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SELF-ADJOINT A∆Os WITH VANISHING REFLECTION

S. N. M. Ruijsenaars1

We review our work concerning ordinary linear second-order analytic difference operators (A∆Os) that

admit reflectionless eigenfunctions. This operator class is far more extensive than the reflectionless

Schrödinger and Jacobi operators corresponding to KdV and Toda lattice solitons. A subclass of re-

flectionless A∆Os, which generalizes the latter class of differential and discrete difference operators, is

shown to correspond to the soliton solutions of a nonlocal Toda-type evolution equation. Further restric-

tions give rise to A∆Os with isometric eigenfunction transformations, which can be used to associate

self-adjoint operators on L2(R, dx) with the A∆Os.

1. Introduction

In [1], we used previous findings concerning reflectionless analytic difference operators (A∆Os) of the
relativistic Calogero–Moser type [2, 3] as evidence for the conjectured existence of a much larger class of
reflectionless A∆Os. In this paper, we sketch an affirmative answer to our existence conjecture together with
partial answers to related conjectures concerning self-adjointness issues and associated solitonic evolution
equations. Detailed proofs can be found in [3–6].

We begin with some simple observations regarding the “free” A∆O

A0 ≡ e−i∂x + ei∂x (1.1)

viewed as a linear operator on the space M of meromorphic functions. Evidently, this operator has eigen-
functions W0(x,±p) with eigenvalues ep + e−p, where

W0(x, p) ≡ eixp.

Now let µ±(x, p) be functions that are meromorphic and i-periodic in x for arbitrary p ∈ C. It is then clear
that

Wµ+,µ−
0 (x, p) ≡ µ+(x, p)W0(x, p) + µ−(x, p)W0(x,−p)

is also an A0-eigenfunction with the eigenvalue ep + e−p. As a consequence, the eigenspaces of the second-
order A∆O A0 are infinite-dimensional, in sharp contrast to the two-dimensionality of the eigenspaces
of the second-order differential operator ∂2

x. Moreover, the multiplier freedom can be used to construct
infinite-dimensional eigenspaces of eigenfunctions in L2(R, dx) (such as W0(x, p)/ cosh 2π(x− x0), x0 ∈ R)
and to obtain eigenfunctions with an arbitrarily prescribed plane-wave asymptotic behavior as |Rex| → ∞.
For example, taking

µ−(x, p) ≡
b(p)e−2πx

e2πx + e−2πx
, µ+(x, p) ≡

e2πx + a(p)e−2πx

e2πx + e−2πx
, (1.2)
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we can readily verify that

Wµ+,µ−
0 (x, p) ∼

{
eixp, Rex → ∞,

a(p)eixp + b(p)e−ixp, Rex → −∞.

Elaborating slightly on the last example, we consider a reflectionless asymptotic function b(p) = 0
together with |a(p)| = 1, p ∈ R. We now consider the Hilbert space operator

Fµ+ : L2(R, dp) → L2(R, dx), f(p) �→ (2π)−1/2

∫ ∞

−∞
dp f(p)µ+(x, p)eixp. (1.3)

Of course, for µ+(x, p) given by (1.2) and a(p) = 1, this amounts to the Fourier transformation F0. Because
F0 is unitary, we can associate a self-adjoint operator Â0 with A0 as follows:

Â0 ≡ F0MF−1
0 ,

where M is the operator of multiplication by 2 cosh p on L2(R, dp). In the free case considered here, this
is the natural way to view A0 as a self-adjoint operator on L2(R, dx). However, there exists an infinite-
dimensional space of meromorphic functions a(p) with |a(p)| = 1 for real p and associated i-periodic
meromorphic multipliers satisfying

µ(x, p) ∼
{

1, Rex → ∞,

a(p), Rex → −∞,
(1.4)

such that the operators Fµ given by (1.3) are unitary as well. Taking this assertion for granted, we obtain
an infinite-dimensional space of self-adjoint operators

Âµ ≡ FµMF−1
µ (1.5)

associated with the free A∆O A0 on the space M. These operators can be compared to the “obvious” free
operator Â0 in the sense of scattering theory, the unsurprising result being that the S-matrix is nontrivial
and is (essentially) given by a(p).

The existence of such a space of meromorphic functions can be substantiated via the results in Sec. 5
in [3]. At the end of the present paper, we mention an explicit example of an operator Âµ as just described;
more generally, we detail the relation between the present framework and [3]. We only add here that the
pertinent multipliers µ(x, p) are not of the simple form µ+(x, p) given by (1.2). Indeed, using the tools
developed in [3, 6], it is easy to see that Fµ+ is not isometric for the latter type of multipliers (unless
a(p) = 1 and therefore Fµ+ = F0).

We have begun by giving some facts pertaining to the “free” choice A0 in order to prepare for an
appraisal of the corresponding features for the class of “interacting” A∆Os of the form

A ≡ e−i∂x + Va(x)ei∂x + Vb(x). (1.6)

We assume here that Va, Vb ∈ M and

lim
|Re x|→∞

Va(x) = 1, lim
|Re x|→∞

Vb(x) = 0. (1.7)
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Therefore, A reduces to A0 for |Rex| → ∞.
The first natural question is whether the A∆O A admits eigenfunctions with the eigenvalue ep + e−p

and plane-wave asymptotic behavior for |Rex| → ∞. More specifically, do functions W( · , p) ∈ M exist
that satisfy

(AW)(x, p) = (ep + e−p)W(x, p), (1.8)

W(x, p) ∼
{

eixp, Rex → ∞,

a(p)eixp + b(p)e−ixp, Rex → −∞,
(1.9)

for arbitrary p ∈ C?
This question can be sharpened into a question that is more pertinent for our present purposes, namely,

can reflectionless functions W(x, p) with the latter properties (i.e., b(p) = 0 in (1.9)) be found. We imme-
diately stress that if such functions can be found, then the function a(p) is arbitrary. Indeed, it can be
changed at will via multiplication of W(x, p) by suitable i-periodic functions µ(x, p).

A third question is at issue: if A admits reflectionless eigenfunctions, can they be used to associate
a self-adjoint operator Â on L2(R, dx) with A (along the lines already sketched for A0)? In our opinion,
this functional-analytic question is the critical one. Indeed, in the cases where W(x, p) yields an isometric
eigenfunction transformation, the isometry is typically destroyed after multiplication by a nontrivial µ(x, p).

Before elaborating on these general questions, it may be illuminating to recall that for Schrödinger
and Jacobi operators, the second and third questions admit complete answers provided by the inverse
scattering transform (IST). In these two cases, there is no ambiguity in the Hilbert space operators to be
associated with the given differential and discrete difference operators. Indeed, with appropriate reality
restrictions and asymptotic requirements paralleling (1.7), the pertinent Jacobi operators are manifestly
bounded and self-adjoint on l2(Z), whereas any Schrödinger operator −∂2

x + V (x) is obviously self-adjoint
on the natural (Sobolev space) domain of ∂2

x whenever V (x) is bounded and real-valued. The reflectionless
eigenfunctions thus yield eigenfunction transformations giving an explicit realization of the spectral theorem
for unambiguously defined self-adjoint operators on l2(Z) and L2(R, dx) respectively.

As is clear from our discussion of free operator (1.1), the situation is vastly different for A∆Os. Re-
turning to our three questions, we first note that the first two questions have not been addressed before.
Our results entail the existence of an extensive class of A∆Os for which the second question has an affir-
mative answer. But we consider it quite unlikely that this yields the most general class of A∆Os admitting
reflectionless eigenfunctions.

Similarly, we partially answer the third question by showing that under quite restrictive additional
conditions, our reflectionless eigenfunction transformations F are isometries and can therefore be used to
associate a self-adjoint operator Â on L2(R, dx) with A by pulling back the multiplication operator M on
L2(R, dp). More precisely, this procedure suffices whenever F maps onto L2(R, dx). This is the case for
an infinite-dimensional space of potentials (Va, Vb), again in sharp contrast to the Schrödinger and Jacobi
cases, where nontrivial reflectionless potentials always have bound states.

In the case where F is not onto the entire space L2(R, dx), we can show that the orthocomplement of
F(L2(R, dp)) is spanned by finitely many pairwise orthogonal A-eigenfunctions with real eigenvalues, and
Â can therefore be defined to be equal to A on this bound-state subspace. After introducing a suitable step-
size scaling in the A∆Os, a subclass of our operators can be shown to converge to the class of reflectionless
Schrödinger operators as the step size tends to zero. We mention the latter result (which is detailed in
Sec. 3 in [5]) in order to make it clear at the outset that the class of self-adjoint reflectionless A∆Os we
construct is quite large.

Even so, it may well be that that a given A∆O A in this class can yield quite different self-adjoint
reflectionless operators on L2(R, dx). (As explained above, for the special A∆O A0 given by (1.1), there
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does exist an infinite-dimensional space of such operators.) More generally, our results should be helpful in
studying the direct problem.

In summary, our results can be viewed as exposing the beginnings of a possibly quite rich Hilbert space
theory for A∆Os of the above simple form. From the concrete cases we are able to handle, it transpires
that a key problem in this area is to single out isometric eigenfunction transformations.

This paper is organized as follows. In Sec. 2, we sketch our construction of a vast class of A∆Os of
form (1.6) that admit reflectionless eigenfunctions, which are explicitly constructed as well. We present
complete details in the simplest case (N = 1). The key idea is to mimic the IST scheme for reflectionless
Schrödinger and Jacobi operators [7–11].

In Sec. 3, we explain the connection of our reflectionless A∆Os to a novel solitonic evolution equation,
which can be viewed as an analytic, nonlocal version of the infinite Toda lattice equation. We obtain
real-valued N -soliton solutions via a suitable restriction on the spectral data.

With the latter restriction in force, we consider functional-analytic properties in Sec. 4. We develop
the special case N = 1 in some detail and sketch how our previous work [1–3] fits into the more general
framework at hand.

2. Constructing reflectionless A∆Os

We start from “spectral data”

(r, µ) = (r1, . . . , rN , µ1(x), . . . , µN (x)), N ∈ N
∗, (2.1)

restricted as follows. The complex numbers r1, . . . , rN satisfy

Im rn ∈ (−π, 0) ∪ (0, π), n = 1, . . . , N, (2.2)

and

erm �= e±rn , 1 ≤ m < n ≤ N. (2.3)

The functions µ1(x), . . . , µN(x) (“normalization coefficients”) are allowed to be meromorphic functions
satisfying

µn(x + i) = µn(x), lim
|Re x|→∞

µn(x) = cn, cn ∈ C
∗, n = 1, . . . , N. (2.4)

(The analogue of the Schrödinger and Jacobi operators arises for the special case µn(x) = cn, n = 1, . . . , N ,
which is included of course.)

The restrictions on r ensure that the Cauchy matrix

C(r)mn ≡ 1
erm − e−rn

, m, n = 1, . . . , N,

is well defined and regular, as in the case of the Schrödinger and Jacobi operators. Next, we define the
diagonal matrix

D(r, µ;x) ≡ diag(d1(x), . . . , dN (x)),

where we use the notation

dn(x) = d(rn, µn;x), n = 1, . . . , N,
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with

d(ρ, ν;x) ≡
{

ν(x)e−2iρx, Im ρ ∈ (0, π),

ν(x)e−2i(ρ+iπ)x, Im ρ ∈ (−π, 0).
(2.5)

All the remaining quantities are now defined via the solution R(r, µ;x) of the system

(D(r, µ;x) + C(r))R = ζ, ζ ≡ (1, . . . , 1)t. (2.6)

In terms of the auxiliary functions

λ(r, µ;x) ≡ 1 +
N∑

n=1

ernRn(r, µ;x),

Σ(r, µ;x) ≡
N∑

n=1

Rn(r, µ;x),

the potentials Va and Vb with the asymptotic behavior given by (1.7) that define A via (1.6) are

Va(r, µ;x) ≡
λ(r, µ;x)

λ(r, µ;x+ i)
, (2.7)

Vb(r, µ;x) ≡ Σ(r, µ;x− i)− Σ(r, µ;x). (2.8)

Moreover, the wave function satisfying (1.8) is given by

W(r, µ;x, p) ≡ eixp

(
1−

N∑
n=1

Rn(r, µ;x)
ep − e−rn

)
. (2.9)

It has asymptotic behavior (1.9) with b(p) = 0 and

a(p) =
N∏

n=1

ep − ern

ep − e−rn
.

For later use, we also mention the asymptotic behavior

λ(x) ∼


1, Rex → ∞,

exp

(
2

N∑
n=1

rn

)
, Rex → −∞.

(2.10)

Of course, neither the asymptotic properties nor the eigenvalue assertion is obvious. They follow from
a detailed analysis of the N×N linear system given by (2.6) (see Sec. 2 in [4]). Here, we only develop
the N=1 case. In this special case, the pertinent asymptotic behavior follows immediately, but the proof
of the eigenvalue property is already nontrivial. Moreover, it is quite instructive, showing the crux of the
argument for the case of arbitrary N and pointing the way to further generalizations.

Accordingly, for N = 1, we must consider two cases: Im r > 0 and Im r < 0. In the first case, we obtain

C =
1

2 sinh r
, d(x) = µ(x)e−2irx, Im r ∈ (0, π),

µ(x) ∈ M, µ(x+ i) = µ(x), lim
|Re x|→∞

µ(x) = c ∈ C
∗.
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We therefore have

R(x) =
[
µ(x)e−2irx +

1
2 sinh r

]−1

∼
{

0, Rex → ∞,

2 sinh r, Rex → −∞.
(2.11)

Hence, it follows from (2.7) and (2.8) that

Va(x) =
1 + erR(x)

1 + erR(x+ i)
∼ 1, |Rex| → ∞,

Vb(x) = R(x− i)−R(x) ∼ 0, |Rex| → ∞.

Similarly, from (2.9), we have

W(x, p) = eixp

(
1− R(x)

ep − e−r

)
∼
{

eixp, Rex → ∞,

ep − er

ep − e−r
eixp, Rex → −∞,

(2.12)

as announced.
In the second case Im r ∈ (−π, 0), the only difference from the first case is changes in the formulas for

d(x) and R(x):

R(x) =
[
µ(x)e−2irx+2πx +

1
2 sinh r

]−1

, Im r ∈ (−π, 0). (2.13)

We now prove the A-eigenfunction property, handling both cases at once. We must show that W(x, p)
satisfies the second-order analytic difference equation

F (x− i) + Va(x)F (x + i) + [Vb(x) − ep − e−p]F (x) = 0. (2.14)

Clearly, it suffices to prove that the auxiliary wave function

A(x, p) ≡ (ep − e−r)W(x, p) = eixp(ep − e−r −R(x)) (2.15)

satisfies (2.14). To do this, we substitute F (x) = A(x, p) in the left-hand side of (2.14) and obtain a function
D(x, p) of the form

D(x, p) = eixp
(
epc1(x) + c0(x) + e−pc−1(x)

)
.

For this function to vanish, it is obviously necessary and sufficient that the coefficients c1, c0, and c−1

vanish. We now readily verify the equivalences

c1(x) = 0 ⇔ Vb(x) = R(x− i)−R(x),

c−1(x) = 0 ⇔ Va(x) =
1 + erR(x)

1 + erR(x+ i)
.

Because we have defined Va and Vb such that the equalities in the right-hand sides hold, we can infer that
c1 and c−1 vanish.

The nontrivial claim is that c0(x) also vanishes. Even in this quite simple case, verifying this directly
already involves a substantial calculation. But we can avoid this direct verification by appealing to a
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uniqueness argument that generalizes to the case of arbitrary N . Specifically, we first note that because
R(x) satisfies the system given by (2.6) for N=1, it follows from (2.15) and (2.5) that

A(x, r) = eirx(er − e−r)(1− CR(x)) =

= eirx(er − e−r)d(x)R(x) = α(x)A(x,−r),

α(x+ i) = α(x).

(2.16)

The key point here is that a function

G(x, p) = eixp(ep + c(x)) (2.17)

satisfying the relation

G(x, r) = α(x)G(x,−r) (2.18)

for a given i-periodic function α(x) is unique. Indeed, substituting (2.17) in (2.18) shows that c(x) is
uniquely determined. To exploit this, we recall that we have already shown that both A(x, p) and A(x, p)−
D(x, p) have form (2.17). Also, A satisfies (2.18) in view of (2.16). Now, D arises from the substitution
F (x) → A(x, p) in the left-hand side of (2.14), and because α(x) is i-periodic, D also satisfies (2.18). But
then both A and A−D satisfy (2.18), and therefore A = A−D by uniqueness. Hence, D(x, p) = 0, which
completes the proof.

We stress that the assumption µ(x) → c ∈ C∗ as |Rex| → ∞ is not used in this proof (but the
i-periodicity of µ(x) is used). As a consequence, we can enlarge the above class of reflectionless A∆Os
for N = 1 by relaxing the requirements on µ(x). For example, we can readily verify that with the choice
µ(x) ≡ c1 + c2 tanhπ(x − x0), we obtain the same conclusions. Choosing µ(x) ≡ c1 + c2 cosh 4π(x − x0)
instead, we obtain R(x) → 0 as |Rex| → ∞ and therefore (1.7)–(1.9) with a(p) = 1 and b(p) = 0.

The latter example shows that an interacting A∆O A given by (1.6) (i.e., with potentials (Va, Vb) �=
(1, 0) satisfying (1.7)) may admit eigenfunctions W(x, p) with trivial scattering. We have already pointed
out that the free A∆O A0 given by (1.1) admits eigenfunctions that yield nontrivial scattering and a unitary
eigenfunction transformation. Any general theory starting from (1.6) and (1.7) must take such phenomena,
which have no counterparts for Schrödinger and Jacobi operators, into account.

Our aim in [4–6] was to isolate a special class of reflectionless A∆Os, whose properties can be determined
in great detail. Restrictions (2.1)–(2.4) on the spectral data determine this special class, which is already
quite large and which can be studied systematically from an algebraic standpoint (see [4]). For later
purposes, we note two general aspects of the objects in this class.

The first is that the presence and location of eventual poles of W(x, p) in x is governed by the presence
and location of zeros of the multipliers µ1(x), . . . , µN (x) and of the τ -function

τ(x) ≡ |1N + CD(x)−1|. (2.19)

Indeed, solving (2.6) by Cramer’s rule, we can see this from (2.9).
The second consists of the conditions encoding formal self-adjointness of the A∆O A given by (1.6) on

L2(R, dx), i.e., without regard to the domains of definition, singularities, etc. Clearly, we need Vb(x) to be
real-valued for real x, and we also need that Va(x) exp(i∂x) be equal to

[Va(x)ei∂x ]∗ = ei∂xVa(x) = Va(x − i)ei∂x , x ∈ R.
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With the notation

f∗(x) ≡ f(x), x ∈ C, f ∈ M,

formal self-adjointness therefore amounts to

V ∗
b (x) = Vb(x), V ∗

a (x) = Va(x− i).

In turn, this can be shown to be equivalent to

Re(rn) = 0, n = 1, . . . , N, (2.20)

Re(e−rnµn(x)) = 0, n = 1, . . . , N, x ∈ R, (2.21)

(see Appendix D in [4]). (For N = 1, these assertions can be easily verified directly from the explicit
formulas above.)

3. A related nonlocal Toda-type soliton equation

To relate the above objects to a solitonic evolution equation, we must introduce a suitable time depen-
dence in the normalization coefficients µ(x). More precisely, this is the procedure that yields the soliton
solutions of the KdV and Toda lattice equations in the case of reflectionless Schrödinger and Jacobi op-
erators. Taking a hint from the situation with the latter discrete difference operators, we define the time
evolution by

µn(x) → µn(x)e2it sinh rn , n = 1, . . . , N.

With this substitution, the quantities R, Va, Vb, W , and τ all depend on t. However, we usually suppress
this time dependence for simplicity of notation. Once again exploiting properties following solely from (now
time-dependent) system (2.6), we can now prove the equations

V̇a(x) = iVa(x)[Vb(x+ i)− Vb(x)], V̇b(x) = i[Va(x) − Va(x − i)],

Ẇ(x, p) = (BW)(x, p) + iepW(x, p), B ≡ −i(e−i∂x + Vb(x)),

and

τ̈ (x)τ(x) − τ̇ (x)2 = τ(x)2 − τ(x + i)τ(x − i). (3.1)

(See Sec. 2 in [5]; these equations can be easily verified directly for N = 1.)
Clearly, (3.1) is a Hirota-type bilinear equation. Rewriting it as

∂2
t log τ(x) = 1− τ(x+ i)τ(x − i)

τ(x)2

and introducing

Ψ(x) ≡ i log
τ(x − i)
τ(x)

,

we now readily find that Ψ satisfies the nonlocal Toda-type equation

Ψ̈(x) = iei[Ψ(x+i)−Ψ(x)] − iei[Ψ(x)−Ψ(x−i)].
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(Such nonlocal evolution equations have been encountered before; see, e.g., Santini’s review [12] and the
references therein.)

The requirement that the function Ψ(x, t) be real-valued for real x and t can be shown to be satisfied
when the A∆O A(r, µ(x, t)) is formally self-adjoint, i.e., when (2.20) and (2.21) hold. (The point is that
this ensures that τ(x− i/2) is real-valued for real x.)

We now consider the N=1 solution with Im r ∈ (0, π)

Ψ(x, t) = i log
1 + (2 sinh r)−1(µ(x))−1e2ir(x−i)−2it sinh r

1 + (2 sinh r)−1(µ(x))−1e2irx−2it sinh r
.

Unless µ(x) is constant, this function is not of the traveling-wave form f(x− vt). However, setting

r = iα, α ∈ (0, π), µ(x) =
eiα

2 sinh(iα)
e−2αx0 , x0 ∈ R, (3.2)

we obtain a right-moving kink-type soliton

Ψ(x, t) = i log
1 + eiαe−2α[(x−x0)−v(α)t]

1 + e−iαe−2α[(x−x0)−v(α)t]
, v(α) ≡ sinα

α
. (3.3)

Choosing

r = iα− iπ, α ∈ (0, π), µ(x) = − eiα

2 sinh(iα)
e−2αx0 , x0 ∈ R, (3.4)

we similarly obtain (3.3) with t → −t in the right-hand side, i.e., a left-moving soliton.
Turning to the case of arbitrary N , we choose spectral data of form (3.2) for N+ ∈ {0, 1, . . . , N}

numbers among r1, . . . , rN and of form (3.4) for the N− ≡ N −N+ remaining ones (this choice guarantees
that (2.20) and (2.21) are satisfied, and Ψ(x, t) is therefore real-valued for real x and t). Then Ψ(x, t) can
be viewed as an N -soliton solution: its large-time asymptotic behavior involves the N+ right-moving and
N− left-moving 1-kink solutions detailed above.

It is not obvious that the latter assertion is valid, but it can be proved rather easily in a weak form
(see Proposition 6.1 in [5]). A more detailed analysis (including a study of soliton space–time trajectories)
hinges on a somewhat intricate reparametrization of the 2N real numbers α1, . . . , αN , x0,1, . . . , x0,N in
terms of which Ψ(x, t) is defined. This reparametrization is also crucial for studying self-adjointness issues.
We now describe it in general terms (the details can be found in Sec. 5 in [5]). For this, we recall that the
well-known Calogero–Moser N -particle systems admit a generalization to a relativistic setting [13]. Just as
in the nonrelativistic case, there is a version describing N+ particles and N− antiparticles, in the sense that
a particle and an antiparticle have an attractive interaction, whereas two particles or two antiparticles repel
each other. We studied this version in considerable detail [14], together with the particle-like solutions of
the KdV, sine-Gordon, and modified KdV equations. Indeed, the latter soliton-type solutions can also be
parametrized by the relativistic N -particle systems, a soliton–particle correspondence that can be exploited
to great advantage (see Chap. 7 in [14]).

The reparametrization needed for the above nonlocal Toda solitons entails that τ -function (2.19) is
related to the Lax matrix L of the particle systems via

τ

(
x− i

2
, t

)
= |1N + L(x, t)|, x, t ∈ R. (3.5)

Here, L(x, t) denotes the Lax matrix evaluated in an (x, t)-dependent point of the pertinent 2N -dimensional
phase space. Unless N+ or N− vanishes, this is a novel type of relation. Indeed, in previous cases the soliton
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τ -functions were related to the dual Lax matrices of the particle systems (see also [15]). Unfortunately, in
the present case, the analytic consequences of the soliton–particle correspondence (as expressed in (3.5))
seem less powerful than before. In particular, even when N+ or N− vanishes, we are unable to obtain
uniform bounds on the large-time asymptotic behavior. Moreover, clear-cut soliton space–time trajectories
exist only for sufficiently large times (unless N+ or N− vanishes).

4. Isometry and self-adjointness issues

Retaining the above choice of spectral data that yields N -soliton solutions, we now study Hilbert
space aspects (see [6] for proofs of the assertions made below). The key property we need for establishing
orthogonality and completeness is the absence of poles of W(x, p) in the strip Imx ∈ [−1, 0]. We first
explain how relation (3.5) with t = 0 can be used to study this pole issue. For this, we observe that
the absence of poles in the critical strip is guaranteed by the absence of zeros of τ(x) in the same strip.
Indeed, this follows from the paragraph containing (2.19) (we recall that µ1(x), . . . , µN (x) are constants in
this section). By virtue of (3.5), no such zeros occur whenever the spectrum of L(x) does not contain the
number −1 for Imx ∈ [−1/2, 1/2].

At this point, the spectral analysis of the Lax matrix in [14] can be invoked. Specifically, it can be
used to deduce the absence of poles provided that

rn ∈ i(−π,−π/2) ∪ i(0, π/2), n = 1, . . . , N. (4.1)

This condition can be relaxed to

rn ∈ i(0, π), n = 1, . . . , N,

for N = N+ and to

rn ∈ i(−π, 0), n = 1, . . . , N,

for N = N−. Equivalently, in the latter two special cases, we can allow arbitrary phase-space points as
spectral data. It seems likely that (4.1) can also be considerably relaxed, but when N+N− > 0, there do
exist phase-space points yielding τ -zeros in the critical strip.

Assuming from now on that the spectral data are such that τ(x) has no zeros in the strip, we now
detail some salient Hilbert space features. First, the A-eigenfunctions W(x, rn) with rn ∈ i(0, π) are in
L2(R, dx) and are pairwise orthogonal. Second, the eigenfunction transformation

F : L2(R, dp) → L2(R, dx), f(p) �→ (2π)−1/2

∫ ∞

−∞
dpW(x, p)f(p),

is isometric. Third, the orthocomplement of the range F(L2(R, dp)) is spanned by the bound statesW(x, rn)
with rn ∈ i(0, π) (in particular, for N+ = 0, there are no bound states, and F is unitary).

These properties allow associating a self-adjoint operator Â on L2(R, dx) with the A∆O A on M as
follows. We define Â as multiplication by 2 cosh rn on the N+ bound states W(x, rn) with rn ∈ i(0, π).
On the orthocomplement F(L2(R, dp)) of the bound-state subspace, we define Â as the pullback of the
self-adjoint multiplication operator M on L2(R, dp) with the domain D(M):

ÂFf ≡ FMf ∀f ∈ D(M).

For f(p) ∈ C∞
0 (R), it is then easy to verify that (Ff)(x) belongs to M and that the action of Â on Ff

coincides with the action of A, just as the action of Â on the bound states.
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It is instructive to consider the case N = 1 in detail. In particular, the different character of the choices
N = N+ and N = N− can be easily illustrated for N = 1. Taking N = N+ (see (3.2)), we can set x0 = 0
because x0 is simply a translation parameter. We then calculate the wave function

W+(x, p) = eixp e
iα sinh(αx + p/2)− sinh(αx − p/2)
2 cosh(αx + iα/2) sinh(p/2 + iα/2)

, N = N+ = 1, (4.2)

from (2.9) and (2.11). Similarly, the N = N− choice (3.4) together with (2.9) and (2.13) yields

W−(x, p) = eixp e
iα cosh(αx + p/2) + cosh(αx− p/2)
2 cosh(αx+ iα/2) cosh(p/2 + iα/2)

, N = N− = 1. (4.3)

From these explicit formulas, we obtain

W±(x, p) ∼ eixp, Rex → ∞,

and

W+(x, p) ∼ eiα sinh(p/2− iα/2)
sinh(p/2 + iα/2)

eixp, W−(x, p) ∼ eiα cosh(p/2− iα/2)
cosh(p/2 + iα/2)

eixp, Rex → −∞,

in accordance with (2.12). To get square integrability at x = ∞, we therefore need Im p > 0. This restriction
on p can only be compatible with square integrability at x = −∞ if p = iα + 2kiπ, k ∈ N, for W+ and
p = iα+ (2k + 1)iπ, k ∈ N, for W−. We now calculate

W+(x, iα+ 2kiπ) =
e−2kπx

eαx + e−iα−αx
, α ∈ (0, π), k ∈ Z, (4.4)

W−(x, iα + (2k + 1)iπ) =
e−(2k+1)πx

eαx + e−iα−αx
, α ∈ (0, π), k ∈ Z. (4.5)

Therefore, we must choose k = 0 for (4.4) to yield a function in L2(R, dx), whereas (4.5) does not yield a
square-integrable function for any k ∈ Z.

We can use (4.3) to illustrate another issue. Specifically, with

W−

(
πx

α
,
αp

π

)
= µ(x, p)eixp,

the function µ(x, p) is clearly i-periodic and satisfies

µ(x, p) ∼

 1, Rex → ∞,

eαp/π + eiα

eαp/π + e−iα
, Rex → −∞;

therefore, it satisfies (1.4). Because (2π)−1/2W−(x, p) is the kernel of a unitary operator, this also holds
for the scaled kernel (2π)−1/2µ(x, p)eixp. As a result, we obtain an example of an interacting self-adjoint
Hilbert space operator Âµ of form (1.5) associated with the free A∆O A0 given by (1.1).

We next sketch how the conventions and results in [3] are related to the above. First, the parameter
triple (�, ν, β) used in [3] should be specialized to (1, α, 1/2). We note that the functions W±(x, p) above
can also be viewed as joint eigenfunctions of interacting A∆Os A± and the free A∆O

Af ≡ eiπα−1∂x + e−iπα−1∂x
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with the eigenvalues 2 cosh p and 2 cosh(πp/α). After a unitary similarity transformation, the eigenfunctions
studied in [3] amount to wave functions W(x, p) of the form delineated in Sec. 2, one special feature being
that all of them are joint eigenfunctions of A and Af with the latter eigenvalues.

It is illuminating to detail the N = 1 case before describing the situation with arbitrary N . For real x
and p and for N = 1, the functions Fa(x, p) and Fe(x, p) in Secs. 4 and 5 in [3] are given by

Fa(x, p) = e−iα/2

(
cosh(αx + iα/2)
cosh(αx − iα/2)

)1/2( sinh(p/2 + iα/2)
sinh(p/2− iα/2)

)1/2

W+(x, p),

Fe(x, p) = e−iα/2

(
cosh(αx+ iα/2)
cosh(αx− iα/2)

)1/2(cosh(p/2 + iα/2)
cosh(p/2− iα/2)

)1/2

W−(x, p).

(The branch of the square root is fixed by requiring that the pertinent functions have the limit eiα/2 for
x, p → ∞.) The function Fr(x, p) in Sec. 3 in [3] is similarly related to the wave function Wr(x, p) that
corresponds to the spectral data

r = iα, µ(x) = − eiα

2 sinh(iα)
, α ∈ (0, π). (4.6)

Indeed, we can readily verify that (cf. (4.2))

Wr(x, p) = eπp/(2α)W+

(
x+

iπ

2α
, p

)
=

= eixp e
iα cosh(αx + p/2)− cosh(αx− p/2)
2 sinh(αx+ iα/2) sinh(p/2 + iα/2)

,

and then Fr is given by

Fr(x, p) = e−iα/2

(
sinh(αx+ iα/2)
sinh(αx− iα/2)

)1/2( sinh(p/2 + iα/2)
sinh(p/2− iα/2)

)1/2

Wr(x, p).

The sign change of µ in (4.6) as compared with the spectral data forW+(x, p) has a drastic consequence:
the eigenfunction transformation corresponding to Wr(x, p) is no longer isometric. On the other hand, the
eigenfunction transformation with the kernel (2π)−1/2Fr(x, p) is an isometry from the odd subspace of
L2(R, dp) onto the odd subspace of L2(R, dx) (see Sec. 3 in [3]).

More generally, parity issues play a crucial role in [3]. The above unitary transformations of the three
operators A+, A−, and Ar associated with W+, W−, and Wr yield the parity-invariant A∆Os H2

a − 2,
H2

e + 2, and H2
r − 2 with N = 1 in [3]. In this connection, we note that our A∆Os A given by (1.6) are

manifestly not parity invariant (unless Va(x) = 1 and Vb(x) is even).
To relate to [3] for arbitrary N , a unitary similarity transformation is needed that generalizes the one

for N = 1 detailed above. To specify this transformation, we recall formula (2.7) defining Va(x). It entails
that A can be rewritten as

A = e−i∂x + λ(x)ei∂xλ(x)−1 + Vb(x).

It is not obvious, but true, that formal self-adjointness requirements (2.20) and (2.21) entail λ∗(x) = λ(x)−1.
Therefore, λ(x) is a phase factor for real x. The unitary similarity is now given by

A → Ã ≡ λ(x)
1/2

Aλ(x)1/2 =

=
(
λ(x − i)
λ(x)

)1/2

e−i∂x +
(

λ(x)
λ(x + i)

)1/2

ei∂x + Vb(x), (4.7)

W(x, p) → W̃(x, p) ≡ λ(x)
1/2W(x, p). (4.8)
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The square roots are chosen such that we obtain the limit 1 for x → ∞ (see (2.10)).
The parity-invariant operators H2

a − 2, H2
e + 2, and H2

r − 2 in [3] have form (4.7) for arbitrary
N . But they form only a tiny subset of the operators Ã at issue. Indeed, they correspond to spectral
data r1, . . . , rN , µ1, . . . , µN that are already determined once α is fixed. Another point worth noting is
that (4.8), (1.9), and (2.10) entail

W̃(x, p) ∼


eixp, Rex → ∞,

exp

(
−

N∑
n=1

rn

)
a(p)eixp, Rex → −∞.

The transmission thus gains an extra phase.
The last few paragraphs are also relevant for a comparison with the scenario envisaged in [1]. With

the results in [3] as a starting point, it seems natural to seek a class of reflectionless A∆Os of the form

Ã = V+(x)1/2e−i∂x + V−(x)1/2ei∂x + V0(x), (4.9)

with further properties specified in [1]. The results surveyed here can be adapted to the picture sketched
in [1], but our present picture is somewhat different. Indeed, the altered starting point A∆O A given
by (1.6) has meromorphic coefficients; there are no square root branch points as in Ã. To obtain associated
self-adjoint operators on L2(R, dx) that are parity invariant under suitable extra conditions, a unitary
similarity transformation involving square roots of meromorphic functions must be allowed, as explained
above. The parity properties arising in the quite specialized setting in [3] would have been invisible when
working with A∆Os of form (1.6). At any rate, the class of A∆Os Ã given by (4.9) (and specified in [1])
would also merit further consideration (we note that it involves three a priori independent potentials, in
contrast to the two potentials in (1.6)).
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