ∈ [k].

Proof. Without loss of generality, we assume j = 1. We assume that there is no copy of Ti in colour

i for i ≥ 2, and will deduce that there is a copy of T1 in colour 1.

12



Consider the graph of colour 1 edges; it has at least ε
(
n
2

)
edges, so by Lemma 2.5 we can find an

εn/8-mindegree pair (X,Y ) in it.

We select a vertex r of T1. Let U0 consist of all vertices of T1 reachable by out-directed paths starting

in r. For i ≥ 1, let Ui consist of vertices not in any Uj , for j ≤ i−1, which are reachable by out-directed

paths starting in Ui−1 if i is even, or in-directed paths if i is odd. We note that for even i, each T1[Ui]

is a forest of out-directed subtrees of T1, whose roots are out-neighbours of vertices in Ui−1; and, when

i is odd, T1[Ui] is a forest of in-directed subtrees whose roots are in-neighbours of vertices in Ui−1 (see

Figure 8).

U0

U1

U2

Figure 8: An illustration of the definition of Ui.

Claim 3.7. There is a copy of T1[U0 ∪ . . . ∪Ut] in colour 1, such that Ut is embedded within Y if t is

even and within X if it is odd.

Proof. We show this inductively. For the basis, we can embed U0 in colour 1 within Y as |Y | ≥ εn
8 ≥←→r (S1, T2, . . . , Tk) + |T1| ≥ ←→r (T1[U0], T2, . . . , Tk), and T1[U0] is an out-directed subtree of T1, and

there are no copies of Ti in colour i, for i ≥ 2. Suppose that the claim holds for i−1, and suppose that

i is even; the case where i is odd can be treated similarly. Consider an embedding of T1[U0∪ . . .∪Ui−1]
where Ui−1 is embedded within X. For each tree S in T1[Ui], we need to embed it within the out-

neighbourhood of its parent vertex u in Ui−1 which is already embedded in X. Note that every vertex

in X has out-neighbourhood in Y of size at least εn
8 ≥

←→r (S1, T2, . . . , Tk) + |T1|, and so far we used

at most |T1| vertices, hence we can find a copy of S in colour 1 within the out-neighbourhood of u in

Y , avoiding used vertices. We do this one by one for each subtree of T in T1[Ui], thus completing an

embedding of T1[U0 ∪ . . . ∪ Ui] with the required properties. This completes the inductive claim.

Applying Claim 3.7 for the largest t such that Ut is non-empty shows there is a copy T1 in colour 1,

and we are done.

Lemma 3.8. Given oriented trees T1 and T2, we have ←→r (T1, T2) ≤ 162 max{←→r (R1, R2)+ |T1|+ |T2|},
where the maximum is taken over out- or in-directed subtrees R1 and R2 of T1 and T2 respectively.

Proof. Let S1 = S1(T1, T2), so S1 is the out or in-directed subtree S of T1 which maximizes←→r (S, T2).

Claim 3.9. ←→r (T1, T2) ≤ 16(←→r (S1, T2) + |T1|).

Proof. Let n = 16(←→r (S1, T2) + |T1|), and let G be a 2-colouring of
←→
Kn. If there are at least 1

2

(
n
2

)
edges in red, the proof follows from Lemma 3.6 (with k = 2, j = 1 and ε = 1/2). Otherwise, there are

at least 3
2

(
n
2

)
blue edges. Lemma 3.3 implies that there is a blue copy of any tree of order n/4 ≥ |T2|;

in particular, G has a blue copy of T2.
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Let S2 = S2(S1, T2). Applying Claim 3.9 we get, ←→r (S1, T2) ≤ 16(←→r (S1, S2) + |T2|). Hence,

←→r (T1, T2) ≤ 16
(←→r (S1, T2) + |T1|

)
≤ 16

(
16
(←→r (S1, S2) + |T2|

)
+ |T1|

)
≤ 162

(←→r (S1, S2) + |T1|+ |T2|
)
,

as desired.

The following corollary, which is a special case of Theorem 3.1, illustrates how we can use Lemma 3.8,

and will prove useful in its own right.

Corollary 3.10. Let P and Q be arbitrarily oriented paths. Then

←→r (P,Q) ≤ 2 · 162(|P |+ |Q|).

Proof. Note that any out- or in-directed subtree of an oriented path is a directed path. The in- or

out-directed subtrees R1 and R2 of P and Q which maximize ←→r (R1, R2) are directed subpaths of

maximum length, so by Lemma 3.8 and by Theorem 3.2,

←→r (P,Q) ≤ 162
(←→r (−−−→Pl(P ),

−−−→
Pl(Q)

)
+ |P |+ |Q|

)
≤ 162(l(P ) + l(Q) + 1 + |P |+ |Q|)
< 2 · 162(|P |+ |Q|),

as desired.

The following simple lemma will provide us with a way to control the degrees of an out-directed tree

using the number of out-leaves, which we define to be leaves with out-degree 0. We remark that, as in

the remainder of this section, we consider only out-leaves in order to avoid the possibility of counting

the root when it is a leaf.

Lemma 3.11. Let v1, . . . , vk be some vertices of an out-directed rooted tree T of size n, with a out-

leaves. If vi has out-degree di then

d1 + d2 + . . .+ dk − k + 1 ≤ a.

Proof. Let vk+1, . . . , vn be the remaining vertices of the tree (with out-degrees marked by di). Then,

d1 + d2 + . . .+ dk − k + 1 = 1 + (d1 − 1) + . . .+ (dk − 1)

≤ 1 + (d1 − 1) + . . .+ (dn − 1) + a

= 1 + d1 + . . .+ dn − n+ a

= 1 + n− 1− n+ a = a.

The first inequality follows as di − 1 is non-negative, unless it comes from an out-leaf in which case it

is −1. The penultimate equality follows since d1 + . . .+ dn is the number of edges, which is n− 1.

3.2 Path vs. Tree

In this subsection we prove a special case of Theorem 3.1 for two colours, where one of the trees is an

oriented path. The following is the key result of this subsection.
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Theorem 3.12. Let T be an out-directed tree on m vertices. Then the following holds for every n,

where c is some absolute constant.

←→r (
−→
Pn, T ) ≤ c(n+m).

Proof. Let c = 79. We use induction on n+m to prove that←→r (
−→
Pn, T ) ≤ c(n+m−2) given n+m ≥ 3,

or equivalently n > 1 or m > 1; we require this slightly stronger statement in order to avoid separate

treatment of small cases, but it requires us to make sure that at least one of the trees we are invoking

induction on has order greater than one. For the basis notice that case n = 1 or m = 1 is trivial,

hence we may assume that n,m ≥ 2.

Let N = c(n+m− 2). Let us assume, for the sake of contradiction, that there is a 2-colouring of
←→
KN ,

whose vertex set we denote by V , with no red
−→
Pn or blue T . We consider two cases: n ≤ 16m and

n ≥ 16m; the proof in the first case is relatively simple, whereas the proof in the second case requires

significant effort.

Case 1. n ≤ 16m.

Let T ′ be the 2-core of T (see Definition 2.3), so T ′ is a directed path. Let S be the set of vertices

with blue out-degree at least c(n+m/2−2)+m. If |S| ≥ n+m, then, as←→r (
−→
Pn,
−→
Pm) ≤ n+m−2 (see

Theorem 3.2), we can find a blue T ′ in S. We now show that it is possible to embed the trees of the

forest T \ V (T ′) one by one in the blue out-neighbourhood of the corresponding parent in T ′. Indeed,

let R be such a tree, and let u ∈ T ′ be the parent of the root of R. Then u has at least c(n+m/2− 2)

unused blue out-neighbours, hence by induction (recall that n ≥ 2, so we can use induction), and

by the assumption that there is no red
−→
Pn, we find a blue R. Having done this for all the trees in

T \ V (T ′), we obtain a blue T , a contradiction.

We are left with the case where |S| < n + m. Every vertex not in S has red out-degree at least

N − 1− (c(n+m/2− 2) +m) = cm/2−m− 1. So, in the graph induced by V \ S every vertex has

red out-degree at least cm/2−m− 1− (n+m− 1) = cm/2− 2m− n ≥ (c/2− 2)n/16− n ≥ n where

we used n ≤ 16m and c ≥ 68. But this implies that there is a red
−→
Pn, a contradiction. This completes

the proof of Theorem 3.12 in the first case.

Case 2. n ≥ 16m.

We start by proving the following claim which gives us a handle on the structure of the colouring.

Claim 3.13. There is a partition {U,W} of V , such that there are no red edges from U to W , and

|U |, |W | ≥ N/5.

Proof. Let A be the set of vertices with red out-degree at least 3N/4. If |A| ≤ N/5 then in V \ A
every vertex has blue out-degree at least N/4 − N/5 = N/20 = c(n + m − 2)/20 ≥ c · 15m/20 > m.

Hence, we can embed a blue T , a contradiction. It follows that |A| ≥ N/5.

Let B be the set of vertices with red in-degree at least N/3. By Lemma 3.5 (DFS), applied to the

graph of blue edges, as there is no blue T and |T | = m, we can find two disjoint sets X and Y satisfying

|X| = |Y | ≥ N/2−m/2, such that there are at most m|X| blue edges from X to Y . Note that every

vertex in Y \B has at least |X| −N/3 blue in-neighbours in X. Hence, by double counting blue edges

from X to Y , we obtain the following inequality.

m|X| ≥ (|Y | − |B|) · (|X| −N/3).
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Since N = c(n+m− 2) ≥ 15m, we have

|B| ≥ |X|
(

1− m

|X| −N/3

)
≥ (N/2−m/2)

(
1− m

N/6−m/2

)
≥ 2N

5

(
1− m

5m/2−m/2

)
=
N

5
.

Suppose that there is a red path P from a vertex v in B to a vertex u in A; write |P | = l and note

that l < n as there is no red
−→
Pn. Let Sv be the set of red in-neighbours of v which are not in P ; as

v ∈ B and |P | ≤ n, we have |Sv| ≥ N/3−n. Let Q1 be the longest red directed path in Sv and denote

its number of vertices by n1; note that n1 + l < n, as Q1 and P combine to a red directed path of

order n1 + l. Similarly, let Su be the set of red out-neighbours of u which are not in P or in Q1. Then,

as u ∈ A, we have |Su| ≥ 3N/4− n. Let Q2 be the longest red path in Su, and denote its number of

vertices by n2. Note that we can combine Q1, P and Q2 (in this order) to form a red path of order

l + n1 + n2 < n (see Figure 9). Also, by induction (which applies here as m ≥ 2), we have

N/3− n ≤ |Sv| ≤ c(n1 +m− 1),

3N/4− n ≤ |Su| ≤ c(n2 +m− 1).

Summing up the two inequalities and recalling that N = c(n+m− 2), we obtain the following.

13c(n+m− 2)/12− 2n = 13N/12− 2n ≤ c(n+ 2m− 3).

This, in turn, shows that

(c/12− 2)n ≤ 11cm/12− 5c/6 ≤ 11cm/12.

Hence,

n ≤ 11c/12

c/12− 2
·m =

11c

c− 24
·m < 16m,

a contradiction. It follows that there are no red paths from B to A.

Let U be the set of vertices that can be reached by following a red path from B, and let W = V \ U .

By the definition of U , we have no red edges from U to W . As B ⊆ U and A ⊆ W we also have

|U |, |W | ≥ N/5, as desired.

u ∈ A v ∈ B
P =

−→
Pl

Su

≥ 3N/4− n

Q2 =
−−→
Pn2

Sv

≥ N/3− n

Q1 =
−−→
Pn1

Figure 9: An illustration of the construction in Claim 3.13.

Let (U,W ) be a pair as given by the above claim. Let a be the number of out-leaves of T , let

d1 ≥ . . . ≥ dm−a be the out-degrees of the vertices of T with out-degree at least 1. Consider the
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following process, which we run for i from 1 to at most m− a. At step i, we take wi to be the vertex

in W whose blue out-degree towards U is largest. If d+U (wi) < di we stop; otherwise, we remove wi
from W and remove from U a set Bi of di blue out-neighbours of wi in U (see Figure 10).

U

W

w1 w2 wk−1
· · ·

· · ·

d1

B1

d2

B2

dk−1

Bk−1

Figure 10: An illustration of the state of the above process at step k.

Claim 3.14. If in the above process we have d+U (wi) ≥ di for all i = 1, . . . ,m− a, that is, the process

does not terminate early, then there is a blue copy of T .

Proof. Let f be an injective (and hence surjective) function from the vertices of T with out-degree

at least 1 to [m− a], such that the out-degree of a non-out-leaf vertex v is df(v).

We now embed the tree as follows. We say that a vertex is fully embedded if all its children in T are

embedded; we say that it is partially embedded if none of its children are embedded. We will embed

T , such that at each stage, every embedded vertex is either fully or partially embedded. We start by

embedding the root r in wf(r). At each step we choose a partially embedded vertex v and embed its

children, according to the following plan.

1. If v ∈ U we embed its children one by one, according to the following instructions, where u is a

child of v.

(a) If u is not an out-leaf of T , we embed it in wf(u).

(b) If u is an out-leaf of T , then we embed it in an arbitrary unused vertex in W distinct from

all wi.

2. If v ∈W , we embed its children in Bf(v).

Note that in each stage of this process, every vertex is indeed partially or fully embedded. Furthermore,

it is easy to see that the process runs until all vertices of T are embedded, as each wi can only be used

to embed f−1(i). We thus obtain a blue copy of T , as all edges of T are embedded in edges from U

to W (which are all blue), or in edges from some wi to Bi, which are also blue. This completes our

proof that a blue copy of T exists.

By this claim we are done unless there is a k ≤ m − a such that every vertex from W ′ = W \
{w1, . . . , wk−1} to U ′ = U \ (B1 ∪ . . . ∪Bk−1) has blue out-degree smaller than dk.

Let n2 be the order of a longest red path in W ′. Denote the end of this path by u, and denote by U ′′

the red out-neighbourhood of u in U ′ (see Figure 11). As u has blue out-degree in U ′ of at most dk,
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we have |U \U ′′| ≤ |U \ U ′|+ dk = d1 + . . .+ dk. Let n1 be the order of a longest red path in U ′′. By

our assumptions, n1 + n2 < n.

U ′′

W ′

U ′

n2

u

n1

U

W

w1 w2 wk−1
· · ·

· · ·

d1

B1

d2

B2

dk−1

Bk−1

< dk

Figure 11: An illustration of the above setting.

We now distinguish two cases, depending on how d1 + . . .+ dk and k − 1 compare.

Case 2a. d1 + d2 + . . .+ dk ≤ 4(k − 1).

We now embed T in the blue graph in stages; denote by T1 the currently embedded subtree of T .

Initially, let T1 be a largest subtree of T , rooted at r (which is the root of T ), which can be found in

blue in U ′′; write m1 = |T1|. We say that an embedded vertex of T is incomplete if not all its children

in T have already been embedded. We repeat the following. At step j we take an unembedded child

vj of an incomplete vertex and embed it in wi, where i ≤ k − 1 is the largest i, such that di ≥ d+T (vj)

and wi is not already used; note that we can always do this by the following Claim 3.15 applied to

ij = f(vj). We then embed the children of vj in Bi. Note that throughout this process, we preserve

the property that all incomplete vertices are in U .

Claim 3.15. Let {i1, · · · , ik−1} ⊆ [m−a]. Let g1 = min(i1, k−1), then for each j ≤ k−1 there exists

an i ≤ min(ij , k − 1) not in Sj−1 := {g1, . . . , gj−1}, and we define gj to be the largest such i.

Proof. We inductively show that at step j, there is a tj such that the following holds.

Sj =
⋃

l≤j, il≤k−1
{il}

⋃
{tj , tj + 1, . . . , k − 1}.

For the basis, if i1 < k− 1 then S1 = {i1} so the claim holds with t1 = k; otherwise, t1 = k− 1 works.

We assume this holds at step j − 1. If ij ≥ tj−1 then there is an l < tj−1 such that l /∈ Sj−1 (as

otherwise Sj−1 = [k− 1]), and as gj is the largest such l the claim holds with tj = l. If ij < tj−1, ij is

not used as ij 6= il for any l < j, so gj = ij and tj = tj−1 works. Claim 3.15 easily follows.

Hence, we embedded a subtree T1 of T of order at least m1 + k− 1, with all incomplete vertices in U .

Let m2 be the largest integer such that any out-tree of order up to m2 can be found in blue in W ′.
Note that if we can embed any out-tree of order up to m2 we can also embed any out-directed forest

of order up to m2, as any such forest is a subgraph of an out-tree of the same order. We conclude that

m1 + k − 1 + m2 < m as, otherwise, we can embed T \ V (T1) within W ′. As all edges from U to W

are blue and all incomplete vertices of T1 are in U , this would combine to create a blue T .
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Induction implies that |W ′| < c(n2 +m2) and |U ′′| < c(n1 +m1) (note that n1 ≥ 2, as otherwise there

are no red edges in U ′′ and a blue copy of T could easily be found; similarly, n2 ≥ 2; hence, we may

apply the induction hypothesis). Combining these inequalities, we get the following.

N = |U |+ |W | = |U ′′|+ |U \ U ′′|+ |W ′|+ |W \W ′|
< c(n1 +m1) + d1 + . . .+ dk + c(n2 +m2) + k − 1

≤ c(n1 + n2) + c(m1 +m2) + 5(k − 1)

≤ c(n1 + n2) + c(m1 +m2 + k − 1)

≤ c(n− 1) + c(m− 1) = c(n+m− 2) = N,

a contradiction.

Case 2b. d1 + d2 + . . .+ dk > 4(k − 1).

Let T ′ be the subtree of T consisting of vertices whose subtrees have more than a/2 out-leaves. As

each vertex can have at most one child in T ′, T ′ must be a directed path.

As |U ′′| ≥ N/5 − m ≥ n + m, we can find a blue T ′ in U ′′ by Theorem 3.2 (path vs. path). Let

T ′′ be the subtree of T obtained by removing all its out-leaves. Let T1 be a maximal subtree of T ′′,
containing T ′, which can be found in blue in U ′′. Let m1 = |T1|.
If T1 = T ′′ then we simply embed out-leaves of T arbitrarily in W , and we thus find a blue T .

Otherwise, by the inductive assumption |U ′′| < c(m1 + n1) (as before, n1 ≥ 2, so we can apply

induction).

Let S1, . . . , St be the trees in the forest T \ T1. By definition of T ′, each Si has at most a
2 out-leaves.

If we can find a copy of S1 in W ′, we remove it from W ′. We repeat, so at step i we have removed

vertex-disjoint blue copies of S1, . . . , Si−1 from W ′, and, if we can find a blue Si, we remove it. If the

process runs until i = t, using the fact that all edges from U to W are blue, we can join T1 with the

copies of the Si’s that we found to obtain a blue copy of T , a contradiction. So there is an i, such

that we cannot find a blue Si in W ′′ = W ′ \ (V (S1) ∪ . . . ∪ V (Si−1)). This implies, by the inductive

assumption that |W ′′| < c(n2 + |Si| − 1) (the inductive assumption applies as n2 ≥ 2, as before). We

obtain the following upper bound on |W ′|.
|W ′| < |S1|+ . . .+ |Si−1|+ cn2 + c|Si| − c

≤ c(|S1|+ . . .+ |St|)− (c− 1)(|S1|+ . . .+ |Si−1|+ |Si+1|+ . . .+ |St|) + cn2 − c
≤ c(m−m1)− (c− 1)a/2 + cn2 − c.

Where the last inequality follows as ∪ti=1Si contains all a out-leaves of T and Si can contain at most

a/2 so ∪j∈[t]\{i}Sj has at least a/2 out-leaves, so, in particular, it has at least a/2 vertices.

By Lemma 3.11, we have d1 + d2 + . . .+ dk ≤ a+ k− 1 < a+ (d1 + . . .+ dk)/4, which in turn implies

that d1 + . . .+ dk < 4a/3. Combining these inequalities we get the following.

N = |U |+ |W | < d1 + . . .+ dk + c(m1 + n1) + k − 1 + c(m−m1)− (c− 1)a/2 + cn2 − c
< 4a/3 + a/3− (c− 1)a/2 + c(n1 + n2 + 1) + cm− 2c

≤ 5a/3− (c− 1)a/2 + c(n+m− 2)

≤ c(n+m− 2) = N,

a contradiction. This completes the proof of Theorem 3.12.
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Corollary 3.16. Let P be an oriented path and T any tree, then

←→r (P, T ) ≤ 162(c+ 1)(|P |+ |T |),
where c is the constant given in Theorem 3.12.

Proof. Theorem 3.12 applies for a path vs. in-directed tree as well by symmetry, as directed paths

are both in and out-directed trees. Corollary 3.16 follows from Lemma 3.8.

3.3 Tree vs. tree

In this subsection we prove the following result, which is the special case of Theorem 3.1 for two

colours.

Theorem 3.17. Let S and T be oriented trees. Then ←→r (S, T ) ≤ c(|S|+ |T |), where c is an absolute

constant.

We first prove the following result, which is a special case of Theorem 3.17 where one of the trees has

a bounded number of leaves.

Lemma 3.18. Let S and T be directed trees of orders n and m respectively. Then ←→r (S, T ) ≤
c1(n+m), where c1 = c1(lf(T )).

Proof. We say that a vertex of a tree is branching if it has degree at least 3 in the underlying graph.

We will need the following two simple properties of branching vertices: a tree is an oriented path if

and only if it has no branching vertices; and each subtree obtained by removing a branching vertex

has strictly fewer leaves than the original tree.

Let c be a constant such that ←→r (P, T ) ≤ c(|P | + |T |) for every oriented path P and every oriented

tree T ; the existence of c is guaranteed by Corollary 3.16. Write al = c · 11l−2. We show, by induction

on l, that ←→r (S, T ) ≤ al(n+m), for any oriented tree T of order m and any oriented tree S of order n

with at most l leaves. The induction base, where l = 2, is exactly the above statement, as then S must

be a path. Now suppose that l ≥ 3 and let S be a tree with l leaves. Then S has a branching vertex

u. Write d = al−1(n+m), and consider a 2-colouring of
←−→
K11d. By Lemma 3.4, if there is no blue copy

of T , then there are at most 4d + 2m ≤ 5d vertices whose red out-degree is at most 2d. Similarly,

there are at most 5d vertices with red in-degree at most 2d. Hence, there is a vertex v, both of whose

red in- and out-degrees are at least 2d; we assign u to v. We now embed, one by one, the trees in the

forest S \ {u}. Let S′ be such a tree, and suppose that the edge between u and S′ in S is directed

away from u. We seek to embed S′ in red within the set of out-neighbours of v not already used. As

there are 2d such neighbours, and at most n ≤ d were used, we have d = al−1(n+m) candidates for

the embedding. By induction, either the desired red copy of S exists, or we find a blue copy of T .

We now prove Theorem 3.17 when both T1 and T2 are out or in-directed.

Lemma 3.19. Let T and S be out or in-directed trees. Then ←→r (T, S) ≤ c2(|T | + |S|), for some

constant c2.

Proof. Let n = |T |,m = |S|, we proceed by induction on n + m. The base cases, when n = 1 or

m = 1 are trivial. Without loss of generality, n ≥ m and T is out-directed. Consider a 2-colouring of←→
KN , where N = c2(n+m).
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Let T ′ be the 16-core of T ; then T ′ has at most 16 leaves.

We call a vertex red if it has red out-degree at least c2 · (n/16 + m) + n. Write c1 = c1(16) (see

Lemma 3.18). If there are at least c1(n+m) red vertices, then by Lemma 3.18 we can find a blue copy

of S or a red copy of T ′ among the red vertices. In the former case, we are done, so we assume the

latter. In this case, we find copies of the missing subtrees, one by one, in the red out-neighbourhoods

of the corresponding vertices of T ′, avoiding used vertices. By definition of red vertices, and as at

most n vertices are used at any given moment, we always have at least c2(n/16 + m) candidates for

the embedding, hence we are always able to find a red copy of the desired subtree (or we find a blue

S, and are done). We thus find a red copy of T in this case. From now on, we assume that there are

more than c1(n+m) red vertices.

We remove all red vertices and find that in the remaining graph every vertex has blue out-degree at

least the following.

N − 1− c2(n/16 +m)− n− c1(n+m) + 1 ≥ c2(n+m)− c2(n/16 +m)− (n+m)− c1(n+m)

=
15

16
c2n− (n+m)− c1(n+m)

≥ 15

32
c2(n+m)− (n+m)− c1(n+m)

≥ 7

16
c2(n+m) =

7

16
N,

where the first inequality follows from the assumption that n ≥ m, and the second inequality follows

by taking c2 ≥ 32(c1 + 1).

Assuming that there is no blue S, Lemma 3.5 (DFS), applied to the graph of blue edges induced by the

non-red vertices, gives a partition {U,X, Y } of the remaining vertices with the following properties:

|U | < m; |X| = |Y |; and every vertex in X has at most m blue out-neighbours in Y . Hence, the

minimum blue out-degree in X is at least 7N/16−m− |U | > 7N/16− 2m, so the maximum red out-

degree in X is smaller than |X|+2m−7N/16. Lemma 3.4 (with k = |X|+2m−7N/16, l = |X|/2−k)

now implies that there is any blue tree on at most |X|/2−(|X|+2m−7N/16) = 7N/16−|X|/2−2m ≥ m
vertices, where we used |X| ≤ N/2 and N ≥ 16m. So, there is a blue copy of S in X.

This essentially completes the proof of Theorem 3.17.

Proof of Theorem 3.17. Theorem 3.17 follows by combining Lemma 3.19 and Lemma 3.8.

3.4 More colours

Our next aim is to prove Lemma 3.21 below, which we shall need in order to prove Theorem 3.1 for

more than two colours. To this end, we focus on out-directed trees. We say that an out-directed

tree with root r is level-regular if all vertices at distance i from r have the same out-degree, for every

i ≥ 1. Recall that an out-leaf in an out-directed tree is a leaf whose out-degree is 0. We will need the

following preliminary result.

Lemma 3.20. Let T be an out-directed tree with l out-leaves. There is a level-regular tree T ′ such

that T is a subgraph of T ′; T ′ has at most ll out-leaves; and |T ′| ≤ ll|T |.

Proof. Let di denote the maximum out-degree among vertices of T at distance i ≥ 0 from r, and let

k be the maximum distance of a vertex of T from the root. We construct T ′ as follows. We start by
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d0 = 1

d1 = 4

d2 = 2

d3 = 0

Figure 12: An example of a level-regular tree.

taking T ′ to be a singleton and i to be 0, and at step i ≥ 1 we add exactly di−1 children to each vertex

which was added in the previous step. Note that T ′ contains T as a subtree; indeed, we can greedily

embed T in T ′, starting by embedding the root of T in the root of T ′. By construction, T ′ has exactly

d0 · · · di−1 vertices at distance i from the root. In particular, the number of out-leaves of T ′ is d0 · · · dk−1
and |T ′| ≤ d0 · · · dk−1|T |. Note that by Lemma 3.11 we have 1+(d0−1)+ . . .+(dk−1−1) ≤ l, so di ≤ l
for every i, and at most l of the di’s are greater than 1. In particular, |T ′| ≤ d0 · · · dk−1|T | ≤ ll|T | and

T ′ has at most d0 · · · dk−1 ≤ ll leaves.

The following result, interesting in its own right, is the main tool which enables us to prove the result

for more colours.

Lemma 3.21. Let T be an out-directed tree on n vertices, with l out-leaves. There is a constant cl
such that any directed graph G on clnm vertices either contains T as a subgraph or has an independent

set of size m.

Proof. We first prove the special case of the lemma where T is additionally assumed to be level-

regular. We prove this special case by induction on l. The base case l = 1, so T is a directed

path, follows from Theorem 2.1 with c1 = 1. For the step, we assume that there is a constant cl−1
which satisfies the setting of the problem, for trees with l − 1 out-leaves. We assume that there is no

independent set in G of size m and will show that there is a copy of T in G.

Let r be the root of T , and let u be a vertex of out-degree at least 2, whose distance from r, which we

denote by t, is minimal among vertices of out-degree at least 2 in T . Let d be the out-degree of u (so

d ≥ 2), and note that T consists of a directed path from r to u (of length t; note that t could be 0),

and a level-regular out-directed tree rooted at u. Let v1, . . . , vd be the children of u in T . Denote by

T ′ the subtree of T , obtained by removing the subtrees rooted at vi for i ≥ 2 (see Figure 13). Note

that T ′ is a level-regular out-directed tree, which has fewer out-leaves than T (as the out-leaves which

are descendants of vi, where i ≥ 2, are removed, while no new out-leaves are introduced). Hence, by

induction on l and by the assumption that there is no independent set of size m, there is a copy of T ′

in every induced subgraph of G of order cl−1nm.

Let T1, . . . , Tk be a maximal collection of vertex-disjoint copies of T ′ in G. Then the vertices of these

copies of T ′ cover all but at most cl−1nm vertices of G, hence clnm = |G| ≤ kn+ cl−1nm. It follows

that k ≥ (cl − cl−1)m ≥ 2l ·m, where the last inequality follows by letting cl ≥ cl−1 + 2l. Denote by

ui the vertex in Ti that corresponds to v1 in T , and let U = {u1, . . . , uk}. We claim that there is a

vertex in U with out-degree at least l in U . Indeed, suppose otherwise. Then, in every subset W of

U , the number of edges is at most (l − 1)|W |, hence there is a vertex of in-degree at most l − 1, so

its degree in the underlying graph of G[W ] is at most 2l − 2. It follows that the underlying graph of
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r

u
t = 1

d = 3v1 v2 v3

T ′

Figure 13: An illustration of the above notation.

G[U ] is (2l − 2)-degenerate; in particular, it has chromatic number at most 2l − 1. Therefore, there

is an independent set of size at least |U |/(2l − 1) ≥ m in U , a contradiction. Hence, there is a vertex

w0 ∈ U whose out-degree in U is at least l.

Note that l ≥ d by Lemma 3.11. We may thus pick d out-neighbours of w0 in U , denoted by w1, . . . , wd.

Let ij be such that wj ∈ Tij , where 0 ≤ j ≤ d, recall that Tj are all disjoint. We embed u at w0 and

combine it with subtrees of Tij rooted at wj with the path from the child of the root to w0 in Ti0 ,

using the edges from w0 to w1, . . . , wd. This forms a copy of T (see Figure 14), as required.

Ti1

w1

Ti2

w2

Ti3

w3

Ti0

w0

Figure 14: An illustration of the embedding described above, for the tree T
which appears in Figure 13.

This completes the proof of Lemma 3.21 for level-regular trees. The general case, where the tree is

not assumed to be level-regular, follows from the level-regular case by Lemma 3.20.

We are now ready to give the proof of our main result of this section, Theorem 3.1.

Proof of Theorem 3.1. We prove the theorem by induction on triples (k, l,
∑k

i=1 |Ti|), ordered lex-

icographically, where l denotes the number of trees among T1, . . . , Tk that are not in- or out-directed.

Specifically, we show that there exist constants ck,l such that

←→r (T1, . . . , Tk) ≤ ck,l|T1| · · · |Tk|
(

k∑
i=1

1

|Ti|

)
. (2)

For the base of the induction, note that the case k = 2 follows directly from Theorem 3.17. Below,

we will show how to prove (2) when for every so-called frequent colour i (defined below), the tree Ti
is in- or out-directed. This includes the case where all trees are in- or out-directed, i.e. when l = 0.

Finally, if one of the trees Ti is a single vertex, the assertion clearly follows.

Let n = ck,l|T1| · · · |Tk|
∑k

i=1
1
|Ti| and let G be a k-colouring of

←→
Kn; denote its vertex set by V , and let

Gi be the graph of its edges in colour i. We assume, for the sake of contradiction, that Gi does not

contain a copy of Ti for every i ∈ [k].
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We say that a colour i is α-frequent in a set U , if at least α proportion of the edges in U have colour

i. Denote α = 1
3·(48k)2 . We start by showing that we may assume that for every α-frequent colour i

in V , the tree Ti is in- or out-directed. Indeed, suppose that there is an α-frequent colour i such that

Ti is not in- or out-directed. Without loss of generality, i = 1. Denote S1 = S1(T1, . . . , Tk). Then, by

Lemma 3.6,

←→r (T1, . . . , Tk) ≤
8

α
(←→r (S1, T2, . . . , Tk) + |T1|)

≤ 8

α

(
ck,l−1 · |S1| · |T2| · · · |Tk| ·

(
1

|S1|
+

k∑
i=2

1

|Ti|

)
+ |T1|

)

≤ 8(ck,l−1 + 1)

α
· |T1| · · · |Tk| ·

k∑
i=1

1

|Ti|

< ck,l · |T1| · · · |Tk| ·
k∑
i=1

1

|Ti|
= n,

where the last inequality follows by taking ck,l >
8ck,l−1+1

α . This is a contradiction; therefore, from now

on we may assume that for every frequent colour i in V , the tree Ti is in- or out-directed. In particular,

as explained above, this covers the case where l = 0, i.e. all the trees Ti are in- or out-directed.

Claim 3.22. Let i be a 1
3k -frequent colour in a set U of size at least n

48k . Then there exists a subset

W of U of size at least 1
48k |U |, within which there is no copy of T ′i coloured i, where T ′i is some subtree

of Ti of order at most β|Ti|, for β = 1
(50k)2

.

Proof. Note that i is α-frequent in V , hence, Ti is in- or out-directed. We assume, without loss of

generality, that Ti is out-directed and i = 1. By Lemma 2.5, there is a |U |
24k -mindegree pair (X,Y ) in

U . Let S be the β−1-core of T1. If there is no copy of S in G1[X], then, by Lemma 3.21, as S has

at most β−1 = (50k)2 out-leaves, there is an independent set in G1[X] of size at least the following,

where c = c(50k)2 is the constant given by Lemma 3.21.

|X|
c|S| ≥

|U |
24k · c|S| ≥

n

48k · 24k · c|T1|
≥ ck,l

2(24k)2 · c · |T2| · · · |Tk| ·
k∑
i=2

1

|Ti|

≥ ck−1,l · |T2| · · · |Tk| ·
k∑
i=2

1

|Ti|
.

For the last inequality, we assume ck,l ≥ 2(24k)2 · c · ck−1,l. By induction on k, we find that there is a

copy of Ti in colour i, for some i ≥ 2, a contradiction. Hence, there is a copy of S in G1[X].

Let S1, . . . , Sr be the trees comprising of the forest T1 \ S, and denote by ui the vertex in X that

corresponds to the vertex in S that sends an edge towards Si, for i ∈ [r]. We attempt to embed

the trees Si, one by one, in the out-neighbourhood of ui in G1[Y ], such that the embedded copies

of S, S1, . . . , Sr are vertex-disjoint. If we are able to embed all the trees Si, we obtain a copy of T1
in colour 1, a contradiction. Hence, for some i ≤ r, we fail. Note that the set W of vertices in the

out-neighbourhood of ui in G1[Y ] which were not already used, has size at least |U |24k − |T1| ≥ U
48k . By

choice of i, there is no copy of Si in G1[W ], and Si is a subtree of T1 of order at most β|T1|. Hence,

W satisfies the requirements of the claim.

Without loss of generality, suppose that 1 is a majority colour, so, it is 1
k -frequent in V ; in particular,

it is 1
3k -frequent. By Claim 3.22, there is a set A of size at least n

48k , and a subtree T ′1 of T1 of order
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at most β|T1|, such that there is no copy of T ′1 in colour 1 in A. Note that, 1 is not 2/3-frequent in

A. Indeed, this would, by Lemma 3.3, imply that we can find any tree of size at most |A|/12 ≥ |T ′1|
in colour 1 in A, hence there is a copy of T ′1 of colour 1 in A, a contradiction.

It follows that there exists a colour i 6= 1, such that i is 1
3k -frequent in A; without loss of generality,

i = 2. By Claim 3.22, there is a subset B of A, of size at least |A|/48k ≥ n/(48k)2, in which there is no

copy of T ′2 in colour 2, where T ′2 is a subtree of T2 of order at most β|T2|. By induction on
∑k

i=1 |Ti|,
the following holds.

n

(48k)2
≤ ←→r

(
T ′1, T

′
2, T3, . . . , Tk

)
≤ ck,l ·

(
|T ′2|·|T3|· · ·|Tk| + |T ′1|·|T3|· · ·|Tk| + |T ′1|·|T ′2|·|T3|· · ·|Tk|·

k∑
i=3

1

|Ti|
)

< β · ck,l ·
(
|T1| · · · |Tk| ·

k∑
i=1

1

|Ti|
)

=
n

(50k)2
.

This is a contradiction, completing the proof of Theorem 3.1.

3.5 Lower bound

We conclude this section with the following lower bound, which shows that Theorem 3.1 is tight for

directed paths, up to a constant factor.

Proposition 3.23. Let k ≥ 2, then ←→r (
−−−→
P2n+1, k + 1) ≥ 4nk.

Proof. We first construct a k-colouring of the edges of
←→
Km, for m = nk−1, for which there is no

monochromatic directed path of order 2n. We represent vertices of
←→
Km by (k−1)-tuples (α1, . . . , αk−1)

with αi ∈ [n]. We colour the edges as follows, where a = (α1, . . . , αk−1) and b = (β1, . . . , βk−1). It is

convenient to define the colouring in steps, for i from 1 to k.

• Step 1: If α1 > β1 then we colour ab with colour 1.

• Step i, where 1 < i < k: if ab has not been coloured in any step j < i, we colour ab with colour i if

αi > βi, or if αi = βi and αi−1 < βi−1.

• Step k: we colour all remaining edges with colour k.

Note that if ab is coloured k, then αk−1 < βk−1. Indeed, clearly αi ≤ βi for every i ∈ [k− 1]. Let i be

maximal such that αi < βi (note that such i exists, as otherwise a = b). Then if i ≤ k − 2, the edge

ab would have been coloured by step i+ 1 ≤ k − 1, a contradiction.

Let P be a monochromatic directed path; denote the colour of its edges by i. If i = 1, then the first

coordinate of the vertices of the path (strictly) decreases along the edges of the path, hence |P | ≤ n.

If 1 < i < k, then along the path the i-th coordinates decrease and the (i− 1)-th coordinates increase,

and at least one strictly decreases or increases. Hence |P | ≤ 2n − 1. Finally, if i = k, then the

k − 1-coordinates strictly increase along the path, hence |P | ≤ n.

Let G1 and G2 be two disjoint copies of the above example. Colour all edges from G1 to G2 by colour

1, and colour all edges from G2 to G1 by colour k. The resulting graph, which we denote by G, is a

k-colouring of
←→
Km, where m = 2nk−1, without monchromatic paths of order 2n+ 1.
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Finally, another factor of 2 can be gained as follows. Note that each of the colours of G spans an

acyclic graph. Let H be a complete directed graph of order 4nk obtained by replacing each vertex u

of G by a set Su of size 2n. Colour edges inside Su by colour k + 1, and for distinct u, v colour the

edges from Su to Sv according to the colour of uv in G. H is a (k + 1)-coloured complete graph of

order 4nk which contains no monochromatic path of order 2n+ 1 in this colouring, as desired.

4 Concluding remarks and open problems

In this paper we considered two very natural analogues of Ramsey theory for directed graphs. Specif-

ically, in both oriented and directed cases we have found bounds on Ramsey numbers for oriented

trees, which are tight up to a constant factor.

Burr and Erdős [9] initiated the study of Ramsey numbers of bounded degree graphs in 1975. They

conjectured that the Ramsey number of bounded degree graphs is linear in their size. This was

subsequently proved by Chvátal, Rödl, Szemerédi and Trotter [11]. The dependence of the constant

factor on the maximal degree in this bound was later improved, first by Eaton [13], then by Graham,

Rödl and Ruciński [17] and the currently best bound is due to Conlon, Fox, Sudakov [12]. As a

natural analogue of this problem, it would be interesting to determine the behaviour of directed or

oriented Ramsey numbers of acyclic bounded degree digraphs; note that it is necessary here to require

the graph to be acyclic, because both oriented and directed Ramsey numbers of a directed cycle are

infinite. It is worth noting that even the case of one colour, in the oriented setting, is of interest;

in particular, given d, is there a constant c = c(d) such that every tournament of order at least cn

contains every acyclic graph of order n and maximum degree at most d?

While our results are all tight up to a constant factor, it would be interesting to determine the exact

values of the directed or oriented Ramsey numbers of certain graphs. For example, in the oriented case

the k-colour Ramsey number of a path is known: −→r (
−→
Pn, k) = (n− 1)k + 1. On the other hand, in the

directed case ←→r (
−→
Pn, k) is only known precisely for k = 2. Already the case k = 3 is open, Proposition

3.23, combined with the standard GHRV based argument, would give n2 ≤ ←→r (
−→
Pn, 3) ≤ 2n2.

Our results Theorem 1.1 and 1.3 are tight up to a constant factor if we are only given the information

on the order of the tree. However, in the oriented setting, Theorem 1.2 shows that if we know more

about the structure of the tree then we are sometimes able to get a significantly better bound. It

would be interesting to know whether Theorem 1.2 can be generalised to arbitrary trees, as this would

show that the longest directed subpath of the tree represents the main obstruction to the existence of

a monochromatic copy of the tree. It would also be interesting to determine if such a result holds in

the directed Ramsey case as well.

Burr’s conjecture, if true, would imply our result for oriented Ramsey number of trees, Theorem 1.1,

although it would not be able to give an improvement, such as the one discussed in the previous

paragraph. In the directed case, the main part of our argument is for two colours, where Burr’s

conjecture would again not be helpful, but it would imply the result for more colours directly. In fact,

our argument for more colours uses an intermediate step towards Burr’s conjecture, namely Lemma

3.21, which says that if in a directed graph of order N , there is no copy of a bounded degree tree of

order n, then we can find an independent set of size Ω(N/n). It would be interesting to determine

whether this result can be generalised to arbitrary trees. For arbitrary trees, it is not hard to show that

if a graph on N vertices does not contain some oriented tree of order n, then there is an independent

set of size Ω(N/(n logN)). Note that for N much larger than n, this is weaker than Ω(N/n2) implied
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by Burr’s result. As an intermediate step towards a proof of Burr’s conjecture, it would be interesting

to determine whether the Ω(N/n) result can be generalised to arbitrary trees.
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[6] M. Bucić, S. Letzter, and B. Sudakov, Monochromatic paths in random tournaments, Random

Struct. Algo. 54 (2019), no. 1, 69–81.

[7] S. A. Burr, Subtrees of directed graphs and hypergraphs, Proceedings of the Eleventh Southeastern

Conference on Combinatorics, Graph Theory and Computing, Boca Raton, Congr. Numer. 28

(1980), 227–239.

[8] S. A. Burr, Antidirected subtrees of directed graphs, Canad. Math. Bull. 1 (1982), 119–120.
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[10] V. Chvátal, Monochromatic paths in edge-colored graphs, J. Combin. Theory, Ser. B 13 (1972),

no. 1, 69–70.
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[18] A. Gyárfás and J. Lehel, A Ramsey-type problem in directed and bipartite graphs, Periodica

Mathematica Hungarica 3 (1973), no. 3-4, 299–304.
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[24] D. Kühn, R. Mycroft, and D. Osthus, A proof of Sumner’s universal tournament conjecture for

large tournaments, Proceedings of the London Mathematical Society 102 (2011), 731–766.

[25] H. Raynaud, Sur le circuit hamiltonien bi-coloré dans les graphes orientés, Period. Math. Hungar.
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