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ABSTRACT 

In earlier work we introduced and studied two commuting generalized Lame operators, obtaining 
in particular joint eigenfunctions for a dense set in the natural parameter space. Here we consider 
these difference operators and their eigenfunctions in relation to the Hilbert space 
L*((O, r/r)) w(x)dx), with r > 0 and the weight function w(x) a ratio of elliptic gamma functions. In 
particular, we show that the previously known pairwise orthogonal joint eigenfunctions need only 
be supplemented by finitely many new ones to obtain an orthogonal base. This completeness prop- 
erty is derived by exploiting recent results on the large-degree Hilbert space asymptotics of a class 
of orthonormal polynomials. The polynomials p,(cos(rx)),n E N, that are relevant in the Lame 
setting are orthonormal in 1;*((0, r/r), wp(x)dx), with wp(x) closely related to W(X). 

1. INTRODUCTION 

In this paper we are primarily concerned with eigenfunctions of second order 
analytic difference operators with quite special elliptic coefficients. More spe- 
cifically, the difference operators may be viewed as one-parameter general- 
izations of the Lame operator [l] 

where p is the Weierstrass p-function and g a coupling constant. (The param- 
eter can be physically interpreted as the speed of light [2].) Although our results 
pertain to these special difference operators (explicitly given by (1.25)-(1.32) 
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below), they also have a bearing on more general questions that are to date wide 
open. 

Indeed, only a few general results on existence and uniqueness of solutions to 
analytic difference equations are known, whereas we are not aware of any gen- 
eral Hilbert space theory of analytic difference operators. Therefore, feedback 
from explicit examples may be of considerable help in the search for a more 
comprehensive theory of analytic difference operators and their eigenfunctions. 
In keeping with this angle, we discuss the pertinent issues in a somewhat more 
general framework, specializing in several steps to the ‘relativistic’ Lame case 
(1.32), and presenting elementary examples along the way to illustrate the do- 
main problems that arise. 

We begin by introducing a large class of analytic difference operators (from 
now on AnOs), to which the generalized Lame operators studied in this paper 
belong. The class involves elliptic functions with real period T/Y and imaginary 
periods ia. More precisely, we fix 

(1.4 f-,a+,a- E (O,~), 

and first consider operators of the form 

(1.3) A+ - Za- + E+(X) T-i,- > 

where T, denotes the translation 

(1.4) (T,F)(x) = F(x - a), (li E C*, F E M, 

with M the space of meromorphic functions, and where Z+(x) denotes an el- 
liptic function with periods T/Y, ia,. We may and will view ,4+ as an operator on 
M, which leaves M invariant. 

Now suppose that F E M solves the eigenvalue equation 

(1.5) A+F = E+F, E+ E @. 

(Observe that we restrict attention to meromorphic solutions.) Then ,~(x)F(x) 
yields another solution for any p E M with period ia-, so that the solution 
space is infinite-dimensional (assuming F E M*, of course). 

On the other hand, whenever two solutions Fl, Fz exist whose Casorati de- 
terminant 

(1.6) D(Fl,F2;x) G Fl(x+iae/2)F2(x- ia-/2) - Fl(x- ia-/2)F2(x+iae/2) 

does not vanish identically, the solution space is two-dimensional over the field 
Pia-, where 

0.7) P, E {F E M 1 F(x + a) = F(x)}, CI E C”. 

We include a short proof of this well-known result [3], since it involves in- 
gredients we need below. 

First, whenever FI , F2 are solutions with Fl /Fz $ I’,_, their Casorati de- 
terminant satisfies the first order analytic difference equation (henceforth 
AaE) 
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(1.8) 
D(x + L/2) _ 1 
D(x - k/2) E+(x) ’ 

as is easily checked. Second, assuming F3 is a third solution, we have 

(Indeed, ia--periodicity follows from (1.8).) Now one readily verifies the iden- 
tity 

(1.10) F3(x) = pl(x)Fz(x) - ~2(xM(x), 

which completes the proof. 
Next, letting a+ # a- from now on, consider again a fixed solution 

F(x) E M*. Since E+(x) is ia+-periodic, the functions F&(x) I F(x i ia,) are 
solutions, too. Assuming F+(x)/F( ) . x 1s not ia_-periodic, we deduce 

(1.11) F-(x) = pl(x)F+(x) - p2(x)F(x), F*(x) - F(xiia+), ~1,p2 E Pi,-. 

Viewing this relation as an additional AAE satisfied by the given solution F(x) 
of (1.Q it is an obvious question to ask whether the ia--periodic ‘monodromy 
coefficients’ ~1 and ~2 can be prescribed. Equivalently, the problem is whether 
joint solutions to (1.5) and (1.11) exist when ~1, ~2 E Pi,- are given. 

We now specialize this question to a setting that is closer to our specific 
AnOs (1.31) (although it is still far more general). Consider a second AnO of 
the form 

(1.12) A- E Ti::,, $ I-(X) T-i,+, 

with I-(x) an elliptic function with periods T/Y, ia-. Then AA_ commutes with 
A+, so we are naturally led to the question whether joint eigenfunctions exist. 
From the previous more general perspective, the second eigenvalue equation 

(1.13) A-F = E-F, E_ E C=, 

amounts to prescribing PI(X) = -E-(x) and 112(x) = -E- in the monodromy 
equation (1.11). 

To our knowledge, there is no information on these issues in the literature. As 
will be recalled below, in the relativistic Lame case there exists a two-dimen- 
sional space of joint A&-eigenfunctions for a dense subset of the parameter 
space [4]. One of the new insights detailed in (Section 3 of) this paper is, how- 
ever, that at most a one-dimensional subspace can be continuously inter- 
polated to all of the parameter space. 

The latter ‘no-go’ result has a function-theoretic flavor, whereas in most of 
the paper we address the question whether the commuting Lame AnOs A* can 
be reinterpreted as commuting self-adjoint operators d, on the Hilbert space 

(1.14) 7-l - L2((0, r/r), dx). 

To be more precise, the first problem is to find a dense subspace D of K con- 
sisting of functions F(x) that are restrictions to (0, T/T) of meromorphic func- 
tions, and which is such that the meromorphic functions (&F)(x) belong to 3-1. 
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(Here and below, this means that the restrictions to (0, n/r) belong to X.) With 
such a subspace D given, one therefore obtains Hilbert space operators ^ 
4 : D + ?-t. The second problem is whether the operators d+ are symmetric. 
Assuming they are, the third problem is whether D is a core (domain of essen- 
tial self-adjointness). Assuming D is a core, the fourth problem is to show that 
the self-adjoint closures of d* commute, in the sense that the associated time 
evolutions or resolvents commute [Sj. Last but not least, the spectral properties 
of the self-adjoint operators should be elucidated. 

Of course, whenever one can exhibit (or prove the existence of) joint eigen- 
functions F, E M of the AAOs d* with real eigenvalues, which belong to ‘Ft 
and are pairwise orthogonal and complete, then all of the above problems are 
trivialized by choosing D equal to the linear hull of the eigenfunctions Ffi. (To 
ease the notation, we use the same notation for F E M and for its restriction to 
(0, n/r), the distinction always being clear from context.) The simplest situation 
in which this happens for the above AAOs is when 

(1.15) Es(x) = c5 E it, 6 = +, -. 

Indeed, the functions 

(1.16) F?)(x) E exp(2inrx), n E Z, 

are then joint eigenfunctions with A+-eigenvalues exp(2nra,) + ci exp 
(-2nra,). This choice of domain amounts to reinterpreting the AA0 
Tia, a E R, as exp(@), where 3 denotes the self-adjoint extension of the sym- 
metric operator -id/& on C,“((O, T/T)) obtained by imposing periodic 
boundary conditions. 

Turning to non-constant elliptic function coefficients, it seems quite unlikely 
that one can reinterpret the commuting AAOs d* as commuting self-adjoint 
operators on IFI unless one imposes at least formal self-adjointness. Interpreting 
as before the shifts T+ia6 as exp(#asd/dx), this amounts to requiring 

(1.17) E;(x) = E+(x - ia-), &T(x) = E-(x - ia+). 

(Here and below, F* denotes the conjugate meromorphic function of F E M, 
i.e., F*(x) s F(x).) 

At first sight, the requirement (1.17) may seem very restrictive: it entails that 
IS(X) must have a suitable dependence on a-6, when we view a+ and a- as free 
parameters, constrained only by (1.2). In fact, however, (1.17) can be readily 
satisfied, for instance as follows. Let $6(x), S = +, -, be arbitrary elliptic func- 
tions with periods n/r, iab and no dependence on a-6. Now set 

(1.18) Es(x) f q$(x)&(x + ia-6), 6 = i-, -. 

Then (1.17) is obeyed. Note also that the resulting AAOs can be rewritten as 

(1.19) As = Za-6 + $;(x)T-ia&~(x), 6 = +, -. 

From this representation formal self-adjointness on ‘Ft can be read off directly. 
(The generalized Lame AAOs can also be written in this form, but the func- 
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tions Vz playing the role of 46 are not elliptic in that case, cf. (1.28))(1.32) be- 
low.) 

With (1.18) in effect, the span D cP) of the functions (1.16) is a first candidate 
for a dense domain on which the AAO-actions might give rise to symmetric 
operators on Ii. Assuming that the factors C&(X) and $6 (x + Z&J) have no poles 
in [0, .sr/r], we do obtain well-defined operators ds from DC’) to ‘l-t. But in gen- 
eral these operators are not symmetric on DC’). 

To see why this is so, let a- < a, and shift contours over ia+ to test symmetry 
of the summand E-(x) Ki,- (the first summand 1;:,+ is of course symmetric on 
DC’)). The vertical parts of the pertinent rectangular contour cancel (by T/Y- 
periodicity), but since E-(x) has poles inside the contour, one is left with res- 
idue terms that have no reason to vanish. Thus the horizontal parts do not 
generally cancel, entailing symmetry violation. To remedy this, one might re- 
strict the functions in DC’) by requiring they vanish at the pole locations, but 
then it is no longer obvious (and probably false) that the resulting subspace is 
dense in ?t. 

In our special case, the factors have simple poles at x = 0 and x = 7r/r, and 
the Ah-action on DC’) does not even yield a subspace of 7-L Again, one might be 
inclined to restrict attention to functions F E DC’) for which AJF does belong 
to 7-1, but we will not explore this avenue. Instead, we work with initial domains 
that are not subspaces of Dcp), but whose definition reflects properties of the 
joint eigenfunctions from [4]. 

One of the crucial features of these initial domains is that neither of the two 
summands of Ah has a symmetric action on it, whereas the sum does yield a 
symmetric action. As a last example before embarking on the details, we show 
that the latter state of affairs can already arise for the special case E*(x) = 1, so 
that we are dealing with the ‘free’ AAOs 

(1.20) 6 ACOLT. +r. X-6 la-6 7 6 = f, -. 

Specifically, the functions 

(1.21) FAD)(x) E sin(n + l)vx, n E Nj 

and 

(1.22) FiN)(x) E cosnrx, n E N, 

are pairwise orthogonal and complete in 7-1, and we have 

(1.23) JI~)F,(~) = 2 cosh((n + l)ra~)F(~) 11 ) 

(1.24) Ar)F,(“) = 2cosh(nr~)F,(? 

Therefore, we are led to two distinct ways to associate self-adjoint operators on 
l-l to the AAOs (1.20); the four summands involved, however, yield well-de- 
fined, but non-symmetric operators on the linear hulls DcD) and DcN) of the 
functions (1.21) and (1.22). (For example, one has (FiNI, I;,+FJNi) = 0, but 
(Tia+Fi”‘, FiN)) # 0.) This state of affairs may be viewed as a consequence of 
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-id/dx not being symmetric on DcD) and D@), whereas -d2/dx2 is of course 
essentially self-adjoint on these subspaces. Thus, we are basically reinterpreting 
the free AAOs At) as the power series 2 Ck af‘-d2/dx2)k/(2k)!. 

Having provided a more general context for the specific problems we address 
and partly solve in this paper, we now proceed to define the two commuting 
generalized Lame operators at issue. We find it convenient to use a relative 
s(r, a; x) of the Weierstrass g-function as a building block for elliptic functions 
with periods r/r and ia. Specifically, using the conventions of [l], we have 

(1.25) s(r, a; x) = c(x;$ ,F) exp(-vx2r/r). 

Since two distinct periods ia+, ia- are involved, we also put 

(1.26) sg(x) -s(r,a6;x), 6= +,-. 

The functions sg(x) are entire, odd, r/r-antiperiodic functions with simple 
zeros in the elliptic lattice points &r/r + iZa6. They satisfy the AAEs 

(1.27) 
sb(x + ia6/2) 
S&(X - iafi/2) 

= - exp( -2irx), 

and converge to sin(rx)/r for a6 + 00 and to sinh(7rx/as)as/7r for r + 0. 
Next, we define the factor functions 

(1.28) Vfi(b;x) = exp(-rb)ss(x - ib)/sg(x), S = +, -, b E US, 

and coefficient functions C6(b; x) via (1.18). More precisely, we have 

(1.29) Cs(b; x) z exp( -2rb) 
SJ(X + ib)sb(x - ib + k-6) 

SS(X)SS(X + k-6) 
) a=+,-. 

Clearly, the functions Ch(b; x) are indeed elliptic, whereas VJ(b; x) is n/r-peri- 
odic, but not @-periodic. We also point out the invariance property 

(1.30) Cs(a+ +a- - b;x) = C6(b;x). 

The generalized Lame AAOs now read 

(1.31) As(b) = Tiaes + G(b; x)T-ia-&, 6 = +, -, 

or, equivalently, 

(1.32) d&(b) = Tjamb + V;(b; x)T-j,_, V6(b; x), 6 = +, - 

Due to (1.30), they satisfy 

(1.33) d6(a++a--b)=dfi(b), S=+,-. 

From now on, we often suppress the b-dependence. 
There exist several distinct avatars of the Lame AAOs that each have their 

pros and cons. To suit our present purposes, we mostly work with operators A* 
arising from A* via a similarity transformation with the function 
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(1.34) , c(b. xl - Gn(x - ib + i(a+ + a-)/2) 
G,n(x + i(a+ + a-)/2) ’ 

Here, Get1 denotes the elliptic gamma function 

(1.35) 
G,n(x) _ fi 1 - exp[-(2m + l)ua+ - (212 + l)va- - 2irx] 

mn=O 1 - exp[-(2m + l)va+ - (2n + l)ra- + 2ivx] ’ 

introduced and studied in [6]. The scattering function 

(1.36) u(b;x) E --e -2”‘“c(b;x)/c(b; -x), 

and weight function 

(1.37) w(b; x) E l/c(b; x)c(b; -x), 

from [6] also play important roles below. Note that each of these functions is 
invariant under interchange of a- and a+. Moreover, u(b; x) is invariant under 
taking b -+ a+ + a- - b, but the c- and w-functions are not. 

As a consequence, the commuting ALIOS 

(1.38) A&(b) - c(b; x)As(b)c(b; x)-l, 6 = +; -, 

are not invariant under b + a+ + a- - 6. But in contrast to As, they commute 
with the parity operator 

(1.39) (PF)(x) - F(-x), F E M, 

as will now be made clear. The point is that VJ(X) (1.28) can be written as 

(1.40) Va(x) = C(X)/C(X - i&j), s = +, -, 

a representation that readily follows from the ALES satisfied by the elliptic 
gamma function [6]. Thus we obtain from (1.32) and (1.38) 

(1.41) A* = wqi+ + w-XL,+ 

whence the vanishing of the commutators, 

(1.42) [P,&J = 0, 

is plain, 
This parity property is crucial in Section 2, where we show that when the 

natural elliptic parameter space 

(1.43) Es ((r,a+,a-,b) E R4 1 ~,a+,a- > 0}, 

is restricted to 

(1.44) Cr{(r,a+,a-,b) l EIb~(0,a++a-)}, 

then the AnOs Ai admit a reinterpretation as symmetric operators on a dense 
subspace D, of 

(1.45) ‘FI, G P((O,?r/r), w(x)dx). 
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(This also involves detailed information on the weight function, obtained in 
Subsection VB of [6].) 

We would like to stress that on the one hand this symmetry result is in- 
dependent of our findings concerning joint eigenfunctions in [4]. On the other 
hand, the definition of D, is inspired by the latter. Indeed, we allow the mer- 
omorphic functions in D, to have simple poles at those locations in the strip 

(1.46) S = {x E C I /Imxl 5 max(a+,a-)}, 

for which the pertinent eigenfunctions can have simple poles as well. 
Without previous explicit information on joint eigenfunctions of the AnOs, 

however, we do not know how to proceed beyond the symmetry results in 
Section 2. Even though it is easy to see that the associated symmetric operators 
on D, admit self-adjoint extensions, the properties of the latter seem quite in- 
accessible without having such information available. In any event, only for 
parameters in the dense subset 

(1.47) Cirr E C n Z&r, 

where 

(1.48) Dir* E {(I”, a+, a-, (N+ + l)a+ - N-a-) E E 1 LZ+/LL$Q, N+, N- E N}, 

we are going to obtain detailed answers to the Hilbert space questions. 
The key point is that for parameters in (1.48) we do know explicit joint ei- 

genfunctions 9(fx,y) of the ALOs AS from [4]. (We focus on Z&r for sim- 
plicity; the larger set V given by (3.33)-(3.35) in [4] can be treated by making 
some rather obvious changes.) In the first part of Section 3 we summarize some 
algebraic and function-theoretic aspects of these functions. The second part 
concerns the question whether the functions P(fx, y) can be continuously in- 
terpolated to all b E R (for fixed a+, a- with ~+/a- irrational). Here we report 
new results on this interpolation problem, which are however not used for the 
Hilbert space analysis undertaken in Section 4. 

More in detail, we obtain representations for Casorati determinants that can 
be exploited to study the interpolation question. For the hyperbolic speciali- 
zation we invoke results from [7] to answer it in the negative. (We refer to our 
lecture notes [S] and [9] for discursive accounts covering the joint eigenfunc- 
tions and the associated interpolation problem.) 

To be sure, in the hyperbolic case the even combination P(x, y) + P( -x, JJ) 
does admit an analytic interpolation (cf. [9]), and in the elliptic case it seems 
plausible that the sequence of even joint eigenfunctions relevant for the Hilbert 
space arena also admits an analytic interpolation, at least for parameters in C. 
At any rate, this is strongly suggested when the Hilbert space results in Section 4 
(which pertain to Cirr) are combined with the ones in Section 2 (which hold on 
all of C). 

To sketch the results of Section 4, we should first recall that the Hilbert space 
results in [4] are incomplete, even for parameters in Cirr. The findings reported 
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in Section 4 complete our previous results for Cirr, inasmuch as we solve all of 
the problems mentioned in the general setting below (1.14). 

The key new ingredient compared to [4] is a comparison of the pertinent even 
eigenfunctions x*(x) E !P(x, YZY) + !P( - x,nr) for large y1 to the orthonormal 
base of polynomials pn (COS(YX)) for the Hilbert space 

(1.49) 7tFlp SC L2((0, 7r/r); wp(x)dx). 

Here the weight function we is constructed such that the dominant large-n 
asymptotics of the functions w(x)“~x~(x) is proportional to that of 
wp(x)1’2p,(cOs(f”x)). 

The n + cc asymptotics of the latter functions in X (1.14) follows from our 
recent paper [lo]. Its relevance for the comparison argument just mentioned 
hinges on a completeness result that can be found in a monograph by 
Higgins [ll]. To be quite precise, the reasoning in the proof of Theorem A on 
p. 72 of [ll] can be adapted to our situation. In this connection we point out that 
our starting point differs significantly from Zoccit. This is because [4] only 
yields pairwise orthogonal functions xn(x) for n > K/Y, and we know very little 
about the minimal choice of K. 

In two important special cases, however, we do know that K can be chosen 
negative. These are the cases (N+, N-) = (0,O) j (1,O). The first case gives rise to 
the ‘free’ AnOs (1.20). More precisely, we have 

(1.50) (0) irx &(a+) = e?-ae-‘rXA6 e , 6 = +, -, 

(1.51) 
c(a+; x) = Neirx/s-(x), 

~~(a+; x) = ~V(e?(~+l)~~ - e-i(n+l)vx)/~-(~); n E N, 

with ni a constant. Hence orthogonality and completeness are immediate, 
cf. (1.21). 

The second case is not elementary. This special case is studied in consider- 
able detail in [ 121, and the results in Section 4 entail that the relativistic b = 2~2, 
Lame functions xn(x), n E N, of [12] are complete in XFt, for b E (0, a, + a_), a 
conjecture left open in [12]. 

Returning to the general case (N+,N-) E N2, our adaptation of the com- 
pleteness argument only proves that the pairwise orthogonal joint eigenfunc- 
tions xn with n 2 A4 > 0, n, A& E N, have an orthogonal complement of 
dimension M. But once this finite-dimensionality is known, we can show by 
additional arguments that it consists of functions in the symmetry domain D, 
defined in Section 2. It is then straightforward to establish the existence of an 
orthonormal base of joint eigenfunctions with real eigenvalues. (This proves 
conjectures we already made in Section IV of [4].) Thus all of the above-men- 
tioned problems are solved for parameters in Cirr. 

Since Cirr is dense in C, it is eminently plausible that these results interpolate 
continuously to all of C, as already suggested above. But it is better to have a 
proof than to have no doubt. In this connection, we would like to mention re- 
cent results by Komori [13] (see also his earlier paper [14]). He studies multi- 
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variable generalizations of one of the above AnOs A+, proving essential self- 
adjointness on suitable domains, and also the existence of an orthonormal base 
of eigenfunctions for suitable parameters. Specializing his results to the above 
one-variable case, it is unfortunately not clear whether they have a bearing on 
the conjectured interpolation of our results to all of C. The problem is that 
Komori focuses on only one of the AnOs, using perturbation theory to com- 
pare it to the ‘free’ case b = a+. In view of possible differences in domains 
(whose ambiguities are largely unexplored to date), the precise relation to his 
findings is elusive. In fact, since Komori’s Hilbert space eigenfunctions arise 
after taking closures, it is not even clear whether they are restrictions of mer- 
omorphic functions to (0, T/Y). 

2. SYMMETRY DOMAINS FOR PARAMETERS IN c 

Consider the M-subspace 

(2.1) P$r = {F E P,+ 1 F(x) = F(-x)} 

of 2x/r-periodic even functions, cf. (1.7). Setting 

(2.2) F(*)(x) E F(x) f F(x + n/r), F E Pg$ 

one easily checks F(*) E Pz,r. Moreover, F(+) and F(-) satisfy 

(2.3) F(*)(x + n/r) = fF(‘)(x), 

and 

(2.4) F(*)(n/r - x) = &F(*)(x). 

It follows that P@) 2n,r is the direct sum of its subspaces PC*) of functions satisfy- 
ing (2.3), or equivalently (2.4). Now the ALOs As (1.41) not only commute with 
parity, but also leave the M-subspaces of n/r-periodic and r/r-antiperiodic 
functions invariant. Thus they leave the decomposition 

(2.5) pF$ = p(+) @ p(-) 

invariant. 
The weight function w(b; x) (1.37) is clearly even and n/r-periodic, so we have 

w E PC+) and 

(2.6) w(7r/r - x) = w(x). 

Accordingly, the Hilbert space (1.45) is a direct sum 

(2.7) xFt, = 7-L:) a3 7-p 

of orthogonal subspaces 

(2.8) 7-l?) = cf E ‘Ft, jf(7r/r - x) = &f(x)}. 

It is convenient to write w(x) as 
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(2.9) w(b;x) = Cs+(x)s~(x)14+(b;x). 

Here, C is a positive constant depending on I^, a+, a-, and w, is the ‘reduced’ 
weight function 

(2.10) wY(b; x) z G,n(x + ib - i(a+ + a-)/2)Ge11(-x + ib - i(a+ + a-)/2), 

cf. [6] (5.41). The ss-functions yield zeros at 

(2.11) x = ima+; x = ina-, m,n E H, 

and the G,ti-factors yield poles at 

(2.12) x=fi(b+ka++Za-); k,lEN, 

and zeros at 

(2.13) x = +i(b - ma+ - nap), m,n E N*, 

cf. (1.35). 
For the remainder of this section we assume that the parameters belong to C. 

This entails in particular that the w-poles (2.12) are at a distance b > 0 from the 
real axis. Therefore, the vector spaces Pol@),p = +, -, of polynomials in cos YX 
that are even/odd for p = +/- are dense subspaces of IFI$‘). (Indeed, iff E ‘H$‘) 
is orthogonal to POEM), then all Fourier-Neumann coefficients (f, F,(N))w, n E N, 
vanish, cf. (1.22). Hencef(x)w x) = 0, so f (x) = 0.) 

ip We now define subspaces D,) of ?$‘I, as follows. Functions in &’ are re- 
strictions to (0,7r/r) of functions in P @I, whose poles in the strip S (1.46) are at 
most simple and occur at 

(2.14) x = fi(ma+ + nap - b) i-jr/r, m, n E N*, j E Z. 

Thus, setting 

(2.15) a, = min(a+, a-), al E max(a+,a-), 

the pertinent pole locations can be rewritten 

(2.16) x = %i(al + a, - b + ka,) +jr/r, k E N, (k + l)as < b7 j E Z 

Since we have Pal@) c &‘I, the subspaces 0:’ are dense in tit). 
Defining now 

(2.17) D,,, =: DC’ @3 ok-‘, 

it is not hard to see that the ALOs A6 give rise to well-defined operators 

(2.18) A, : D,+‘FI,> S=+,-, 

the action of& being defined via the A6-action on the meromorphic extension 
of P(x) E D,v. Indeed, letting F E D!‘, consider the meromorphic function 

(2.19) (A~F)(~) = e-rb (@:(;;“I F(x - ks) + ““tL$’ F(x + ia-6)) I 

taking e.g. al = a+. Clearly, we have AhF E Pb). Poles of the functions F(x f 
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ia-) on the real axis can only occur when b equals al; in that case they must be 
located at x =j,/r,j E Z, and they are at most simple, cf. (2.16). Now for 
b = al, the functions s+(x f ib)/ s+ x are entire. Since A+F is even, no simple ( ) 
poles at x = 0 can occur. Since A,F is also r/r-periodic or rr/r-antiperiodic, no 
real poles occur at all, and so A+F E ?$‘I. For b # al the functions s+(x f 
ib)/s+(x) yield simple poles for x = jr/r, but since A+F E P@), no real poles 
occur for A+‘. Thus we infer again A+F E 7fFt,@). 

Likewise, poles of F(x f ia,) for real x can only arise for b = (k + l)u,; then 
they are located at x = jri/r and are at most simple. But for these b-values the 
functions s-(x f ib)/ s -( ) x are entire, so we conclude as before A-F E 3-t:). 

Denoting the restrictions of& to &” bya!), we have 

(2.20) a!’ : D!’ -4-@, 6=+,-, p=+,-, 
-(PI as just demonstrated. The main result of this section is that the operators A, 

and (hence)& are symmetric on their definition domains 0:’ and D,, resp. 

Theorem 2.1. Let b E (0, a+ + a-) andF, G E Dk’,p E {+, -}. Then we have 

(2.21) @,F, G), = (F&G),, S = +, -, 

where (., .), denotes the innerproduct on ‘& (1.45). 

Proof. To ease the notation we detail the case S = -. (To handle S = + one 
need only interchange all subscripts + and -.) Our task is to prove equality of 

s-(x + ib) 
s- (xl 

F*(x + ia+) + “s-“(;p’F*(x - ia+)) G(x)w(x)dx, 

and 

(2.23) IR-/~F*(x)(Eli~ib)G(x-ia+)+d~~;x:h)G(x+ia+))w(x)dx. 

In order to do so we introduce 

(2.24) I(x) ES w(x - e) ““Ecz” i ‘) F*(x + e)G(x - e), e&!Y ‘2 . 

From [6] (5.43) we have 

(2.25) w(x + e) s-(x+ib-e)s-(x+e) 
w(x - e) =s-(x-ib+e)s-(x-e)’ 

so I(x) can also be written as 

(2.26) I(x) = w(x + e) spFcT F G ‘) F*(x + e)G(x - e). 

Since w(x), F*(x), G( x are even and s-(x) is odd, we obtain ) 
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(2.27) 
I’ 

a/r 
IL - IR = [1(x + e) + I( -x + e) - Z(x - e) - I( -x - e)]dx 

0 

T/Y 
= [1(x + e) - 1(x - e)]dx, e = ia+/2. 

-T/Y 

Now I(x) is r/r-periodic, so to prove 1~ = I, it suffices to show I(x) has no 
poles for IImx] < a+/2. 

To this end we set 

(2.28) J(x) 5 1(x - e) = w(x) “-fc~~b) F* (x)G(x - ia+), 

and prove J(x) is pole-free for Im x E [0, a+]. To begin with, we observe that the 
factor 1 /s-(x) is matched by the factor s-(x) in w(x), cf. (2.9). Since J(x) is Z-/Y- 
periodic, it remains to show that the poles of w,(x) given by (2.12) and the 
(eventual) poles of F*(x) and G(x - ia+) are matched by zeros when x varies 
over i[O, a+]. 

We continue to prove this, assuming first al = a+. Then the only wr-poles 
(2.12) in i[O, a+] are of the form i(b + la-), 1 E N, and they are simple (since we 
need la- < a+). These poles are matched by the zeros 

(2.29) ib + ila-, 1 E N, 

of the factor s-(x - ib). The pertinent poles of F*(x) are of the form 
i(a+ + a- - b + ka-),k E N, (cf. (2.16)), so they are matched by w,-zeros oc- 
curring in (2.13). 

Finally, consider the poles of G(x - ia+) on the imaginary axis. They must be 
located at 

(2.30) 

and 

x = ia+ + i(a+ + a- - b-tka-), k E N, 

(2.3 1) x = ia, - i(a++a--b+ka-), HEN. 

Clearly, the locations (2.30) are above ia+, so these poles are innocuous. The 
poles (2.31) belong to i[O, a+] for b > (k + 1)~, but they are matched by zeros 

(2.32) ib - ima-, m E N*, 

of the factor S_ (x - ib) that are distinct from the zeros (2.29) already invoked. 
Thus J(x) has no poles for Imx E [0, a+], as asserted. 

It remains to study the case al = a-. Then the only relevant poles of 
w(x), F*(x) and G(x - ’ za+ ) occur at ib, i(a+ + a- - b) and ib - ia-, so as in the 
previous case they are matched by zeros of s-(x - ib), w,(x) and s-(x - ib), 
resp. Therefore, J(x) is again pole-free for Im x E [0, a+]. 0 

-(PI It is obvious that the symmetric operators& and& commute with complex 
conjugation. Therefore they admit self-adjoint extensions [5]. In fact, however, 
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we believe the operators are essentially self-adjoint. Far stronger yet, we state 
the following conjecture. 

Conjecture 2.2. Assume b E (0, a+ + a-). Then there exists an orthogonal base of 
joint&-eigenvectors xn E D,, n E N, with xn E Dk’for n even and xn E Dk-‘for 
n odd, and with positive eigenvalues satisfying 

(2.33) E,,* - exp(nra,), n + 00. 

In Section 4 we show that this conjecture holds true for the dense subset Cirr 
(1.47). 

We proceed with some observations that are valid for all of C. From the 
above proof we have 

(2.34) 
*Il. 

(F,AG)G), = 2eCb 
s 

Z(x)dx, F, G E D$‘), 
0 

where Z(x) is given by (2.24). Choosing G = F and recalling the alternative rep- 
resentation (2.26), we deduce that Z(X) is real-valued on (O,r/r). Now the 
function 

(2.35) K(x) - w(x - e) S-E; “i ‘) = w(x + e) “sx, T ef ‘) 

has no zeros for x E (0, r/r), so it is either positive or negative. One readily 
verifies K(r/2r) > 0, so in fact we have 

(2.36) K(x) > 0, x E (0,7r/r). 

Since (2.34) and (2.24) entail 

(2.37) (F,A!‘F), = 2eKyb 
s 

7111 
K(x)IF(x - ia+/2)12dx, F E Dt), 

0 

we deduce 

(2.38) (F,A^(P)F), 2 0, F E 0;‘. 

Similarly, we obtain 

(2.39) (F,A^f)F) w 2 0, F E D@. w 

From these positivity properties it follows once again that the symmetric op- 
erators Af) admit self-adjoint extensions. Moreover, whenever the operators 
are essentially self-adjoint, their self-adjoint closures are positive operators on 
?-I@). w 

To conclude this section, we briefly examine the above in terms of the AnOs 
A* (1.31) and the Hilbert space K (1.14), as this yields useful information for 
the more general contexts considered in the introduction. Clearly, IFt can be 
identified with 7-1, (1.45) via the unitary similarity transformation 

(2.40) z : 3-t, -+ 3-1, fc++Lf(x)I44, 
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cf. (1.37). Then we obtain symmetric operators 

(2.41) da f &z-l, s = +; -, 

on the domain 

(2.42) D-ID,, 

whose action on D coincides with the As-action. 
We now discuss some salient features of the meromorphic functions belong- 

ing to the space D. To start with, we have D c PZrlu, since D,v c P27i,T and 
c(x) E ‘PT,,. But since c(x) is not even, functions in D are not even either. Ac- 
cordingly, the decomposition 

(2.43) D = 10:) $ IOk-‘, 

in invariant subspaces for 

(2.44) “jf’ G J&+1 , CT=+;-, p=+,--, 

is present, but not readily recognizable from the definition (1.31) of the AnOs 
A*. 

Turning to properties pertaining to the critical strip S (1.46), we begin by 
noting that the multiplication of P(x) E D, by l/c(x) takes out the poles (2.16) 
in the lower half plane, due to zeros of l/c(x) at these locations. The only other 
zeros of l/c(x) in S occur at 

(2.45) x E ial, ika,, k E N, ka, I ai, (mod 7r/r) 

But l/c(x) also yields new poles in S at 

(2.46) x-ib+ija,, jEN, b +ja, < al; (mod rr/r). 

(More precisely, for b E (0, al] functions in D can have at most simple poles at 
these points.) Together with the upper half plane poles (2.16) i.e., 

(2.47) x G i(al - b + nut), II E N”, na, I b, (mod T/I), 

(relevant for b E [as, a, + al)), these are the (at most simple) poles allowed for 
functions in D, whereas all functions in D have zeros at (2.45) with multiplicity 
at least one. Observe that the zeros at ia- and ia- + r/r are essential for 
AsF, F E D, to yield a function in ‘Ft, cf. (1.29) and (1.31). 

It is particularly clear in the setting just worked out that the two summands 
of the generalized Lame operators are not separately symmetric on the perti- 
nent domains. Indeed, the summand Tin-, of A6 shifts functions in D without 
encountering poles (since F(x) E D has no poles for Imx E [-al, 0]), but the 
vertical parts of the relevant contour integral only cancel when F happens to be 
n/r-periodic or T/r-antiperiodic. (On the other hand, when F belongs to ID?’ 
or ID!;‘, resp., then this is indeed the case.) 

Unfortunately, it is false in general that two n/r-periodic and r/r-anti- 
periodic meromorphic functions that are regular for real x are orthogonal in X. 
(Take for instance Fl(x) = 1, F~(x) = sinrx.) In view of this state of affairs, a 
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symmetry analysis for the large class of commuting AnOs of type (1.19) re- 
mains elusive. 

3. JOINT EIGENFUNCTIONS: FIRST STEPS 

Throughout this section the parameters belong to Dioi,, (1.48). It is convenient to 
set 

(3.1) b+_ = (IV+ + l)a+ - N-a-, N+, N- E N. 

For these b-values the c-function (1.34) specializes to 

exp[@N+N- + N+ + N- + l)hx], 

where N is a constant. (This readily follows from the AnEs satisfied by the el- 
liptic gamma function [6].) 

We proceed to sketch how joint As-eigenfunctions of the form 

(3.3) tP(b+-;x,y) = N fi ’ 
j=-N+ ‘-Cx - Vu+) 

.‘Ft(b+-;x,y), 

Wb+-; X,Y) 
(3.4) 5 n fise(x + z;(y)) exp[(2N+N- + N+ + N- + 1)ivx + @xl, 

6=+,- j=l 

arise [4]. Viewing (3.3)-(3.4) as an Ansatz for the eigenvalue equations 
A+P = E&P, it follows that the zero functions z?(u) must satisfy a rather in- 
volved constraint system. Using the implicit and inverse function theorems, it 
can then be shown that for y real and sufficiently large, real-analytic solutions 
exist with asymptotics 

(3.5) z;(y) = ilas + O(exp(-2&y)), I = 1,. . . ,N,, S = f, -, y 4 co. 

The associated eigenvalues Es(y) are real and have asymptotics 

(3.6) ES(Y) = ew(a-sy)(l + O(exp(-2w))), Y + 00. 

Moreover, all of the joint eigenfunctions corresponding to the eigenvalue pair 
(E+(y), E-(u)) with y sufficiently large are of the form X*(x, y) t @(-x, v), 
with X, ,u E 6, cf. Appendix B in [4]. 

The even joint eigenfunctions 

(3.7) xn(b+-; x) = P(b+-; x, nr) + !P(b++; -x, nr), n E kd, IZY > K(b++)> 

are the ones relevant for our reinterpretation of the ALOs As as operators on 
the Hilbert space 7-1, (1.45). Here, K is chosen large enough so that various 
conditions are met. In particular, the solutions to the constraint system exist 
and take values in i(0, oo), the eigenvalue pair (E+(y), E-(y)) separates points 
on (K, oo), and xn(x) does not vanish identically. Introducing the integer 

530 



(3.8) M(b+-) = max(O, [K(b+-)/f + 11, 

we therefore obtain an infinity of distinct joint Ad-eigenfunctions xn, 72 2 M. 
It is clear by inspection that the functions P(x, v) are real-analytic in x for x E 

R (recall ~+/a-@lB) and that they obey the monodromy relation 

(3.9) @(x + 7r/r,y) = exp(W/r)P(x,y). 

Accordingly, the functions xn(x) (3.7) are real-analytic for real x as well, and 
they belong to P(+)lP(-) for n even/odd, cf. (2.1)-(2.5). It is not obvious, but 
true that for parameters in Cirr we also have xn E &‘i&’ for n even/odd. The 
crux is that the holomorphic functions (3.4) satisfy 

(3.10) 
‘Ft(ik+a+ + ik-a-,y) = T-l-ik+a+ - ika-,y), 
fk6E{O )‘..) Na}, s=+,-, 

cf. [4] (3.44). The resulting zeros of ‘Ft(x,nv) - K(-x,nv) now cancel poles of 
the product in (3.3), leaving only poles in the strip S (1.46) given by (2.16). (This 
easily follows from (3.49)-(3.50) in [4]; note that all of the product poles in (3.3) 
are simple, since a+/~ is irrational.) 

Since the joint eigenvalue pair E, E (E+(W), E-(w)) is real and E, # Em for 
M < n < m, it now follows from Theorem 2.1 that for b+- E (0, a+ + u-) the 
functions xn are pairwise orthogonal: 

(3.11) (xn, xm), = 0, M 5 n < m. 

Thus we have rederived one of the principal results of Section IV in [4] from 
Theorem 2.1. In the next section we will show that in case M(b+_) > 0, there 
exist M independent additional joint As-eigenfunctions xnr IZ = 0, . , M - 1, 
belonging to Di;“/&’ for n even/odd, and having positive As-eigenvalues 
EQ,, S = +, -. Moreover, (3.11) holds for 0 I n < m. 

The results we are now heading for conclude this section, and will not be used 
in the next one. Fixing Y, a+, a- E (0, W) with ~+/a-$Q, they have a bearing on 
the eventual existence of joint As-eigenfunctions for arbitrary real b, which are 
continuous in b and reduce to a (possibly parameter- and y-dependent) multiple 
of @(b+-; X, y) for the dense set of b-values b+- (3.1). 

Our better understanding of this interpolation problem stems from new rep- 
resentations for the Casorati determinants 

(3.12) Q(b+-; x, Y) 
E @(b++; x + ias/2,y)P(b++; -x + ia6/2,y) - (i i -i), 6 = +, -, 

whose derivations we now sketch. The key point is that the special Casorati 
determinants given by (2.43) in [4] can be exploited to get rid of the dependence 
of D6 on the zero functions zf, j = 1, . . , Nb. To this end the plane wave factor in 
(3.4) should first be traded for dependence on zf and ~~7’ via [4] (3.5) and (3.10). 
The zl:‘-sum in [4] (3.10) can then be disposed of by using (cf. (1.27)) 

(3.13) SJ(X + ia*/ f ~~7”) = - exp[-2ir(x & zj:j6)],s6(x - iad/ + ~~7’). 
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Finally, various s*-factors not involving the zj can be combined in terms of the 
c-function c(b+_; x) given by (3.2). 

As a result of these calculations (whose details we skip), we obtain 

(3.14) nY(b+-; TV) N c(b+-; x - ias/2)c(b+-; -x - ia6/2)QJ(b++; x - &/2,y). 

Here and below, N denotes equality up to a multiplicative factor that may de- 
pend on the parameters and y. The quotients Q6 are given by 

The advantage of these formulas is that the existence of interpolations to arbi- 
trary b can now be studied in terms of the factors QJ. (Indeed, the b-interpola- 
tion of the c-factors is immediate: one need only replace b+- by b.) 

For the hyperbolic specialization, where r = 0 and sg(x) reduces to 
sinh(rrx/as)as/rr, the interpolation question can now be answered negatively by 
using (3.14). We detail this case first, since it renders clear what remains to be 
shown in the elliptic case. In the hyperbolic case we need not work with the zero 
system, since a far more accessible representation of the joint eigenfunctions 
and their eigenvalues exists for b = b+- [7]. From the latter it is clear that the 
constraint system admits solution vectors Z+ and z- for arbitrary real y, and 
that !P(x, -u), y > 0, amounts to P(-x, y). Moreover, the constraint system 
decouples into separate systems for z+ and z-. 

The latter feature is critical: it entails that for a given y > 0 the zero vector z+ 
is independent of N-. To see how this can be exploited, let us first be more 
precise about the assumption that the functions !P(b++; x, *y), y > 0, admit ar- 
bitrary-b interpolations. Specifically, we assume that for y E (0, m) and b E R 
joint As-eigenfunctions Z(b; x, y) and J(b; x,4/) exist with the following prop- 
erties: 

(i) for fixed (b,y) E [w x (0, co) they are analytic in the region 
‘R E {Rex > O}; 

(ii) for fixed (x,~) E R x (0, m) they are continuous in b on [w; 
(iii) for b = b+_ they reduce to multiples of !P(b+-; x, &y). 

We stress that we are deviating from our requirement that eigenfunctions be 
meromorphic in x. This is because the poles of !F(b+-; x, *y) get dense on the 
imaginary x-axis as N+, N- -+ 00, so that the imaginary axis might be a natural 
boundary for b not of the form b+-. 

We now use (3.14) with 6 = - to exclude the existence of such interpolating 
functions. Specifically, (iii) entails that the Casorati determinant C- (b; x, y) of 
Z(b; x, y) and J(b; x, .Y) re d uces to a multiple of De(b+-; x, y) for b = b+-. Fix- 
ing b E [w not of the form b,-, and choosing a sequence byI converging to b as 
y1-+ co, the numbers Nt) and N(n) must go to DC). By the assumed continuity in 
b, this entails that for a suitable multiple X?) the y1 + 03 limit L-(b; x, y) of 
A@) Q- (b!“) ; x y) - exists. Since Q-(b++; x,~) does not depend on N-, however, 
L- can only depend on b via a multiplicative constant. Since L- (b; x, y) is also 
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continuous in b and reduces to a multiple of Q-(6+-; x, y) for b = b+_, we ar- 
rive at the desired contradiction. (Indeed, two distinct choices of N+ yield two 
distinct functions Q of x, cf. (3.15).) 

Returning to the elliptic case, we encounter several snags when we try to 
emulate the above hyperbolic reasoning. The first one is that we do not know 
whether there exists a y-interval (C, oo), with C independent of (N+, N-) E N2, 
on which the constraint system admits solutions. Let us assume this is the case, 
however. Then the natural requirements for a joint As-eigenfunction T(b; x, y) 
that interpolates P(b++; x, y) consist again of the above items (i)-(iii), but now 
with the region R equal to the strip Rex E (0, T/Y) and y varying over (C, co). 
Moreover, in view of the monodromy relation (3.9), the function 

(3.16) J(b;x,y) --@n/r-x,y), (b,x,y) E ~8 x Rx (C,oo), 

is then an interpolation of !P(b+-; -x, y). Comparing the Casorati determinants 
of Z and 3 to (3.14), it follows again that suitable multiples of Q*(b+-; x,y) 
have finite limits L*(b; x, y) for b+_ converging to any b E [FB. 

Unfortunately, the coupling of the two systems for z+ and z- via the spectral 
variable y (cf. (3.16)-(3.18) in [4]) now prevents us from concluding that the 
limit function L-(b; x, y) can only depend on b via a multiplicative x-in- 
dependent factor. (This would again yield a contradiction to L- (b; x, y) being 
proportional to Q- (b++; x, y) when b equals b+-.) 

Even so, it seems difficult to believe that the K-dependence of z+ (which 
only makes itself felt in variations of the curve parameter t+ for a fixed y [4]) 
could lead to such a variety of distinct limit functions L-(b; x, y). Moreover, 
since we have already shown non-existence of interpolations for r = 0, an el- 
liptic interpolation in the above sense cannot have well-behaved r 1 0 limits for 
arbitrary b, whereas it does have r 1 0 limits for the dense set of b-values b+-. In 
sum, the above renders the existence of an elliptic interpolation extremely un- 
likely. 

To conclude this section, we observe that the above reasoning has a ‘local’ 
character, in the following sense. When we restrict the region R by decreasing 
the interval over which Rex is allowed to vary, then the notion of dJ-eigen- 
function still makes sense, since the shifts are in the imaginary x-direction. This 
observation is relevant in relation to previous results on the existence offormal 
interpolating joint d*-eigenfunctions [15]. Indeed, in view of the above hyper- 
bolic ‘no-interpolation’ result, the explicit formal power series (2.57)-(2.58) 
in [ 151 cannot converge in a half plane Rex > R, no matter how large R and y 
are chosen. 

4. HILBERT SPACE RESULTS FOR PARAMETERS IN Cirr 

Throughout this section we assume that the parameters belong to C (1.44). We 
begin by obtaining an auxiliary result (Lemma 4.1) that is valid for all of C, but 
which involves an assumption. This assumption is satisfied for parameters in 
Cirr, so in that case we can proceed much further. In detail, the assumption is 
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that there exist an integer A4 E N (which may depend on the parameters) and 
pairwise orthogonal vectors 

(4.1) xn EIFt,, n>M, nE N 

with 

(4.2) xn E ?-tk), n even, xn E XL-), n odd, 

and n + 00 asymptotics 

(4.3) xn(x) = c(b; x)einrx + c(b; -x)epinrx + p,(x), x E (0,7r/r), n + 00, 

where c(b; x) is given by (1.34) and the remainder vectors satisfy 

Observe that we are not assuming that the vectors xn are&-eigenfunctions, 
even though we aim to apply the result following from the above assumption to 
that case. The result in question is of a geometric nature: it yields a precise de- 
scription of the orthogonal complement L, of the vectors XM, x~+r, . 

Lemma 4.1. The ‘FI,-subspace C, is M-dimensional. More spec$cally, we have 

(4.5) dim(@)) = [(M+ 1)/2], dim(&)) = [M/2], 

where 

(4.6) LC$)=LC,nx,@), p=+,-. 

To prove this lemma, we need some new ingredients. First, it is convenient to 
switch to the Hilbert space 7-t (1.14) by a similarity transformation that differs 
from (2.40), namely, 

(4.7) u : xFt, --f Yt, f(x)HW(Xy2f(X). 

(Here and below, the positive square root of positive functions is taken.) The 
U-images of the subspaces 7-L;) are then equal to the 7-t-subspaces 

(4.8) 7-P) = (f E IFt 1 f(r/r - x) = pf(x)}, p = +, -. 

(Recall (2.6).) The asymptotics (4.3) entails 

(4.9) UXn = Qn + up,, 

(4.10) a,(x) s (-e2irxu(x))1’2einrx + c.c., x E (0,7r/r), 

where C.C. stands for complex conjugate, and where the square root sign is de- 
termined by requiring 

(4.11) (-e2irxU(x))1’2 = ~(x)/w(x)r’~, x E (0,7r/r), 

cf. (1.36)-(1.37). 
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Next, we recall that for parameters in C the u-function admits the rep- 
resentation 

(4.12) u(b; x) = exp 2i 2 sn(b) sin(2nrx) , 
?I=1 

(4.13) II 
s (b) _ sinh(nr(a+ - b)) sinh(nv(a- - b)) 

y1 sinh(nra+) sinh(pzua-) ’ 

cf. [6] (4.87). We now define a new c-function 

(4.14) +(b; X) E (1 - e-2irx)-1 exp - TS,(6)K2inrx 
c 

, 
n=l ) 

and w-function 

wp(b; x) f I/cp(b; x)cp(b; -x) 

(4.15) 
4 sin2(rx) exp 

c 
2 c,~~(h) cos(2nrx) . 

n=l i 

Note that the u-function 

(4.16) 

satisfies 

up(b; x) E -e-2irxcp(b; x)/cp(b; -x), 

(4.17) up@; x) = u(b; x), 

an equality that is crucial in the sequel. 
The weight function wp(b; x) is positive on (0, K/Y), so by the Gram-Schmidt 

procedure applied to the functions 1, cos TX, cos2rx,. . we obtain an ortho- 
normal base 

(4.18) P,(x) =p,(cosrx), n E N, 

in the Hilbert space 

(4.19) XFtp = L2((0, r/f”), w(x)dx), 

where pn (v) are polynomials of degree IZ. Since we have 

(4.20) wp(7r/r - x) = WP(X)> 

we obtain an orthogonal decomposition 

(4.21) Y-LFtp = 7‘t(p+) @ Xi;‘, IFt~)-CfE~FtpIf(7i/r--)=pJ(X)}, p=+,-, 

with P E 7-f~'/X~p) for n even/odd. (Indeed, (4.20) implies the polynomials 
pi2 (y) hive parity (-)“.) 

Next, we explain the rationale of this construction: we have defined cp(x) and 
wp(x) such that the Hilbert space asymptotics of Pn(x) as IZ + 00 is explicitly 
known. Specifically, wp(~x) belongs to the class Wi,r defined in [lo], so from 
Theorem 2.4 in [lo] we deduce 
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(4.22) P&l = (&y2(cP(x)e”‘” + cp(-x)PX + /&p(x)), 

x E (0,7r/r), n 4 00. 

Here the remainder vectors pn,p satisfy 

(4.23) IlPn,Pllp = q-nn), fi > 0, n + 00, 

with (1 . ]IP the norm in EFlp (4.19). 
Transforming now to ‘IY (1.14) via 

(4.24) Up : Slip + X, f(x)~~~(x)~‘~f(x), 

we have due to (4.17) 

(4.25) a, + Rj?, 

where a, is given by (4.10). We are now prepared to prove Lemma 4.1. 

Proof of Lemma 4.1. Setting 

(4.24) c = UC,, Lb) - uc$), p = +,-, 

with U given by (4.7), we need only show that the dimension of Z equals A4 and 
that 

(4.27) dim@+)) = [(M + 1)/2], dim(k)) = [M/2]. 

To this end we introduce the vectors 

and unit vectors 

(4.29) 4n = %lll%ll, n L M 
(4.30) fJ~“’ = UpP,, n E iv. 

Due to (4.9) and (4.25), we have 

(4.3 1) q5t’-qa=Rf,‘)-Rn, R,E & 1’2Uplr, n>M, 
( > 

where (cf. (4.23) and (4.4)) 

(4.32) j/R:‘// = O(e?), n + 00, 

(4.33) ~(R,:R,) < 00. 
n,M 

Using (4.31), we now estimate the norm of 4:” - & in terms of the norms of the 
remainder vectors: 
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= /w -VII + 11 - /l%l// 
< &) - vnll - 
< um + IPnll) - N > n > M. 

Thanks to the bounds (4.32) and (4.33), this entails that there exists an integer 
I > A4 such that 

(4.35) -p IIGQ’ - 4nl12 < 1. 
n=I 

We denote the orthogonal projection on the subspace spanned by &, n > I, by 
Pb, and introduce the complementary projection and subspace 

(4.36) P, = 1 - Pb, 7-1, - P,1-t. 

(Here, the subscripts stand for ‘big’ and ‘small’.) Clearly, to prove dim(L) = A4 
it suffices to show 

(4.37) dim(‘Ft,) = I. 

We proceed to prove (4.37). Assume that h is a unit vector that is orthogonal to 
all of the unit vectors 

(4.38) &‘), n=O ,..., I-1, q&, n > I. 

Since &“, n E N, is an orthonormal base of 7-1, we have 

(4.39) 1 = 1112112 = 2 I(h, 4LO))I” = 2 I(h, @)I” = 2 I(h, $@’ - #&)12. 
n=O n=I n=I 

On the other hand, by the Schwarz inequality and (4.35) we can majorize the 
rhs by 

(4.40) lVl12 2 IMP - dh/12 < 1, 
n=I 

so we have arrived at a contradiction. 
As a consequence, the span of the unit vectors (4.38) is dense in ‘Ft. In par- 

ticular, ‘l-t, must be spanned by the vectors P&k”, n = 0; . . . , I - 1. From this we 
deduce dim(X,) 5 I. 

Next, we assume dim(‘FI,) < I. Then there exists a unit vector 

I-l 

(4.41) G = C%@, 
n=O 

such that P,$ = 0. Hence Pb$ = $, so that 

(4.42) $= &hsn. 
n=I 

Moreover, since + is a unit vector, we have 
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I-l 

(4.43) c /k-A2 = 2 IPn12 = 1. 
n=O nd 

Consider now the unit vector 

(4.44) p E 2 pn@. 
?l=I 

On the one hand, we have 
I-1 

(4.45) II+ - do) II2 = (1 ~a,&) - -&@ 112 = E IanI + 2 1pnj2 = 2. 
?I=0 ?l=I n=O n=I 

On the other hand, from the Schwarz inequality and (4.35) we obtain 

II+ - PII = II -&wn - @II” I 
2 

(4.46) n=I i 

I 2 lPn12. 2 ll4n - cbip’ll” < 1, 
n=I n=I 

contradicting (4,45). Hence we have proved (4.37). 
To obtain the stronger result (4,27), we need only repeat the above reasoning 

for the Hilbert spaces tic+) and X(-j, recalling that & and &” belong to tic+) 
for n even and to ‘Ft(-) for n odd. As this is merely a matter of introducing suit- 
able notation, we skip the details. 0 

As already mentioned in the introduction, a large part of the reasoning in this 
proof can be found on pp. 72-73 of Higgins’ monograph [ll]. In the latter set- 
ting, however, stronger assumptions are made: {#J:“},,~ and {$E}nEN are given 
sets of pairwise othogonal unit vectors, with the first set assumed complete. 
Completeness of the second set is then shown to follow from the assumption 

(4.47) 2 II&’ - cbnl12 < 00. 
n=O 

From now on we assume that the parameters belong to Cirr. As detailed in 
Section 3, this restriction ensures the existence of joint &-eigenfunctions 
XM, x~+t, that are pairwise orthogonal and satisfy (4.1)-(4.2). Furthermore, 
from (3.2)-(3.7) we see that (4.3) holds true, with 

(4.48) pn(x) = O(exp(-2nra,)), x E R, n + 00, 

and the bound uniform on compact subsets of R. Thus (4.4) holds true as well. 
The upshot is that all assumptions of Lemma 4.1 are met. The resulting fi- 

nite-dimensionality of the orthocomplement &, of XM, xM+i, . . . (as explicitly 
expressed in (4.5)) plays a pivotal role in the sequel. Skipping technicalities, we 
now preview a first crucial consequence of dim(&) < 00. 

We are going to encode the salient features of XM, x~+i, . . . in a subspace D, 
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(4.58) of the domain D, (2.17) which in turn contains a subspace DO (4.63) that 
is still dense in ‘H,: 

(4.49) Do c D, c D, c FL,. 

Denoting the orthogonal projection onto the span of xn; n > M, by PB and let- 
ting Q E DO, we then prove 

(4.50) $3 = Ps4 E D, 

in Lemma 4.2 below. The vector I$ - 4~, which belongs to ,& by construction, 
therefore belongs to D, as well. The crux is now that the finite dimension of ,C, 
allows us to deduce that 15, is a subspace of D,, cf. the paragraph containing 
(4.77). (If .& were infinite-dimensional, this would not follow, so that we would 
be left in the dark as concerns the character of vectors in C,.) 

Turning to the details, we begin by defining the products 

(4.51) II,(x) E 3 sg(x - ija-s), 6 = +, -. 
j=-N-6 

Recalling (3.2) and (1.37), we see that the w-function can be written 

(4.52) w(b+-;x) = (-)N++N-+1N-2x-(~)~+(~)IL(~)/IJ+(~). 

Furthermore, (3.3) and (3.7) entail 

(4.53) Xn (x) = N&l (x)/n- (xl, 

where we have introduced 

(4.54) gn(x) E X(x, nr) - X(-x, nr), n 2 M. 

Next, we define the vector space 

(4.55) 
0 = {F E P,n,l 1 F(x) entire, odd; 

J’(m) = F(zkl + r/r) = 0, jkl 5 N+; /II 5 N-}: 

where 

(4.56) zkl E ika+ + ila-, k, I E Z. 

(This space is the same space as 01 (4.11) in [6].) Due to the identities (3.10), we 
have 

(4.57) 7/1, E 0, n>M. 

Therefore, setting 

(4.58) D, = IL(x)-‘0, 

we obtain from (4.53) 

(4.59) xngDx, n>M. 

It is not hard to check the inclusion 
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(4.60) D, c Dw, 
announced above (cf. (4.49)) as well as the decomposition 

(4.61) D,=Dg)@D;-), D~)sDxnH~). 

We now introduce spaces 

(4.62) D$’ = s+(x)17+(x)Pol(p), p = f, -, 

(4.63) Do SE Dp’ @ Ok-‘, 

(The space Ii-(x)Do equals the space O- (4.18) in [6].) Since 
s+(x)~+(x)~~(x)p(cos(rx)) E 0 for a polynomialp(y), we have 

(4.64) D,@)cDF), p=+,-. 

Moreover, D$” is readily seen to be dense in X$), so the same is true for Dg). 
We are now prepared for our next lemma. 

Lemma 4.2. Denoting the projection onto the X,-subspace spanned by 
xn, n > M, by PB, we have 

(4.65) PsDo c D,. 

Proof. Fixing a polynomialp(y), we set 

(4.66) #G> = s+(x)n+(x)P(x), P(x) -p(cos(rx)L 

so that $ E DO. Putting 4~ G P&, we should show (4.50) or, equivalently 
(cf. (4.58)), 

(4.67) n-(x)d%(x) E 0. 

In order to prove (4.67), we begin by noting 

(4.68) #% = pxn> kAxn> xn),. 
- 

We now estimate the two inner products on the rhs. Using (4.52), (3.7) and 
(4.66), we have 

(4.69) (xn, $1, = [“dxw(x)x,(*)$(x) = C/z,, dxs-(x)s+(x)2’Fl(x,nr)P(x), 
0 

where C is a constant. Recalling (3.4) we see that this is of the form 

(4.70) dx ( e(x) n fls-a(x + zj”(nr)) 
5=+,-j=l 

with e(x) entire and 27r/r-periodic. Shifting the contour up by iR, we therefore 
obtain 
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(4.71) (xn, 4, = e-nrRII,, ( dx e(x + iR) JJ fi&(X + iR + z;(m)) einrx. 
6=+,- j=l ) 

Recalling (3.5), we readily deduce 

(4.72) 1(x% 4),,i 5 CRC 
+VR 

) n > Al> 

where R > 0 is arbitrary. 
Next, using (4.3) and (1.36) we obtain 

(4.73) (Xn - PII, Xn - p,), = 2T/r - [I,, dxu(x)e2irxe2inrx. 

Since b E (0, a+ + a-), the u-function is analytic in a strip ]Im x] I 6, K E (0, a,] 
(cf. the representation (4.12))(4.13)). S’ mce it is also 27r/r-periodic, the Fourier 
coefficient in (4.73) is O(exp( -2nrh)) as IZ + coo. Recalling the bound (4.48), we 
infer 

(4.74) (xn, xn), = 2r/r + O(e-2nm), n + 30. 

On the other hand, in view of (3.4) and (3.5) the entire functions gfl(x) (4.54) 
satisfy 

(4.75) I$n(x)I < Cde 
nrd 

, rz>M; ]Imx] Id, 

where d > 0 is arbitrary. Therefore the series 

(4.76) c li/n(x)(Xn> hJ(xn> xn), 
nEM 

converges absolutely and uniformly on arbitrary strips ]Imx] I d, 
yielding a function in c? (4.55), cf. (4.57). Recalling (4.68) and (4.53), this 
entails (4.67). 0 

As already sketched in the paragraph containing (4.50) we can now combine 
Lemmas 4.1 and 4.2 to deduce the critical inclusion 

(4.77) L,,, c D,. 

Indeed, with (4.50) proved in Lemma 4.2, we infer # - 4B E D,. Now we also 
have 4 - 4~ E C, and we know that when C$ ranges over DO, the vectors 4 - $B 
are dense in ,Cc,. Since dim(C,) < 00 by Lemma 4.1, the vectors 4 - $B must 
range over all of C,, and so (4.77) follows. 

We are at last prepared to derive further consequences of Lemma 4.1 and 
(4.77) for the Hilbert space operators 2, introduced in Section 2. In view of 
(4.77) and (4.60), they are well defined on C,. Since they are symmetric (by 
Theorem 2.1) and leave the linear hull of xn, n > M, invariant, they map &,, into 
itself. Since their action amounts to the action of the AnOs A+, they commute 
on C, and leave the subspaces CE) invariant. Finally, since they are symmetric, 
the dimension formula (4.5) entails there exist pairwise orthogonal joint ei- 
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genvectors x0, ~2, . . , x2p~1pl spanning @) and xl, x3,. . . , x~[M/~I-1 span- 
ning &I, the eigenvalues being real. 

In the following theorem we summarize and extend these results. 

Theorem 4.3. Assume that the parameters belong to Ci,, (1.47). Then there exists 
an orthogonal base ofjointA*-eigenvectors 

(4.78) xn E D,, n E N 

with xn E Dg’ for n even and xn E Dip’ for n odd. The Ah-eigenvalues on xn 
satisfy 

(4.79) E,,k E (O,co), n E N. 

The operators& are essentially self-adjoint on their definition domain D, (2.17) 
and any vector f in the domain of the self-adjoint closure of& has the following 
properties: f is the restriction to (0, n/r) of a function f (x) that is meromorphic in 
the strip /Imxl < a-s, its only poles occurring at the locations (2.16) and being of 
multiplicity at most one; moreover, f (x) is even and 2x/r-periodic. 

Proof. We have already proved the first assertion. Recalling (2.37) and (2.36), 
we deduce (4.79). Sincei+ andk are e.s.a. on the span of their eigenvectors 
xn, n E /V, they are a fortiori e.s.a. on D, and D,. 

It remains to prove the asserted properties off. To this end we write f as 

(4.80) f = ~xn(X.~f),I(Xn>Xn),. 

Then we have 

(4.8 1) &d-f = ~E,,~x*(x~:/),/(x~,x.),! 
n=O 

the series converging in the strong ?&-topology. Recalling (4.74), we deduce 

(4.82) G,6(xn,f 1, = o(l), n + 00. 
Now E,,J equals Es(nr) for n 2 M, so (3.6) entails 

(4.83) (xn,f 1, = @ew-nra-6)), n -3 00. 

Combining (4.83) with (4.80), we readily obtain the pertinent f-properties 
from arguments already detailed in the proof of Lemma 4.2. More specifically, 
(4.83) plays the role of (4.72) and comparing it to the bound (4.75), we see that 
the series 

(4.84) 2 n-(X)X&)(Xmf ),l(Xiz> XNL 
n=O 

whose terms are functions in 0 (4.55), converges absolutely and uniformly on 
any strip IIrnxl < a-6 - E, E > 0. The eventual simple poles then arise as before 
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from multiplication by n-(x)-l. (They are the zeros of K(x) in IImxJ < a-6 
that are not matched by the zeros of functions in 0.) 0 

It seems not an easy task to characterize the boundary values off(x) (4.80) at 
the pertinent strip boundaries. In this connection it should be noted that the 
ranges of the self-adjoint operators (A+)- are equal to ?&,, since their inverses 
are bounded due to (4.79) and (3.6). (In fact, their inverses are even trace class, 
as follows from (3.6)) 

To conclude, we state a conjecture. 

Conjecture 4.4. All of the joint eigenvectors xn, n E N, are of the form 

(4.85) xn(b++;x) = N fi ’ 
j=-N+ s- Cx - @+I 

(F&(b+_; x) - ‘Ft,(b,-; -x)), 

where 7-tFI, is given by 

(4.86) IFlJb+-;x) = n fi _ ( s 6 x + zj,,) exp[(2N+N_ + N+ + N- + 1 + n)irx], 
S=+;- j=l 

for certain complex numbers zfn. 

For n 2 M(b+-) we already know this is true, cf. (3.3)-(3.8). We believe that this 
conjecture might be proved by a more refined analysis of the constraint system, 
yielding equality of zfn to z,“(~Y) for all n E N. We stress that even if this could 
be pushed through, the arguments related to Lemma 4.1 would still be needed 
to prove completeness of {xn}nfN in ?fH,. 
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