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Abstract

We investigate adaptive sublinear algorithms for detecting monotone patterns in an ar-
ray. Given fixed 2 ≤ k ∈ N and ε > 0, consider the problem of finding a length-k in-
creasing subsequence in an array f : [n] → R, provided that f is ε-far from free of such sub-
sequences. Recently, it was shown that the non-adaptive query complexity of the above task is
Θ((log n)blog2 kc). In this work, we break the non-adaptive lower bound, presenting an adaptive
algorithm for this problem which makes O(log n) queries. This is optimal, matching the classical
Ω(log n) adaptive lower bound by Fischer [2004] for monotonicity testing (which corresponds to
the case k = 2), and implying in particular that the query complexity of testing whether the
longest increasing subsequence (LIS) has constant length is Θ(log n).

1 Introduction

For an integer k ∈ N and a function (or sequence) f : [n] → R, a length-k monotone subsequence
of f is a tuple of k indices, (i1, . . . , ik) ∈ [n]k, such that i1 < · · · < ik and f(i1) < · · · < f(ik).
More generally, for a permutation π : [k] → [k], a π-pattern of f is given by a tuple of k indices
i1 < · · · < ik such that f(ij1) < f(ij2) whenever j1, j2 ∈ [k] satisfy π(j1) < π(j2). A sequence f is
π-free if there are no subsequences of f with order pattern π. Pattern avoidance and detection in
an array is a central problem in theoretical computer science and combinatorics, dating back to the
work of Knuth [Knu68] (from a computer science perspective), and Simion and Schmidt [SS85] (from
a combinatorics perspective); see also the survey [Vat15]. Studying the computational problem from
a sublinear algorithms perspective, Newman, Rabinovich, Rajendraprasad, and Sohler [NRRS17]
initiated the study of property testing for forbidden order patterns in a sequence. For a fixed k ∈ N
and a pattern π of length k, the goal is to test whether a function f : [n]→ R is π-free or ε-far from
π-free (that is, any π-free function g differs from f on at least εn inputs). They considered the
monotone case as a particularly interesting instance; monotone patterns are naturally connected
to monotonicity testing and the longest increasing subsequence, and so testing for the existence of
monotone subsequences can shine new light on these classic problems. The algorithmic task, which
is the subject of this paper, is the following.

∗Weizmann Institute of Science. email: omrib@mail.tau.ac.il. Research conducted while the author was at Tel
Aviv University.
†University College London, email: s.letzter@ucl.ac.uk. Research supported by Dr. Max Rössler, the Walter
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For 2 ≤ k ∈ N and ε > 0, design a randomized algorithm that, given query access to a
function f : [n] → R, distinguishes with probability at least 9/10 between the case that
f is free of length-k monotone subsequences and the case that it is ε-far from free of
length-k monotone subsequences.

This paper gives an algorithm with optimal dependence in n for solving the above problem. We
state the main theorem next, and discuss connections to monotonicity testing and LIS shortly after.

Theorem 1.1. Fix k ∈ N. For any ε > 0, there exists an algorithm that, given query access to a
function f : [n] → R which is ε-far from (12 . . . k)-free, outputs a length-k monotone subsequence
of f with probability at least 9/10, with query complexity and running time of Ok,ε(log n).1

For the precise bound on the query complexity and running time, see Lemma 3.2. The algorithm
underlying Theorem 1.1 is adaptive2 and solves the testing problem with one-sided error,3 since
a length-k monotone subsequence is evidence for not being (12 . . . k)-free. The algorithm im-
proves on a recent result of Ben-Eliezer, Canonne, Letzter and Waingarten [BECLW19] who
gave a non-adaptive algorithm for finding length-k monotone patterns with query complexity
Ok,ε((log n)blog2 kc), which in itself improved upon a Ok,ε((log n)O(k2)) upper bound by Newman
et al. [NRRS17]. The focus of [BECLW19] was on non-adaptive algorithms, and they gave a lower
bound of Ω

(
(log n)blog2 kc

)
queries for non-adaptive algorithms achieving one-sided error. Hence,

Theorem 1.1 implies a natural separation between the power of adaptive and non-adaptive al-
gorithms for finding monotone subsequences.

Theorem 1.1 is optimal, even among two-sided error algorithms. In the case k = 2, corresponding
to monotonicity testing, there is a Ω(log n/ε) lower bound (as long as, say, ε > n−0.99) for both
non-adaptive and adaptive algorithms [EKK+00, Fis04, CS14], even with two-sided error. A simple
reduction suggested in [NRRS17] shows that the same lower bound (up to a multiplicative factor
depending on k) holds for any fixed k ≥ 2. Thus, an appealing consequence of Theorem 1.1 is that
the natural generalization of monotonicity testing, which considers forbidden monotone patterns of
fixed length longer than 2, does not affect the dependence on n in the query complexity by more
than a constant factor. Interestingly, Fischer [Fis04] shows that for any adaptive algorithm for
monotonicity testing on f : [n]→ R there is a non-adaptive algorithm which is at least as good in
terms of query complexity (even if we only restrict ourselves to one-sided error algorithms). That
is, adaptivity does not help at all for k = 2. In contrast, the separation between our O(log n)
adaptive upper bound and the Ω

(
(log n)blog2 kc

)
non-adaptive lower bound of [BECLW19] implies

that this is no longer true for k ≥ 4.

Harnessing adaptivity to improve algorithmic performance is a notoriously difficult problem in
many branches of property testing, typically requiring a good structural understanding of the task
at hand. In the context of testing for forbidden order patterns, non-adaptive algorithms are quite
weak: the non-adaptive query complexity is Ω(n1/2) for all non-monotone order patterns [NRRS17],

1To simplify the discussion, in the rest of this exposition we are generally not interested in the exact dependence on
the parameters k and ε, and for convenience we often use notions like Ok,ε(·) and Ωk,ε(·) suppressing this dependence.

2An algorithm is non-adaptive if its queries do not depend on the answers to previous queries, or, equivalently,
if all queries to the function can be made in parallel. Otherwise, if the queries of an algorithm may depend on the
outputs of previous queries, then the algorithm is adaptive.

3An algorithm for testing property P has one-sided error if it has perfect completeness, i.e., it always outputs
“yes” if f ∈ P; otherwise, the algorithm is said to have two-sided error.
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and as high as n1−1/(k−Θ(1)) for almost all patterns of length k [BC18]. Prior to our work, the only
case for which adaptive algorithms were known to outperform their non-adaptive counterparts was
for patterns of length 3 in [NRRS17]. It is generally believed that there should be some separation
between adaptive and non-adaptive testing algorithms for pattern detection; in fact, a conjecture
of [NRRS17] suggests that for non-monotone patterns, the adaptive query complexity for testing
π-freeness is polylogarithmic in n for any fixed-length π, an exponential improvement over non-
adaptive algorithms. While this conjecture is still wide open, our work is the first to show any kind
of separation between adaptive and non-adaptive algorithms for patterns of length more than 3.

As an immediate consequence, Theorem 1.1 gives an optimal testing algorithm for the longest
increasing subsequence (LIS) problem in a certain regime. The classical LIS problem asks to
determine, given a sequence f : [n]→ R, the maximum k for which f contains a length-k increasing
subsequence. It is very closely related to other fundamental algorithmic problems in sequences, such
as computing the edit distance, Ulam distance, or distance from monotonicity (for example, the
latter equals n minus the LIS length), and has been thoroughly investigated from the perspective of
sublinear-time algorithms [PRR06, ACCL07, SS17, RSSS19] and streaming algorithms [GJKK07,
SW07, GG10, SS13, EJ15, NS15]. In the property testing regime, the corresponding decision task
is to distinguish between the case where f has LIS length at most k (where k is given as part of
the input) and the case that f is ε-far from having such a LIS length. Theorem 1.1 in combination
with the aforementioned lower bounds (which readily carry over to this setting) yield a tight bound
on the query complexity of testing whether the LIS length is a constant.

Corollary 1.2. Fix 2 ≤ k ∈ N and ε > 0. The query complexity of testing whether f : [n] → R

has LIS length at most k is Θ(log n).

1.1 Related Work

Considering general permutations π of length k and exact computation, Guillemot and Marx
[GM14] showed how to find a π-pattern in a sequence f in time 2O(k2 log k)n, later improved by
Fox [Fox13] to 2O(k2)n. In the regime k = Ω(log n), an algorithm of Berendsohn, Kozma, and Marx
[BKM19] running in time nk/4+o(k) provides the state-of-the-art. The analogous counting problem
has also been actively studied, see [EL19] and the references within.

For approximate computation of general patterns π, the works of [NRRS17, BC18] investigate the
query complexity of property testing for forbidden order patterns. When π is of length 2, the
problem considered is equivalent to testing monotonicity, one of the most widely-studied prob-
lems in property testing, with works spanning the past two decades. Over the years, variants of
monotonicity testing over various partially ordered sets have been considered, including the line
[n] [EKK+00, Fis04, Bel18, PRV18, Ben19], the Boolean hypercube {0, 1}d [DGL+99, BBM12,
BCGSM12, CS13, CST14, CDST15, KMS15, BB15, CS16, CWX17, CS19], and the hypergrid
[n]d [BRY14, CS14, BCS18]. We refer the reader to [Gol17, Chapter 4] for more on monotonicity
testing, and a general overview of the field of property testing (introduced in [RS96, GGR98]).

1.2 Main Ideas and Techniques

We now describe some intuition behind the proof of Theorem 1.1. We note that the algorithm con-
siders several cases and combines ideas from [NRRS17] and [BECLW19] with new structural and al-
gorithmic components. In this overview, technical details established in [NRRS17] and [BECLW19]
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Figure 1: A sequence f : [n] → R with two disjoint monotone subsequences of length 4, as well as
an index ` ∈ [n]. The sequences are x = (x1, x2, x3, x4) and y = (y1, y2, y3, y4). Notice that both x
and y have the largest gap between consecutive elements at index 2, i.e., |x3 − x2| and |y3 − y2| are
the largest gaps between consecutive indices in x and y. Furthermore, ` cuts both x and y with slack.

are noted but excluded; the purpose is to highlight the challenges and novel ideas arising specific-
ally from this work. (We include a short overview of the non-adaptive algorithms of [NRRS17] and
[BECLW19] in Appendix A.)

Fix k ∈ N and ε > 0, and suppose that f : [n]→ R is ε-far from (12 . . . k)-free, that is, ε-far from
free of length-k increasing subsequences. Notice that f must contain a collection C of at least εn/k
pairwise-disjoint increasing subsequences of length k; indeed, otherwise, greedily eliminating these
subsequences gives a (12 . . . k)-free function differing in strictly fewer than εn inputs.

For simplicity in this overview, assume that k is even and that all εn/k length-k increasing sub-
sequences of f in C, (x1, x2, . . . , xk) ∈ [n]k, satisfy that |xk/2+1−xk/2| ≥ |xi+1−xi| for all i ∈ [k−1]

(the non-adaptive lower bound of Ωε((log n)blog2 kc) holds even in this restricted case). We say that
an index ` ∈ [n] cuts (x1, . . . , xk) with slack if

xk/2 +
xk/2+1 − xk/2

3
≤ ` ≤ xk/2+1 −

xk/2+1 − xk/2
3

,

or, informally, if ` lies “roughly in the middle” between xk/2 and xk/2+1 – which, by the above
assumption, form the largest gap among consecutive indices of the increasing subsequence (see
Figure 1). Additionally, the width of (x1, . . . , xk) is set to be blog(xk/2+1−xk/2)c. We consider the
subset of C consisting of length-k monotone subsequences of width w which are cut by ` with slack,

C`,w = {(x1, . . . , xk) ∈ C : width(x1, . . . , xk) = w, ` cuts (x1, . . . , xk) with slack},

and note that if (x1, . . . , xk) ∈ C`,w, then x1, . . . , xk/2 ∈ [`−k·2w, `] and xk/2+1, . . . , xk ∈ [`, `+k·2w],
since |xk/2+1−xk/2| was maximal. Motivated by this observation, the density of width-w copies in
C around ` is measured by

τC(`, w) =
1

2w
· |C`,w|,

and the total density (over all widths) of C around ` is measured by

τC(`) =

logn∑
w=1

τC(`, w).

The algorithms of [NRRS17] and [BECLW19] proceed in a recursive manner. Each step (implicitly)
considers an index ` ∈ [n] where the total density τC(`) is high, namely at least Ωk(ε), as well as a
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width w where τC(`, w) is high. At a very high level, the algorithm can recurse on the sub-intervals
[`−k ·2w, `] and [`, `+k ·2w], where the lower bound on τC(`, w) implies sufficiently many increasing
subsequences exist in each interval. The number of possible widths w is Θ(log n), and the algorithms
consider all Θ(log n) options in each recursive step, thereby losing a Θ(log n) factor in the query
complexity at each step. The main challenge of [NRRS17, BECLW19] is obtaining the “best” lower
bound on τC(`, w) for some w ∈ [log n] and determining the number of recursive steps necessary.
In particular, the insight of [BECLW19] is that for a fixed ` with τC(`) = Ω(ε), if all τC(`, w) are
relatively small, i.e., τC(`, w) � ε/k for all w ∈ [log n], then the monotone subsequences in the
vicinity of ` must be arranged in an easy-to-find way. Therefore, we may assume that whenever
` ∈ [n] satisfies τC(`) = Ωk(ε), there exists one (unknown) w ∈ [log n] where τC(`, w) = Ωk(ε).

4

With adaptivity, the hope is that an algorithm considering an index ` ∈ [n] with τC(`) = Ωk(ε)
can choose one (unknown) width w satisfying τC(`, w) = Ωk(ε), and recurse only on that width.
The algorithm may devote Θk,ε(log n) queries to consider all Θ(log n) possible widths, and the
benefit is that recursing on a single width incurs a Θk,ε(log n) additive loss in the query complexity,
as opposed to the Θk,ε(log n) multiplicative loss incurred by [NRRS17, BECLW19]. It is not too
hard for an algorithm to choose a width ŵ where ŵ ≥ w. For example, the algorithm may query
Ok(1/ε) randomly sampled indices from [` − k · 2w0 , `] and [`, ` + k · 2w0 ] for each w0 ∈ [log n],
and let ŵ be the largest w0 where some increasing pair is found. The fact that the unknown
w ∈ [log n] satisfies τC(`, w) ≥ Ωk(ε) implies that with high constant probability, indices x1 and yk
from (x1, . . . , xk), (y1, . . . , yk) ∈ C`,w are sampled, and by an observation from [NRRS17], with high
enough probability, f(x1) ≤ f(yk) (see Appendix A for a more thorough discussion on this point).
This, in turn, implies ŵ ≥ w.

When ŵ is not much larger than w, our recursive step proceeds similarly to [NRRS17, BECLW19];
we call this the fitting case. The problem is that ŵ may be too large, a case we refer to as
overshooting. Consider the execution selecting a too large width ŵ, for example, ŵ = w0 = log n/2
even though the “correct” width w satisfies w � w0. The decision of setting ŵ to w0 is based on
finding an increasing pair among the Ok(1/ε) sampled indices at distance Θk(

√
n) from `, and not

finding an increasing pair at any larger distance. However, not only is it the case that increasing
pairs at distance Θk(

√
n) from ` may not combine to form length-k increasing subsequences, but

also the density τC(`, w0) may be extremely small. Intuitively, the promise that τC(`, w) ≥ Ωk(ε)
ensures that Ωk(ε2

w) length-k increasing subsequences exists in [`− k · 2w, `+ k · 2w] which are cut
with slack by `. When w0 is much larger, these length-k increasing subsequences constitute a tiny
(at most Ok(2

w−w0)) fraction of the interval [`− k · 2w0 , `+ k · 2w0 ] the algorithm would recurse on.

Due to the density τC(`, w0) being potentially very small, at this point, it is not clear how to proceed
with our wrong (too large) choice of ŵ = w0 as the width to recurse on. To overcome this, we prove
a robust structural theorem, drawing a much more favorable picture as to which widths are good
for recursion. The robust structural theorem asserts the following. For sufficiently many “well-
behaved” ` ∈ [n] where τC(`, w) ≥ Ωk(ε), any interval J containing [` − k · 2w, ` + k · 2w] ⊂ J has
Ωk(ε|J |) pairwise-disjoint length-k increasing subsequences. These length-k increasing subsequences
are not cut with slack by `, a condition which was crucial for [NRRS17, BECLW19]; however, the
algorithm’s choice of ŵ means it found an increasing pair at distance Θk(2

ŵ). We exploit this with
an adaptive algorithm in a somewhat surprising manner, which we expand on now.

4The case where τC(`) = Ω(ε) but all values of τC(`, w) are small is known as the growing suffixes case. Here,
there is an Ok,ε(logn) algorithm even in the non-adaptive regime.
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New Algorithm When Overshooting. Let ` ∈ [n] be a “well-behaved” index with τC(`) ≥
Ωk(ε), and let w be the unknown width where τC(`, w) ≥ Ωk(ε). Suppose that the widest increasing
pair (x,y) found by the algorithm (which sets ŵ ≈ log2 |y−x|), satisfies ŵ � w. Even though the
algorithm has “committed” to a width ŵ which is too large, we will algorithmically exploit the fact
that (x,y) is an increasing pair lying very far apart, and containing the interval [`−k ·2w, `+k ·2w].
Specifically, since (x,y) are very far away, the algorithm may fit k−2 intervals J1, . . . , Jk−2 between
x and y which lie adjacent to each other, satisfying the following conditions:

• J1 contains the interval [`− k · 2w, `+ k · 2w].

• Ji+1 lies immediately after Ji, for any i ∈ [k − 3].

• |Ji+1| ≥ |Ji| · αk,ε for all i ∈ [k − 3], and a large fixed constant αk,ε > 1.

A consequence of the robust structural theorem, and the fact that J1, . . . , Jk−2 have exponentially
increasing lengths is that each Ji contains a collection Ti of Ωk(ε|Ji|) disjoint length-k increasing
subsequences. For each i ∈ [k− 2], define two sets Ai and Bi as follows. Let Ai be the collection of
prefixes (a1, . . . , ai+1) of Ti with f(ai+1) < f(y), and let Bi be the collection of suffixes (ai+1, . . . , ak)
of Ti with f(ai+1) ≥ f(y). As |Ti| = |Ai| + |Bi|, one of Ai and Bi is large (i.e. has size at least
Ωk(ε|Ji|)). This seemingly innocent combinatorial idea can be exploited non-trivially to find an
increasing subsequence of length k. Specifically, the algorithm to handle overshooting aims to
(recursively) find shorter increasing subsequences in J1, . . . , Jk−2, with the hope of combining them
together into an increasing subsequence of length k. Concretely, for any i ∈ [k − 2], we make two
recursive calls of our algorithm on Ji: one for an (i+ 1)-increasing subsequence in Ji, with values
smaller than f(y),5 and a second one for a (k − i)-increasing subsequence in Ji whose values are
at least f(y). By induction, the first recursive call succeeds with good probability if |Ai| is large,
while the second call succeeds with good probability if |Bi| is large. Since for any i either |Ai| or
|Bi| must be large, at least one of the following must hold.

• B1 is large. In this case we are likely to find a length-(k − 1) monotone pattern in J1 with
values at least f(y) > f(x), which combines with x to form a length-k monotone pattern.

• Ak−2 is large. Here we are likely to find a length-(k − 1) monotone pattern in Jk−2 whose
values lie below f(y), which combines with y to form a length-k monotone pattern.

• There exists i ∈ [k − 3] where both Ai and Bi+1 are large. Here we will find, with good
probability, a length-(i + 1) monotone pattern in Ji with values below f(y), and a length-
(k− i−1) monotone pattern in Ji+1 with values at or above f(y); together these two patterns
combine to form a (12 . . . k)-pattern.

In all cases, a k-increasing subsequence is found with good probability. See Figure 2 for an example.
The benefit is that the algorithm spends Θk,ε(log n) queries to identify one fixed width ŵ ∈ [log n].
Then, there are 2(k − 2) recursive calls each aiming to find an increasing subsequence of length
strictly less than k. The Θε,k(log n) loss in the query complexity is additive per recursive step;

5Technically speaking, our algorithm can be configured to only look for increasing subsequences whose values lie
in some range; we use this to make sure that shorter increasing subsequences obtained from the recursive calls of the
algorithm can eventually be concatenated into a valid length-k one.
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Figure 2: We consider the “overshooting case” for k = 5. Specifically, the algorithm considers an
index ` ∈ [n] with τC(`) = Ωk(ε) and, for some unknown w ∈ [log n], τC(`, w) = Ωk(ε). Furthermore,
in trying to identify a correct width ŵ, the algorithm samples an increasing pair (x,y) with log2 |x−
y| ≈ ŵ � w. The algorithm will consider at least k − 2 geometrically increasing intervals between
x and y; these are displayed as J1, J2, and J3; by virtue of the robust structural theorem, each Ji
contains Ωk(ε|Ji|) disjoint length-k monotone subsequences. Ai contains those length-k monotone
subsequences where the (i+ 1)-th index is above f(y) and Bi contains those whose (i+ 1)-th index
is below f(y). As an example, (z1, z2, z3, z4, z5) ∈ B4 and (v1, v2, v3, v4, v5) ∈ A4. The crucial
properties are: (i) for all i ∈ [k − 2] any (12 . . . i)-pattern in Ai and any (12 . . . (k − i))-pattern
in Bi+1 may be combined into a (12 . . . k)-pattern, (ii) any (12 . . . (k − 1))-pattern in B1 may be
combined with x since f(y) > f(x), and (iii) any (12 . . . (k − 1))-pattern in A4 may be combined
with y. The reasoning may proceed as follows: if |B1| is large, we find a (12 . . . (k − 1))-pattern and
combine it with x; so, assume |B1| is small, which implies |A1| must be large. If |B2| is large, then
a (12)-pattern from A1 and a (12 . . . (k − 2))-pattern from B2 may be combined; so assume |B2| is
small which implies |A2| is large, . . . . Eventually, we deduce that we may assume |Ak−2| is large, and
a (12 . . . (k − 1))-pattern in Ak−2 may be combined with y.

this leads to the Θε,k(log n) query complexity bound which was impossible in the non-adaptive
algorithms of [NRRS17, BECLW19], as these needed to explore all possible widths ŵ ∈ [log n] in
each recursive step.

Organization The rest of the paper is organized as follows. In Section 1.3, we present relevant
notation. Section 2 establishes the stronger structural result required for our adaptive algorithm.
Section 3 contains all new algorithmic components and the proof of the Ok,ε(log n) query complexity
upper bound for our algorithm. For convenience, in Appendix A we provide a brief description of
the previous (non-adaptive) testing results on (12 . . . k)-freeness from [NRRS17, BECLW19].

1.3 Notation

All logarithms considered are base 2. We consider functions f : I → R, where I ⊆ [n], as the inputs
and main objects of study. An interval in [n] is a set I ⊆ [n] of the form I = {a, a+ 1, . . . , b}. At
many places throughout the paper, we think of augmenting the image with a special character ∗
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to consider f : I → R ∪ {∗}. The character ∗ can be thought of as a masking operation: In many
cases, we will only be interested in entries x of f so that f(x) lies in some prescribed (known in
advance) range of values R ⊆ R, so that entries outside this range will be marked by ∗. Whenever
the algorithm queries f(x) and observes ∗, it will interpret this as an incomparable value (with
respect to ordering) in R. As a result, ∗-values will never be part of monotone subsequences. We
note that augmenting the image with ∗ was unnecessary in [NRRS17, BECLW19] because they
only considered non-adaptive algorithms. We say that for a fixed f : I → R ∪ {∗}, the set T is
a collection of disjoint monotone subsequences of length k if it consists of tuples (i1, . . . , ik) ∈ Ik,
where i1 < · · · < ik and f(i1) < · · · < f(ik) (in particular, f(i1), . . . , f(ik) 6= ∗), and furthermore,
for any two tuples (i1, . . . , ik) and (i′1, . . . , i

′
k), their intersection (as sets) is empty. We also denote

E(T ) as the union of indices in k-tuples of T , i.e., E(T ) = ∪(i1,...,ik)∈T {i1, . . . , ik}. Finally, we let
poly(·) denote a large enough polynomial whose degree is (bounded by) a universal constant.

2 Stronger Structural Dichotomy

In this section, we prove a robust structural dichotomy for functions f : [n]→ R that are ε-far from
(12 . . . k)-free, which strengthens the dichotomy proved in [BECLW19]. In their paper, it is shown
that any f which is ε-far from (12 . . . k)-free satisfies at least one of two conditions: either f contains
many growing suffixes, or it can be decomposed into splittable intervals. In Section 2.1, we define
and describe these notions and state the original (non-robust) structural result from [BECLW19].
Then, in Section 2.2, we establish a substantially stronger structural dichotomy, better suited for
our purposes. The proof of the stronger dichotomy combines the original one as a black-box with
additional combinatorial ideas.

2.1 The Non-Robust Structural Decomposition

For completeness, we first introduce the non-robust structural result from [BECLW19]. As the
formal definitions are somewhat complicated, we start with an informal description of the growing
suffixes and splittable intervals conditions. For the purpose of this discussion, let C be any collection
of Θk,ε(n) disjoint (12 . . . k)-copies in f . We use the notation introduced in Section 1.2.

• Growing suffixes: there exist Ωk,ε(n) values of ` ∈ [n] where τC(`) ≥ Θk(ε) and τC(`, w)�
τC(`) for every w ∈ [log n]. In words, many ` ∈ [n] are such that the sum of local densities,
τC(`), of (12 . . . k)-patterns in intervals of growing widths is not too small, and furthermore,
the densities are not concentrated on any small set of widths w. Any such ` is said to be the
starting point of a growing suffix.

• Splittable intervals (non-robust): there exist c ∈ [k − 1] and a collection of pairwise-
disjoint intervals I1, . . . , Is ⊂ [n] with

∑s
i=1 |Ii| = Θk,ε(n), so that each Ii contains a dense

collection of disjoint (12 . . . k)-patterns of a particular structure. Specifically, each such in-
terval Ii can be partitioned into three disjoint intervals Li,Mi, Ri (in this order), each of size
Ωk(|Ii|), where Ii fully contains Ωk,ε(|Ii|) disjoint copies of (12 . . . k)-patterns, in which the
first c entries lie in Li, the last k − c entries lie in Ri (none of these entries lies in Mi), and
every such c entry lies below every c+ 1 entry.
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Informally, the non-robust structural dichotomy from [BECLW19] asserts that any f that is ε-
far from (12 . . . k)-free either satisfies the growing suffixes condition, or the non-robust splittable
intervals condition (or both). These two notions are formally defined next; the precise definition
for growing suffixes is slightly more complicated than described above (but understanding it is not
essential for this work, as the growing suffixes procedure from [BECLW19] will eventually only be
used as a black box). For what follows, for an index ` ∈ [n] define η` = dlog2(n− `)e, and for any
t ∈ [η`] set St(`) = [a+ 2t−1, a+ 2t)∩ [n]. Note that the intervals S1, . . . , Sη` are a partition of (`, n]
into intervals of geometrically increasing length (except for maybe the last one). Finally, the tuple
S(`) = (St(`))t∈[η`] is called the growing suffix starting at `.

Definition 2.1 (Growing suffixes (see [BECLW19], Definition 2.4)). Let α, β ∈ [0, 1]. We say
that an index ` ∈ [n] starts an (α, β)-growing suffix if, when considering the collection of intervals
S(`) = {St(`) : t ∈ [η`]}, for each t ∈ [η`] there is a subset Dt(`) ⊆ St(`) of indices such that the
following properties hold.

1. We have |Dt(`)|/|St(`)| ≤ α for all t ∈ [η`], and
∑η`

t=1 |Dt(`)|/|St(`)| ≥ β.

2. For every t, t′ ∈ [ηa] where t < t′, if a ∈ Dt(`) and a′ ∈ Dt′(`), then f(a) < f(a′).

The second definition, also from [BECLW19], describes the (non-robust) splittable intervals setting.

Definition 2.2 (Splittable intervals (see [BECLW19], Definition 2.5)). Let α, β ∈ (0, 1] and c ∈
[k − 1]. Let I ⊆ [n] be an interval, let T ⊆ Ik be a set of disjoint, length-k monotone subsequences
of f lying in I, and define

T (L) = {(i1, . . . , ic) ∈ Ic : (i1, . . . , ic) is a prefix of a k-tuple in T}, and

T (R) = {(j1, . . . , jk−c) ∈ Ik−c : (j1, . . . , jk−c) is a suffix of a k-tuple in T}.

We say that the pair (I, T ) is (c, α, β)-splittable if |T |/|I| ≥ β; f(ic) < f(j1) for every (i1, . . . , ic) ∈
T (L) and (j1, . . . , jk−c) ∈ T (R); and there is a partition of I into three consecutive intervals
L,M,R ⊆ I (that appear in this order, from left to right) of size at least α|I|, satisfying T (L) ⊆ Lc
and T (R) ⊆ Rk−c.

A collection of disjoint interval-tuple pairs (I1, T1), . . . , (Is, Ts) is called a (c, α, β)-splittable collec-
tion of T if each (Ij , Tj) is (c, α, β)-splittable and the sets (Tj : j ∈ [s]) partition T .

The following theorem presents the growing suffixes versus (non-robust) splittable intervals dicho-
tomy, which is among the main structural results of [BECLW19]. We remark that in their paper,
the theorem is stated with respect to two parameters, k, k0; for our purpose it suffices to set k0 = k.
Also, here we allow f to take the value ∗, which is not the case in [BECLW19]. Nevertheless, as
their proof takes into account only the elements of a given family T 0 of disjoint length-k increasing
subsequences, which in particular are non-∗ elements, the same proof would work here.

Theorem 2.3 ([BECLW19], Theorem 2.2). Let k, n ∈ N, ε ∈ (0, 1), and C > 0, and let I ⊆ [n]
be an interval. Let f : I → R ∪ {∗} be a function and let T 0 ⊆ Ik be a set of at least ε|I|
disjoint monotone subsequences of f of length k. Then there exist α ∈ (0, 1) and p > 0 satisfying
α ≥ Ω(ε/k5) and p ≤ poly(k log(1/ε)) such that at least one of the following conditions holds.
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1. Growing suffixes: There exists a set H ⊆ [n], of indices that start an (α,Ckα)-growing
suffix, satisfying α|H| ≥ (ε/p)n.

2. Splittable intervals (non-robust): There exist an integer c with 1 ≤ c < k, a set T , with
E(T ) ⊆ E(T 0), of disjoint length-k monotone subsequences, and a (c, 1/(6k), α)-splittable
collection of T , consisting of disjoint interval-tuple pairs (I1, T1), . . . , (Is, Ts), such that

α
s∑

h=1

|Ih| ≥ |T 0|/p. (1)

We do not include the proof here, as it is rather technical (though still lightweight compared to the
“iterated structural result” required for non-adaptive algorithms, see [BECLW19, Theorem 2.3]).

2.2 Robustifying the Structural Result

We are now ready to establish the robust structural foundations – specifically, a growing suffixes
versus robust splittable intervals dichotomy – lying at the heart of our adaptive algorithm. The next
lemma will eventually imply that the splittable intervals condition can be robustified by merely
throwing away a subset of “bad” splittable intervals.

Lemma 2.4. Let α ∈ (0, 1) and let I ⊂ N be an interval. Suppose that I1, . . . , Is ⊂ I are disjoint
intervals such that

∑s
h=1 |Ih| ≥ α|I|. Then there exists a set G ⊂ [s] such that∑

h∈G
|Ih| ≥ (α/4)|I|,

and for every interval J ⊂ I that contains an interval Ih with h ∈ G,∑
h∈[s] : Ih⊂J

|Ih| ≥ (α/4)|J |.

Proof. Let B ⊆ [s] be the set of indices h for which there is an interval Jh ⊇ Ih satisfying∑
h∈[s]:Ih⊆J |Ih| < (α/4)|J |. For each h ∈ B fix such a containing interval J(Ih).

Let J be a minimal subset of {J(Ih) : h ∈ B} with the following property: for any h ∈ B there
exists J ∈ J containing Ih. Such a minimal subset clearly exists, since {J(Ih) : h ∈ B} itself
satisfies this property (but is not necessarily minimal). The next claim asserts that no vertex is
covered more than three times by sets in J .

Claim 2.5. Every element x ∈ I is contained in at most three intervals from J .

Proof. The proof follows from the minimality of J . Consider first the case where x ∈ Ih∗ for some
h∗ ∈ B. Let JL = [aL, bL] be an interval from J that contains x, and whose left-most element aL
is furthest to the left among all intervals from J that contain x; pick JR = [aR, bR] symmetrically,
with bR being furthest possible to the right; and let JM = [aM , bM ] be an interval from J that
contains Ih. We claim that J does not have any other intervals that contain x. Suppose, to the
contrary, that there exists J = [a, b] ∈ J containing x where J 6= JL, JR, JM ; note that by definition
of JL and JM , aL ≤ a and bR ≥ b.
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We claim that J \ {J} covers all intervals Ih with h ∈ [B]; it suffices to show that for any h ∈ B
such that Ih ⊂ J , one of the intervals JL, JR, JM covers Ih. Consider h ∈ B such that Ih ⊂ J ,
and write Ih = [c, d]. If h = h∗, then Ih ⊂ JM . If Ih lies to the left of Ih∗ , then d < x ≤ bL, and
c ≥ a ≥ aL, so Ih ⊆ JL. Similarly, if Ih lies to the right of Ih, then Ih ⊆ JR. It follows that, indeed,
intervals from J \ {J} cover all intervals in {Ih : h ∈ B}, contradicting the minimality of J .

Now, if x is not contained in any interval of Ih with h ∈ B, then we can show similarly that there
are at most two intervals from J that contain x, by defining JL and JR as above.

Let U be the union of intervals from J . In light of the above claim,

∑
h∈B
|Ih| ≤

∑
J∈J

 ∑
h∈[s]: Ih⊆J

|Ih|

 <
α

4
·
∑
J∈J
|J | ≤ 3α

4
· |U | ≤ 3α

4
· |I|,

where the first inequality holds because each Ih with h ∈ B is covered by an interval in J ; the
second inequality follows from the definition of B, as J consists of sets J(Ih) with h ∈ B; the third
inequality follows from the claim; and the last one holds because U ⊂ I. Finally, let G = [s] \ [B].
By assumption on

∑
h |Ih| and the previous line,∑
h∈G
|Ih| =

∑
h∈[s]

|Ih| −
∑
h∈B
|Ih| ≥ α|I| −

3α

4
· |I| = α

4
· |I|,

and every interval J that contains an interval Ih with h ∈ G satisfies
∑

h∈[s] : Ih⊂J |Ih| ≥ (α/4)|J |,
as required.

The robust version of the structural dichotomy is stated below; the proof follows easily from the
basic structural dichotomy in combination with the last lemma.

Theorem 2.6 (Robust structural theorem). Let k, n ∈ N, ε ∈ (0, 1), and C > 0, and let I ⊆ [n]
be an interval. Let f : I → R ∪ {∗} be an array and let T 0 ⊆ Ik be a set of at least ε|I| disjoint
length-k monotone subsequences of f . Then there exist α ∈ (0, 1) and p > 0 with α ≥ Ω(ε/k5) and
p ≤ poly(k log(1/ε)) such that at least one of the following holds.

1. Growing suffixes: There exists a set H ⊆ [n], of indices that start an (α,Ckα)-growing
suffix, satisfying α|H| ≥ (ε/p)n.

2. Robust splittable intervals: There exist an integer c with 1 ≤ c < k, a set T , with
E(T ) ⊆ E(T 0), of disjoint length-k monotone subsequences, and a (c, 1/(6k), α)-splittable
collection of T , consisting of disjoint interval-tuple pairs (I1, T1), . . . , (Is, Ts), such that

α
s∑

h=1

|Ih| ≥ (ε/p)|I|, (2)

Moreover, if J ⊂ I is an interval where J ⊃ Ih for some h ∈ [s], then J contains at least
(ε/p)|J | disjoint (12 . . . k)-patterns from T 0.
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Proof. Apply Theorem 2.3. Let α∗ ∈ (0, 1) and p∗ be parameters such that α∗ ≥ Ω(ε/k5) and
p∗ ≤ poly(k log(1/ε)), as guaranteed by the theorem. Set α = α∗ and p = 4p∗. If Condition 1 holds
in the application of Theorem 2.3, then the analogous growing suffix condition in Theorem 2.6
clearly holds. So suppose that Condition 2 in Theorem 2.3 holds, and let c and (I1, T1), . . . , (Is, Ts)
be as guaranteed there. In particular, we have

∑s
h=1 |Ih| ≥ (1/p∗α∗)|T 0|. By Lemma 2.4, there is

a subset G ⊂ [s] such that
∑

h∈G |Ih| ≥ (1/4p∗α∗)|T 0| ≥ (ε/4p∗α∗)|I| = (ε/pα)|I|; and, for every
interval J in I that contains an interval Ih with h ∈ [G],

∑
h∈[s] : Ih⊂J |Ih| ≥ (ε/4p∗α∗)|J |. Since

each Ih contains at least α∗|Ih| disjoint length-k increasing subsequences, it follows that J contains
at least (ε/4p∗)|J | = (ε/p)|J | length-k increasing subsequences. Taking T to be the union of Th
over h ∈ G, along with the pairs (Ih, Th) with h ∈ G, we obtain the required robust splittable
intervals.

3 The Algorithm

Our aim in this section is to prove the existence of a randomized algorithm, Find-Monotonek(f, ε, δ),
that receives as input a function f : I → R∪{∗} (where I ⊂ N is an interval), and parameters ε, δ ∈
(0, 1), and satisfies the following: if f contains ε|I| disjoint (12 . . . k)-patterns, then the algorithm
outputs such a pattern with probability at least 1 − δ; and the running time of the algorithm is
Ok,ε(log n). To this end, we describe such an algorithm in Figure 5 below. This algorithm uses three
subroutines: Sample-Suffix, Find-Within-Interval, and Find-Good-Split, the first of which is
given in [BECLW19], and the latter two are described below, in Figures 3 and 4. The majority of
the section is devoted to the proof that Find-Monotone indeed outputs a (12 . . . k)-pattern with
high probability as claimed. Specifically, we shall prove the following theorem.

Theorem 3.1. Let k ∈ N. The randomized algorithm Find-Monotonek(f, ε, δ), described in Fig-
ure 5, satisfies the following. Given a function f : I → R ∪ {∗} and parameters ε, δ ∈ (0, 1), if f
contains at least ε|I| disjoint (12 . . . k)-patterns, then Find-Monotonek(f, ε, δ) outputs a (12 . . . k)-
pattern of f with probability at least 1− δ.

Our proof proceeds by induction on k. It relies on Lemmas 3.3, 3.4, 3.5, the former is taken from
[BECLW19] whereas the proofs of the latter two assume that Theorem 3.1 holds for smaller k. We
first state and prove these lemmas, and then we prove Theorem 3.1.

To complete the picture, we need to upper-bound the query complexity and running time of
Find-Monotone. We do this in the following lemma, whose proof we delay to the end of the
section.

Lemma 3.2. Let f : I → R∪{∗}, where I is an interval of length at most n. The query complexity
and running time of Find-Monotonek(f, ε, δ) are at most(

kk · (log(1/ε))k · 1

ε
· log(1/δ)

)O(k)

· log n.

3.1 The Sample-Suffix Sub-Routine

We restate Lemma 3.1 from [BECLW19] which gives the Sample-Suffixk subroutine, with a few
adaptations to fit our needs.
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Lemma 3.3 ([BECLW19]). Consider any fixed value of k ∈ N, and let C > 0 be a large enough
constant. There exists a non-adaptive and randomized algorithm, Sample-Suffixk(f, ε, δ) which
takes three inputs: query access to a function f : I → R ∪ {∗}, where I ⊂ N is an interval, a
parameter ε ∈ (0, 1), and an error probability bound δ ∈ (0, 1). Suppose there exists α ∈ (0, 1), and
a set H ⊆ I of (α,Ckα)-growing suffixes of f satisfying α|H| ≥ ε|I|. Then, Sample-Suffixk(f, ε, δ)
finds a length-k monotone subsequence of f with probability at least 1− δ. The query complexity of
Sample-Suffixk(f, ε, δ) is at most

log(1/δ) · polylog(1/ε) · 1

ε
· log n.

There are two differences between this statement and the statement of Lemma 3.1 from [BECLW19].

First, here we have error probability δ, whereas in [BECLW19] the error probability is 1/10. In order
to achieve error probability δ in Lemma 3.1 of [BECLW19], we perform O(log(1/δ)) independent
repetitions of Sample-Suffixk, as described in [BECLW19]. These are reflected in the query
complexity.

The second difference is that we consider functions f : I → R ∪ {∗}. Inspecting the proof of
Lemma 3.1 in [BECLW19], one can see that Sample-Suffixk is guaranteed to output, with high
probability, (12 . . . k)-patterns whose indices are specified in Definition 2.1. Since the algorithm is
non-adaptive, enforcing that indices not partaking in growing suffices not be used (by making them
∗) does not affect that analysis.

The algorithm whose existence is guaranteed by Theorem 3.3 is very simple. First “guess” the
value of α (up to a factor of 2); as ε ≤ α ≤ 1, this comes at a cost of a factor of O(log(1/ε)) in
the query complexity. For each guess α′ for the value of α, sample, uniformly at random, Θ(α/εδ)
values of ` ∈ I. As |H| ≥ (ε/α)|I|, with probability at least 1−δ/2 a value ` ∈ H is sampled in this
way. Finally, for each ` sampled in the previous step, and for each t ∈ [log n], sample, uniformly
at random, Θ(1/(α′δ)) values in (`+ 2t−1, `+ 2t]. For a value ` ∈ H sampled in the previous step,
denote by Et the event that an element of Dt(`) is sampled in the last step (recall the definition
of Dt(`) from Theorem 2.1). By the properties of the sets Dt(`), a set of elements from distinct
sets Dt(`) forms an increasing subsequence. It thus suffices to show that, with probability at least
1− δ/2, the sum

∑
t∈[logn]Et is at least k. To do this, we utilize the assumption on the sets Dt(`)

which asserts that the sum
∑

t |Dt(`)|/2t−1 is large (at least Ω(kα)) while the value of |Dt(`)|/2t−1

is small (at most α) for every t, to conclude that the expectation of
∑

tEt is large (Ω(k)), which
implies that it is at least k with probability at least 1− δ/2.

3.2 Handling Overshooting: The Find-Within-Interval Sub-Routine

In this section, we describe the Find-Within-Interval subroutine, addressing the overshooting
case as explained in Section 1.2.

As the algorithm may appear unintuitive, let us remind the reader of the setup in which this
subroutine is relevant (see also Section 1.2). By Theorem 2.6, either the growing suffixes condition
or the splittable intervals condition hold. The former case is handled by Theorem 3.3, so we
assume that the latter holds. Now assume that we sampled an element x which is the first element
of a length-c increasing subsequence from a set Li as described in Theorem 2.2. We then sample,
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Subroutine Find-Within-Intervalk(f, ε, δ, x, y,J ).

Input: Query access to a function f : I → R ∪ {∗}, parameters ε, δ ∈ (0, 1), two inputs
x, y ∈ I where x < y and f(x) < f(y), and J = (J1, . . . , Jk−2) which is a collection of disjoint
intervals appearing in order inside [x, y].

Output: a sequence i1 < . . . < ik with f(i1) < . . . < f(ik), or fail.

1. For every κ ∈ [k − 2], let fκ, f
′
κ : Jκ → R ∪ {∗} be given by:

fκ(i) =

{
f(i) f(i) < f(y)
∗ o.w.

and f ′κ(i) =

{
f(i) f(i) ≥ f(y)
∗ o.w.

. (3)

2. Call Find-Monotoneκ+1(fκ, ε/2, δ/(2k)) for every κ ∈ [k − 2].

3. Call Find-Monotonek−κ(f ′κ, ε/2, δ/(2k)) for every κ ∈ [k − 2].

4. Consider the set of all indices that are output in Lines 2 and 3, together with x and y.
If there is a length-k increasing subsequence among these indices, output it. Otherwise,
output fail.

Figure 3: Description of the Find-Within-Interval subroutine.

uniformly at random, elements y from [x,x+2t]. The splittable intervals condition implies that we
will find, with high probability, an element y which is the last element of a length-(k−c) increasing
subsequence from Ri. In particular, f(y) > f(x). However, even if we did indeed sample such y,
we may have sampled many other values of y′ with f(y′) > f(x), and we do not know of a way
of determining which of these values is the “correct” one. Instead, we take y0 to be the largest
sampled y′ such that f(y′) > f(x). The case where y0 is close to y is taken care of by Theorem 3.4,
so we assume that y0 is much larger than y.

We now have elements x and y0, and all that we know is that they contain a large portion of an
interval Ii from the splittable intervals condition. It is not hard to see (this is shown in the proof of
Theorem 3.1) that [x,y0] can be partitioned into k−2 intervals J1, . . . , Jk−2, each of which contains
many disjoint length-k increasing subsequences. To continue, out only hope is use the induction
hypothesis to find shorter increasing subsequences in the intervals. For example, if there are many
disjoint length-(k− 1) increasing subsequences in J1 that lie above x, then one such subsequence is
likely to be detected by a recursive call to the main algorithm, and together with x it will form a
length-k increasing subsequence. If there are few such length-(k−1) subsequences, this means that
there are many disjoint length-2 increasing subsequences in J1 that lie below x (because for every
length-k increasing subsequence, either its (k − 1)-suffix lies above x, or its 2-prefix lies above x).
We can then use a recursive call to detect such a sequence, and hope to complete it to a length-k
subsequence using a length-(k − 2) subsequnece from J2 that lies above x. Continuing with this
logic, it follows that with high probability we can find an increasing subsequence of length k using
x and J1, Ji and Ji+1 for some i, or Jk−2 and y0.

Lemma 3.4. Consider the randomized algorithm, Find-Within-Intervalk(f, ε, δ, x, y,J ), de-
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scribed in Figure 3, which takes six inputs:

• Query access to a function f : I → R ∪ {∗},

• Two parameters ε, δ ∈ (0, 1),

• Two points x, y ∈ I where x < y and f(x) < f(y), and

• A collection J = (J1, . . . , Jk−2) of k−2 disjoint intervals that appear in order (i.e., Jκ comes
before Jκ+1) within the interval [x, y],

and outputs either a length-k increasing subsequence of f , or fail.

Suppose that for every κ ∈ [k − 2], the function f |Jκ : Jκ → R ∪ {∗}, contains ε|Jκ| disjoint
(12 . . . k)-patterns. Then, assuming that Theorem 3.1 holds for every k′ with 1 ≤ k′ < k, the
procedure Find-Within-Intervalk(f, ε, δ, x, y,J ) outputs a length-k monotone subsequence of f
with probability at least 1− δ.

Proof. For each κ ∈ [k− 2], let Cκ be a collection of at least ε|Jκ| disjoint (12 . . . k)-patterns in Jκ.
We form the following two collections, of suffixes and prefixes of (12 . . . k)-patterns in Cκ.

Aκ = {(i1, . . . , iκ+1) : (i1, . . . , iκ+1) is a prefix of a k-tuple from Ck, and f(iκ+1) < f(y)}
Bκ = {(iκ+1, . . . , ik) : (iκ+1, . . . , ik) is a suffix of a k-tuple from Ck, and f(iκ+1) ≥ f(y)}

Note that for each (12 . . . k)-pattern in Cκ, either its (κ + 1)-prefix is in Aκ, or its (k − κ)-suffix
is in Bκ. Thus, at least one of Aκ and Bκ has size at least (ε/2)|Jκ|. Say that Jκ is of type-1 if
|Aκ| ≥ (ε/2)|Jκ|, and otherwise say that Jκ is of type-2 (in which case |Bκ| ≥ (ε/2)|Jκ|).

Now, if Jκ is of type-1, then Line 2, called with κ, will find a (12 . . . (κ+1))-pattern with probability
at least 1− δ/(2k), by Theorem 3.1 for κ+ 1 < k (namely, the inductive hypothesis) and the lower
bound on |Aκ|. On the other hand, if Jκ is of type-2, Line 3 will output a (12 . . . (k − κ))-pattern
with probability at least 1− δ/(2k), due to the inductive hypothesis and the lower bound on |Bκ|.
Thus, by a union bound, with probability at least 1 − δ, Line 2 outputs a pattern whenever Jκ is
of type-1, and Line 3 outputs a pattern whenever Jκ is of type-2.

Notice that if J1 is of type-2, the (12 . . . (k − 1))-pattern returned in Line 3 can be combined with
x to form a (12 . . . k)-pattern. Hence, we may assume that J1 is of type-1. Furthermore, if Jk−2 is
of type-1, the (12 . . . (k − 1))-pattern found in Line 2 can be combined with y to form a (12 . . . k)-
pattern, and hence, we may assume that Jk−2 is of type-2. Thus, there exists some κ ∈ [k − 3]
where Jκ is of type-1 and Jκ+1 is of type-2. Since Jκ comes before Jκ+1, and since non-∗ elements
in fκ lie below the non-∗ elements of f ′k+1, we can combine the (12 . . . (κ + 1))-pattern in fκ with
the (12 . . . (k − κ− 1))-pattern in f ′κ+1.

3.3 Handling the Fitting Case: The Find-Good-Split Sub-Routine

In this section, we describe the Find-Good-Split subroutine, which corresponds to the fitting case
from Section 1.2.

15



Subroutine Find-Good-Splitk(f, ε, δ, c, ξ).

Input: Query access to a function f : I → R ∪ {∗}, parameters ε, δ ∈ (0, 1), and c ∈ [k − 1].
We let c1 > 1 be a large enough (absolute) constant.

Output: a sequence i1 < . . . < ik with f(i1) < . . . < f(ik), or fail.

1. Repeat the following procedure t = c1k/(εξ
2) · log(1/δ) times:

(a) Sample w, z ∼ I, and consider the functions fz,w : I ∩ (−∞, z) → R ∪ {∗} and
f ′z,w : I ∩ [z,∞)→ R ∪ {∗} given by

fz,w(i) =

{
f(i) f(i) < f(w)
∗ o.w.

and f ′z,w(i) =

{
f(i) f(i) ≥ f(w)
∗ o.w.

.

(4)

(b) Run Find-Monotonec(fz,w, εξ/3, δ/3) and Find-Monotonek−c(f
′
z,w, εξ/3, δ/3).

2. If both runs of Line 1b are successful for some iteration and some w, z and c, then we
output the combination of their outputs which forms a length-k increasing subsequence
of f ; otherwise, output fail.

Figure 4: Description of the Find-Good-Split subroutine.

Lemma 3.5. Consider the randomized algorithm Find-Good-Splitk(f, ε, δ, c, ξ), described in Fig-
ure 4, which takes as input five parameters:

• Query access to a function f : I → R ∪ {∗},

• Two parameters ε, δ ∈ (0, 1),

• An integer c ∈ [k − 1], and

• A parameter ξ ∈ (0, 1],

and outputs either a length-k increasing subsequence or fail.

Suppose that there exists an interval-tuple pair (I ′, T ) which is (c, 1/(6k), ε)-splittable and |I ′|/|I| ≥
ξ. Then, the algorithms Find-Good-Splitk(f, ε, δ, c, ξ) finds a (12 . . . k)-pattern of f with probab-
ility 1− δ.

Proof. Let (I ′, T ) be (c, 1/(6k), ε)-splittable, and let L,M,R be the contiguous intervals splitting
I ′ as in Definition 2.2. Furthermore, let T (L) and T (R) be as in Definition 2.2. Writing

m1 = rank
({
f(ic) : (i1, . . . , ic) ∈ T (L)

}
, |T |/3

)
,

m2 = rank
({
f(ic) : (i1, . . . , ic) ∈ T (L)

}
, 2|T |/3

)
,
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as the (|T |/3)-largest and (2|T |/3)-largest elements in
{
f(ic) : (i1, . . . , ic) ∈ T (L)

}
(taking multi-

plicity into account). Let T
(L)
l be the (12 . . . c)-patterns in T (L) where the c-th index is at most

m1, and T
(R)
h be the (k − c)-patterns in T (R) whose (c + 1)-th index is larger than m2. Notice

that |T (L)
l |, |T

(R)
h | ≥ |T |/3, and that any (12 . . . c)-pattern from T

(L)
l can be combined with any

(12 . . . (k − c))-pattern from T
(R)
h to form a (12 . . . k)-pattern. Furthermore, there exists at least

|T |/3 indices in I ′ whose function value lies in [m1,m2].

Consider the event, defined over the randomness of w, z ∼ I that: z ∈ M ; and w satisfies
f(w) ∈ [m1,m2]. This event occurs at some iteration of Line 1, with probability at least 1 − δ/3;
this is because there are |M | ≥ |I ′|/(6k) ≥ (ξ/(6k))|I| valid indices for z, and there are at least
|T |/3 ≥ (ε/3)|I ′| ≥ (εξ/3)|I| indices for w, so the probability that the pair (z,w) satisfies the
requirements is at least εξ2/(18k). We obtain the desired bound by the setting of t, since c1 is set
to a large enough constant.

Notice that when this event occurs, the (12 . . . c)-patterns in T
(L)
l all lie in fz,w, and the (12 . . . (k−

c))-patterns in T
(R)
h all lie in f ′z,w. In particular, fz,w contains at least |T |/3 ≥ (ε/3)|I ′| ≥

(εξ/3)|I| disjoint (12 . . . c)-patterns, and f ′z,w similarly contains at least (εξ/3)|I| disjoint (12 . . . (k−
c))-patterns. Thus, by the inductive hypothesis, Line 1b finds a (12 . . . c)-pattern in fz,w and a
(12 . . . (k − c))-pattern in f ′z,w with probability at least 1 − 2δ/3, and these can be combined to
give a (12 . . . k)-pattern of f .

3.4 The Main Algorithm

Consider the description of the main algorithm in Figure 5. We prove Theorem 3.1 by induction
on k. The proof uses Lemma 3.3, Lemma 3.4, and Lemma 3.5.

Proof of Theorem 3.1.

Base Case: k = 1.

Recall that f has at least ε|I| non-∗ values. Thus, with probability at least 1 − δ, a non-∗ value
is observed after sampling x ∼ I at least (1/ε) · log(1/δ) times. It follows that with probability at
least 1− δ, Line 2a of our main algorithm, given in Figure 5, samples x 6= ∗ in one of its iterations.

Inductive Step: proof of Theorem 3.1 for k ≥ 2, under the assumption that it holds for every k′

with 1 ≤ k′ < k.

Let p = P (k log(1/ε)) (recall that P (·) is a polynomial of sufficiently large (constant) degree).
Apply Theorem 2.6 to f .

Suppose, first, that (1) of Theorem 2.6 holds. So, there exists a set H ⊂ [n] of indices that start
an (α,Ckα)-growing suffix, with α|H| ≥ (ε/p)n, for some α ∈ (0, 1). By Lemma 3.3, the call for
Sample-Suffixk(f, ε/p, δ) in Line 1 outputs a length-k monotone subsequence of f with probability
at least 1− δ.

Now suppose that (2) of Theorem 2.6 holds, and let (I1, T1), . . . , (Is, Ts) be a (c, 1/(6k), α)-splittable
collection for some α ≥ Ω(ε/k5) and c ∈ [k − 1], satisfying (2) and, moreover, that any J ⊂ I with
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Subroutine Find-Monotonek(f, ε, δ).

Input: Query access to a function f : I → R∪{∗}, parameters ε, δ ∈ (0, 1). We let c1, c2, c3 >
0 be large enough constants, and let p = P (k log(1/ε)), where P : R→ R is a polynomial of
large enough (constant) degree.

Output: a sequence i1 < . . . < ik with f(i1) < . . . < f(ik), or fail.

1. Run Sample-Suffixk(f, ε/p, δ).

2. Repeat the following for c1 log(1/δ) · p · k5/ε2 many iterations:

(a) Sample x ∼ I uniformly at random. If f(x) = ∗, proceed to the next iteration.
Otherwise, if k = 1 output x and proceed to Step 3, and if k ≥ 2 proceed to the
next step.

(b) For each t ∈ [log n], sample yt ∼ [x + 2t/(12k),x + 2t] uniformly at random. If
there exists at least one t where f(yt) > f(x), set

y = max {yt : t ∈ [log n] and f(yt) > f(x)} , (5)

let t∗ ∈ [log n] be the index for which yt∗ = y, and continue to the next line.
Otherwise, i.e. if f(yt) 6> f(x) for every t, continue to the next iteration.

(c) If k = 2, output (x,y) and proceed to Step 3. If k > 2, continue to the next line.

(d) Here k ≥ 3. Set ` = 4p/ε and perform the following.

i. Consider the collection J of k − 2 intervals J1, . . . , Jk−2 appearing in order
within [x,y], given by setting, for every i ∈ [k − 2],

Ji =

[
x +

2t
∗

12k
· `−(k−1−i),x +

2t
∗

12k
· `−(k−2−i)

)
, (6)

and run Find-Within-Intervalk(f, ε/2p, δ/2,x,y,J ).

ii. For each t′ ∈ [t∗ − 3k log `, t∗] do the following.

Consider the interval Jt′ = [x − 2t
′
,x + 2t

′
], and the restricted function

gt′ : Jt′ → R ∪ {∗} given by gt′ = f |Jt′ . For every c0 ∈ [k − 1], run
Find-Good-Splitk(gt′ , ε/(c2k

5), δ/2, c0, 1/4).

3. If a length-k monotone subsequence of f is found, output it. Otherwise, output fail.

Figure 5: Description of the Find-Monotonek subroutine.

J ⊃ Ih for some h ∈ [s] contains (ε/p)|J | disjoint (12 . . . k)-patterns. Let Event be the event that,
for a particular iteration of Lines 2a and 2b, x is the 1-entry of some k-tuple from Th, for some
h ∈ [s], and yt is the (c + 1)-entry of some (possibly other) k-tuple in Th, where t is such that
|Ih| ≤ 2t < 2|Ih|.
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Claim 3.6. Pr[Event] ≥ εα/(2p).

Proof. For each h ∈ [s], let Ah and Bh be the collections of 1- and (c+ 1)-entries of patterns in Th.
Then

s∑
h=1

|Ah| =
s∑

h=1

|Th| ≥ α
s∑

h=1

|Ih| ≥
ε

p
· |I|.

The first inequality follows from the assumption that (Ih, Th) is (c, 1/(6k), α)-splittable, and the
second inequality follows from the assumption that (2) holds.

As a result, the probability over the draw of x ∼ I in Line 2a that x ∈ Ah is at least ε/p. Fix
such an x, and consider t ∈ [log n] for which |Ih| ≤ 2t < 2|Ih|. Notice that Bh ⊂ [x+ 2t/(12k),x+
2t] since 2t−1 ≤ |Ih| < 2t, and that the distance between any index of Ah and Bh is at least
|Ih|/(6k) ≥ 2t/(12k) since (Ih, Th) is (c, 1/(6k), α)-splittable. Therefore, the probability over the
draw of yt ∼ [x + 2t/(12k),x + 2t] that yt ∈ Bh is at least |Bh|/2t ≥ |Th|/(2|Ih|) ≥ α/2.

By the previous claim, since we have c1 · log(1/δ) · p · k5/ε2 iterations of Lines 2a and 2b, with
probability at least 1− δ/2, Event holds in some iteration (using the lower bound α ≥ Ω(ε/k5) and
the choice of c1 as a large constant).

Consider the first execution of Line 2a and Line 2b where Event holds (assuming such an execution
exists). Let h ∈ [s] and t ∈ [log n] be the corresponding parameters, i.e., h and t are set so x is the
first index of a k-tuple in Th, yt is the (c+1)-th index in another k-tuple in Th, and |Ih| ≤ 2t < 2|Ih|.
We consider this iteration of Line 2, and assume that Event holds with these parameters for the
rest of the proof. Notice that y, as defined in (5), satisfies y ≥ yt (as f(y) > f(x)) and hence
t∗ ≥ t.

Note that if k = 2, the pair (x,y), which is a (12)-pattern in f , is output in Line 2c, so the proof
is complete in this case. From now on, we assume that k ≥ 3. We break up the analysis into two
cases: t∗ ≥ t+ 3k log ` and t∗ < t+ 3k log `.

Suppose t∗ ≥ t+ 3k log `. We now observe a few facts about the collection J specified in (6). First,
notice that J1, . . . , Jk−2 appear in order from left-to-right, and they lie in [x,y] (as y = yt∗ ∈
[x + 2t

∗
/(12k), 2t

∗
]). Second, in the next claim we show that for every i ∈ [k − 2], the interval Ji

contains (ε/2p)|Ji| disjoint (12 . . . k)-patterns.

Claim 3.7. Ji contains (ε/2p)|Ji| disjoint (12 . . . k)-patterns.

Proof. Let J ′i be the interval given by

J ′i = Ih ∪
[
x,x +

2t
∗

12k
· `−(k−2−i)

]
.

Observe that

|J ′i \ Ji| ≤ 2t +
2t
∗

12k
· `−(k−1−i) ≤ 2t

∗

6k
· `−(k−1−i) =

2

`
· 2t

∗

12k
· `−(k−2−i) ≥ 2

`
· |J ′i | =

ε

2p
· |J ′i |,

where for the second inequality we used the bound t∗− t ≥ 3k log ` ≥ log(12) + log k+ (k− 2) log `,
and that ` = 4p/ε.
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We have by Theorem 2.6, that J ′i contains at least (ε/p)|J ′i | disjoint (12 . . . k)-patterns in f . Hence,
the number of disjoint (12 . . . k)-patterns in Ji is at least:

ε

p
· |J ′i | − |J ′i \ Ji| ≥

ε

2p
· |J ′i | ≥

ε

2p
· |Ji|,

as required.

By Lemma 3.4, Line 2(d)i outputs a (12 . . . k)-pattern in f with probability at least 1− δ/2. By a
union bound, we obtain the desired result.

Suppose, on the other hand, that t∗ ≤ t + 3k log `. In this case, as 2t−1 ≤ |Ih| ≤ 2t
∗

(by choice
of t), for one of the values of t′ considered in Line 2(d)ii we have 2t

′−1 ≤ |Ih| < 2t
′
; fix this t′.

The interval Jt′ , defined in Line 2(d)ii, hence satisfies |Ih|/|Jt′ | ≥ 1/4. As a result, and since
Ih ⊂ Jt′ (because t ≤ t∗), the function g : J → R ∪ {∗} contains an interval-tuple pair (Ih, Th)
which is (c, 1/(6k), α)-splittable. By Lemma 3.5, once Line 2(d)ii considers c0 = c, the sub-routine
Find-Good-Splitk(g, ε/(c2k

5), δ/2, c, 1/4) will output a (12 . . . k)-pattern of gt′ (which is also a
(12 . . . k)-pattern of f) with probability at least 1 − δ/2. Hence, we obtain the result by a union
bound.

3.5 Query Complexity and Running Time

It remains to prove Lemma 3.2, estimating the number of queries made by Find-Monotone, as well
as its total running time.

Proof of Lemma 3.2. We first claim that the running time is bounded by an expression of the
form poly(k) times the query complexity of Find-Monotone, where the poly(·) term is of constant
degree. Indeed, the only costly operations (in terms of running time) other than querying that our
algorithm conducts involve:

• Determining whether the value of f at a certain point is ∗ or not; to this end, note that for
any f we need to evaluate along the way, f(x) is marked by ∗ if and only if it does not belong
to some interval in R, whose endpoints are determined by the recursive calls that led to it.
Since the recursive depth is at most k, this means that the complexity of the above operation
is O(k).6

• Given an ordered set of queried elements Q at some point along the algorithm, determining
whether these elements contain a c-increasing subsequence for c ≤ k (this action is taken,
e.g., in the last part of Find-Monotone). This operation can be implemented in time O(c|Q|).
Now, the number of such operations that each queried element participates in is at most k,7

and a simple double counting argument implies that the running time of these operations
altogether is at most O(k2) times the total query complexity.

6In fact, this complexity can be improved to O(1) if, instead of working with functions of the form f : I → R∪{∗},
we would have worked with function f : I → R and received the interval of “non-∗ values” as an input to the recursive
call.

7More precisely, for the purpose of this section, if an element is queried t > 1 times by our algorithm then we
think of it as contributing t to the total query complexity (since our goal is to prove upper bounds here – not lower
bounds – this perspective is clearly valid); and in this case, the number of operations as above in which it participates
is at most k · t.
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It remains now to prove the bound on the query complexity. Recall that P : R→ R is a fixed poly-
nomial; write pk,ε = P (k log(1/ε)). We fix n, which upper bounds the length of all intervals defining
input functions. Let Φ(k, ε, δ) be the maximum number of queries made by Find-Monotonek(f, ε, δ).
Let

Φ(1)(k, ε, δ) = query complexity of Sample-Suffixk(f, ε, δ).

Φ(2)(k, ε, δ) =
query complexity of Find-Within-Intervalk(f, ε, δ, x, y,J ),
where |J | = k − 2.

Φ(3)(k, ε, δ, ξ) =
query complexity of Find-Good-Splitk(f, ε, δ, c, ξ),
where c ∈ [k − 1].

By Lemma 3.3, as well as an inspection of Figure 3 and Figure 4, we have:

Φ(1)(k, ε, δ) ≤ pk,ε ·
1

ε
· log(1/δ) · log n

Φ(2)(k, ε, δ) ≤ 2k · Φ(k − 1, ε/2, δ/(2k))

Φ(3)(k, ε, δ, ξ) ≤ c1k log(1/δ)

εξ2
· Φ(k − 1, εξ/3, δ/3).

Lastly, inspecting Figure 5, we have

Φ(k, ε, δ) ≤ Φ(1)(k, ε/pk,ε, δ)+

c1pk,ε ·
k5

ε2
· log(1/δ) ·

(
1 + log n+ Φ(2) (k, ε/(2pk,ε), δ/2) + Φ(3)

(
k, ε/(c2k

5), δ/2, 1/4
))

≤ qk,ε ·
1

ε2
· log(1/δ) · log n + qk,ε ·

1

ε3
· (log(1/δ))2 · Φ(k − 1, ε/qk,ε, δ/(3k))

≤
(
kk · (log(1/ε))k · 1

ε
· log(1/δ)

)O(k)

· log n,

where Q : R→ R is a fixed polynomial of large enough (constant) degree and qk,ε = Q(k log(1/ε)).
For the last line we use that Φ(2)(1, ·, ·) = Φ(2)(2, ·, ·) = Φ(3)(1, ·, ·, ·) = Φ(3)(2, ·, ·, ·) = 0, and we
note that the parameter replacing ε never falls below ε/(k log(1/ε))O(k), so the factor of log n at

each iteration is at most
(
kk(log(1/ε))k(1/ε) log(1/δ)

)O(k)
.

References

[ACCL07] Nir Ailon, Bernard Chazelle, Seshadhri Comandur, and Ding Liu. Estimating the
distance to a monotone function. Random Structures and Algorithms, 31(3):371–383,
2007.

[BB15] Aleksandrs Belovs and Eric Blais. Quantum algorithm for monotonicity testing on
the hypercube. Theory of Computing, 11(16):403–412, 2015.

[BBM12] Eric Blais, Joshua Brody, and Kevin Matulef. Property testing lower bounds via
communication complexity. Computational Complexity, 21(2):311–358, 2012.

[BC18] Omri Ben-Eliezer and Clément L. Canonne. Improved bounds for testing forbidden
order patterns. In Proceedings of the 29th ACM-SIAM Symposium on Discrete Al-
gorithms (SODA), pages 2093–2112, 2018.

21
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A Non-Adaptive Algorithms

For completeness, in this appendix we briefly review the previously known non-adaptive algorithms
for our problem of testing for (12 . . . k)-patterns. The relevant notions appear in Section 1.2. In
particular, f, C, C`,w are as defined in the beginning of that section.

A.1 The (log n)O(k2) Algorithm of Newman et al. [NRRS17]

For simplicity, let us first focus on the case k = 2 (i.e., monotonicity testing). Fix a location
` ∈ [n] and a width w ∈ [log n], and consider drawing Θ(1/τC(`, w)) indices from the interval
[`− 2w, `+ 2w] uniformly at random, querying f in all of these locations. Letting m be the median
of the set {f(x) : (x, y) ∈ C`,w}, if we manage to query the “1-entry” x of some (x, y) ∈ C`,w where
f(x) ≤ m, and the “2-entry” y′ of some (x′, y′) ∈ C`,w where f(x′) ≥ m, then (x, y′) would form an
increasing pair, since x < ` < y′ and f(x) ≤ m ≤ f(x′) < f(y′). By definition, the number of entries
x as well as the number of entries y′ within [` − 2w, ` + 2w] as above is at least Ω (τC(`, w) · 2w).
Therefore, with good probability, Θ(1/τC(`, w)) uniform queries from the interval will hit at least
one such x and one such y′, which together would form the desired (12)-pattern.

We claim that many values of ` ∈ [n] have some width w ∈ [log n] where the density τC(`, w) is large.
First, a simple double counting argument shows E`∈[n][τC(`)] = Ω(ε). Moreover, τC(`, w) ≤ O(1) for
any width w ∈ [log n], and so τC(`) = O(log n). Consequently, the probability that a random ` ∈ [n]
satisfies τC(`) = Ω(ε) is Ω(ε/ log n). It suffices to pick Θ(log n/ε) uniformly random ` ∈ [n] in order
for one to satisfy τC(`) = Ω(ε) with high probability; and, if this event holds, then there exists
w ∈ [log n] for which τC(`, w) = Ω(ε/ log n). We now leverage the querying paradigm described in
the previous paragraph: if for any ` ∈ [n] as above and any w ∈ [log n] we query Θ(log n/ε) uniform
locations in [`− 2w, `+ 2w], then we shall find a (12)-pattern with good probability. In total, this
procedure makes O(log3 n/ε2) non-adaptive queries. To deal with general fixed k ≥ 2 and ε > 0,
the same reasoning is applied recursively, leading to the (log n)O(k2)-query algorithm of [NRRS17].

A.2 The O
(
(log n)blog2 kc

)
Algorithm of Ben-Eliezer et al. [BECLW19]

The improved non-adaptive algorithm [BECLW19] makes use of the (non-robust) structural di-
chotomy discussed in Section 2.1. Consider a sequence f that is ε-far from (12 . . . k)-free. Then
f contains a family C of Ωk(εn) disjoint length-k increasing subsequences. This family C can
be replaced by a family C′ of size Ωk(εn) that has the additional so-called “greedy” property: if
(x1, . . . , xk), (y1, . . . , yk) ∈ C′ and if x1 < y1, xc < yc and xc+1 > yc+1, then f(xc+1) > f(yc+1) (see
Figure 1). Such a family C′ can be constructed from C using a simple greedy algorithm.

Given such a family C′, suppose that ` is known to have the “growing suffixes” property (with
respect to the family C′). Due to the “greedy” property of the family C′, given a set of length-k
increasing subsequences that are cut by ` with slack and whose widths are sufficiently far apart, their
(c+1)-values are guaranteed to form an increasing subsequence. The growing suffix assumption on `
implies that, roughly speaking, there are many widths for which there are many length-k increasing
subsequences that are cut by ` with slack. Thus, one can show that by sampling Θk(1/ε) elements
from the interval [`, ` + 2t], for each t ∈ [log n], a k-increasing subsequence is found, with high
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Figure 6: A sequence f : [n] → R is displayed which has a growing suffix starting at position `.
Specifically, suppose we consider all length-k monotone subsequences belonging to a family C′ of size
Ωε,k(n) which satisfies the “greedy” property (see Figure 1), and in all of which the c-index and
(c+1)-index form the largest gap between consecutive elements. We have divided intervals beginning
at ` at geometrically increasing lengths, and shaded those intervals which contain Ωε,k(1)-fraction of
indices as a (c+1)-index of a k-tuple in C′ which is cut with slack by ` at the particular width. From the
fact that sequences in C′ satisfy the greedy property, the shaded regions increase. An algorithm which
samples one (c+ 1)-index at many intervals succeeds in building a long monotone subsequence. If an
algorithm queries Ok,ε(1) random positions at all O(log n) intervals, we expect to have many intervals
where some (c+ 1)-index of a k-tuple in C′ sampled, thus finding a long increasing subsequence.

probability. By performing this procedure for Ωk,ε(1) uniformly randomly chosen values of `, a
length-k increasing subsequence is found, with high probability, if the first case in the structural
theorem holds; this procedure has query complexity Ok,ε(log n). (See Figure 6 for an illustration
of what an algorithm hopes to achieve, and why Ok,ε(log n) queries suffice.)

Now suppose that, instead, the “splittable intervals” case holds. By making Θk,ε(1) random
samples, we can find, with high probability, a value ` that lies in Mi for some i ∈ [s]; let w
be its width (defined, as above, to be blog |Ii|c). By the assumption on `, the interval [` − 2w, `]
contains many disjoint length-c increasing subsequences, the interval [`, `+ 2w] contains many dis-
joint length-(k − c) increasing subsequences, and two such subsequences can be combined to form
the desired length-k increasing subsequences. Thus we can “guess” the width w (with a cost of a
factor of log n in the query complexity), and repeat the same reasoning in the intervals [` − 2w, `]
and [`, `+ 2w]. We remark that such reasoning would yield an algorithm with a query complexity
of Θk,ε((log n)k−1) in the worst case. In order to obtain the optimal exponent of blog2 kc one can
aim to find, instead of an element of Mi, a particular element in one of the increasing subsequences
in either Li or Ri. To facilitate this idea, [BECLW19] goes on to prove a more detailed structural
theorem, obtained (with some effort) by iterating the structural result mentioned above.
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