SYSTEMS OF CALOGERO-MOSER TYPE

S.N.M. RUIJSENAARS

ABSTRACT. We survey results on Galilei- and Poincaré-invariant Calogero-
Moser and Toda N-particle systems, both in the context of classical mechan-
ics and of quantum mechanics. Special attention is given to integrability is-
sues and interconnections between the various models. Action-angle and joint
eigenfunction transforms are also considered, and some novel results on N = 2
eigenfunctions of hyperbolic Askey-Wilson type and of relativistic elliptic type
are sketched.
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1. INTRODUCTION

These lecture notes are concerned with a class of finite-dimensional integrable
dynamical systems, both at the classical and at the quantum level. The systems
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model N interacting point particles on a line or a ring. Thus the classical state
space is a 2NN-dimensional symplectic manifold, and the quantum state space a
Hilbert space L?(G,dx; - - -dxy), with G equal to the classical configuration space.

The systems admit both a nonrelativistic (Galilei-invariant) and a relativistic
(Poincaré-invariant) version. The nonrelativistic systems were introduced in the
seventies and are known as Calogero-Moser (or Calogero-Sutherland) and Toda
systems. They can be tied in with the root system Ax_; and also admit integrable
versions for the remaining root systems. At the classical level all of these systems
yield IV Poisson commuting independent Hamiltonians with a polynomial depen-
dence on the particle momenta p1,...pn, so that the quantum versions are partial
differential operators (PDOs).

The systems just delineated were surveyed in the early eighties by Olshanetsky
and Perelomov, both in the classical [28] and in the quantum context [29]. These
surveys contain extensive lists of references, and are to a large extent concerned
with the relations of the systems to group theory, Lie algebra theory and harmonic
analysis on symmetric spaces.

Integrable relativistic generalizations (corresponding once more to the root sys-
tem An_1) were first introduced in Ref. [47] at the classical and in Ref. [39] at the
quantum level. The Poisson commuting classical Hamiltonians have an exponential
dependence on the particle momenta, so that the quantum versions are analytic
difference operators (AAOs). The relativistic systems and their relations to the
nonrelativistic Ay _1 systems and various well-known solitonic field theories and
spin systems were surveyed in Ref. [38].

Quite recently, the relativistic systems with pair interactions of the trigonomet-
ric type were also shown to admit a generalization to the root systems By, Cn, Dy
and BCn. More precisely, in Ref. [5] van Diejen introduces a quite general inte-
grable quantum system that can be specialized to all of the root systems mentioned
above. In further work [6, 7] he proposes even more general systems with elliptic
interactions, but for these systems integrability has not yet been completely proved.
At any rate, the latter systems encompass by specialization virtually all systems of
Calogero-Moser and Toda type that are known to be integrable, including external
field couplings that go beyond the root system machinery.

In these lecture notes we shall deal exclusively with Galilei- and Poincaré-invariant
models. In particular, no external fields and root systems other than Ay _; will be
treated, and we also omit from consideration thermodynamical aspects, discretiza-
tions, R-matrix formulations, internal degrees of freedom and Haldane-Shastry
chains. The lectures are addressed principally to theoretical physicists at the grad-
uate student / post-doc level, but we believe they should also be accessible to
mathematicians interested in the systems from various viewpoints different from
physics. Our emphasis is on expounding the integrability of the systems and their
interconnections, and on providing a conceptual understanding of the transforms
that diagonalize the commuting dynamics—the action-angle and joint eigenfunc-
tion transforms. In doing so, we have tried to use as few ingredients as possible
without losing mathematical precision.

We should mention, though, that the models involved can be viewed from a great
many angles, and a lot of subfields of mathematics and theoretical physics can be
brought to bear on them. Correspondingly, our bare-handed approach will possibly
be viewed as a liability rather than an asset by some experts—but these notes
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are not primarily written for experts. We shall return to various related matters
towards the end of this section.

We proceed by sketching the plan and contents of the lectures. In this sketch we
refrain from using formulas, but we do list some key equations in the main text for
ease of reference. The table of contents should also be of help in keeping track of
the organization of this contribution.

Section 2 is concerned with the nonrelativistic Calogero-Moser and Toda sys-
tems in the context of classical mechanics. The mathematics involved in getting
a solid grasp of what classical integrability is all about has been particularly well
expounded in Refs. [2, 51, 1] (in order of increasing sophistication). In Subsection
2.1 we have summarized some material which can be found (in far greater detail)
in these sources. In the process, we introduce various concepts and notation that
will reappear later on.

In Subsection 2.2 we introduce the Calogero-Moser systems. The pair potential
characterizing the systems is a rational, hyperbolic, trigonometric, or elliptic func-
tion, cf. (2.38)—(2.41), resp. The former three choices may be viewed as degenerate
cases of the latter, cf. (2.42).

Having in mind readers who are not familiar with elliptic functions, we would like
to mention that we use very little of the extensive lore on this subject. Indeed, from
a pragmatic viewpoint one may regard (2.105) as a definition of the key function
s(z;w,w') in terms of elementary functions. If one now takes (2.106) for granted,
and uses (2.89) and (2.91) to introduce the Weierstrass P-function in terms of s(z),
then almost all further properties we need readily follow. But if need be, we can
highly recommend Ref. [54] to read up on elliptic functions (and, more generally,
the classic special functions entering in Subsection 6.3).

The rational and hyperbolic systems (denoted type I and II, resp.) live on an
unambiguous phase space, and each initial state is a scattering state. By contrast,
the trigonometric and elliptic systems (denoted type III and IV, resp.) give rise
to three distinct phase spaces. The choice of state space depends on whether one
views the particles as moving on a line or on a ring, and—in the latter case—on
whether one wants to regard the particles as distinguishable or indistinguishable.
In all three cases, the internal motion is oscillatory.

In the nonrelativistic case the existence of integrals (conserved quantities) for the
defining dynamics is most easily seen via a so-called Lax pair. We sketch the Lax
pair formalism in some detail in Subsection 2.2 and present Lax matrices for each
of the four types of pair potentials, cf. (2.62) (type I-III) and (2.90) (type IV). We
show how the Lax matrix can be used to deduce that the rational and hyperbolic
interactions lead to a scattering of soliton type. That is, the asymptotic momenta
are conserved and the position shifts factorize as if independent pair collisions were
taking place, cf. (2.81)-(2.84).

In Subsection 2.3 we introduce the periodic and nonperiodic Toda systems (de-
noted type V and VI, resp.). In the former, oscillatory motion takes place, whereas
the latter lead to soliton scattering. Once more, the integrals can be taken to be
power traces or symmetric functions of Lax matrices, given by (2.99) (type V) and
(2.101) (type VI). The Toda systems may be viewed as limits of Calogero-Moser
systems, as encoded in the connection diagram (2.104). We detail the arrows in
this diagram for the various Lax matrices and, therefore, for all of the Poisson
commuting integrals at once.
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In Section 3 we present and discuss Poincaré-invariant generalizations of the
Galilei-invariant systems from Section 2. Subsection 3.1 begins by recalling the
pertinent space-time symmetry groups and their representation in the classical me-
chanics description of N free equal mass particles. It is then shown how a natural
Ansatz to introduce interactions in the relativistic context can only be made to work
provided the ‘pair potentials’ that enter are natural generalizations of the potentials
characterizing the Calogero-Moser and Toda systems from Section 2. The struc-
ture of the time and space translation generators suggests candidates for Poisson
commuting integrals, and these functions (given by (3.39), combined with (3.23),
(3.24) and (3.34)—(3.36)) are indeed in involution. Thus, integrability follows as a
bonus from Poincaré invariance.

In the relativistic case, soliton scattering for the type I, II and VI systems can
be shown without using a Lax matrix; moreover, no Lax matrix is needed to handle
the connections in the diagram (2.104)—all of which are detailed in Subsection
3.1. However, in Subsection 3.2 we show that the commuting Hamiltonians can
be tied in with Lax matrices. These matrices are given by (3.55)—(3.58) (type I-
III), (3.64)—(3.67) (type VI), (3.68)—(3.70) (type IV) and (3.78)—(3.83) (type V).
Cauchy’s identity (3.53) and its elliptic generalization (3.72) are the key to the
connection between the Poisson commuting functions (3.39) and the symmetric
functions of these matrices.

In the nonrelativistic limit 8 — 0 (with 8 = 1/¢, ¢ denoting the speed of light)
the Lax matrices reduce to their counterparts from Section 2, as detailed in (3.61).
(Up to diagonal similarity transformations in some cases.) The resulting relation
(3.62) between the nonrelativistic and relativistic Hamiltonians yields nonrelativis-
tic integrability as a corollary of the functional equations (3.41) encoding relativistic
integrability.

Section 4 deals with the quantum versions of the nonrelativistic and relativis-
tic systems. Subsection 4.1 has an introductory character. First, we present an
algebraic notion of quantum integrability, which is tied to the systems at hand.
Specifically, at the nonrelativistic level it amounts to requiring the existence of N
commuting independent PDOs, including the defining dynamics. As a PDO the
latter is unambiguously determined—in contrast to the AAO quantization of the
defining relativistic dynamics, which exhibits ordering ambiguities. In the relativis-
tic case, therefore, we speak of an integrable quantization whenever the ordering in
the classical Hamiltonians is such that the corresponding quantizations commute
as AAOs.

The remainder of Subsection 4.1 prepares the ground for a reinterpretation (by
means of unitary joint eigenfunction transforms) of the commuting PDOs and
AAOs as commuting Hilbert space operators. This problem is particularly dif-
ficult for the AAQOs, and only partial solutions have been obtained to date. It is
not widely appreciated what is involved here; in fact, even in the commuting PDO
case there are no general results ensuring that a unitary joint eigenfunction trans-
form exists. For AAOs this existence problem is greatly aggravated by multiplier
ambiguities, as explained in Subsection 4.1. We have also summarized some of
the Hilbert space notions that are essential for a mathematically sound analysis—
notions that are, unfortunately, still regarded as outlandish in theoretical physics.

No Hilbert space lore is needed to understand Subsections 4.2 and 4.3, however.
Here, we address the issue of quantum integrability at the nonrelativistic and rel-
ativistic levels, resp.; this issue has an algebraic rather than an analytic character.
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As it happens, it is actually more straightforward to establish quantum integrability
in the relativistic than in the nonrelativistic case. Indeed, with the ordering choice
exhibited by (4.53) (type I-IV) and (4.58) (type V and VI) quantum commutativity
comes down to the functional equations (4.54) and (4.60), resp. We supplement
the direct proofs of nonrelativistic quantum integrability discussed in Subsection
4.2 with a novel proof at the end of Subsection 4.3. Here we derive nonrelativistic
integrability indirectly, as a corollary of relativistic integrability.

Section 5 is concerned with action-angle transforms—canonical maps (z,p) —
(z,p) that conjugate the Poisson commuting Hamiltonians Hy,(x, p) to Hamiltonians
Hy(p),k = 1,... ,N. Thus the new Hamiltonians depend only on the actions
P1,--. ,Pn. Therefore, they give rise to evolutions of the angles &1, ... ,Zy that are
linear in the respective evolution parameters (‘times’). As a result, the commuting
dynamics are simultaneously ‘diagonalized’: The action-angle map is the classical
analog of the quantum joint eigenfunction transform.

Whenever the commuting Hamiltonians generate complete flows, the Liouville-
Arnold theorem ensures the existence of action-angle maps on suitable invariant
submanifolds of phase space. Unfortunately, this existence theorem is of quite lim-
ited practical use, but it does guarantee that one is not wasting time in searching for
explicit diagonalizing canonical transformations. The theorem is already sketched
at the end of Subsection 2.1, but for a good understanding of its subject matter it
is important to study concrete examples.

We present various elementary examples in Subsection 5.1. In particular, this
enables us to link up action-angle maps and the wave maps from scattering theory,
in a very simple setting where phase diagrams can be used. In Subsection 5.2 we
elaborate on this link, showing in particular how the wave map formalism for a
large class of repulsive pair potentials entails that all of these potentials give rise
to integrable systems. Therefore, it is crucial to single out the systems of type I, IT
and VI (for which the wave maps exist on all of phase space) by the extra feature
of soliton scattering. (The wave maps are rather well known in quantum mechanics
(usually as Mgller operators), but not so in classical mechanics. The reader might
consult Ref. [51] for the wave map formalism in the latter context. More generally,
in Ref. [36] wave maps form the starting point for a great variety of contexts in
which scattering takes place, including classical mechanics.)

In Subsection 5.3 we detail the construction of an action-angle map for the
relativistic type II system. This map is, roughly speaking, an interpolation of the
incoming and outgoing wave maps. From the construction and its specialization to
the nonrelativistic type II system and the type I systems, one readily deduces some
highly remarkable duality properties. Specifically, the inverse of the action-angle
map serves as an action-angle map for dual systems living on the action-angle
phase space, and these dual systems are once more Calogero-Moser systems—as
encoded in (5.42). Further spin-offs include a rather explicit picture of an extensive
class of evolutions and, as a consequence, a complete elucidation of their long-time
asymptotics, cf. (5.78)—(5.84).

Towards the end of Subsection 5.3 we also take a brief look at action-angle maps
for type III systems. There is much more geometry involved here, since oscillatory
motion and partial equilibria are present. On the other hand, the dual systems
are once more characterized by a solitonic long-time asymptotics. In this case,
however, each of the dual dynamics (of which (5.91) is the simplest representative)
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gives rise to a codimension-one subvariety containing states that do not have a free
asymptotics (due to coinciding velocities, roughly speaking).

In Section 6 we consider eigenfunctions of the PDOs and AAOs at hand, with a
bias towards their suitability as kernels of diagonalizing unitaries. This is a subject
where many of the key questions are still open. For instance, no eigenfunctions at
all are known for the Toda AAQOs. Open questions abound for the type IT and IV
systems, too. Even in the type III case, where transforms in terms of multivariable
orthogonal polynomials are known both for the commuting PDOs [50, 16] and for
the commuting AAQOs [23, 24], the polynomials are not known in a sufficiently
explicit way to establish the duality properties expected from the classical level
(save for N = 2 [38)]).

In our survey [38] we have already written on eigenfunctions vs. Hilbert space
aspects, and our choice of topics for Section 6 supplements the discussion that can
be found there. In particular, we do not reconsider the connections with harmonic
analysis on homogeneous spaces associated with classical and quantum groups and
algebras—a subject that has mushroomed considerably over the past few years.
Instead, we mention a few recent references (among many) that are concerned with
this theme from various partly complementary viewpoints, namely Refs. [19, 9, 10,
27, 4]; further literature can be found there.

Subsection 6.1 has an introductory character. We specify the PDOs and AAOs to
be discussed and reappraise the problem of their Hilbert integrability—the question
whether and when they can be defined as commuting Hilbert space operators via
a unitary joint eigenfunction transform. As simple examples, we present two such
transforms for the type I and II PDOs and AAOs.

In Subsection 6.2 we sketch how multivariable orthogonal polynomials emerge
as joint eigenfunctions for the type III PDOs and AAOs. As we see it, the key
idea dates back to Sutherland’s paper [50]: All of the operators at issue take a
triangular form w.r.t. a suitable partial order on a well-known orthonormal base
for the symmetric subspace of L?(TY) (‘“free boson eigenstates’), with TV the N-
torus. In this case, the multiplier ambiguity for the AAO eigenfunctions can be
ignored, since any nontrivial multiplier would spoil the polynomial character of the
latter. (But when one tries to solve the ‘band’ problem, one needs nonpolynomial
eigenfunctions interpolating the polynomials, and so the ambiguity reappears.)

We also use the type III eigenfunctions to illustrate how the nonrelativistic
‘anyon’ particles turn into fermions at the relativistic level. Moreover, at the end of
Subsection 6.2 we compare the quantum and classical type III transforms, reading
off exactness of semiclassical quantization.

In Subsection 6.3 we sketch some of our (hitherto unpublished) results on eigen-
functions for the N = 2 relativistic type II and IV systems. As it turns out, the
integral representation for the former which we have found admits a natural gener-
alization to four coupling constants instead of one, and then yields eigenfunctions
for the hyperbolic version of the trigonometric Askey-Wilson AAO [3]. These novel
eigenfunctions have a great many remarkable properties. In particular, they are
not only self-dual (in a sense generalizing the self-duality of the relativistic type II
system), but they are also simultaneous eigenfunctions for two commuting Askey-
Wilson type AAOs acting on the same side of the duality picture.

The Askey-Wilson polynomials can be obtained from these functions by analytic
continuation and discretization of one of the two pertinent variables. The self-
duality mentioned above already left its footprints for these polynomials, but the
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second commuting AAO for the continuous variable has a trivial action on the
polynomials. This is because the latter are periodic, with the period equal to the
step size of the relevant AAO.

The Askey-Wilson polynomials can be tied in with compact quantum groups;
more generally, various g-special functions correspond to quantum (Hopf) algebras.
(See for example Refs. [12, 20, 21, 53] and references given there.) It is therefore
natural to expect that functions of the type occurring in Subsection 6.3 are again
related to algebraic objects. Candidates include non-compact quantum groups,
whose representation theory is still in its infancy.

Subsection 6.3 is concluded with a description of type IV N = 2 eigenfunctions
corresponding to special coupling constants. The relativistic eigenfunctions gen-
eralize the Lamé functions, represented in a form that can be found in Ref. [54].
Among other things, we have not yet been able to show that these functions give
rise to an orthonormal base for the pertinent Hilbert space, as we do expect. (This
is one reason why Ref. [45], already ‘promised’ in Ref. [38], has not been published
yet.)

We were originally planning an additional section on relations with various well-
known infinite-dimensional integrable systems. However, this had to be omitted, so
as to keep these lecture notes (and the time spent in writing them) within bounds.
Let us, therefore, finish this introduction by just mentioning some of these relations
and a few references.

First, as regards the classical versions of the systems, these have already been
compared to various soliton field theories and soliton lattices in Ref. [38], cf. also
Refs. [47, 40, 42]. These infinite-dimensional integrable systems include the Korteweg-
de Vries, modified KdV, sine-Gordon, nonlinear Schrédinger, Boussinesq, Hirota-
Satsuma and Landau-Lifshitz (XYZ) equations, and the infinite Toda lattice. What
emerges from these results is an intimate relation between the N-soliton solutions
and the N-particle relativistic Calogero-Moser systems for special parameter values.
More specifically, provided the N-soliton scattering maps arising in the infinite sys-
tems are suitably parametrized, they coincide with the N-particle scattering maps
of the pertinent Calogero-Moser system. Moreover, for some of the infinite systems
(including the KdV, modified KdV and sine-Gordon equations), the N-soliton so-
lutions themselves can be obtained via suitable N-particle dynamics, which gives
rise to a natural notion of soliton space-time trajectories.

There is meanwhile considerable evidence that the soliton-particle correspon-
dence turns into physical equivalence at the quantum level (i.e., the same scattering
and bound state structure occurs for the quantum mechanical particles as for the
field- and lattice-theoretic solitons). In particular, it can be shown that the N = 2
transforms of type IT and IV from Subsection 6.3 have the expected properties on
the sine-Gordon and XYZ lines, resp. (cf. also Refs. [38, 44]). However, in the
absence of explicit IV-particle relativistic type II and IV eigenfunction transforms
with all of the required properties (such as unitarity and factorized scattering), the
equivalence remains a conjecture whose plausibility can be disputed.

Finally, we would like to mention a novel theme of more recent vintage than
those surveyed in Chapter 4 of Ref. [38]. This concerns eigenfunctions of quantum
Calogero-Moser models vs. solutions to equations of Knizhnik-Zamolodchikov type.
This relation is currently under active study; most of the relevant literature can be
traced from the recent references [11, 9, 10, 4].
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2. CLASSICAL NONRELATIVISTIC CALOGERO-MOSER AND TODA SYSTEMS

2.1. Background: classical mechanics / symplectic geometry. As men-
tioned above, the N-particle systems at issue describe one-dimensional particles.
The simplest mathematical description of this physical situation is to let each
particle position vary freely over R. An initial state of the system is then en-

coded in a position vector * = (z1,...,7xy) € RY and a momentum vector

p=(p1,... ,pn) € RV, whereas the time evolution is given by Hamilton’s equations
OH OH .

(2.1) ;= ) = j=1,...,N

= @7 Dj _6—33]-’

with H (z,p) the Hamiltonian (energy function) of the system.
As a first example of this setting, consider a Hamiltonian of the form

N
(2.2) H=> p;/2m;+U(z)

=1

where U(z) (the potential energy) is a smooth real-valued function on RY. When
U(x) vanishes, one is left with the sum of the kinetic energies of N particles
with mass m;, and the solution to (2.1) is obviously given by z;(t) = zo; +
tpo,j/mj, p;j(t) =po,j,j =1,...,N. Thus, particle j moves with uniform velocity
Po,j/m; along the line, without ‘seeing’ the remaining particles. More generally,
when U(z) is of the form

N
(2.3) Ulz) =) Vilz))
j=1
the particles move independently of each other in external fields. Then the ODE
system (2.1) decouples and one is left with solving Newton’s ODE F(y) = mg,
where F(y) = —V'(y) is the force field. Since mg?/2 + V (y) is time-independent,
qualitative features of the motion can be read off from a plot of the contour lines

p?/2m + V(z) = E in the (z,p)-plane (phase diagram).
Of most interest for the present lectures is the special case where U(z) is a sum
of pair potentials,

(2.4) U) = Y Vielay — o)
1<j<k<N

This may be viewed as a one-dimensional analog of the three-dimensional gravita-
tional N-body problem. In the latter situation the pair potentials Vi (y),y € R?,
are proportional to 1/]y|, and so the potential energy diverges when collisions occur.
For the Calogero-Moser systems, too, the pair potential is singular at the origin.
To avoid such singularities at least for initial states, one should restrict the range of
variation of the system position vector z. Thus, one chooses initial positions in an
open subset G of RY —the system’s configuration space. Then the space of initial
states—the system’s phase space—is given by the set

(2.5) Q= {(z,p) € BN |z € G}

As just sketched, the choice of phase space Q (the kinematics) depends on the
system Hamiltonian H (the dynamics). Assuming from now on that H is a smooth
function on €, it follows from standard ODE lore that the system (2.1) with initial
value ug €  has a unique solution u(t) € 2 for some t-interval (—=7_,T,) around 0.
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But even in the simplest case where U(x) is smooth on RV and correspondingly one
can take Q = R*N, this local solution need not be extendible to a global solution
on (—o00,00): one or more of the particles may escape to infinity in finite time. In
the ‘next simplest’ case where a collision set is discarded, it can also happen that
collisions do occur after a finite time.

The first question to answer is, therefore, whether for a given uy € Q a global
solution u(t) € Q,t € R, exists. If this is the case, one can ask questions about
the long-time characteristics of the trajectory, such as whether it stays in bounded
subsets of 2 (corresponding to an N-body bound state), or whether it exhibits a
free motion

(2.6) u(t) ~ (% + tv* pr), t— +o0

for asymptotic times (corresponding to a scattering state).

Of course, such questions can be more easily dealt with when one is able to
solve Hamilton’s equations (2.1) in a sufficiently explicit way. But this appears
impossibly difficult for most Hamiltonians of physical interest, and certainly so for
the N-body gravitational Hamiltonian. Accordingly, the latter context gives rise to
simple qualitative questions that are wide open even three centuries after Newton.

The Calogero-Moser and Toda Hamiltonians are notable exceptions to this rule.
An important property of these Hamiltonians is that they are integrable—a notion
we shall discuss shortly. First, however, we would like to recall some geometric
formalism that makes it possible to handle (finite-dimensional) classical mechanics
in a mathematically precise and concise way.

As a quite general state space on which Hamiltonian mechanics can be defined,
one can take a 2N-dimensional differentiable manifold €2 equipped with a nonde-
generate closed 2-form w—a symplectic manifold (Q,w). The cotangent bundle of
an N-dimensional differentiable manifold G' can be equipped with such a form in
a natural way, and we shall mostly specialize to this setting. In particular, view-
ing the phase space (2.5) as the cotangent bundle to the open set G C RV, this
symplectic form reads

N
(2.7) w= Zda:j A dp;

j=1
More generally, fixing a point ug in a symplectic manifold (2, w), there exist coor-
dinates (z(u),p(u)) € R?N for u in a neighborhood U of ug such that w takes the
form (2.7) on U (Darboux’s theorem); such coordinates are referred to as canonical
(or symplectic) coordinates.

Since w is nondegenerate, a 1-form a on Q gives rise to a vector field X(® on 0,
uniquely determined by requiring

(2.8) w(X(@ X) = a(X)

for arbitrary vector fields X. To obtain a dynamics on the symplectic manifold
Q one can now start from any real-valued smooth function H on € and introduce
the associated Hamiltonian vector field Xy = X(“); then the time evolution is
governed by

(2.9) = Xg(u), ue

and the corresponding flow Q — Q,ug — u(t) is written exp(tXg), or briefly etf.
As before, this flow is a priori only locally defined, with the time interval depending
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on ug. When all trajectories stay in (2 for all times, the flow is called complete.
Showing completeness for Hamiltonians of physical interest may be quite difficult.
In purely mathematical work, however, one often assumes that 2 is compact. Then
the completeness problem evaporates, since in that case any Hamiltonian flow is
complete.

In the special (noncompact) setting (2.5), (2.7), we have H = H(z,p) and

N
OH 0H
2.1 H = Zdr: + Z—dp-:
j=1
Y O0H & O0H 0
(2.11) Xy=S (22 2 97 9,
]_2:; ap]’ 837]' amj (9pj
Thus, (2.9) can be rewritten
o (0 1y
(2.12) (z,p)' =SVH, S= < 1y 0 )

which amounts to (2.1).
Returning to the general case, we introduce the Poisson bracket
(2.13)
{3 CF(Q) xC®(Q) = C*(Q), (F,G) » {F,G} = w(Xp, Xq)
(In Sections 2, 3, and 5, we use the symbol C*°(M) to denote the space of real-

valued smooth functions on M.) Recalling the above definition of Hamiltonian
vector fields, this can also be written

(2.14) {F,G} = dF(Xg) = —dG(XF) = —Xr(G) = Xg(F)

It is easily checked that the Poisson bracket equips C*° () with a Lie algebra
structure: {-,-} is bilinear, antisymmetric, and satisfies the Jacobi identity. The
relation to the Lie bracket [-, -] (anticommutator) on the Hamiltonian vector fields
is given by

(2.15) [(Xr, Xa] =X (ra

In the special case (2.5), (2.7) one can write, more concretely,

N
(2.16) {F,G} = (0.,F0,,G — 0,,F0,,G) = VF - SVG

j=1
whence one obtains the canonical commutation relations
(217) {Z‘i,l‘j}:{pi,pj}:(), {a:i,pj}zdij, i,jzl,... ,N

Fixing a Hamiltonian H € C*°(2), one can now characterize the functions Zp C
C*>(9) that are conserved under the H flow e!f—the so-called integrals : One has
(2.18) IeIy<={I,H} =0
Indeed, this follows from
dI

(2.19) S = X (D) = {1, H)
where the argument exp(tXg)(uo) is suppressed. From antisymmetry it is imme-
diate that H € Ti. More generally, assuming I;,... ,I; € Zg, any f € C*(RF)
gives rise to a function f(I1,...,I;) € Ty, as is easily verified. Thus, Zy is an
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(infinite-dimensional) algebra. Using the Jacobi identity one infers that Zg is also
a Lie algebra w.r.t. the Poisson bracket.

We proceed by discussing symplectic maps. First, let us assume that 2 is an open
subset of R>V with coordinates (x,p) and symplectic form (2.7). A diffeomorphism

(2.20) d: OO, (z,p) (2D

onto an open subset Q of B2V is then called a canonical transformation when
the functions &1 (x,p),...,pn(x,p) € C*°(Q) satisfy the canonical commutation
relations

Equivalently, for any (z,p) € Q the Jacobian matrix (D®)(x,p) belongs to the
symplectic group Sp(2N, R), i.e.,

(2.22) (D®)S(D®): = S

A third equivalent definition can be used to introduce a coordinate-free general-
ization. To state this definition, we equip 2 with the symplectic form

N
(2.23) O = di; Adp;
j=1

Then the above map (2.20) is a canonical transformation iff
(2.24) ' = w

A symplectic map (or symplectomorphism) between two symplectic manifolds (€2, w)
and (Q,©) is now a diffeomorphism ® from 2 onto 2 such that (2.24) holds true.
Equivalently, one can require that ® preserve Poisson brackets. That is, letting

(2.25) F=®F, FeC>®0Q)
one should have
(2.26) {F,G} = {F,G}", VE,G e C*(0)

A complete Hamiltonian flow is readily shown to yield a 1-parameter group of
symplectic maps exp(tH) : (,w) — (Q,w).

For canonical transformations one often interprets the functions #(z,p) and
p(z,p) as new coordinates on 2, which have the special property that the sym-
plectic form w given by (2.7) can be written as ) ;d&j A dpj; Thus, these coordi-
nates are canonical, just as the coordinates z, p, cf. the definition below (2.7). The
key property of canonical transformations is that they leave Hamilton’s equations
invariant. That is, setting

(2.27) H(a) = H(E(w), E=07', a=(&,p)
and assuming 4(t) solves the Hamilton equations
du N
(2.28) & SV H(a)
dt
in the new coordinates, one gets a solution u(t) = £(4(t)) to the Hamilton equations
d
(2.29) == SV H(u), u= (z,p)

dt
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in the original coordinates. (Indeed, this follows from the chain rule and the canon-

icity property (2.22).) Reformulated in the coordinate-free setting of symplectic
maps, this state of affairs amounts to a commutative diagram

u(t) € Q

A
(<33
—~
N
Mm
=

(2.30)
exp(tH) exp(tH)

ug € Q 13,06(2

Y

)
i.e. to the equality

(2.31) el =Coetlod, €=, H=E(H)

We are now prepared to discuss the notion of integrability. Fixing H € C*° (),
one calls H an integrable Hamiltonian when there exist integrals [y = H, L5, ... ,In
that are independent and in involution. That is, their gradients dI;,... ,dIy are
linearly independent on an open dense subset of  and they mutually (Poisson)
commute.

Let us first illustrate this definition with a trivial, yet instructive example. Con-
sider the Hamiltonian H(z,p) = p; on the phase space (2.5). Then any I € C*°(Q)
that does not depend on x; belongs to Zy. In particular, H is integrable in the above
sense, since one can choose, for instance, I}, equal to x; or pg for k = 2,... ,N. Each
of these 2V~ choices leads to distinct maximal abelian subalgebras of Zyy (which is
itself nonabelian), consisting of functions f(Iy,...,In), f € C®°(RN). (As is read-
ily seen, a symplectic form cannot vanish on a k-dimensional subspace for k& > N;
this is why the subalgebras cannot be enlarged without violating commutativity.)

The definition of integrability just exemplified can be widely found in the physics
literature. It is however not strong enough to guarantee the applicability of the
Liouville-Arnold theorem. Moreover, it does not single out Calogero-Moser Hamil-
tonians among N-particle Hamiltonians of the form

N
1
(2.32) H:§Zp§+g2 S Vi -wm), g>0
j=1 1<j<k<N

with a repulsive pair potential V' (z), since any such Hamiltonian is integrable. In
this subsection we do not elaborate on the latter assertion (this is deferred to Sub-
section 5.2), but we do want to discuss the Liouville-Arnold theorem. Accordingly,
we should first sharpen the above definition of integrability.

We shall henceforth call a Hamiltonian Liouville integrable iff (i) it is integrable
in the above sense; (ii) the flows generated by I, ..., Ix are complete. To appre-
ciate the additional restriction, it is important to be aware of the fact that any
Hamiltonian H on a symplectic manifold (2, w) is integrable in a neighborhood U
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of any point ug € § for which dH (up) # 0. Indeed, it can be proved that there
exist canonical coordinates z(u), p(u) on U such that H(u) = p; (u) on U; therefore,
the example just discussed applies. Of course, the crux is that typically &/ will not
be complete under the flows exp(t;I;).

Let us now assume that a given H € C°°(Q) is Liouville integrable. Fixing a
point ug € Q at which the gradients dIy, ... ,dIy are linearly independent, consider

(2.33)
M (up) = {u(t)|t € ]RN}, u(t) =exp(t1 1) - -exp(tnIn)(uo)

This is a well-defined subset of (2, since the flows are complete on ). Moreover,
linear independence of the gradients entails that M (ug) is an N-dimensional sub-

manifold. Since the flows commute, the set {t € R |u(t) = ug} is a discrete
subgroup of RV . From this one infers that M (ug) is diffeomorphic to TF x RN—*
for some k € {0,1,...,N}. (In particular, when M (ug) is compact, one must have
k=N.)

These somewhat sketchy observations are the starting point for the Liouville-
Arnold theorem. This theorem asserts that on suitable disjoint, open and connected
submanifolds Q;,7 = 1,2,... there exist canonical coordinates z(u), p(u) such that
the commuting Hamiltonians I = H, I», ... ,Ix depend solely on py,...,pn (the
so-called action variables), whereas the angle variables x1,... ,xn vary over R or
the torus T!. Thus the flow exp(t;I;),j € {1,..., N}, amounts to a translation of
the angle variables that is linear in the evolution parameter ¢;.

Of course, our description of this theorem is incomplete as long as we do not
define the qualifier ‘suitable’. We shall have more to say about this in Section 5. For
the time being we mention that ‘suitable’ includes first of all the assumption that
the gradients dIy, ... ,dIn are linearly independent on (2; and that the commuting
flows are complete on ;. This assumption already entails that ; is a union of
N-dimensional submanifolds of the form (2.33). As a second assumption, these
submanifolds of 2; should all be diffeomorphic.

For our purposes it is convenient to reinterpret the existence of action-angle
coordinates on the submanifold 2; as the existence of a symplectic map

(2.34) O (Q,w) = (i), e (&)
onto a new manifold of the form
(2.35) O; = M; x A;
with
(2.36) M; =TH xRV "%k, €{0,1,...,N}
and A; an open connected subset of RV ; the symplectic form on Q; reads
N
(2.37) @i =Y ditj A dp;
j=1
Here, p varies over A;, Z1,...,%y, over (—m, 7] (so T! is viewed as R/27Z) and
ZTki+1,... oy over R. This reinterpretation is notationally and conceptually use-

ful, since our starting point differs considerably from the abstract, coordinate-free
setting of the theorem. Indeed, our Hamiltonian H is typically given as a concrete
function of canonical coordinates z, p, whose range of variation serves to define ().
Whenever one can show that H(z,p) is Liouville integrable, one should try and
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concretize the submanifolds ; and action-angle maps ®;, and obtain in particular
explicit functions of p for the transformed integrals. In Section 5 we shall illustrate
this general program with several concrete examples.

2.2. Calogero-Moser systems. The Calogero-Moser systems are dynamical sys-
tems defined by N-particle Hamiltonians of the form (2.32) with a special choice
of pair potential V(x). One can distinguish four different types, denoted by I-—IV:

(2.38) L 1/22 (rational)
(2.39) . p?/4sh®(px/2), >0 (hyperbolic)
(2.40) OI.  p?/4sin®(uz/2), p>0 (trigonometric)
(2.41) IV. P(r;w,w'), w,—iw’ >0 (elliptic)

Here, P is the Weierstrass function, a doubly-periodic meromorphic function with
primitive periods 2w, 2w’ and double poles at the period lattice. The type I—III
systems can be viewed as limiting cases of the type IV system, since one has

(2.42)

1/22, w = 00, W' = ioco

P(r;w,w') =< v?/3 +v?/sh?vz, w = 00, W' =in/2v
—v?/3+v? [sinve, w=m/2v, W =ioco
Consider first the type I and II cases. Discarding the collision sets z; = z; from

RY | one obtains an open set ]Rg with N! connected components, corresponding to
the various particle orderings. On ]Ri_g the potential energy is a smooth function.
Fixing an initial point (zo,po) € RY x RV, the energy Ey = H (zo,po) is conserved
along the corresponding orbit (z(t), p(t)). Since the potential is positive, this leads
to an upper bound on |p(t)| and a nonzero lower bound on the particle distances.
Therefore, no collisions can occur, and escape to infinity in finite time is excluded,
since |%;(t)| = |p;(t)| < C along the orbit. Hence the flow is complete, and we may
as well restrict attention to the phase space

(2.43) Q=G xRY, G={zecRV ey <...<x;} (I, 10)

with its canonical form (2.7).

Next, consider the system of type III, often called the Sutherland system. In this
case one can distinguish three different versions of the Hamiltonian. First, one can
again avoid the singularities of the potential by deleting the sets z; = 2; (mod 27 /)
from RV . This yields an infinite number of connected components, each giving rise
to phase spaces on which the Hamiltonian flow is complete. (This follows in the
same way as before from energy conservation.) We restrict attention to one of these,

(2.44)
Q=G xRY, G={reRV |y <...<z1,21 —2N <27/p} (1)

This choice amounts to a fixed ordering and minimal distances between the par-
ticles. We equip Q with the form (2.7), and so obtain once more a symplectic
manifold of the cotangent bundle type.

The choice of phase space just delineated is mathematically acceptable, but
appears unnatural from a physical standpoint. One would rather like to view the
x;’s as encoding angular positions, so that the type III Hamiltonian describes N
particles on a ring that interact via an 1/d? potential, where d is the distance
between particles as measured in the plane of the ring.
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This interpretation can be mathematically implemented as follows. Consider the
map

(2.45)
T:(z1,...,2N,P1,--. ,pN) — (eN + 270/ p, 21, ... ,EN—1,DN,P1,--- ,PN—1)
Restricted to €, this map is bijective, has no fixed points, and is symplectic. As

such, it generates a symplectic Z-action on Q, and we may divide out this action
to obtain a new symplectic manifold

(2.46) Q=Q/%

equipped with the quotient form, again denoted by w.
A simple choice of coordinates for €2 reads

(2.47) Q~ {(z,p) € RV |z € Fn}
where Fiy is defined by
(2.48) Fn={zeRN|-n/u<oy < - <z <7/p}

This choice is in accordance with the above-mentioned physical picture of particles
occupying distinct positions on a ring, with the particles viewed as indistinguish-
able. Indeed, an initial state of this physical system can be uniquely encoded in N
phase factors exp(iz;/u),j = 1,... ,N,z € Fy, regarded as positions on the ring
S! c C ~ R?, and in associated momenta pi,... ,py € R.

From a mathematical point of view the choice (2.46) and coordinatization (2.47)
are also natural. Indeed, the type III Hamiltonian on Q is invariant under the
Z-action generated by T (i.e., it takes the same values on orbits of T"). Thus, its
(complete) flow on € descends to a well-defined and complete flow on Q. Moreover,
Fn xRY is a fundamental set for the Z-action on Q. That is, for a given (Z,p) € Q,
there exist uniquely determined =z € Fiy,l € {1,...,N} and m € Z such that

1 = I +2mm/p
(2.49) IN_141 = EN+2Tm/u
’ IN_j42 = F1+2r(m—1)/p
N = F1+2r(m—1)/p
and then p is given by
po= D
(2.50) PN-i+1 = PN
PN—-1+2 = D1
PN = D1

At this point it should be emphasized that the coordinatization (2.47), (2.48)
is a set-theoretic one: each I-orbit in € is labeled by a unique (z,p) € Fx x RV,
There are no globally defined smooth coordinates on €2, just as no global smooth
coordinate function exists on T'. Of course, on the open dense coordinate patch
{z1 < m/p} the coordinates are smooth, and on this patch the quotient form is
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given by (2.7). However, one cannot simply discard the subset {z; = w/u}, since
the H flow is not complete on the submanifold {z; < 7/u}.

Alternatively, one can view the particles on the ring as distinguishable. This can
be encoded mathematically by employing the phase space

(2.51) Q' =0/7'

where Z' denotes the Z-action generated by

(2.52) N & (2,p) — (@1 + 27/t on + 27/ 11,)

One way to coordinatize ' is to take

(2.53) Q' ~ {(z,p) € BN |z € F{}

where
N

(2.54) Fy={z€G|Y z;j € (—-nN/p,=N/u]}
j=1

Indeed, for a given (Z,p) € Q) one can take

(2.55) zj=&; +2rm/p, pj=pj, j=1,...,N

where m € 7Z is uniquely determined.

These three interpretations of the type III Hamiltonian illustrate that the canon-
ical coordinates z and p in Hamilton’s equations (2.1) may have several meanings,
depending on what one intends to model physically. The same ambiguity occurs
for the type IV systems, since the graph of P(z) on (0, 2w) has the same features as
that of 1/sin®(7z/2w). Thus, replacing u by m/w in the above, one obtains three
mathematically and physically distinct versions of the elliptic system.

For all of the above Hamiltonians H(z, p), the function

N
(2.56) P=>p
j=1

belongs to Zpg, cf. (2.18). This expresses conservation of total momentum under
the H flow. (Reciprocally, the conservation of H under the P flow

(2.57) e'"(z,p) = (z + (y,---,¥),p)

amounts to translational invariance of the potential energy.) Thus the Hamiltonian
H is integrable for N = 2, but this clearly holds true for any Hamiltonian of the
form

(2.58) H(z1,m3,p1,02) = p1/2+p3/2+ U(zy — 22)

The Calogero-Moser Hamiltonians, however, remain integrable for NV > 2. The
existence of N independent integrals can be most easily seen via a so-called Laz pair
formulation of the Hamilton equations. This concept is also crucial in the context
of infinite-dimensional integrable systems, such as the sine-Gordon field theory. We
continue by describing it in a rather general form that can be applied to the latter
context, too.

Specifically, suppose that L(t), M(t),t € R, are two families of (linear) operators
on a (separable, complex) Hilbert space H such that

(2.59) L=[ML], VteR
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(When dimH = oo and L(t), M(t) are unbounded operators, one needs additional
assumptions. Such technicalities will be ignored here.) Then the spectrum of L(t)
is constant in ¢. This assertion can be quickly proved by using linear ODE methods,
as follows.

We begin by noting that the ODE U = MU has a unique solution U(t) such
that U(0) = 1. Specifically, iteration of the corresponding integral equation

(2.60) Ult)=1+ /Ot dsM(s)U(s)

yields the solution
0 t Sn—1

(2.61) U(t) = 1+Z/ dsl---/ dsp,M(s1) -+ M(sp)
—1/0 0

(Depending on subcultures, this formula is referred to as the Volterra expansion
/ variation of constants formula / Dyson expansion / time-ordered exponential /
product integral.) Defining now the operator family

(2.62) K(t) =U@)LO)U(t)™!

we see that K(t) is similar to L(0), and so its spectrum equals that of L(0). To
complete the proof, it therefore remains to show that K (t) equals L(t). Since this
is true for ¢ = 0, we need only prove K = [M, K]. (Indeed, this linear ODE again
has a solution that is uniquely determined by its initial value.) But this readily
follows from (2.62) by using 0 = (UU "y =U(U ')y + M.

For a finite-dimensional Hilbert space % = C' a second proof applies; this proof
will also lead to the conserved Hamiltonians we are looking for. Let us define the
power traces

1
(2.63) Hy, = EnLk, k=1,2,...
Using cyclicity of the trace, we then get
(2.64) Hy = Te(LLF ') = Te(MLF — LML* 1) =0

so that the traces are t-independent. Now write
o0
(2.65) det(1; + AL) = ) A*S;
k=0

Thus, Si equals the sum of all kth order principal minors of L for £ < [ and vanishes
for k > [. These symmetric functions of L are polynomials in the power traces Hy,
(and vice versa), so we may conclude S = 0. Consequently, L(t) has ¢-independent
spectrum, as claimed.

We mention in passing that the polynomial relations between the Sy and the
H;, boil down to the well-known Newton identities that connect the coefficients
of a polynomial with the sums of its root powers. The relations can be explicitly
determined from the formal power series identity

(2.66)
L+ AS; + A28y + A%S3 + -+ = exp(AH; — N> Ha + N3Hz — -+ )
(To see that this holds for an arbitrary | x! matrix L, first take L = diag(A1, ..., \;);

then (2.66) is clear from the Taylor series In(1+z) = — 3" (—x)7, |z| < 1. But then
(2.66) follows for diagonalizable L, since traces and determinants are invariant under



18 S.N.M. RUIJSENAARS

similarity. Now diagonalizable L are dense in M;(C), so the polynomial identities
obtained by equating powers of A indeed hold true for arbitrary ! x [ matrices.)

To apply this isospectrality result to a Hamiltonian H on a symplectic manifold
(Q,w), it suffices to construct M;(C)-valued functions L and M on € such that
the pair K(t) = K(u(t)), K = L, M, satisfies (2.59). (Of course, u(t) denotes the
H flow; the abuse of notation occurring here is standard.) Indeed, whenever this
can be done, the power traces of L (or, equivalently, its symmetric functions) will
generate a subalgebra of Zg (cf. the paragraph containing (2.18)). At this point it
should be emphasized that there are no general methods for obtaining Lax pairs:
They have to be ‘pulled out of a hat’. Moreover, when they exist, they are highly
nonunique.

For the above Calogero-Moser Hamiltonians Lax pairs were found some twenty
years ago. As it has turned out, a suitable choice for the Laz matriz L not only
yields N integrals in involution, but also yields a key tool for constructing action-
angle maps. We continue by detailing such a choice of L and an associated M for
the hyperbolic case, and then exploit L to derive various results of physical interest.
Subsequently, the three remaining cases will be discussed briefly.

Our type II Lax pair is defined by taking | = N and

(2.67)
. 14 .
Lo = 811 1-6:4)—— 5 =1,...,N
ik 6jkp] + lg( 6]/4)) 2Sh,LL(£L’J — mk)/Q, 7> k ) )

(2.68)

%gu chu(z; — xx)/2

M, = 1= 8 )—ng RIT=

ik ]’”ZshQ —:nl)/ =0 s e 2

To verify that (2.59) is obeyed for this choice, we first calculate
(2.69) Ljj=p; = —0,,H

(2.70)

gu chp(x; — xx)/2
M,L];; = M Ly; — L M,
M, ELjg = 3 Myl = LinMiy) 2 u(a; — au) 2

Recalling (2.32) and (2.39), we see that the two right-hand sides are indeed equal.
The off-diagonal elements yield

—igp® chp(z; — xy)/2

2.71 Ljx=
211) ik 4 sh?p(x; —xp)/2

(&; — &)

which should be compared to
(2.72)

igp® chu(z; —xy)/2
4 sh?p(z; —xp)/2

From this one infers that it remains to show R;; = 0. To this end, one can combine
the terms with summation index [ # j, k and use the elementary functional equation

(2.73) (chashb — shachb)sh(a + b) + sh®a — sh?h = 0
with a = p(z; — x;)/2 and b = p(z; — xx) /2.

[M L]Jk Jkka LJJMJk + Rjk -

(pk — pj) + R
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The upshot is that the power traces Hy and symmetric functions Sy, of the Lax
matrix (2.67) are conserved under the H flow. Obviously, we have

(2.74) H =TtL=P, H,= %TrLz =H
and
1 N
(2.75) Hi =2 0§+ Uk(z,p), k>2
j=1

where Uy, has degree < k in p1,... ,pN.

From this one readily infers that the gradients of Hy,...,Hy are linearly inde-
pendent on an open dense subset of Q. (Fixing A > 0, the determinant of the N x N
matrix with rows A\=*"1(V,H})(z, \p) is a real-analytic function on Q. Hence it
either vanishes identically or on a closed nowhere dense subvariety of 2. Assuming
the first case applies, one obtains a contradiction: taking A — oo, the determinant
converges to a Vandermonde determinant, which is nonzero for py, ... ,py distinct.)
In fact, the gradients are independent on all of €2, as we will see later on.

Next, we turn to showing involutivity of the integrals. One way to prove this
property proceeds via the long-time asymptotics of the flow. The first step of the
argument (which is in essence due to Moser [25] ) consists in showing that for any
initial point (zg,po) € 2 one gets

(2.76) zj(t) ~ a:]i + tpji, pj(t) ~ pji, t— +oo
with
(2.77) pN > >pr, DA <o <py

In view of the repulsive character of the interparticle forces, this result is very
plausible. The complete proof (which is quite subtle) exploits this physical intuition,
and for brevity we skip it.

The second step is easy. Recalling first

(278) Cu = {Hk,Hl} €1y
(cf. the paragraph containing (2.18)), we obtain
(2.79) Cri(wo,po) = Cri(x(t),p(t)), VEeER

Now each term in Cy; contains at least one factor 1/shp(x; —2;)/2, so taking t — oo
in (2.79) and using (2.76), we deduce Cy; = 0, as desired.

Combining the asymptotics (2.76) with the properties of the Lax matrix, we
can easily arrive at further conclusions of physical interest. First, using (2.67) we
deduce

(2.80) L(x(t),p(t)) ~ diag(pi’, ... ,pN), ¢ = +o0
Second, combining (2.80) and isospectrality, we obtain

(2.81)
pj+ =py_jy1» J=1,...,N (conservation of momenta)

Third, let us assume that the scattering map

(2.82) S:(z™,p7) > (zF,p")
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is a canonical transformation. (This is plausible, since it amounts to a limit of
t-dependent canonical transformations, cf. Subsection 5.2.) If we then define A; by
setting

(2.83) m}_Hl =z; +4;
and use (2.81), it follows that 0A;/0x;; = 0. Thus, A; depends only on p~
and can be determined by choosing x, ...,z such that the collisions take place
approximately pairwise. But then one clearly gets
(2.84) Aj(p7) = Z o(p;,p, ) (factorization)

k#j

where 0(p,p’) denotes the position shift incurred in a 2-particle collision with as-
ymptotic momenta p,p'.

The two properties (2.81) and (2.84) are the hallmark of soliton scattering:
the Calogero-Moser particles scatter just as the soliton solutions to various two-
dimensional integrable PDEs (such as the Korteweg-de Vries and sine-Gordon equa-
tions). In Section 5 we shall elaborate on the above findings, and show in particular
that the maps (z,p) — (z*,p*) may be viewed as action-angle maps. Here, we
only add that completeness of the flow exp(txH},) (and hence Liouville integrability
of H) is easily established. Indeed, conservation of H yields an upper bound on
|p(t)| and a nonzero lower bound on particle distances. Using these bounds one
infers that |dz;/dtg| is bounded above, so escape to infinity in finite time cannot
occur either.

Next, we take a brief look at the remaining cases. First, the above discussion
applies verbatim to the type I system: One need only send p to 0 in the equations
(2.67), (2.68), and (2.70)—(2.72). Taking now p — ip in these equations, they
clearly apply when H is taken to be the Sutherland Hamiltonian (2.32), (2.40), and
Q (2.44) is chosen as phase space. Changing (2.73) accordingly, it follows once more
that one is dealing with an isospectral flow. As is easily checked, the trigonometric
Lax matrix satisfies

(2.85) L(D(z,p)) = SLL(z,p)S_, (x,p) €Q

where T is the generator (2.45) and S_ the antiperiodic shift,

0 1 0

2.86 S = 5

(2.86) 0 0 1
10 0

From this similarity relation we deduce that the power traces on € descend to
smooth functions on the quotient manifolds 2 (2.46) and Q' (2.51). Independence
and involutivity of Hy,...,Hpy on all three phase spaces now follow by analytic
continuation in g from the hyperbolic case.

Of course, no scattering takes place in the Sutherland case. Choosing ) as phase
space, the center of mass

N
(2.87) % Y x;=X e ()
j=1
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moves uniformly along the line under the H flow. The distances between the
particles are bounded above by 27/, and one is therefore dealing with an oscillatory
motion (classical N-particle ‘molecule’).

The function X is not invariant under I', so it does not descend to a smooth
function on Q2 and Q'. (The physical picture of particles on a ring does not allow
for an unambiguous center of mass position on the ring either.) The X flow on Q,
given by

(2.88) e (z,p) = (z,p— (a/N,...,a/N))

is invariant under I', however. Therefore, it descends to a smooth symplectic flow
on  and . Accordingly, the associated vector fields are locally, but not globally
Hamiltonian. This reflects the fact that the quotient manifolds are not simply-
connected. More specifically, (2.46) and (2.51) entail m; (Q) = 71 (Q') = Z, since Q
is convex and hence simply-connected.

Replacing 27/ u by 2w, the last two paragraphs also apply to the type IV system.
In this case, too, a Lax pair formulation exists. Here, however, it turns out to be
crucial to let L and M depend on an additional spectral parameter A € C. Such a
Lax pair was introduced by Krichever [22], who used the Lax matrix for constructing
an action-angle map. His Lax matrix is expressed in terms of the Weierstrass o-
function o(z;w,w’), but both here and later on it is convenient to trade o(x) for
the 2w-antiperiodic function s(z) defined by

(2.89) s(z;w,w') = o(z;w,w') exp(—n(w,w")z? /2w)
Moreover, we only detail the Lax matrix: We choose
s(xj —xk + A)

s(\)s(z; — k)’
This matrix is a similarity transform of Krichever’s Lax matrix, so it yields the

same symmetric functions and power traces. In particular, using the well-known
identity

(2.90) L, = 5jkpj +ig(1—5jk) 5Lk=1,... N

o(x+ No(x —N)

2.91 = P(\) —
(2.91) ey =P —P@)
we obtain
(2.92) Hy = %Trﬁ =H- %gQN(N - 1PN
Moreover, in this case one readily verifies
(2.93) L(T(z,p)) = 8% L(z,p)Sy, (z,p) €
where I is given by (2.45) with u — m/w and Sy is the periodic shift,
01 --- 0
(2.94) Sy = o T
00 --- 1
1 0 --- 0

Therefore, the functions Hj, € C°°(Q) descend to smooth functions on Q and €.
From our later account of the relativistic version of the type IV system it will
transpire that the symmetric functions Si () of L (2.90) (and hence its power traces,
too) are polynomials in g,p; and P(z; — xx),j,k = 1,..., N, with A-dependent
coefficients that are real for A purely imaginary and not equal to 2kw', k € Z;
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furthermore, Si(A;) and S;(\2) commute also when A; # Ao. At this point, this
is very far from obvious, of course. But the linear independence of dH;,... ,dHy
on open dense subsets of the phase spaces Q, Q and ' follows in the same way as
before, and once we know H is integrable, we can deduce its Liouville integrability
(viz., completeness of the Hy flows, k =1,... ,N) just as for the type III case.

As we have seen above, the type I-III Hamiltonians H may be viewed as spe-
cializations of the type IV Hamiltonian H, cf. (2.42). The relation of L(IV) (2.90)
to L(IT) (2.67) and its associated type III (u — iu) and type I (u — 0) versions
remains to be explained, however. It is convenient to do so at the end of the next
subsection.

2.3. Toda systems. The Toda systems are defined by Hamiltonians of the form
| N
(2.95) H=353 0 +U)
j=1

with U(z) given by
(2.96) V. a2(2§\;2 eM@i=2i=1) 4 emlz1=2n)) g 1 >0 (periodic Toda)

(2.97) VL. E;V:2 eM@i=Ti-1) >0 (nonperiodic Toda)

In both cases U(z) is smooth on R, so as phase space we should take
(2.98) Q=G xRY, G=RV (V, VI)

Since U (z) is positive, energy conservation yields an upper bound on |p(t)|, and
so escape to infinity in finite time cannot occur. Hence, the H flows of type V and
VI are complete on 2. In the former case energy conservation also yields an upper
bound on particle distances, so one gets an oscillatory motion for arbitrary initial
states (‘Toda molecule’). In the latter case the interparticle forces are repulsive,
and so each initial state is a scattering state.

The existence of N independent integrals can be established once more via a
Lax pair formulation of the H flow. Here, we only detail the Lax matrix L. For
the periodic Toda system it is important to let L depend on a spectral parameter
w € C*. Specifically, one can take

L(V)jk = &jpj+0jk—1 +a’dj e exp(u(z; —z-1))
(2.99) —(ia)Nwéjnok — a®(ia) " NwT' ;1 6kn exp(p(z — zn))
so that
1
(2.100) H =TrL=P, H,= 5TrL2 =H

(When N equals 2, one should add the constant a?(w + 1/w) to H.) For the
nonperiodic case we choose

(2.101) L(VI)jr = 6jkpj + 6jk—1 + 0j k1 exp(u(z; — zj-1))

and then (2.100) holds true again.

Using the argument below (2.75), one deduces once more that the power traces
H,,... Hy are independent. Taking for granted that Hs,... ,Hy € Zp, one
also infers completeness of the flows exp(txHy) from H being conserved. For the
nonperiodic Toda case one can again exploit the repulsive character of the forces to
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prove (2.76) and (2.77), and then involutivity and the soliton scattering properties
(2.81) and (2.84) follow in the same way as for the hyperbolic case.
Next, we substitute

(2.102) zj = x; —2jp 'na, j=1,...,N

in the Lax matrix L(V)(z,p), yielding a new matrix-valued function L(*)(z,p) on
Q. Since (2.102) may be viewed as a canonical transformation on €2, the power
traces of L@ still Poisson commute. Now we clearly have

im L@ —
(2.103) lim L(®) = L(VI)

so the latter Hamiltonians converge to the power traces of L(VI). Therefore, the
nonperiodic Toda system may be obtained as a limit of the periodic one.

To conclude this section, we detail similar limit relations between the Lax ma-
trices for the six types of systems introduced above. These can be encoded in the
following hierarchy:

2-period level v

(2.104)

1-period level m =—F II — VI <«—— V

0-period level I

The transition V — VI was specified in the previous paragraph. Moreover, the
relations between the type I-III Lax matrices were already described in the previous
subsection: L(II) and L(IIT) (and hence H and its commuting integrals) are related
by analytic continuation in g, and taking u — 0 yields L(I). The relation between
H(IV) and H(I)-H(III) can be read off from (2.42), but the transition L(IV) —
L(I)-L(III) is not obvious from (2.90) and (2.67)—if only because (2.90) depends
on a spectral parameter and (2.67) does not. To elucidate this transition (and also
for later purposes) we need more information on s(z).

First, using the product representations for the Weierstrass o-function, Le-
gendre’s relation, and (2.89), we obtain

(2.105)
N 2w oz, oy (1— ¢ exp(inz/w))(z — —x)
s(z;w,w") —sm(%)ll;[l (1= g2y
(2.106)
N 20 irx? it v (1 —¢> exp(wra:/w N(x — —x)
s(r;w,w) ~o X (— 2w’ H )2
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where
(2.107) q = exp(inw'/w), §= exp(—irw/w')
Hence we have

x, w = 00, w' = ico
(2.108) s(ryw,w') =< sh(ve)/v, w=o0, W' =in/2v

sin(ve) /v, w=7/2v, W =ioco

Thus, we obtain a hyperbolic Lax matrix depending on a spectral parameter A
by substituting w’ = im/u in (2.90) and sending w to co. If we now take ReA — oo
in this matrix, we obtain a similarity transform of (2.67). Substituting w = 7/u
and letting w’ — ioo yields a trigonometric Lax matrix depending on \; taking
ImA — oo in the latter yields a similarity transform of the previous L(III). Finally,
putting w’ = iw and letting w — oo leads to a rational Lax matrix depending on \;
taking A — oo, one gets the previous L(I).

The transition IV — V is quite nonobvious already at the level of the defining
Hamiltonian H. To our knowledge, for H this transition was first pointed out by
Inozemtsev [18]. Here, we detail a more general limit L(IV) — L(V), which dates
back to [38]. To begin with, w’ should be replaced by iw/u, and a position shift

(2.109) zj > x; —2jw/N, j=1,...,N

should be made in (2.90). Then the power traces of the new Lax matrix (denoted
by L(s)) are smooth Poisson commuting functions on the shifted phase space

(2.110) Q) =G x RN
where
(2.111)
2(N — Nw 2w 2w
G(S)E{ZUE]RNMZN—%<'-'<£CQ—F<$1,.T1—$N<F
Now we substitute
(2.112) g — ap~ " exp(uw/N)
(2.113) A= w—4/p, 6 =—ir+lnw

in L(*), Then it follows from a long, but straightforward calculation using (2.106)
that the resulting matrix (still denoted L(®)) satisfies

(2.114)
lim L' = L(V)k(iaexp(6/N)) = exp(—p(z; — 2x)/2)

w—r00

(The infinite product in (2.106) may be omitted for k£ — j < N/2, and contributes
at most one factor otherwise.)

Note that the shifted configuration space G(*) (2.111) converges to the Toda
configuration space RN for w — oo. From a physical point of view, the new
positions can be regarded as deviations from equilibrium positions. The distance
2w/N between successive equilibrium positions is taken to oo, and the coupling
strength is simultaneously taken to oo in such a way that a finite interaction persists
in the limit.

Next, we specify the transition II — VI. To this end we substitute

(2.115) zj = rj+2jp " lne, j=1,...,N
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(2.116) g — 1/ue

in L(IT)(z,p) (2.67), yielding a new matrix L(¢)(z, p) on a shifted phase space whose
definition will be clear from the previous transition. Then one easily checks

(2.117) lim L) = LOVI)ju(=i)~* exp(—p(z; — 71)/2)

(For the defining Hamiltonians this transition was already pointed out by Suther-
land [49], as we recently learned. Independently, we obtained the more general
transition (2.117) and its relativistic generalization in 1985.)

Finally, we describe how (a similarity transform of) L(VI) can be reached directly
from L(IV): Substituting

w Ilnw
2.11 i i —2j(—= — — j=1,...,N
( 8) Tj — T J(N 7 ), J ) )
(2.119) g — exp(pw/N) /[ pw
(2.120) A w

in L(IV), the resulting matrix L(*) obeys
(2.121) Jim L) = LOVD i (=)~ exp(—p(a; — 21)/2)

(Once more, this can be verified by using the product representation (2.106) for

s().)
3. RELATIVISTIC VERSIONS AT THE CLASSICAL LEVEL

3.1. The defining dynamics and its commuting integrals. In two space-time
dimensions the nonrelativistic (Galilei) and relativistic (Poincaré) symmetry groups
are semi-direct products of boosts

(3.1)
(t,2) > (t,x + vt) (Galilei)
- ((t +vz/) (1 —v?/P)~ 2, (@ +vt)(1 —v?/c?)~/?)  (Lorentz)
(where ¢ denotes the speed of light) and space-time translations
(3.2) (t,z) — (t + ag,z + a1)

Clearly, the translations are 1-parameter diffeomorphism groups generated by vec-
tor fields

(3.3) X, =0, X, =0,
whereas the Galilei boosts can be written
(3.4) exp(vXyp)(t,z), Xp=1td, (Galilei)
To obtain a 1-parameter group of Lorentz boost diffeomorphisms, one should
introduce the rapidity 6 € R by setting
v

(3.5) 2=l

Then the Lorentz boost (3.1) reads

(3.6) (t,2) = (teh(2) + %sh(e),xch(%) +etsh(2y)

Cc Cc c
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and so can be rewritten
(3.7 exp(0Xy)(t,z), Xp= c%at +t0,  (Lorentz)

The vector fields X;, X5 and X give rise to the space-time Lie algebras

(3.8)
0 (Galilei)
X;/c*  (Poincaré)

Thus, the Galilei group and its Lie algebra may be viewed as deformations of the
Poincaré group and its Lie algebra: The former result by taking ¢ — oo in the
latter.

Next, we observe that for any potential V(z) the Hamiltonians

[X:, Xs] =0, [Xi, Xp] =X, [Xs, Xp]= {

N
(3.9) H=_1 i+ > Vi —ax)

2m = 1<j<k<N
N
(3.10) P=>p;
j=1
N
(3.11) B=-m)
j=1

represent the Galilei Lie algebra. More precisely, one has
(3.12) {H,P}=0, {H,B}=P, {P,B}=Nm

so that one obtains a central extension. But constant Hamiltonians generate trivial
flows (the corresponding Hamiltonian vector field vanishes, cf. (2.11)), so we do
obtain a faithful representation at the group level (assuming H, P and B generate
complete flows).

Consider now the functions

N
= mc? Pj
(3.13) H =mc Zch(mc)
Jj=1
— J
(3.14) P = mc;1 sh(-)

N
(3.15) = —mij
j=1

Clearly, these satisfy the Poincaré Lie algebra
(3.16) {H,P}=0, {H,B}=P, {P,B}:H/62

Physically, they describe a system of N relativistic free (equal rest mass) particles
in a slightly unorthodox way. Namely, instead of using the customary 1-particle
momentum k (in terms of which the kinetic energy reads (k*c? + m?c*)'/? ) and
its canonically conjugate position y, we are using the rapidity variable p/m and
the variable x canonically conjugate to p. The variables p and = then have the
dimension of momentum and position, resp.
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Now recall this century’s most widely known formula, E = M¢c?. In words, this
formula says that ‘M’ is determined not only by rest mass, but also by kinetic
energy and any other form of energy due to interactions. Therefore, a quite simple
way to take particle interactions into account for the above energy function is to
replace it by

N
(3.17) H=Y M, M= mch(%)vj(x)
j=1
with
(3.18) Vi(@) = ] flaj — =)
k#j

Indeed, the function Vj(z) (‘potential’) then encodes the change in mass of particle
j due to its interaction with the remaining particles, just as the function ch(p;/mc)
encodes the change in mass due to its motion.

We should now ensure that the altered H is still the time translation generator
of (a phase space representation of) the Poincaré group. In contrast to the Galilei
case (3.9)—(3.11), this is no longer true when both P and B are left unchanged.
In fact, already translation invariance (viz., {H, P} = 0) is violated when P is left
unchanged and f(x) is not constant. The simplest choice is, therefore, to keep B
unchanged and change P accordingly: It must read

N
pj
(319) WA
to yield the desired Poisson brackets {H, B} = P and {P,B} = H/c?.
But now we still have to satisfy the translation invariance constraint {H, P} = 0.
Assuming f(z) is an even function, and calculating the Poisson bracket for (3.17)
and (3.19), we see that it vanishes iff f(z) satisfies the functional equation

N
(3.20) Y 0 [ fj—w) =0

J=1  k#j
Since f(z) is assumed to be even, this yields no constraint for N = 2. But for
N =3 (3.20) can be rewritten

f(u) f(u) f'(w) 1
(3.21) f(v) f()f'(v) 11=0
FPlut+v) —flut+o)f(ut+v) 1

and this functional equation is known to be valid iff
(3.22) fA(x) =a+0bP(x), a,beC

where P is the Weierstrass function encountered in the previous sections.

More generally, (3.20) turns out to be valid for N > 3 when (3.22) holds [47].
(For N > 3 it is not known, however, whether other solutions to (3.20) exist.)
Therefore, we obtain relativistic analogs of the Hamiltonians of type I-IV when we
take

i i 12
(3.23) 1@ = (ELPEL) - P@]) L g0 @V

mc mc
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(The radicand is positive, and we take positive square roots whenever this is the
case.) In view of (2.42) and (2.108) this specializes to

(14 g*/m*ca?)' m
(3.24) fl@) =< (1+sin®(vg/me)/sh?(va))t/?  (ID)

(1 + sh?(vg/mc)/ sin®(vz))Y/?  (III)

We shall henceforth take m = 1, just as we did in the nonrelativistic setting
(2.32). For type I-III it is then routine to verify that one has

(3.25) lim (Hyel — Nc?) = Hyy
c—» 00
(326) lim Prel = P
c—> 00

Here, Hy,, denotes the nonrelativistic Hamiltonian (2.32) with V() given by (2.38)—
(2.40), and H,el denotes the relativistic Hamiltonian (3.17), with Vj(z1,... ,zn)
and f(z) given by (3.18) and (3.24), resp.; similarly, P,, and P,e denote (3.10) and
(3.19) , resp. To obtain the corresponding limits for type IV, one needs

(3.27) Ple) =€ 2+ 0(€*), s(e) =e—e€n/2w+O0(?), €—0

Then it is clear that (3.26) still holds, whereas (3.25) should be replaced by

N
i (= N¢) = Y pid Y (Pl =) +a/
=1 1<j<h<N
(3.28) = Huy+ ¢°N(N - 1)n/2w
(To check that this is consistent with the type I-III limits (3.25), one should use
(3.29) Jim n(w,ir/2v)/w = -v%/3
(3.30) w'lLTmn(W/QV’ W) /w=1v%/3

cf. also (2.42).)
Next, let us assume that the potential Vj(z) in (3.17) and (3.19) has a ‘nearest
neighbor’ structure,

(3.31) Vi(@) = fr(zjn — o) fr(z; — xj-1)
so as to mimic the interactions in the Toda systems. Then one easily verifies that
one has {H, P} =0 iff

N
(3.32) > 0 (i — 2) fi(z; — 2j1)) =0

Jj=1
Now it is not an easy matter to verify the functional equations (3.20), even for the
rational case. In contrast, it is very simple to check that (3.32) is satisfied when
one takes

(3.33) fi(@) =a+bet”, a,beC
with the convention
(3.34) To = TN, TNi1 =T V)

(3.35) Tg =00, xy41=-00 (VI)
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Indeed, the terms in (3.32) simply cancel in pairs. Choosing

a>0 (V)

(3.36) fr(@) = (1+ac 2er)!/?, { a=1 (VI

it is also easy to verify (3.25) and (3.26).

The mathematical upshot of the above physical reasoning is, that insistence on
the structure (3.17)-(3.19) for the Hamiltonians H and P, together with the re-
quirement {H, P} = 0, has led us to a 1-parameter generalization of the commuting
Hamiltonians H and P from Section 2. The former Hamiltonians can be rewritten

(3.37) H= (S +S5.1)/26%, P=(S1—S_.1)/28
where we have introduced a (more convenient) new parameter
(3.38) B=1/c

and the functions

Ste = Z exp(+ sz) :

c{1,...,N} il
I1]=Fk
[Lics f@i — ) (I-1V)
(3.39) el
IT icr fr(@ipr —i)[] e fr(zi—ziz1) (V, VI)
i+1gT i—1¢I

with k =1,... ,N. Since H and P commute, the ‘light cone Hamiltonians’ S; and
S_1 commute as well.
Next, choosing |I| = N in (3.39), we clearly get Hamiltonians

(3.40) Sen =exp(£B(p1 + -+ +pn))

that commute with Sy, k < N, since only position differences occur in (3.39). It
is therefore natural to conjecture that all of the functions Si,+k € {1,...,N},
Poisson commute. Now with some perseverance, it can be verified that the com-
mutators {Sk, S;} vanish for any k,l € {£1,... ,£N} and N > 1 iff the functions
f and fr satisfy the functional equations

(3.41)
H’% Pz — ;) (I-1V)
_ . J
0= Z (Z 81) H'iEI f%(xiJrl _mi)H'iEI f%(mz —1'i71) (V, VI)
i+1gl i—1¢gl

1c{1,...,N} i€l
|T|=k
forany k € {1,...,N} and N > 1. For k = 1 these equations clearly reduce to the
functional equations (3.20) and (3.32) encoding relativistic invariance. But even
for the Toda case, it is not easy to prove directly that these functional equations
are satisfied for k > 1, too. A direct proof that the equations (3.41) are valid in the
Toda case can be found in Appendix A of [46]. As we shall see in Subsection 4.3,
they are valid for the P-function, too, but in that case no direct proof is known.

Let us now restrict attention to Si,...,Sy. (One easily verifies that
(342) ka:Ska/SN; k?:].,...,N
In particular, H and P may be viewed as functions of Sy,... ,Sx.) These functions

yield smooth Poisson commuting Hamiltonians on the type-dependent phase spaces
described in Subsection 2.2. (Notice that for type IIT and IV the functions (3.39) are
manifestly invariant under the map (2.45) and its type IV analog.) In all cases the
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functions V;(x) are bounded away from 0, just as the functions ch(fp;). Therefore,
conservation of H yields an upper bound on |p| and a nonzero lower bound on
particle distances, and so completeness of the flows exp(¢;S;),j =1,..., N, follows
in the same way as in the nonrelativistic setting. However, the scaling argument
below (2.75) no longer applies, so independence of Si,..., Sy must be shown by
other means.

A simple argument yielding independence for all cases at once now follows.
View the determinant of the N x N matrix with rows VS as a polynomial in
e; = exp(fp;),j = 1,...,N, with z-dependent coefficients. Expanding the de-
terminant, the product of the diagonal elements yields in particular a monomial
eNell=1...en with a positive coefficient. A moment’s thought now shows that
none of the remaining N! — 1 products can yield such a monomial. Therefore, the
determinant cannot vanish identically, and independence results.

From the preceding three paragraphs we deduce that the light cone Hamiltonian
Sy is Liouville integrable. (Of course, this is true for H, too, but it is more conve-
nient to focus on S;.) Since we know its commuting integrals explicitly, it might
seem irrelevant to try and find a Lax pair formulation for the flow it generates.
It turns out, however, that a special choice of Lax matrix L makes it possible to
derive some crucial results, as will become clear later on. (We do not need a Lax
pair, however. Note in this connection that M depends on the dynamics S one
selects, whereas L encodes all dynamics of interest simultaneously.)

Before we detail Lax matrices, we would like to settle two issues for which a Lax
matrix is not needed—in contrast to the nonrelativistic situation. First, specializing
to the systems of type I, IT and VI, the repulsive character of the interparticle
potentials f(z; — ) and fr(x; —xy), resp., can be exploited to prove that the Sy
dynamics leads to soliton scattering. Specifically, Moser’s argument can be adapted
to the Sy flow [47], yielding here

(3.43) zj(t) ~ xji + Gt exp(ﬁpj[), p;j(t) ~ pji, t — +oo

and, once more, (2.77). Therefore, the functions sy : ¢ — Si(x(t),p(t)) reduce to
the symmetric functions of the matrices L+ = diag(exp(ﬂpf), e ,exp(ﬂpﬁ)) for
t — £o0. Since s (t) is t-independent, the roots of the polynomial A — |L~ — Aly]|
equal those of A\ — |LT — Aly|. Hence, conservation of momenta results; more
in detail, (2.81) follows upon using (2.77). Then the factorization (2.84) of the
asymptotic position shifts follows in the same way as before.

We point out in passing that (3.43) also entails that involutivity of Sy,...,Sn
is a consequence of Sy, ..., Sy being integrals of the S; flow. (Equivalently, for the
systems of type I, IT and VI—and, by analytic continuation, for type III, too—the
functional equations (3.41) follow once the special cases (3.20) and (3.32), resp.,
are proved.) Indeed, the argument in the paragraph containing (2.78) can easily be
adapted to the systems involved.

The second issue we wish to address is the connection diagram (2.104), with
regard to the functions Siy,...,Sy. First of all, the connections between the type
I-1IV functions are obvious from (2.42) and (2.108), cf. (3.23) and (3.24). Second,
we detail the transition V—VI: once again, one need only substitute (2.102) and
take a — 0 to obtain the nonperiodic Toda S}, from the periodic ones.
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Third, we consider the transition II—-VI. To this end, we note first that the
choice Bug € (0,27) is not the only one yielding a positive potential
(3.44) F(2) = (1+sin® (Bug/2)/sh*(ue/2)) /2 (1)

Indeed, we can allow Bug = 7 —id,d € R, so as to let sin®(Sug/2) vary over (1, 00),
too. Taking now

(3.45) Bug — m—2iln(B/€)
and substituting (2.115) in f(x; — x1), we obtain a function f;; with limits
(3.46) fin = (L4 BZexplu(z; —z;-))?, k=j—1

(1+ B2 explu(ejp — 2%, k=j+1
for e — 0. Hence, these substitutions ensure that the hyperbolic Sy converge to the
nonperiodic Toda Sy for e — 0.
Fourth, we study the IV—=V limit. To this end we take w' = iw/pu and consider
the elliptic potential, rewritten as

s(x+1iBg)s(z —1 L/2
(347) fla) = ( o+ 652)(3;() Bg)) (1v)
cf. (3.23), (2.89) and (2.91). Using (2.106) this becomes
(3.48)

oo

~ . - 1/2
I (1 —2¢* chu(z + iBg) + ) (g = —g)
(1 — 2¢% chuz + )2

f(z) = p(g) fu(z) (

1=1
where fi1 denotes the hyperbolic potential (3.44), and where

(3.49) p(9) = exp(ufg®/4w),  § = exp(—pw)
Now let us substitute (2.109) and

. 2w 1 .
(3.50) ibg = w7 + ;(W + 2In(aB))

in f(z; — ), and study the three factors that arise from (3.48) for w — oo. First,
the calculation in the previous paragraph (taking ¢ = exp(—puw/N)) shows that
the fi1 factor yields (3.46) with 8 replaced by af. Second, the infinite product
converges to 1 unless {j, k} = {1, N'}; in the latter case only the I = 1 factor in the
numerator does not converge to 1, but rather to 1+ a?3? exp pu(r; — zn).

Third, consider the constant prefactor p(g) (3.49) with the substitution (3.50) in
force. Clearly, the resulting factor is not real, and it goes to 0 for w — oo. However,
this is easily remedied: We need only replace f(z) by

(3.51) fr(z) = f(z)/p(g)

to obtain renormalized functions S, with the desired type V limits when (2.109)
and (3.50) are substituted. (These functions are, moreover, positive for Sug =
m—id,d € R.) This entails, in particular, that the involutivity of the periodic Toda
S may be viewed as a corollary of the involutivity of the elliptic Sg.

Finally, we specify the IV—VI transition. To this purpose we substitute (2.118)
and

2
(3.52) iﬁgﬁﬁw+g, k=im+21In(8/w)
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in the above S, ; and take w — oco. This is readily verified to yield the type VI S; in
this case the infinite product in (3.48) converges to 1, and taking e = wexp(—uw/N)
one can invoke (3.46) once again.

3.2. Lax matrices and their interrelationships. Next, we turn to explicit Lax
matrices, as promised above. Among other things, these will enable us to clarify
the connection between the relativistic S; and their nonrelativistic counterparts.

We begin by specializing to the hyperbolic case II. Here, the key ingredient to
arrive at the desired Lax matrix is an identity due to Cauchy, which is useful in
various other contexts. It reads

(3.53)

det <w]~ 1%)1\[ ljj 11 (wj — wi) (25 — z1)

dk=1 % <N (wj = 21)(2j — wi)

and can be proved, e.g., via induction on N. Substituting
(3.54)
wj — exp p(x; +iBg/2), 2k — expp(zy —iBg/2), B,1,9>0

in the matrix occurring at the left-hand side of (3.53) yields a matrix C' with
elements

sh(iBug/2)
shp(z; — x4+ ifg)/2

(3.55) Cjr = exp(—p(z; + 7t)/2)
and determinant

(3.56) |C| = exp( ,uZa:] Hf ;= Tk)

i<k
where f is given by (3.44).
If we now set
(357) ij = ejCjkek
where
(3.58) e = exp((uz; + Bp;)/2) [ ] £(zj — )2
I#j
then it follows from (3.56) that the principal minor with indices {i1,... iz} =1 is
given by
zeI
. (Hexp b ) T /o= ) 1T £ (o =0
icl i€l 1#1 j<k
jkel
(3.59) = <H exp(Bp; > [[f@i—a)
el el
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Therefore, the kth symmetric function of L reads

(3.60) Se=Y_ exp(8Y pi) [[ (@i — =)
|T|=k i€l ;g;

Thus, it equals the above type II Hamiltonian Sy (3.39), as anticipated by our
notation.

Recalling now the nonrelativistic hyperbolic Lax matrix (2.67), we obtain, using
obvious notation,

(3.61) Leet = 1n + BLye + O(8%), B—0

Taking 3 to 0 in the determinant of the matrix 37 !(Lye; — 1n) — Ay, we deduce

k
oo N -1
(3.62) Sknr = lim 57 ,Z;(_)Hl ( N % ) Sl rel

Thus, the involutivity of the nonrelativistic type II functions follows from that of
their relativistic counterparts. (Note that L is holomorphic at 8 = 0, so that
the f — 0 limit may be interchanged with the partials in the Poisson brackets
involved.)

Of course, we can now obtain type IIT and I Lax matrices from (3.57) by taking
u — ip and pw — 0, resp.; then (3.61) and (3.62) hold true again. We can also
derive a type VI Lax matrix from (3.57) by substituting (3.45) and (2.115) in the
similarity transform

(3.63) Ljx = g e2Cy

and taking ¢ — 0. Indeed, using (3.46), this limit is easily calculated, yielding a
matrix

(3.64) L(VD)jx = B* 70, Ejy
where

(3.65)
b; = exp(Bp;) (1 + B explu(zjpr — z;))/? (1 + B explu(z; — ;1))

1, k—j=N-1,...,1,0

(366) Ejk = aj, k —j =-1
0, k—j=-2,...,-N+1
(3.67) a; = B% explp(x; — 2;-1)](1 + B2 explpu(z; — ;1))

(with the convention (3.35) in effect). It follows from the above that the symmetric
functions of L(VI) are indeed the type VI functions already defined. (It is not hard
to verify this directly.) Comparing (3.64)—(3.67) and (2.101), it is also clear that
(3.61) holds true once more, and so (3.62) follows for the nonperiodic Toda case,
too.

We proceed by introducing a type IV Lax matrix: We choose

(368) ij = dejk
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where
(3.69)
i = exp(Bp;) Hf i—x), f(z) = (s(z+iBg)s(x — mg)/SQ(m))l/Q
I#j
(3.70) py=@-m+N  sGhy)

s(A) s(zj — zr +ifyg)

It is immediate that this matrix is again related to its nonrelativistic analog (2.90)
via (3.61), and that its trace equals the above elliptic Hamiltonian S;. It is not at
all immediate, but true, that all of its symmetric functions ¥; are proportional to
the above elliptic Sy, (3.39). Specifically, we have

(3.71)
Ye =sN) Fs(A—ifg)*ts(A + (k—1)iBg)Sk, k=1,...,N

This assertion follows from a calculation similar to (3.59) and an identity gener-
alizing Cauchy’s identity (3.53), viz.,

det (M)N — S(/\—’)/)N_ls()\-}- _17+Z s

s(@j—r+7) /) e )

(3.72) I s(@ - a) Hs —ri+y)7"
i<j

This identity follows from (2.89) and Theorem B2 in Ref. [39] (Substantially the
same identity was already proved (in a different way) by Frobenius [14]. We learned
this fact from a paper by Raina [33], who supplies yet a third proof.)

Since (3.61) holds true with Lye given by (3.68) and Ly, given by (2.90), we
may conclude that (3.62) holds true, with S; ;e equal to ¥; (3.71). Now the z-
dependence of the ¥; occurs solely in factors P(z; — ) (recall (3.23)), and the
A-dependent prefactor in (3.71) is real for A purely imaginary and not equal to
2lw',1 € Z. (This is because s(z) is purely imaginary for x purely imaginary, cf.
(2.105).) Therefore, the assertions concerning the nonrelativistic Sy made below
(2.94) readily follow from (3.62).

Specializing the Lax matrix (3.68) to the rational, hyperbolic and trigonometric
contexts, we obtain Lax matrices of type I, II and III depending on a spectral
parameter A € C. Clearly, the previous Lax matrices (cf. (3.57)) result by taking
A = 00, ReA = 0o and ImA — oo, resp. (up to diagonal similarity factors).

Next, we use the above elliptic Lax matrix to arrive at a periodic Toda Lax
matrix. Recall we already analyzed the IV — V transition for the functions Sy, cf.
(3.47)—(3.51). From these findings we infer that we should start from a renormalized
Lax matrix

(3.73) L, =p(g)~Nt'L

with the substitutions w’ = im/u, (2.109) and (3.50). The symmetric functions of
L, are then given by
(3.74)
o _ SO iB9)" s\ + (k = 1)iBg)
o Pl FED 5

Spr, k=1,...,N
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with Sy, defined below (3.51). Now the latter substitutions ensure that S, has
the desired type V limit Sy, (3.39) for w — oo. To get a finite limit for the prefactor
in (3.74), we also substitute

N

Using (2.106) with w' = im/u, we see that then the limit w — oo of (3.74) is given
by
(3.76)

(3.75) Ao 2 2 ns) - Ningiag) - Lmw
I It It

1+ (iaB)Nw)N "1 (1 + (iaB)Nw Sy, k=N
(The infinite products do not contribute, save for the | = 1 term coming from the
factor s(A + (k — 1)iBg) when k = N.)
The above substitutions also ensure that L, (3.73) has a finite limit for w — oo.
Specifically, the limit can be written

5 _{ (1+ (iaf)Nw)k 1Sy, k=1,...,N—1
.=

(3.77) lim Ly jx = L(V);k (iaexp[(im + Inw) JN])*=3
w o0
The relativistic periodic Toda Lax matrix thus obtained reads explicitly
(3.78) L(V)jr = B¥ b, By
Here, one has
(3.79)

bj = exp(Bp;) (1 + a8 explu(zjr — )2 (1 + a® 8% explu(z; — zj-1))*?

1 — (iaB) " Nwta?B? exp[u(z; — zN)]

3.80 BN =

(3.80) w 1+ a232 explu(z — an)]

(3.81) Ej, =1, k—j=N-2,...,1,0

(3 82) E . — —(ZG/B)N’LU + a/2/82 exp[u(l‘] — 1']‘,1)]
' 2 1+ a®B? explu(e; — wj-1)]

(3.83) Ejp = —(iaf)Nw, k—j=-2,...,-N+1

with the convention (3.34) in force. Its symmetric functions are given by (3.76)—a
fact that is quite hard to see directly from (3.78)—(3.83).

It is immediate from the latter formulas that (3.61) holds true, cf. (2.99). From
(3.62) it then follows that the nonrelativistic periodic Toda functions S are w-
independent for ¥ < N, whereas for & = N the w-dependence is given by an
additive term (ia)™ (w™! + (=)Nw). It is also plain that when we substitute (2.102)
in (3.78)-(3.83), yielding a new matrix L(*), then (2.103) holds true once more, cf.
(3.64)—(3.67).

To complete our account of the connection diagram (2.104) at the level of rela-
tivistic Lax matrices, it remains to specify the direct transition IV — VI. To this
end we take w' equal to im/p and substitute (2.118), (3.52) and

(3.84) A= 2w/N

in L,. Then the resulting matrix L, fulfils
(3.85) lim L, j(exp(k/N))?=F = L(VT);p 57 ~F
w—00
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where & is defined by (3.52).

We conclude this subsection with some remarks. First, we would like to point
out that the function s may be replaced by the function § obtained from the right-
hand side of (2.106) by omitting the exponential factor. Of course, this makes no
difference for the type I-III systems, since §(z;w,w') obeys (2.108), too. Moreover,
for the nonrelativistic elliptic Lax matrix (2.90) the substitution s — § amounts to
a similarity transformation, so that the symmetric functions do not change. But
in (3.68) this substitution leads to a similarity transform of L,, and not of L, cf.
(3.69), (3.70) and (3.73). Therefore, no renormalization is needed to obtain Toda
limits; moreover, several similarity factors become simpler. Nevertheless, we have
opted for using s, since this is the simplest choice at the quantum level. (Note that
5(z;w,w') is not 2w-antiperiodic, in contrast to s(z;w,w’).)

Second, we recall that our account of limit transitions has dealt with the con-
nections encoded in the diagram (2.104) both for the nonrelativistic and for the
relativistic systems. Viewing the two diagrams as stacked on top of each other, we
have also detailed the ‘vertical’ limits Spep — Sur, S =I-VI. We have, however, not
analyzed ‘skew’ limits, thus far. One of these is of particular interest (especially at
the quantum level), viz., the limit IT,qy — VI,;. In contrast to the ‘detours’ via the
I, or VI, systems, one should keep Bg fized; specifically, setting

(3.86) Bug/2 =71 € (0,7)

(3.87) zj = xj+2jp tn(B/2sinT)

in L (3.63), one obtains a matrix L(") for which one easily verifies
(3.88) L7 =1y + L7 (VL) + 0(8%), B—0
where

(3.89) L (V1) jk = L(VIa) ji (1 — e727)k=3

Consequently, the type II relativistic Sy (with (3.86) and (3.87) in force) give rise
to the type VI nonrelativistic Sy as detailed by (3.62).

Third, we would like to point out that there exist additional systems (denoted
ITI, and IV},) that are related to the above Il and IV, systems via the substi-
tution 8 — if. To obtain real-valued Hamiltonians, one should consider, e.g.,

(3.90) I =(Sk+S)/2, k=1,...,N

Moreover, taking w = 7/ so as to handle both cases at once, one should work with
a configuration space

(3.91)

G={zeRV|z; —xj11 >Bg,j=1,...,N—1L,z; —an < 27/p— Bg} (L, IV})

This is necessary to keep the potentials f(z; — x) positive, since one now has

(3.92) f(@) = (s°(Bg)[P(Bg) = P(@))'/?, B,9>0
Consequently, one needs to require
(3.93) N < 27/Bug
for G to be non-empty. }
The Hamiltonians I, ... , Iy on the phase space = G x RV are not only in-

variant under the Z-action generated by I' (2.45), but also under the Z™-action
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p p+2nk/B,k € ZN. Quotienting out the resulting action of Z x Z" on Q yields
a second phase space 2; alternatively, one can consider quotients by proper sub-
groups, yielding phase spaces interpolating between the ‘maximal’ and ‘minimal’
phase spaces  and Q, resp. The flows generated by the commuting Hamiltonians
I, ..., In_1 and their quotients are not complete, but this can be remedied. Specif-
ically, a suitable interpolating phase space §2¢ can be densely embedded in a phase
space of the form R? x PV~ on which all flows are complete. Here, P* denotes
complex projective space, viewed as a compact symplectic manifold by equipping
it with the symplectic form derived from the Fubini-Study metric. Using (2.105),
it is readily verified that this completion for the III}, case (which is detailed in Ref.
[43]) is also appropriate for the IV}, system. (Of course, inclusion of these systems
in the diagram (2.104) would lead to a further proliferation of arrows.)

Last but not least, one can obtain new systems of considerable physical inter-
est via analytic continuation of the positions. A detailed study of these ‘soliton-
antisoliton’ systems can be found in Ref. [42].

4. QUANTUM CALOGERO-MOSER AND TODA SYSTEMS

4.1. Background: quantum mechanics / Hilbert space theory. We choose
as our starting point a classical phase space 0 of the cotangent bundle type (2.5),
and a smooth real-valued Hamiltonian H(z,p) on Q ~ G x RN. Then the state
space of the associated quantum system consists of the unit vectors in the Hilbert
space L2(G,dz) of square-integrable complex-valued functions; when 1 is a unit
vector, the integral of |1)(z)|? over a subset B of G is interpreted as the probability
to find the system position vector in the set B.

The quantization of the dynamics H (z,p) is obtained by means of the canonical
quantization substitution

(41) pj—)—ihaiwj Eﬁj, j=1...,N

where A > 0 denotes Planck’s constant. Since the quantum operators p; and
x; do not commute, this substitution may lead to ordering ambiguities. For the
Calogero-Moser and Toda Hamiltonians (2.23), (2.38)—(2.41) and (2.95)—(2.97) this
is not the case, however: (4.1) yields an unambiguous (linear) partial differential
operator (PDO) of the form

N
1 .
(4.2) H=3 > 0+ U(x)
j=1

with U(z) real-analytic on the classical configuration space G.

We shall say that a PDO of the form (4.2) is integrable when there exist indepen-
dent PDOs I1 = H, Ix(x,p), ..., In(z,p) that commute pairwise. Here, indepen-
dent means by definition that there are no polynomial relations between I, ... , In.
Moreover, the notation It (z,p) is meant to indicate that a specific ordering in the
so-called symbol Ij,(z, p) has been chosen whenever ordering ambiguities are present.
It should be observed that this definition does not involve any Hilbert space no-
tion: Commutativity of PDOs is an algebraic issue. (Of course, one does need some
smoothness conditions on the coefficients.) Presently, we shall introduce a stronger
notion of Hilbert integrability, which is tied to Hilbert space theory.
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Next, consider the Hamiltonians (3.37)—(3.39), taking f(z) = fr(z) =1 at first
(‘free particles’). Then the substitution (4.1) yields exponential dependence on p;.

The obvious way to interpret this is in the sense of analytic difference operators
(AAOs). Thus, for instance,

(4.3)
(exp(ap;)¥)(z1,...,2n) =Y(z1,... ,2; —dha,...,zN), a€R

where one insists that ¢ admit analytic continuation off the real axis—just as PDOs
should act on differentiable functions.

Counsider now the interacting case f, fr # 1. Then onestill has Sty = exp(£8(p1+
-+ pn)), so the quantum versions of Sy are the same AAOs as before. But
for |k| < N an interpretation of S, = Z\I\:Ikl Tr as an AAO is ambiguous: the
AAO Ty(z,p) depends on the ordering of z- and p-dependent factors specified for
its symbol Tr(z,p). In particular, the AAO H(x,p) associated with the Hamil-
tonian H that defines the relativistic version of the model at hand is not uniquely
determined—by contrast to the PDO (4.2).

In view of this state of affairs we shall say that the Hamiltonians Si,k =
+1,...,£N, defined by (3.39) admit an integrable quantization when there exist
pairwise commuting AAQOs Sy (x, p) with symbols Sy (z, p) equal to Sy (as functions
on the classical phase space). Whenever this is the case, we shall use (3.37) to in-
clude quantum versions of H and P in the commutative AAO algebra generated
by Sti(z,p),...,Stn(P). As we will see in Subsection 4.3, all of the type I-VI
systems do admit integrable quantizations. (Anticipating the outcome, we men-
tion that one should first choose an ordering different from the one in (3.39) before
substituting (4.1).)

Once more, these definitions do not involve Hilbert space: With appropriate an-
alyticity assumptions on the z-dependent coefficients understood, commutativity of
AAOs is an algebraic issue. In Subsections 4.2 and 4.3 we deal with (‘nonrelativis-
tic’) PDOs and (‘relativistic’) AAOs in a purely algebraic way, and the remainder
of this subsection has no relevance for the issues addressed there.

The following is, however, crucial for Section 6, where we aim to understand the
PDOs and AAOs as well-defined Hilbert space operators. Let us begin by recalling
some standard fare. For a given quantum Hamiltonian H on the Hilbert space
L*(RYN,dz) (say) the time evolution is encoded in the time-dependent Schrédinger
equation

(4.4) ih® = HU

To solve this, one first reduces it to the time-independent Schrédinger equation
(4.5) Hy = Evp

by setting

(4.6) U(t,z) = exp(—itE/h)y(x)

Solutions of (4.5) for which 1) is square-integrable correspond to bound states; when
no such solutions exist, one should try and find bounded solutions and construct
square-integrable solutions to (4.4) by building wave packets.

For a Hamiltonian of the form (4.2), the simplest example of the latter situation
is the free case U = 0. Taking first N = 1 and E > 0, there exist two linearly
independent solutions to (4.5), viz., the plane waves exp(xipx/h), with p*/2 = E.
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These are bounded, in contrast to the two solutions of this form for £ < 0: then p is
purely imaginary and the solution increases exponentially for z — oo or x — —o0.

The Hilbert space L%(RR, dz) can be spanned by the former solutions, in the sense
that wave packet superpositions

(47) v = [ dpexplipa/mor), 6 € G
are dense. (At the quantum level we are dealing with complex-valued functions.
Accordingly, C* stands for smooth and complez-valued in Sections 4 and 6—in
contrast with our convention at the classical level. Recall the subscript 0 means
‘compact support’.) Then one has

00 2

(18) () = [ dpexplipa/m)’o(p)

and the time-dependent equation (4.4) is solved by
(4.9)

(exp(-itH/W)0)(e) = [ dpesplips /b~ iBt/)6G), E =12
Moreover, a suitable normalization ensures that one obtains a unitary operator
from the spectral representation space L%(R, dp) onto L?(R,dz). Specifically, one
should choose

oo
(410) (E0)a) = (2n) 72 [ dpexp(ipa/motr)
— 00
so as to obtain a unitary £. This operator is a simple example of an eigenfunction
transform—a unitary operator that diagonalizes H via suitably normalized (not
necessarily square-integrable) eigenfunctions.
For N > 1 and U = 0 one need only work with tensor products to obtain the cor-
responding quantities. The resulting transform amounts to Fourier transformation
in N variables,

(4.11) (E0)(x) = (2xh)~N/? / dpexp(ip- o/R)d(p)

(From now on, we omit the integration region when it equals R* for some k € N.) It
diagonalizes not only PDOs with constant coefficients, but also constant coefficient
AAOs. Indeed, from (4.3) one gets

(4.12) exp(ap;) exp(ip - ©/h) = exp(ap;) exp(ip - ©/h)

Now functions of the form (4.11) with ¢ € C§°(RY) extend to entire functions in
Z1,...,TN, and so the quantum versions

(4.13) Se= Y exp(£fpr), +k=1,...,N
[[|=%k

of the functions (3.39) with f = fr = 1 satisfy

(4.14)

(SE6)(x) = (2mh) N2 / dpexp(ip- z/M)ex(p)d(p), ¢ € CF(RY)
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with
(4.15) ex(p) = Y exp(+Bpr)

|T|==%k

The above is quite elementary and well known, but it differs in spirit and notation
from the ‘Dirac approach’ employed in most quantum mechanics textbooks. We
shall have more to say about these differences shortly, but first we would like to
introduce and discuss the notion of Hilbert integrability. Roughly speaking, we
shall say that commuting PDOs and AAOs (of the above-defined integrable kind)
are Hilbert integrable when they can be simultaneously diagonalized as real-valued
multiplication operators.

To be specific, let us first assume that I; = H(z,p),xz € G, is an integrable PDO
with commuting PDOs IL(z,p),... ,In(z,p). Then we call H Hilbert integrable
when there exist joint eigenfunctions

(4.16) I E(x,p) = Mi(p)E(x,p), peA, k=1,... N

(with A a subset of RN and Mj, a real-valued continuous function) and a unitary
operator

(4.17)
€A = I2(A ) — H = LG, dz), o(p) o> /A du(p) E(z, p)d(p)

where p is a measure on A. Similarly, starting from an integrable quantization
St1,...,S+n of the type I-VI Hamiltonians (3.39) (as defined above), we shall say
that the commuting AAOs are Hilbert integrable when there exist joint eigenfunc-
tions

(4.18) SyE(x,p) = My(p)E(x,p), peA, xk=1,...,N

(with A C RY, and M real-valued and continuous) and a unitary of the form
(4.17). In either case, we define the commuting PDOs / AAOs as commuting
Hilbert space operators by pulling back the multiplication operators My to H via
£.

Starting from integrable PDOs Iy,...,In or AAOs Si1,...,S+nN, there is no
simple method to establish whether they are Hilbert integrable—and if they are,
the unitary £ and the resulting commuting operators on H need not be unique, even
in the free case. In this connection, a key question is: which solutions to the above
time-independent Schrodinger equations are relevant in the Hilbert space context?

For PDOs much is known about this question, whereas for AAOs of the type
occurring in our models very little is known. The different character of the two
classes of operators can already be gleaned from simple operators H on L?(R).
Taking H = p, the solution of (4.5) (unique up to a multiplicative constant) con-
tributes to the eigenfunction transform (4.10) for all E = p € R. For H = p?,
however, we should restrict attention to £ = p?> > 0, and then we need the two lin-
early independent solutions exp(ﬁ:iEl/ 2x/h) for the eigenfunction transform, which
is again given by (4.10). (The constant solution for E = 0 is bounded, too, but
its contribution to (4.10) may be ignored.) Now take H = p** k > 1. Then we
need again E = p?* > 0 to get the two bounded solutions making up the diago-
nalizing transform (4.10), but now we have to discard 2k — 2 linearly independent
unbounded solutions for all £ > 0.
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For the AAO H = exp(ap) the situation is essentially different, though. Of
course, the plane wave exp(ipz/h) is the only solution to (4.5) for E = e* > 0 that
is needed to construct a unitary eigenfunction transform (4.10). Here, however,
one is throwing away an infinite-dimensional vector space of bounded solutions to
(4.5)!" Indeed, one can multiply the plane wave by any function that is entire
(say), has period iah, and is bounded on R. The functions exp(igch(2wz/ah +
r)),q¢,7 € R, have all of these properties, for example. One can also construct
‘bound states’ by taking instead ¢ € i(0, 00), or allow meromorphic multipliers of
the form ch(2rz/ah +ir)/c.c., r € R.

A closely related phenomenon can be illustrated by the type IT AAOs. As we
will see in Subsection 4.3, their coefficients have period 2im/u in z1,... ,xN, just
as the classical functions (3.39). Therefore, they commute with the free AAOs

(4.19) Se= Y exp(£2m(uh) 'pr), +k=1,...,N
|I|=+k

(‘Worse’ yet, they commute with any AAO obtained from Sy via multiplication of
the shift monomials by arbitrary z-dependent coefficients, as long as the latter have
period i8h in z1,...,zN!) But the plane waves that diagonalize the Sy are not
in any sense eigenfunctions of the type II AAOs (unless the latter have constant
coefficients, t00).

From these simple observations it can already be seen that it is quite difficult
to interpret the relevant AAOs as well-defined commuting Hilbert space operators.
We shall return to this problem in Section 6. This subsection will be concluded
by sketching some material from Hilbert space theory, which puts the above in
its proper mathematical context. (The notions to be introduced will reappear in
Section 6.) Before doing so, we insert a ‘sociological’ aside.

All of what follows can already be found in von Neumann’s classic [26], which
was written more than sixty years ago. The subject matter summarized below
should have become ‘bread and butter’ for theoretical physicists, but is actually
still widely ignored—if not taboo. Indeed, almost all of the standard textbooks on
quantum mechanics still contain a brand of Hilbert space theory that is considered
antediluvian by functional analysts—to put it kindly. Up-to-date accounts oriented
towards theoretical physics can be found for instance in Refs. [34, 35, 36, 37, 52],
and with such lucid and elegant sources available, one need not spend undue effort
in learning the basics. From a purely pragmatic standpoint, too, the analyst’s
mathematical framework for quantum mechanics is most useful, as it pins down
the essential difficulties and prevents tilting at windmills.

With the preaching and advertising out of the way, let us turn to less contentious
matters. First of all, it should be recalled that quantum mechanical Hamiltonians
are typically unbounded operators, whose definition must include the specification
of a dense subspace of the Hilbert space as a domain to act on. (As a consequence
of unboundedness, they do not admit a continuous linear extension to all of Hilbert
space.) Now for any (linear) operator H defined on a dense domain D in the
(separable, complex) Hilbert space H one can define the adjoint H* on a definition
domain D*, as follows: A vector ¢ € H belongs to D* iff there exists a vector
¢* € H such that

(4.20) (0", ¢) = (¢, HY), V€D
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Then the action of H* on ¢ is defined by
(4.21) H*¢ = ¢*

The definition domain D* of the adjoint H* need not be dense in H; in fact,
it may even consist solely of the zero vector. From now on we assume that the
operator H is symmetric, i.e., that we have

(4.22) (¢, HY) = (Ho,¢),  Vo,ip €D

Then D* obviously contains D, and so is dense in H; moreover, on D the adjoint
H* coincides with H. For instance, the type I-VI defining Hamiltonians (4.2) are
symmetric on the dense subspace C§°(G) C L*(G)—as is readily checked.

Next, we turn to an example that we will use to motivate the notions of self-
adjointness and self-adjoint extensions. Specifically, we start from

(4.23) M= L2([0,’/T]), D= C(())o((0>7r))7 H= _dz/d$2

(This setting actually arises for the center-of-mass, g = 0, N = 2, type III and IV
Hamiltonians; we are putting i = 1 for the remainder of this subsection.) Obviously,
H is symmetric. Here, D* contains the space C?([0, 7]), and on this space H* acts
again as —d?/dz?. (Use the above definition and integration by parts to check this.)
In particular, the functions 1, = exp(izp),p € C, belong to C*([0, 7]), and one has
H*1, = p®¢,,. Therefore, the adjoint has spectrum C.

Now this is bad news for physics, since the spectrum should correspond to the
physically measurable energies of the system—which are real. This is why one
should work with Hamiltonians that are not just symmetric, but self-adjoint (s.a.)
or at least essentially self-adjoint (e.s.a.). By definition, a symmetric H is s.a. iff
D* equals D, and is e.s.a. iff H* is s.a. If H is symmetric, but not e.s.a., one
should try and extend H to an operator H, on a definition domain D, satisfying
D Cc D, C D*, such that H, is s.a.

A symmetric operator need not have any s.a. extensions, but when it commutes
with a conjugation (i.e., an anti-unitary with square the identity), then it does
admit s.a. extensions. When H is e.s.a., it also admits s.a. extension, viz., to the
operator H*; in this case the s.a. extension is unique.

Returning to our example (4.23), we see that H commutes with complex conju-
gation, so it admits s.a. extensions. These are not unique, however, so that H is not
e.s.a. Indeed, three distinct s.a. extensions of H are well known: We can enlarge the
definition domain by allowing smooth functions with ¢ (0) = (), ' (0) = ¢'(n)
(periodic boundary conditions), or with ¥(0) = «(x) = 0 (Dirichlet b.c.), or
with ¢'(0) = ¢'(xr) = 0 (Neumann b.c.). These extensions yield e.s.a. opera-
tors with a complete set of bound state eigenfunctions, namely, linear combinations
of exp(+ipz) for appropriate p € [0,00). In this way one obtains three distinct real
point spectra. Thus, the physics depends on what s.a. extension is chosen.

To summarize, one should insist on quantum mechanical Hamiltonians being s.a.
or at least e.s.a., so as to ensure reality of the spectrum. Self-adjointness is also
sufficient for applicability of the spectral theorem, to which we now turn. This
theorem can be presented in several guises (cf. Ref. [34], Chapters VII, VIII), but
in our context of quantum integrable systems one of these is particularly useful.
Crudely speaking, it says that any s.a. operator H with dense definition domain
D in an abstract Hilbert space H can be unitarily transformed to a real-valued
multiplication operator on a concrete space of square-integrable functions. More
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precisely, the multiplication operators arising in this way can be defined as follows.
Let H be the Hilbert space

(4.24) H= ST L* (R, pj), m < oo

where pi1, ft2, ... are measures on the real line. Then the operator M : D — H with
domain

(4.25) D = {4 € H|(Ey (E), By (E),...) € H}

and action

(4.26) (M);(E) = Ep;j(E), YD, j=12,...

is s.a. Now the spectral theorem says that for any s.a. operator H : D — H there
exists a space H of the above form and a unitary € from # onto H satisfying

(4.27) E(D)=D, HE=EM

Thus, H is diagonalized by the unitary £.

Of course, the choice of spectral representation space H is highly nonunique:
parts of the measures in (4.24) can be reshuffled among the summands, and the
normalization of the measures is not fixed either. But the closure of the union of
the supports of the measures is unique: It is the spectrum of H. More generally,
the measures encode all spectral properties of H. For example, whenever one of the
measures ji; assigns nonzero weight to a point Ey € R, H has a bound state with
eigenvalue Ejy; continuous parts of the spectrum correspond to continuous parts of
the measures; the spectral multiplicity of £ € R equals the limit of the number of
measures assigning nonzero weight to the interval (E — ¢, E +¢) as € ] 0, etc.

As a matter of fact, it is often more convenient to diagonalize H as a nonlinear
function of a spectral variable; we have already seen several concretizations of this
more general form of the spectral theorem. If need be, one can easily convert this
to the previous form. For instance, the Fourier transformation (4.10) diagonalizes
all operators p',l € N*, and exp(ap),a € R*, simultaneously; then one should
transform to L?([0, 00), dE) & L*([0, 00),dE) for even [ and to L*(R,dE) otherwise.

The spectral theorem makes it possible to define and work with functions of H.
In particular, one way to obtain the quantum time evolution is by pulling back the
unitary multiplication operator exp(—itE) on H:

(4.28) exp(—itH) = &£ exp(—itE)E™!

More generally, one can define bounded functions of H, and these functions form
an abelian algebra. Whenever one can choose m = 1 in (4.24) (so that the (global)
spectral multiplicity of H equals 1), this algebra is maximal abelian: It cannot be
enlarged without losing the commutativity property.

The spectral theorem has a generalization to several commuting s.a. operators
H,,H,,... ,Hy. Here, ‘commuting’ means by definition that the corresponding
evolutions exp(—it;H;),j = 1,...,N, commute. (For bounded Hi,...,Hy, this
is equivalent to [Hy, H;] = 0. But for unbounded operators, the commutator need
not be densely defined, and even if it is and vanishes, this does not entail that the
evolutions commute.) Again, it is often simpler to transform to a representation
where Hy, ..., Hy become nonlinear functions of several variables (instead of mul-
tiplication by Ei,...,En, resp.). The free AAOs (4.13) are a case in point, cf.
(4.14), (4.15). Note that they all have spectrum [0, c0) with infinite multiplicity.
The abelian algebra generated by the bounded functions of Si,...,Sn (say) is,
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however, ‘almost’ multiplicity-free (maximal): Its commutant is generated by the
permutation operators

(4.29) (Pyp)(z) = (o7 (x)), o€ Sy, e L*RY,dr)

where 7(x) stands for (z,(1),...,2-(n))-

4.2. The nonrelativistic case: commuting PDOs. The quantization prescrip-
tion (4.1) applied to the Hamiltonian (2.32) yields the PDO

N
1 .
(4.30) H:§Zp§+g2 Z V(z; —xk), g>0
= 1<j<k<N

Specializing V (z) to the type I-TV cases (2.38)—(2.41), the first question to answer
is now, whether there exist N independent PDOs (including H) that commute
pairwise. Equivalently, one should try and establish whether H is an integrable
PDO, cf. the first few paragraphs of Subsection 4.1.

There are two sets of obvious candidates for these commuting PDOs. Clearly, the
quantization P = ) ; bj of the first power trace Iy / symmetric function S of the
respective Lax matrices commutes with H; also, H is the unambiguous quantization
of I (or equivalently S7/2—S5) up to an (irrelevant) A-dependent constant for type
IV. For N > 2 one can now try to continue either with It (x,p),k = 3,...,N, or
with Si(z,p),k = 3,...,N. But for the power traces ordering problems arise: in
summands contributing to Ij(z,p) for k > 2 the quantities z; and p; can occur
simultaneously, so the ordering is ambiguous. By contrast, whenever p; occurs
in a monomial contributing to some principal minor of L(z,p), the position z;
cannot occur, so that the expression Si(z,p) yields an unambiguous PDO for all
k € {1,...,N}. Thus one need only show that Si(p),...,Sn(x,p) commute. (If
so, one can define Iy (z,p), k > 2, unambiguously via the Newton identities (2.66).)

We have no doubt that these PDOs indeed commute. But as we learned while
writing up these lecture notes, there appears to be no complete proof in the pub-
lished literature. In Ref. [29], Olshanetsky and Perelomov do present a proof, but
upon scrutiny this proof turns out to be incomplete on two counts—as we shall
detail shortly.

Fortunately, there are complete proofs that H (4.30) is integrable for all of the
systems of type I-VI; only the connection between the higher order commuting
PDOs and the quantized S (L) has not been completely clarified yet. As we see it
now, the first complete proof for systems of type I-III was given by Heckman and
Opdam [17, 16, 30, 31], and for systems of type IV by Oshima and H. Sekiguchi
[32]. In our survey [38] we presented independent proofs of integrability for the
nonrelativistic quantum systems of type I, II, III, V and VI—as a corollary of
integrability at the relativistic level, proved first in Ref. [39]. We shall return to
the latter strategy in Subsection 4.3.

We proceed by discussing the partial proof in Ref. [29] and the complete proof
of Ref. [32]. The starting point of Ref. [29] is a classical Hamiltonian of the form

(4.31) In(z,p) =exp( Y, h(wj — 2x)0p;0p)P1 - PN
1<j<k<N
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Expanding the exponential, this can be written
(4.32)
JN = Z ll' _21 | Z 1/'1 _«TQ h(.’EQl_l _x2l)p2l+1"'pN)
0<I<[N/2]

Next, defining recursively

N
(4.33) Jeor ={)_wj, i}/ (N—k+1), k=N,N-1,...,1
j=1
and using (4.32), one obtains
(4.34)
1

I = W= > Mk =201 Z h(zy — @2) - - M(@2-1 — T2 )P2141 - - - Pr)
0<I<[k/2]

In particular, this yields

(4.35) Jo=1, Ji=>pj, L= pipe+ Yy hlxj— )
i

i<k i<k
(4.36) Z PiP;iPk + Z h(zj — zk)p
i<j<k i<k
i#5,k
so that
1 1
(4.37) §J12—J2:§Zp] > h(zj—am) = H
J J<k

Hence, the choice
(4.38) h(z) = —g*P(z) — C

yields the classical type IV Hamiltonian (2.32), (2.41) when one takes C' = 0. More
generally, one easily checks

ol )
(4.39) Je(h+0C) = > 57l (N =k +25)Jk_o;(h)

(N =)l 0<j<[k/2]

In words, shifting h by a constant amounts to a linear reshuffling of Jy,... , Jy.

Evidently, all of these quantities have unambiguous quantizations, and the proof
of Ref. [29] is concerned with the commutativity of .Ji,. .., Jy given by the quan-
tizations of (4.31), (4.33). Their proof uses classical input, which we now sketch.
The Hamiltonian Jy(z,p) (4.31) was introduced by Sawada and Kotera [48] for
the type I case, where h(z) = —g?/x2. They showed that Jy Poisson commutes
with H (4.37) and observed that this entails that the Hamiltonians J;, defined via
(4.33) commute with H, as well. (Indeed, this easily follows from the Jacobi iden-
tity [48].) Subsequently, Wojciechowski [55] generalized Jn (4.31) to the type IV
case and showed that when J;, is defined via the recurrence relation (4.33), then
Ji,...,Jn are in involution.

Now Olshanetsky and Perelomov do prove that the quantum versions of H and
Jn commute as well, by showing that the additional terms in the commutator
(compared to the terms in the Poisson bracket) sum to zero, cf. Ref. [29], p. 336.
Then it follows just as in the classical case that H also commutes with Jy_1,...,J;.
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But in Ref. [29] it is not proved (or even made plausible) that the additional terms
in arbitrary commutators [Jy, J;] sum to zero.

The latter gap is closed in the work by Oshima and Sekiguchi [32]. Specifi-
cally, they prove (among other things) that the quantizations of Jy (4.34) with
(4.38) in force commute without using any classical input (so that involutivity of
Ji(z,p), ..., n(z,p) follows as a corollary). They also prove a most useful unique-
ness result, which we shall have occasion to invoke in Subsection 4.3. More precisely,
we only need a slightly weaker version of Theorem 5.2 in Ref. [32], which we now
state.

Suppose Gy (z,p),k = 1,... , N,z € RV, are N commuting PDOs with mero-
morphic dependence on xy,...,xy. Suppose that the PDOs are invariant under
arbitrary permutations in Sy and that they are of the form

(4.40) Gi=Y P, Ga= pipr—ga()
J i<k

i1 <<
with g of degree < k — 1 in p. Then the commutative PDO algebra generated
by Gi,...,G N coincides with the algebra generated by the above Ji,...,Jy. In
particular, one must have

(4.42) g2(x) = C1 Y P(zj — mp;w,0') + Cs
j<k
Thus far, we have restricted ourselves to the type I-IV systems. Let us now turn
to the Toda systems. Choosing

(4.43)
A+z)s(A—x) ,
h — 2 _ A) = — 2 S( ! =
(@) = ~g*(Pw) - P() = " T2 =i
with A = w+in/u, and substituting (2.109) and (2.112) in Jy (4.31), it follows from
previous calculations that the limit w — oo exists and yields (with the convention
(3.34) in effect)

(4.44)

N
Jn = exp(—a® ZGXP (i —x5-1)0p;Op;_)p1---PN (V)
j=1

The limit w — oo can also be taken in the recurrence relation (4.33), and so one
winds up with commuting PDOs Ji(z,p), ..., JJn(z,p). In particular, one gets in
this way

N
(4.45) J1 = Zﬁj, Jy = Zﬁjﬁk —a’ Zexp p(xj —xj-1)
J j=1

j<k
so that
N

1 1,
(4.46) 5J7 =R =) (5F; +a’ expu(z; — 1)) = H(V)

=1
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Substituting (2.102) and taking a — 0 now yields the nonperiodic Toda analogs, in
particular

(4.47)
N
Iy =exp(— Y expu(z; — xj-1)0p;0p;_,)p1 DN (VD)
j=2

Alternatively, one can obtain the commuting type VI PDOs from the hyperbolic
PDOs by substituting (2.115) and (2.116) in Jy, ..., JJy with

(4.48) W) = —gp 4k (ue/2)  (ID)

and taking ¢ — 0. To complete the connection diagram (2.104) at the quantum
nonrelativistic level, it remains to specify the direct IV—VI transition. To this
end we use once more (4.43), but now with A = w. Substituting then (2.118) and
(2.119) in Jy (4.31), it follows that Jy converges to (4.47); taking successively
k=N —1,...,1, one deduces that J; converges to the type VI Jj.

To conclude this subsection, we elaborate on the relation between Ji,...,Jn
and the symmetric functions Sy, ... ,Sy of the type II Lax matrix (2.67) (and its
type I and III versions), its A-dependent type IV generalization (2.90), and the type
V and VI Lax matrices (2.99), (2.101), resp. First, it should be noted that whenever
Jn and Sy are equal, equality of Jj, and Sy for all k € {1,..., N} follows. Indeed,
the functions Si, ... , Sy also satisfy the recurrence relation (4.33). (The coefficient
of p; in S}, equals the sum of all principal minors of order k — 1 not containing the
index j. Each such minor does not contain N — k + 1 indices, so it occurs N —k+1
times in the Poisson bracket at the right-hand side.)

Consequently, if Jy (z, p) were equal to Sy (z,p), the connection diagram (2.104)
for the quantum versions would be immediate from the classical connections detailed
in Subsection 2.3. Now when we choose h(z) equal to (4.43), we must choose the
same A in (2.90) to obtain equality for N = 2. But then we do not get equality for
N =3, unless

!

(4.49) A=w;, 1=1,2,3, w1 =Sw, wh=—w-—w, wy=w

(modulo the period lattice), and even for these three choices, it is quite likely that
one does not get equality for arbitrary N.

Turning now to the assertions of Ref. [28], it is claimed on p. 326 that their Jy
(Eq. (4.13) in l.c. ) equals the determinant of Lax matrices specified on pp. 322—
323. However, no proof of this claim is presented. Instead, the reader is referred to
the papers by Sawada/Kotera [48] and Wojciechowski [55] already mentioned. But
in these papers equality of Jx to a determinant is neither proved nor claimed to be
valid.

Translated into our notation, the above claim says in particular that when one
takes h(z) in Jy (4.31) equal to (4.48), then Jy equals Sy (L), with L given by
(2.67). Undoubtedly this is true, and we have checked equality for N < 4. However,
we are not aware of a complete proof. Changing 1/sh to coth in (4.48) and in (2.67),
Ref. [28] claims once more equality of Jy and Sy. (This choice amounts to the
A = in/u specialization of the A-dependent type II Lax matrix, i.e. (2.90) with
w = 00.) This claim is false: Jy and Sy differ by a constant, so Jy and Sy differ
for all N > 5, too.

In the elliptic case Ref. [28] allows three choices for h and the Lax matrix. These
choices amount to the above choices (4.49). Again, the claim that Jx equals Sy is
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incorrect in general: Jy and Sy differ by a constant that depends on the choice, so
that nontrivial differences for N > 5 result. We conjecture that the correct result
for arbitrary A € C in (2.90) reads

(4.50)
N-=-2
SN = In(h) + D crnNJk(h),  h(z) =—g*P(z)  (?)
k=0

where Ji(h),...,Jn(h) are given by (4.34). (We have checked (4.50) for N < 3.)
For the periodic Toda case we conjecture that

(4.51) Sy(w) = Jn + (ia)N (w™" + (=)Nw) (?)

with Sy (w) the determinant of (2.99) and Jy given by (4.44). If so, equality of Sy,
and Jy for k£ < N and equality of the type VI S and Ji for k£ < N would follow,
of course.

4.3. The relativistic case: commuting AAOs. As already discussed in Subsec-
tion 4.1, we run into ordering problems when we perform the canonical quantization
(4.1) in the Poisson commuting Hamiltonians Si(x,p) (3.39), £k € {1,... ,N—1}.
More precisely, in writing down Si(z, p), we have automatically opted for an order-
ing, but for this ordering the prescription (4.1) does not necessarily yield commuting
AAOs.

As a model for the ambiguity at hand, let us look at a Hamiltonian of the form
h(z,p) = ePf(x). Writing it as f(z)eP yields a different AAO upon quantization
(unless f(x) happens to have period ih). As it turns out, both of these orderings in
(3.39) give rise to noncommuting AAQOs. (Taking N > 2 and generic f, fr.) Now
for these two choices the resulting AAQOs are not even formally symmetric, so one
can try next the orderings symbolized by f(z)'/2e? f(x)'/? and e?/? f(x)eP/? (which
do yield formally symmetric AAQOs). Again, these choices spoil commutativity,
though. At this point it should be emphasized that no general results are known
from which an ordering choice preserving commutativity would follow.

Such a choice does exist, however. Specializing first to the type I case, where
f(z) = (14+B2¢%/2*)"/? (with f(x) > 0 for x € R*), it can be symbolized by writing
the model Hamiltonian h(z,p) as f_(z)e? fy(x), where fi(z) = (1 +ifg/x)"/>.
Recalling 8,9 > 0, the square-root branches may and will be fixed by requiring
fx(z) = 1 for g | 0. (To be quite precise, we require this for z € R*. Since the
z-shifts involved are in the imaginary direction, the branch points off the real axis
are not encountered.)

We now turn to the corresponding ordering choice for the type IV Hamiltonians:
It is obtained by choosing

(4.52) fe(@) = (s(x £iBg)/s(@)'/?, gl 0= fi(a) > 1
Written out, the corresponding AAOs read
(4.53)
Sur(@,p)= Y, [Ife@i—z)exp#BY_ p) [[ felzi—x;) (FIV)
Ic{1,...,N} i€l el il
=k ~J¢I Jer

Thus, their classical symbols yield the same functions as (3.39); moreover, (3.42)
holds true again. (To check this, use fs(—z) = f_s(x).) Using (3.37), we also get
AAOs H(z,p) and P(z,p) belonging to the algebra generated by the AAOs (4.53).
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It can be shown that the commutativity of this algebra boils down to the functional
equations

(4.54)

—(z—>-x)| =0

3 HS(%—%—V)S(%—%JW—D)
e, Ny \ el s(zi — xj)s(zi — xj — p)
|I|=k JEI
which hold true for all N > 1,k € {1,... ,N},z € CN,v,p € C. These results can
be found in Ref. [39], with s(z) replaced by the Weierstrass o-function; in view of
the relation (2.89), this difference is inconsequential.
The functional equations (4.54) encapsulate the integrability of all of the models
considered in these lectures. We continue by elaborating on this assertion. First,
dividing by p and sending p to 0, one obtains the functional equations

(4.55) Z Z&H 5(2i — 2 _7)3(5512—351 +7) -0
IC{1,.. N} i€l el s(zi — xj)
[7|=k i¢l

These amount to the functional equations (3.41) that express involutivity of the
classical Hamiltonians Sy,...,Sn [47]. Now we have shown in Section 3 that
the latter commutativity result entails integrability for all of the relativistic and
nonrelativistic classical systems of type [-VI. Thus, it remains to explain how (4.54)
entails integrability for their quantum versions.

We begin with the relativistic level. Of course, then we need only consider the
Toda systems, since the type I-III systems are included in type IV via (2.108). In
fact, we are going to detail the transitions in the diagram (2.104) at the quantum
relativistic level. To this end we adapt the reasoning followed at the classical level
to the AAOs Sy,...,Sy, rewritten as

(4.56) Si= >[I~ — o) fe(a; -z — ihB) exp(Bpr)
1c{i,...,N} jeI
=0 ket
cf. (4.53). (The corresponding transitions for S_i,...,S_n can be dealt with by
taking 8 — —f.)
First, we consider the transition II—-VI. Substituting (3.45) and (2.115) in f_(z;—
xg) f+(x; — x, — ihB), we obtain a function f;; with limits

(4.57)
1, li—k >1
fik = (L+ B explu(e; —ihf —x; ))'?, k=j—1
(1+ B2 explu(wjpr —))])'/2, k=j+1
for e — 0. Hence, the limit of S; (4.56) exists and can be rewritten
(4.58)
Sk = Z H fr(zjs1 — ;) exp(Bpr) H fr(zj —zj-1) (Toda)
Ic{1,...,N} jeI jeI
=k ~ j+1¢I j-igl

with the convention (3.35) in effect.
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Second, we handle the IV—V limit, starting again from (4.56). To this end we
use the analog of the factorization (3.48) for the functions fi and f_, and mimic
the reasoning in the classical case. Thus we introduce

(4.59) S = Si/p(@)*" VR p(g) = exp(uBglg — h)/4w)

and substitute (2.109) and (3.50). Then the limit w — oo exists and can be rewrit-
ten as (4.58), but now with (3.34) in force. (Just as in the classical case, the infinite
products supply the extra boundary terms, as compared to the nonperiodic case.)

Third, the IV—=VI transition can be made by substituting (2.118) and (3.52) in
the AAOs S, and taking w — co. To complete the diagram (2.104) it remains to
specify the V—VI limit. As before, it suffices to substitute (2.102) in the type V
AAOs Si (4.58) and take @ — 0 to obtain the type VI S.

It can also be shown directly that the Toda AAOs (4.58) commute. This can be
reduced to the functional equations

> IT il fR@icn =) [ ier 7@ — zign + X)

Ic{1,...,N} i-1¢ it1gl
[T|=F
(460) = Z Il icr fF@ica —2i+ N1 ier f7(@i = 2iga)
IC{1,..,N} i-lgl it1gl
[I|=Fk

which hold true for all N > 1,k € {1,... ,N},x € C¥,\ € C [46]. (Note this yields
the classical functional equations (3.41) when one divides by A and takes A to 0.)

We now consider the nonrelativistic limit 8 — 0, handling first the elliptic case.
We start from commuting AAOs

(4.61)
g N -1
Ak(ﬁ)EZ(_)k+l ( N —k >Cz(>\,iﬁg)51, kzla 7N
=0
where
(4.62)

(X a) =sA)Fs(A—a) sV + (k—1)a), k=1,...,N

The point of this definition is, that the classical versions of these AAQOs, after

division by ¥, converge to the Hamiltonians Si(Ly.) for 3 — 0, where Ly, is the

type IV Lax matrix (2.90). (To see this, recall (3.61), (3.62) and (3.68)—(3.71).)
Expanding ¢; and S; in powers of 3, we now write

(4.63) Ae(B) =D ApmB™
m=0
(This expansion is meant in the sense of formal power series.) Then we calculate
(4.64) A1p=0, A= Zﬁj
J
Ao =As1 =0, Asy = S (bspx—glg — W(Pla; — z1) +n/w)
i<k
g

(4.65) +5 NN = 1)(P(A) +n/w)

2
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It is important to observe that this result differs from the classical expansion: In
Az 2 one has a coefficient g(g — h) and not g%, since the partials in (4.53) do not
commute with the fi-factors. (Equivalently, the S-dependence of the coefficients
in (4.56) differs from that of their classical versions.)

Next, we note that the integer

(466) ng = min{l|Ak,l 75 0}, k= ]., AN ,N

equals k in the classical case, and must be < k in the quantum case, since we clearly
have

(4.67) A= Y PiPi, g=0

iy <e+<ig
Taking for granted that n; = k in the quantum case as well, it would follow that
(4.68) [Akk, A1yl =0, kil=1,...,N

and since we have (using obvious notation)
1
(4.69) Ho(9? = glg—h)) = §(A1,1)2 — As » + constant

integrability of the nonrelativistic Hamiltonian would follow.

Unfortunately, a direct proof that ny equals k£ appears intractable. The problem
is, that one gets an avalanche of additional terms arising when partials act on f;-
factors. A priori, these extra terms might lower n; as compared to the classical
case, and yield PDOs Ay, ,,, that are not independent for £k = 1,... ,N. Note also
that the connection of Ay to the quantized symmetric functions of Ly, is quite
opaque due to the extra terms.

We shall now show that n; indeed equals k, by making a detour involving a
function w(f; z) that is also an important ingredient for obtaining relativistic eigen-
functions (as we shall see in Section 6). In the process, we shall obtain a rather
explicit formula for Ay, .

The function w is introduced in Ref. [44]. Tt is a solution to the first order
analytic difference equation

. f2(z)

(4.70) w(x —ihp) = o= ihﬁ)w(x)
that is meromorphic, even and 2w-periodic in . Moreover, it has no poles for real
x and is positive for z € (0,2w), and it satisfies
(4.71) lim w(f;z) = C’exp(22 Ins(z)), =z €(0,2w)

B—0 h
Here, the positive constant C' is irrelevant for what follows, and the logarithm is
chosen real. (Note that (2.105) entails positivity of s(z) on (0,2w).) Setting

(4.72) ABsz) = C' [ wBszj —2r), €' >0

i<k
and using (4.56), evenness of w and (4.70), we obtain transformed AAQOs
(4.73) St=AT2GAY = N T 2w — @) exp(Bpr)

Ic{1,...,N} jel
|1|=I k&l
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Next, we replace S; by S} in (4.61), obtaining an AAO AL (3). In view of (4.71),
the formal power series expansion of this AAQ has as its lowest coefficient the PDO

(4.74) Al = (@)™ Ap o, ()

with

(4.75) (z) = [] Is(z; — zi)|?/"
i<k

To prove ny = k, it therefore suffices to show that Ai:,l vanishes for [ < k.

The crux is now, that we need only show this for the classical version A (z,p).
Indeed, in S} (4.73) all partials occur to the right of h-independent coefficients, so
the PDO Afc’l is obtained by substituting (4.1) in the normally ordered expansion
coefficient ALl(x,p). Here, normal ordering denotes the procedure of putting z-
dependent coefficients to the left of monomials in py,...,pn (classical case) or
P1,--.,pn (quantum case); we shall symbolize normal ordering by double dots in
the sequel. In particular, we can now rewrite (4.74) as

(4.76) Agony, = (2) : Agc,nk (z,p): H(:U)_1

We proceed by proving that Afal(a:,p) vanishes for [ < k. To this end we first
notice that the function ¢;(\,i89) S} (z, p) is the Ith symmetric function of the matrix

(477) Ejk = Ciijk

with D given by (3.70), and

(4.78) d; = exp(Bp;) [ [ £ (w; — m)
l#£j

(To verify this, one need only repeat the calculation leading to (3.71), making the
pertinent changes in (3.59); note that f2 (z)f? (—z) = f*(z).)
Next, we observe that

(4.79) L=1y+B(Lw+E)+0(8%), B—0

where the ‘extra’ matrix is given by

(4.80) E = diag(z(2), ... ,2n(2))

with

(4.81) zj(z) = —ing'(mj —a)/s(zj —x), j=1,...,N
1#]

Now this entails

(4.82) lim 5" 45.(8) = St(Lur + E)

From this we deduce not only that A} ;(z,p) vanishes for | < k (as desired), but
also —returning to the quantum level—that

(4.83) A =(z) : Sk(Lar(z,p) + E(x)) : I(z)~"

The upshot is, that we have now derived integrability of the nonrelativistic type
IV quantum system from that of its relativistic version. Moreover, we have obtained
rather explicit formulas for the commuting PDOs Ay ;. To exploit the formula
(4.83), it is important to observe (recall (4.75) and (4.81))

(4.84) M(z)p;(x)~" = p; — zj(z)
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(4.85) pi(zi) = —gh(P(z; — x;) + njw) = —h(z; — x;), j#i

Let us call the latter formula a contraction. Expanding (4.83) and using (4.84), we
may move all p;’s to the right, picking up contractions along the way. Then we
wind up with an expression that can be written

(486) Ak,k = Sy (Lnr(maﬁ)) + Ry, (.T,ﬁ)

where Ry (x,p) is normally ordered and consists of all terms involving at least one
contraction. As such, Ry(x,p) has degree < k — 1 in p. From this one easily
deduces that Ay i (z,p) has the form (4.40), (4.41). (For k¥ = 1 and k = 2 we
reobtain (4.64) and (4.65), resp., as should be the case, of course.) Therefore,
we are now in the position to invoke the uniqueness result of Ref. [32] detailed in
the paragraph containing (4.42): The commutative algebra generated by A, k =
1,..., N, coincides with the algebra generated by Ji(h),...,JJy(h), with

(4.87) hiz) = —g(g — h)P(x)

It is not hard to see that Ay, ; is actually a linear combination of Ji, ..., J;: Any
monomial in Ay ;(x,p) involves a given p; only once, so no products of the J; can
occur. Notice also that the contractions are responsible for changing g% to g(g — h)
in (4.87). In fact, we conjecture that one has

(4.88)
M) 3 [[ s + 5(@) : M)~ = k), 1=1,...,.N  (2)

|T|=t i€l

with A given by (4.85). (We have checked this for [ < 4.) Clearly, (4.88) would be
useful to render the formula (4.86) for Ay, even more explicit.

Of course, the above holds true for the type I-III systems, too. If one could
prove (4.88), it would easily follow from the IV—V and IT—VI transitions that one
has

(4.89) AT,k,k = Sk (Lnr(w,ﬁ)) (Toda) (?)

in the Toda case. (Here, A7 denotes the kth expansion coeflicient of the AAO
A7 1 (B) that is defined via (4.61) with ¢;S; replaced by S; (4.58) for type VI and by
¥, (3.76) (with S; given by (4.58)) for type V.) In particular, this would entail that
the quantized symmetric functions of the Lax matrices (2.99) and (2.101) commute.

Independent of the validity of (4.89), it can be shown that ny = k in the Toda
case [38]; the reasoning presented in Ref. [38] applies to type I-11I as well, but leaves
open the type IV case. (The statements in Ref. [38] concerning the relation of Ay
and quantized symmetric functions should be ignored, though; this is because these
rely on the unproven assertions in Refs. [28, 29] discussed above.)

5. ACTION-ANGLE TRANSFORMS

5.1. Introductory examples. At the end of Subsection 2.1 we have introduced
action-angle maps, a notion associated with an arbitrary Liouville integrable system

(5.1) S=Q,w, I,...,In)
As we have seen in Sections 2 and 3, the Calogero-Moser and Toda systems and
their relativistic generalizations are Liouville integrable, so one is led to the problem

of constructing explicit action-angle maps for these systems. Now the Liouville-
Arnold theorem is of little help in that enterprise, since it is merely concerned
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with existence and general structure under some quite subtle assumptions, whose
direct verification is often intractable. Provided the joint orbits (2.33) contained
in Q; are compact (so that k; = N in (2.36)), there exist integral representations
for the action and angle variables. (These are actually the reason for the term
integrable system, historically speaking.) Even so, one would really like to express
these integrals in terms of known functions, or obtain at least more information
on the range of variation of the actions, the functional dependence of Iy,...,In
on the actions, etc. More generally, the decomposition into invariant submanifolds
Q1,Q5,... should be made explicit.

In order to provide more perspective for this circle of problems, we shall consider
some quite elementary examples. Our starting point is the Hamiltonian

(5.2) H(z,p) =p°/2+V(z), V €C®(R)

defined on Q = R? equipped with its standard form w = dx A dp. Then we have
dH (zo,po) # 0 unless both pg = 0 and V'(zp) = 0; such points yield equilibrium
solutions (z(t),p(t)) = (xo,po),Vt € R. Since dH # 0 on an open dense set, H is
integrable.

The H flow is not complete without further restrictions on V', however. For
instance, taking V = —z* /2, one gets a solution (1/(1—t),1/(1—1)?) to Hamilton’s
equations (2.1) that is defined only for ¢ < 1. To ensure completeness (and hence
Liouville integrability), let us henceforth assume that V' is bounded below. (By
energy conservation this entails an upper bound on |pl|; since one has & = p, this
prevents escape to infinity in finite time.)

Of course, the simplest external field with this property is the constant field

(5.3) V(z) =V

Discarding the line of equilibria {p = 0}, one is left with two open, connected and
invariant submanifolds €2; and Q5 on which p > 0 and p < 0, resp. These are of the
form Rx A; with 4; open and connected, and the flow (z(t),p(t)) = (xo+pot,po) is
obviously linear in time. Hence one can take Q; = Q; and ¥, equal to the identity,
i=1,2.

Next, we consider the harmonic field

(5.4) V(z) =2%/2
In this case one clearly obtains the flow
(5.5) etH(xo,pg) = (zo cost + po sint, po cost — o sint)

This flow is nonlinear in ¢, but away from the equilibrium (0, 0), it can be linearized
by a symplectic map

(5.6) ®: (O, deAdp) — (0,di Adp), (z,p) — (2,p)
where

(5.7) 0, =Q)\ {(0,0)}

(5.8) Q=T" x (0,00)

As announced below (2.37), the torus T! is viewed as R/27Z and coordinatized by
z € (—m,]; explicitly, ® reads

(5.9) & = arctan(z/p), p=(p®+2°)/2 = H(x,p)
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so that the inverse £ is given by

(5.10) T = (2;6)1/2 sing, p= (2;6)1/2 cos &
and one has

(5.11) exp(tH)(#o, fo) = (0 + ¢, fo)

In this example all orbits are periodic, but in general a Hamiltonian of the form
(5.2) has both periodic and nonperiodic orbits. Indeed, taking as a third example

(5.12) V(z) = —exp(—2?)

the level set H(x,p) = E yields an equilibrium for £ = —1, a periodic orbit for
E € (—1,0), and two nonperiodic orbits for E > 0. Discarding the equilibrium at
(0,0) and the level set E = 0 separating bound and unbound orbits (separatriz), one
obtains three open, connected and invariant submanifolds Q1, Q2, Q3, corresponding
to E € (—1,0), and to E > 0 with p > 0 and p < 0, resp.

The action variable p(z,p) on € is now determined (uniquely up to a constant)
as the function f(H(z,p)) that is such that all of its orbits have primitive period
2m. It can be seen that the function

v=l(m)
(5.13) F(E) = %A(E) — %/0 p(z, E)dz, E € (~1,0)
(5.14) p(z,E)= 2[E-V(x))*/?, V(z)<E

has this property. Here, A(E) denotes the phase space area enclosed by the level
curve H(z,p) = E. Note this yields p = H for the special case (5.4), in agreement
with (5.9). For (5.12) or any other potential with the same shape (such as —1/ch®z),
the oscillation period is nonconstant on €, so the transformed Hamiltonian must
be a nonlinear function of p. (In this regard the above harmonic oscillator example
is highly nongeneric.)

There is also an integral representation for the canonically conjugate angle vari-
able & € (—m, 7] (cf. Ref. [2], p. 281); this variable is uniquely determined up to
addition (mod 27) of an arbitrary function of p. Since we have H = f~! o j, the
H flow increases the angle by 27 after a time 270 f/0FE = T'(E). Using (5.13) and
(5.14) to calculate T(E), one now verifies that this yields the correct oscillation
period.

The integral trajectories in 29 and {23 are scattering orbits, and so one has far
more freedom in the choice of action coordinate. Indeed, one can take p = f(H) for
any function f € C*°((0,00)) with positive or negative derivative on (0, c0), and
obtain a canonically conjugate ‘angle’ variable Z(z,p) taking values in R. There
is, however, a special choice that is singled out by a physical interpretation: one
can choose p(z, p) equal to the limit of p(t) for t — oo, so that p = (2H)'/? on Q,

and p = —(2H)1/2 on 3. As canonically conjugate position one can choose the
asymptotic position 1 determined by
(5.15) (@(t),p(t) ~ (27 +tp,p), t— o0

Alternatively, one can work with the t - —oo asymptotics, yielding action-angle
variables (x~,p). Restricting attention to (s, canonicity of the maps

(5.16) Us: Rx(0,00) =0y = Qy, (2F,p) = (z,p)
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is then a consequence of scattering theory. Indeed, they are just the wave maps

(5.17) Us = lim exp(~tH)o exp(tH)
(5.18) H(z*,p)=p?/2=ULH

which are related via the scattering map

(5.19) S=US'U—: Qo= o, (27,p) = (2F,p)
(Writing

(5.20) at =127 +4(p)

the scattering is encoded in the function §(p): it registers how much the particle has
advanced as compared to a freely moving particle with velocity p.) Summarizing,
one can choose the action-angle map ®- equal to U;l or UL,

As a fourth example, let us take

(5.21) V(z) = 2% exp(—2?)

This potential has a well around the origin and two maxima V(+1) = e~!. Thus
the level set E = 0 yields an equilibrium (0,0), whereas the level set E € (0,e™1)
splits up into three orbits: Two scattering orbits (reflection at the bumps) and one
periodic orbit (oscillation around the origin). For E > e~! the level set has two
connected components, corresponding to scattering orbits (transmission from left
and right). The separatrix level set E = e~ ! is connected, but not diffeomorphic
to R or T'. Indeed, this set splits up into eight distinct orbits: Discarding the
two equilibria at (£1,0), one is left with six connected components, each of which
yields an orbit. (Draw the phase diagram to see this.) Deleting the origin and
the separatrix from Q = RZ, one obtains a set with five connected components,
viz., one bound state submanifold 2, two reflection submanifolds Q5,3 and two
transmission submanifolds 4,5. On each of these the flow can be linearized
by a canonical map ®;, involving the 1-torus and the integral (5.13) on €, and
scattering theory objects on Qs,... Q5.

Turning now to the case N > 1, we note that there is a trivial, yet instructive
way of manufacturing Liouville integrable systems: One can take

(5.22)
Li(z,p) = p;/2+ V(z;), j=1,...,N, V;€C®(R), V;>0

to get N commuting Hamiltonians on @ = R*V with its standard form (2.7). The
submanifolds Q,,,... and action-angle maps ®;,®,,... then have a product
structure, and the complement of ; U Qs U--- will consist of a union of sets that
are built up from equilibria and separatrices for each of the Hamiltonians I, ... , Iy.
The dimension of the latter excluded sets can vary from 2N — 1 (take e.g. (z1,p1)
on a separatrix for Ir) to 0 (take (z;,p;) to be an equilibrium for I;,5 =1,... ,N).
Moreover, the integer k; in (2.36) takes all allowed values 0,..., N when each of
I,... , Iy has both bound and scattering orbits.

From these examples one already gleans that the N > 1 situation can be quite
complicated. An additional complication for N > 1 cannot be easily illustrated,
since it is absent for the rather artificial product situation just discussed: To obtain
invariant submanifolds of the form (2.35), (2.36) one may have to discard additional
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separatrices whose location is a matter of choice (just as branch cuts ensuring one-
valuedness can be chosen at will). In geometric parlance, this phenomenon amounts
to the occurrence of a nontrivial fiber bundle structure (with the fiber equal to
(2.36)). We shall encounter an explicit example of this situation towards the end
of Subsection 5.3. Since the general theory should cover all possibilities at once,
it is clear that one must make rather intricate technical assumptions in order to
obtain invariant submanifolds that are symplectically diffeomorphic to manifolds
of the form (2.35), (2.36). A detailed account can be found in Ref. [1]; see also Ref.
[13] for general information on the way in which the invariant tori can bifurcate
and degenerate, and on various related matters.

5.2. Wave maps and pure soliton systems. In view of the general picture
sketched in the previous subsection one should be prepared to encounter consid-
erable complications in constructing explicit action-angle transforms for a given
Liouville integrable system. There exists however a physically important class of
integrable systems for which neither equilibria nor separatrices occur, so that one
needs to consider only one invariant submanifold, namely all of Q2. These integrable
systems are defined by the Hamiltonian H (2.32) on the phase space 2 (2.43), with
V() a pair potential having the salient features of the type II potential 1/sh?vx.
Specifically, V(z) is a strictly monotone decreasing function on (0, 00) with a di-
vergence for z | 0 preventing collisions, and rapid decay to 0 at co. Let us denote
the class of such repulsive potentials by R, and fix V € R. We proceed by describ-
ing how the inverses of the wave maps from scattering theory can now be used as
action-angle maps, in much the same way as for the above example, cf. (5.16)—
(5.18). (In the example, however, the potential is attractive, so that transmission

occurs.)

First of all, any point in € yields an orbit with asymptotics
(5.23) (2(),p(2)) ~ (z* +tp*,pT), t— o0
where
(5.24) py >-->ph, pL < - <py
Introducing incoming and outgoing phase spaces

g g going
(5.25) OF = {(@",p") e RN} < -~ <pi}
(5.26) Q" ={@",p) e BN py > >pr}
equipped with their canonical forms
N
(5.27) W= Zdw? A dpg-, 0=+,—
j=1

and Hamiltonians

N
1
(5.28) H(2®,p") = 5D (05)%, 6=+,
j=1
the wave maps are given by
(5.29) Us = lim exp(—tH)oexp(tH?), 6=+,—

t—d00

Observe that the composition makes sense for ¢ — doo: the restrictions (5.24)
ensure that the point (z° 4 tp°,p?) belongs to Q (2.43) for 6t large enough. Since
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the Hamiltonian flows at the right-hand side of (5.29) are canonical, the wave maps
are symplectic maps

(5.30) Us:Q° = Q, («2,p°) = (,p)

(To prove this rigorously is not easy, though.) The intertwining relations

(5.31) Us oexp(tH?) = exp(tH) oUs, 6= +,—

show that Ug ! can indeed be viewed as a linearizing canonical transformation
$s5: 0 — Q) cf. also (2.30), (2.31).
Liouville integrability of H is now easily established. Indeed, defining

1
(5-32) Hg(m(S’pa)EEZ(pg)k’ kZl"" 7N
=1
the Hamiltonians H{,...,H$, are obviously in involution. Moreover, they are

independent; their gradients are in fact linearly independent on all of Q9 since
the relevant determinant is a Vandermonde determinant that has no zeros on Q9.
Setting

(5.33) HY=H)oU;', 6=+,—, k=1,...,N

it follows that ]EIf, . ,va are in involution, and that their gradients are linearly
independent on all of Q. Since we have

(5.34) H)=H’, Hi=H, §=+,—

in view of (5.28) and the intertwining relations (5.31), it follows that H is integrable.
Moreover, because the map Us is canonical, (5.33) entails that it intertwines the
flows exp(tH}) and exp(tH 9). Since the former flows are manifestly complete, the
latter are, too. Hence, H is Liouville integrable, as claimed.

Now for a general V' € R it is quite unlikely that the commutative subalgebras of
T generated by I:If', e ,I:Ij\} and I:Il_, . ,I:I;, are equal, and even more unlikely
that H,jr and H . are equal for k£ > 2. (By translation invariance one does have
equality for k = 1. Indeed, in that case one obtains the total momentum Zjvzl Dj-)
Assuming however that they are equal, it follows that

N N
(5'35) ij(m’p)k:Zp;(x’p)k, k:17"‘7N
j=1 j=1

and so we deduce that the scattering map
(5.36) S=U7'U_: Q" - Q% (z7,p7) (zF,p")

conserves momenta. More specifically, from (5.24) we deduce (2.81).

Conversely, whenever S conserves momenta, one has the equalities (5.35) and so
the pullback Hamiltonians I:I,j' and Hk_ are equal for k =1,...,N. A priori, these
Hamiltonians need not have a polynomial dependence on the momenta p1,... ,pn,
however. But for the only potentials in R for which conservation of momenta is
known to hold true, this turns out to be the case. Indeed, these potentials are the
type II potentials V(x) = 1/sh?vx, whose long-time asymptotics has already been
discussed in Subsection 2.2, cf. (2.76)—(2.84): In view of (2.80) and (2.63) one has

(5.37) H=H;, 6=+4,—, k=1,...,N
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and Hy is indeed a polynomial in pi,...,pny with z-dependent coefficients, cf.
(2.75).

It is not known whether any other V' € R exist for which S conserves momenta,
but this seems extremely unlikely. At any rate, it makes sense to single out the
integrable systems (5.1) for which not only each initial state is a scattering state, but
also the momenta are conserved under the scattering. We shall call such systems
pure soliton systems. As we have seen in Section 2 and 3, the systems of type I,
IT and VI are pure soliton systems, not only at the nonrelativistic, but also at the
relativistic level. In the next subsection we shall obtain detailed information on
the type I and II wave and scattering maps, but for brevity we do not consider the
type VI case. (A study of the latter case can be found in Ref. [46].)

5.3. Systems of type I, IT and III. As explained in the previous subsection,
one can choose one of the two inverse wave maps U_;l, UZ! as an action-angle map
for the systems of type I and II. Indeed, the action-angle map ® we are going to
construct will turn out to be equal to U;l for the type I systems, but for type II it
is slightly different, and the difference will be crucial. In all four cases the map is
written

(5.38) :0-5 9, (z,p) (&)

with € the type I and II phase space (2.43), and  the outgoing phase space Q0
(5.25). Hence, Q and € are related by
(5.39) Q=1(9Q), Iy =@n2), zyeR"

For the type III systems we should consider three distinct phase spaces, cf. (2.44)—
(2.55). As it happens, it suffices to delete a codimension-2 variety containing partial
equilibria from each of these to obtain an invariant submanifold on which an action-
angle map can be defined. Thus, no separatrices occur in this case, too. (Recall
that a manifold remains connected after discarding a subset whose codimension is
greater than one.)

The key tool in the construction of the action-angle map for all of the systems of
type I-III is a commutation relation of the Lax matrix defined in Subsections 2.2
and 3.1 with a diagonal matrix A(z) given by

(5.40)
y (I
A(z) = diag(d(z1), ... ,d(zn)), d(y) =4 exp(uy) (II)
exp(ipy) (1)

Specializing first to the type I and IT cases, the symmetric functions Dy, (z) of A(x)
evidently give rise to an integrable system on 2, so the Hamiltonians

(5.41) D =Dpo€, E£=o7!

yield an integrable system on the action-angle phase space ). Now this would not
be of much interest by itself; in fact, this observation applies to any diagonal matrix
of the form (5.40) with d’'(z) > 0, say. The crux is, however, that the integrable
systems thus obtained are of physical interest: they are type I or II systems!
Specifically, denoting the dual systems just defined by a caret, they are given by

A

inr ~ Inr Irel ~ IInr
(5.42) Mor ~ Lot et & Il
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Moreover, the inverse £ of ® serves as an action-angle map for these systems, as
can already be seen from (5.41).

For the type III case the function d(y) (5.40) is not real-valued, but now one
can for example consider the symmetric functions of the matrix A(z) + A(z)*. As
it turns out, the dual systems arising from the latter Hamiltonians are once more
pure soliton systems (in a slightly more general sense than described in the previous
subsection), and the action-angle maps are intimately related to the wave maps for
these pure soliton systems. We shall return to the dual type III systems later on.

We continue by supplying the details of the construction of ® for the relativistic
type II systems. The above-mentioned commutation relation reads

1 1
(5.43) 3 coth(z)[A, L] =e®e — §(AL + LA)
where we take
(5.44) z=1ifug/2 €i(0,m)

Also, e is the vector-valued function given by (3.58), L is the Lax matrix (3.57),
and A the diagonal matrix (5.40). (Note that (5.43) is invariant under taking
z,A,L = —z, L, A; this symmetry property will eventually lead to the self-duality
of the IL,e system.) Since L is self-adjoint, there exists a unitary U such that

(5.45) L=U*LU = diag(\1,...,An), M€ER
Transforming (5.43) with U and setting
(5.46) A=U*AU, é=Ure

one readily obtains

(5.47) Ajilcoth(z)Ar = Nj) 4+ A + Aj] = é;éx

1
2
Now A has positive spectrum, and since U is unitary, it follows that /1]-]- > 0.
Moreover, we have

N
(5.48) [12 =1Ll =L = exp(B(pr + -+~ + pn)) > 0
j=1

so that \; #0,5=1,...,N. Taking j = k in (5.47) we deduce é; # 0 and A; > 0.
Consequently, we may define a vector p € RN by setting
(5.49) N =exp(Bp;), j=1,...,N
Next, we rewrite (5.47) as
shz
sh(B(pr — P;)/2 + 2)

(5.50) Aji = éjé exp(—B(p; + pr)/2)

Recalling (3.55), (3.56) and (3.44) we deduce
(5.51)

- :12 exp(— B b2 P b; = p)/2)
A —1;[“ il exp( Bp]))jgk <sh2(6(ﬁj —ﬁk)/2)+sin2<ﬂug/2>>

Now we have |A| = |A| > 0 and sin(Bug/2) > 0 (cf. (5.44)), so that
(5.52) B #£pe, 1<j<k<N
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The upshot is, that L has positive and nondegenerate spectrum. The gauge
ambiguity in the diagonalizing unitary is therefore given by the product of a per-
mutation matrix and a diagonal phase matrix. To render U unique, we get rid of
this gauge freedom: We require

(5.53) L = diag(exp(Bp1),- .. ,exp(Bpn)), By <+ <P
to fix the permutation matrix, and
(5.54) ¢, >0, j=1,...,N

to fix the phase matrix. (Recall é = U*e; also, recall we have already shown é; # 0,
so (5.54) makes sense.)

Since U is now uniquely determined, the vector é is uniquely determined, too.
Therefore, we can now introduce a vector # € RN by parametrizing é; as

sin’ (Bug/2) )”‘*
(B (0; ~p)/?)

639 o=+ e/ ]T (1+
l#j

This ensures that the map ® (5.38) satisfies
(5.56) é(&,p) = e(u, B, 9;p, &)
where e(8, u, g; z,p) is given by (3.58), (3.44); recalling (5.50), this entails

(5.57) A(#,p) = L(u, B, g;p, 2)’"

where L(53, i, g; x,p) is given by (3.57).

The relation (5.57) amounts to the self-duality announced above (cf. (5.42)).
Indeed, it entails that the symmetric functions of fi(aﬁ“, p) equal the previous Hamil-
tonians S, with 8 and p interchanged and p; and #; playing the role of positions
and momenta, resp.

To show that ®(3, i, g; z, p) is actually a bijection onto Q (5.39), it suffices to
construct a map £(8, u, g; &, p) : Q) — Q that satisfies

(5.58) Eod=id(Q), ®o&=id()

In view of the self-duality relations (5.56), (5.57) this is quite straightforward: One
need only ‘run the construction backwards’ to obtain a map £ with these two
properties. Then it follows that £ is the inverse of the bijection ® and, in addition,
one infers

(559) g(ﬂ:ﬂ;g;jvﬁ):Io(ﬁ(l%ﬂ;g;ﬁ;i')

where I is the flip map (5.39). (The transpose in (5.57) can be traded for a sign
flip of g, and it is not hard to see that ® is even in g.)

A complete proof that the bijection ® is in fact a canonical diffeomorphism
involves more work. A crucial ingredient of the proof that can be found in Ref.
[41] is the scattering theory associated to the S; flow, which was already sketched
in Subsection 3.1. We shall return to the wave and scattering maps shortly, but it
is convenient to obtain first a crucial finite-time result, which follows rather easily
when one takes for granted that ® is a symplectic map.

We begin by observing that due to its spectral properties L admits a logarithm.
Specifically, we have

(5.60) In L = Udiag(Bp1,...,BpN)U"
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cf. (5.53). For h € C*°(R) we can then define

(5.61) h(B~'In L) = Udiag(h(p1), ... , h(pn))U*

We now study Hamiltonians of the form

(5.62) H, =Trh(3'InL), he C™(R)

These include the Hamiltonians S4+1, H and P from Subsection 3.1, since we have
exp(+Sy) Si1

(5.63) h(y) =< B~2chfy =— H = Hy,
B~ 'shpy P

Similarly, all power traces of L are included (take h(y) = exp(kBy)/k, k=1,2,...).
Let t € R and @Q = (z,p) € Q, and define the matrix

(5.64) An(t,Q) = A(Q) exp(tuh' (8~ In L(Q)))
For ¢t = 0 this matrix reads diag(exp(uzi),...,exp(uzn)), so it has manifestly
positive and simple spectrum. We claim that it actually has positive and simple
spectrum for all t € R. Furthermore, we claim that the Hj flow is complete and
that the configuration space projection of the integral curve exp(tHp)(Q) is given
by
(5.65)
zi(t)=p tlna(t), j=1,...,N, 0<an(t)<---<at)

where ay,...,ay are the ordered eigenvalues of Ay,.

Exploiting the above map ® and its canonicity property, the proof of these claims
is quite short. Indeed, setting

(5.66) Q=®(Q) = (2,p), Hyp=Hyod!
we have
. . N
(5.67) Hy(Q) = TrUdiag(h(pr), .., h(px))U* = > h(p;)
j=1

Therefore, the H, flow on  reads

(5.68) exp(tHy)(#,5) = (&1 +th (p1), -, &N + th (), )
so it is manifestly complete. Since ® is canonical, it follows from (5.66) that
(5.69) exp(tHy) = & o exp(tHy) o ®

Hence the Hj, flow is complete, too, as claimed. Finally, denoting similarity by ~,
we obtain

Ap(t,Q) ~ A(Q)exp(tul’ (7' In L(Q)))
= A(#,p)diag(exp(tuh’ (p1)), . .. ,exp(tuh’ (P ))
~  A@ +th' (pr), ... ,@n +th' (bn), D)

(5.70) = Afexp(tHy)(Q)) ~ Alexp(tH)(Q))

where we used A = U* AU and (5.61) in the first and second steps, (5.50) and (5.55)
in the third, (5.68) in the fourth, and (5.69) in the last step. The remaining claims
are now evident from (5.70).

The results just proved yield a quite explicit description of the position part of
the integral curve, which is especially useful to study its long-time asymptotics.
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Indeed, (5.70) entails that we can express this asymptotics in terms of the spectral
asymptotics for ¢ — +o00 of the matrix

(5.71) A(z, p)diag(exp(tdy), ... ,exp(tdy)), d; = uh'(5;)
Let us now assume that h" (y) > 0, so that h/(y) is strictly increasing. (This holds
true for S; and H, for instance, cf. (5.63).) Since A is a positive matrix, we should
determine the spectral asymptotics of matrices of the form
(5.72)
E(t)=MeP?, M >0, D=diag(d,...,dy), dy<---<d;

For t — oo (t =& —o0), this can be expressed in terms of upper (lower) corner
principal minors of M. Specifically, let us set
(5.73)

mi=M(1), mi=M(1,2)/M(1), mi=M(1,2,3)/M(1,2),...

(5.74) my = M(N), mj =M(N —1,N)/M(N),

(SO that mi" = Mu,m;' = (M11M22 — M12M21)/M11, etc.). Then it is proved
in Appendix A of Ref. [41] that the (ordered) eigenvalues a;(t),... ,an(t) of E(t)
satisfy

(5.75)
exp(—tdj)a ; (t)— m* i = O(exp(FtR)), t— too
N—j+1 N-—j+1
where
(5.76) R =min(d, — ds, ... ,dx_1 — dy)

(Notice that these formulas are trivially true when M is diagonal.)

To apply this to the concrete matrix (5.71), we need the relevant principal minors
of A. But these are easily calculated explicitly by using (5.57) and recalling (3.59).
Proceeding in this way we find

(5.77) m*  (A(,5) = exp(ui; F 58,())
N=j+1
where
(5.78) Ajp) = Q=Y )é(p; —pr)
k<j k>j
1 sin®(Bpg/2) )
5.79 dp)=—In(1l+ ——7-+-
79 0 =50 (1+ S
Putting the pieces together, we obtain
(5.80)
P S .
x ;i (t)=2; F A;(p) +th'(p;) + O(exp(FtR)), t— Foo
N=j+1 2

and using isospectrality of L(exp(tH})(Q)) we deduce

(5.81) p ; (t)=p;+O0(exp(FtR), t— £oo

N-—j+1
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Now for the special case h(y) = exp(By) we have H, = S1, so (5.78)—(5.81)
render the asymptotics (3.43), (2.77) and (2.84) explicit: One has

PO S . .
(5.82) $]~+:Z’j—§Aj(p); p=p;, j=1,...,N
_ A _ L
(5.83) Ty_j1 =&+ §Aj(p), PN—jt1=Pjs Jj=1...,N

so that the scattering map reads
(5.84)
el =zy i AN (), Py =Py 1 J=1,...,N

In particular, §(p) (5.79) is the shift incurred in the two-particle interaction (as
compared to a ‘billiard ball’ collision). However, the results just obtained are far
more general: They entail that the wave and scattering maps are shared by a vast
class of dynamics, containing in particular all power traces of L. Note that the map
U;' o &t given by (5.82) differs from the identity solely by the shifts —A;(p)/2.

Let us now indicate how the above can be specialized to the Il,, I, and I,
systems. First, taking 8 — 0, the matrix (L — 1x)/8 converges to the II,, Lax
matrix (2.67), whereas the dual Lax matrix (5.57) converges to the (transpose of
the) type Lo Lax matrix, with § replaced by p, and p; and 2; playing the role of
x; and pj, resp. Second, taking u — 0, the matrix L becomes the I, Lax matrix,
whereas (A — 1n)/p converges to the I, Lax matrix, with p,z,p — 3, p,Z. Third,
taking p to O after the first limit, or § to 0 after the second, one obtains the I,
matrices L(z,p) and L(p,#)! in a way that will be clear by now. Thus the duality
properties (5.42) follow. Note that the shifts (5.78), (5.79) vanish for the I ¢ and
I, cases, whereas the II,,; case yields a pair shift

(5.85) 5(p) = %m(l 12 P

We continue by sketching how action-angle maps for the type III systems can be
constructed, starting once more from the commutation relation (5.43). Of course,
we should replace p by iu so as to obtain the relativistic type III Lax matrix.
As it happens, the construction of the maps involves a lot more work than the
construction of the II.,; map ® detailed above. Therefore, we only mention some
key points, referring for the details to Ref. [43].

First, the commutation relation can be once more exploited to derive crucial
spectral information: Fixing (z,p) in the ‘maximal’ type III phase space 0 (2.44),
the Lax matrix L(z,p) satisfies

(5.86)
L(:U,p) ~ diag(exp(ﬁﬁl)a s 7eXp(BﬁN))ﬂ ﬁ] _ﬁj+1 Z ng, .] = 17 .. 7N -1
In words, its spectrum is not only positive and simple, but also has gaps. Points

in Q for which one or more gaps are minimal correspond to partial equilibria. In
particular, the set of points where all gaps are minimal is given by

(5.87)
E ={(z,p) € Qz; —xjy1 =27/Np,j=1,... ,N—1L,py=c,k=1,... ,N}

For initial values in E all of the commuting flows are of the form (z(¢),p(t)) =
(xo + co(t,...,t),po); thus, all particles move uniformly along the line and no
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internal motion occurs. (Physically speaking, the classical molecule is in its ground
state.)

A similar picture applies to the quotient phase spaces ' and (2, since they may
be coordinatized as subsets of Q. Of course, the interpretation of the flows on (the
quotients of) E is now different: The N particles rotate around the ring, keeping a
fixed angular distance 27 /N to nearest neighbors.

Deleting the points in the three phase spaces for which L has one or more minimal
spectral gaps, one is left with restricted phase spaces that serve as the definition
domains of the respective action-angle maps. We continue by specializing to the
‘minimal’ phase space 2 and its restriction . Then the action-angle map is of
the form

(5.88) 3:0, 5 0=T" x Ay, (2,p) — (2,p)

where

(5.89) An = {p € RV |pj — pja1 > pg,j = 1,... N — 1}

The simplest dual dynamics is obtained by transforming
N

§ 1 i

(5.90) D(z) = §Tr(A(a:) + A(z)*) = Zcos(,ua:j)
j=1

It reads

(5.91)

N 2 1/2 .
D(&,p) =3 cos(ui;) [[ <1 - sh;‘h (5“942)/20 (IiLe)

= oy (B(pj — Pr)

From a physical point of view, the dual dynamics D(p, z) describes N particles on
a line, whose distances z; —x;41 are bounded below by ug, whereas their momenta
p; vary over the first Brillouin zone (—7/p, 7/p]. (Of course, the 1-tori might also
be coordinatized by the interval (—m, 7], but then undesirable scale factors would
crop up in the dual quantities.)

The flow generated by D and the higher power trace flows are not complete on Q.
This is obvious from the fact that the corresponding flows on € (which are complete,
of course) do not leave , invariant. However, it can be shown that the map ®
admits an extension to a symplectic map ®* from (Q, w) onto a symplectic manifold
(Q”,d)ﬁ) in which  is densely embedded, and on Q! the flows are complete. We
have dubbed this extension the harmonic oscillator transform, since it extends ® in
much the same way as the identity map in the example (5.4)—(5.11) extends the map
(5.6) (when one views ® as supplying new coordinates for the dense submanifold
(5.7)). Thus, in the canonical variables coordinatizing €, the commuting flows
have a trigonometric dependence on time (for the internal variables), and equilibria
are no longer excluded.

As already mentioned, the dual flows on Qf have a solitonic long-time asymp-
totics, but now this holds true only on an open dense ‘unequal velocity’ subset that
depends on the flow one selects. For instance, it is clear from (5.90) that the flow

(5.92) exp(tD)(z,p) = (x,p1 + ptsinpzy, ... ,py + ptsin pzy)

does not yield |p;(t) — px(t)| = oo for j # k unless sin pux; # sin pzy, and when
zp = 7/p—x; (mod 27/p) this condition is violated. A related complication is, that
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after deleting the equal velocity subvariety, one winds up with several connected
components on which the ordering of the velocities is not the same.

The dynamics-dependent separatrices just described are reminiscent of the phe-
nomenon mentioned in the last paragraph of Subsection 5.1. Indeed, the above
setting yields a simple example for this phenomenon. The action-angle phase space
Q for the commuting Hamiltonians on Qf is not of the product form (2.35), (2.36);
only after discarding a suitable codimension-one subvariety it takes this form. For
instance, when one deletes the variety {z; = 7/u}, one is left with a manifold that
is the product of RN and the interior of the set Fy (2.48). (Geometrically, (2 can
be viewed as a nontrivial fiber bundle: The base manifold equals G/T',,, where G is
the configuration space (2.44) and I';, the restriction of the map I' (2.45) to G, the
fiber equals RV, and the transition functions are cyclic permutations on the fiber.)

For the III;, system described at the end of Subsection 3.2, a harmonic oscillator
transform on the extended phase space R?> x PV—! has been constructed as well
[43]. This transform is self-dual, in the same sense as the II,¢ transform. Especially
in the III, context, a new interpretation of the (analog of the) flip map I (5.39)
suggests itself. This reinterpretation is, however, also useful for the systems of type
I-IT already treated, and we proceed to describe it in that setting.

First, recall that the action variables play the role of positions for the dual
systems. If we now agree to interchange the order of the factors in (2.35) and
its various concretizations encountered above, then we have no longer any need
for the flip map. (Though notational problems do remain: How should one choose
notation making clear that the limits of p(t) in (2.80) (for instance) are to be viewed
as positions without creating confusion?) In particular, we are then free to identify
Q and Q for the type I and II systems. Now this is acceptable, but it should be
realized that there is a price to pay: One has

(5.93) P'w=—w
the minus sign being caused by the flip. In words, ® becomes an antisymplecto-

morphism of (Q,w).
Next, we define the involutory antisymplectomorphism

(5.94) T(z,p) = (z,—p)

(time reversal) and the symplectomorphism

(5.95) F=To?®

Now it is far from easy to see, but true, that one has
(5.96) ®oC=To®, @07 =Co?

where C is the involutory antisymplectomorphism
(5.97) C(x1,--- ,ZN,P1,--- ,DN) = (—ZN,-.. , —T1,DN,--- ,D1)

(This follows by analytic continuation from results obtained in Ref. [43], cf. espe-
cially Le. (2.118), (2.119).)

The point of the above is, that the symplectomorphism F on (2 transforms the
flows generated by the Hamiltonians Hy, (5.62) into new flows on 2 that are linear
in time. Specifically, using (5.68) one easily verifies

(5.98)
(Foexp(tHp) o F~1)(x,p) = (x,p1 — th'(=x1),... ,py — th'(—zN))
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The equations (5.93)—(5.98) hold true for each of the four type I and II systems,
with (5.62) replaced by

(5.99) Hy, = Trh(L), he C®(R) (Inr, 1)

in the nonrelativistic case (where g = 0).

Specializing now to the Il case, and taking 8 = pu so as to avoid scalings,
we have additional information: Self-duality translates into ® being an involution.
From (5.95) and (5.96) we then deduce the relations

(5.100)
F'=PF=FP=CFC=TFT, F'=idQ)  (La,B=p)
where P (parity) is the involutory symplectomorphism
(5.101)
P(x1,-- ,&N,DP1,--- ,DN) = (—ZN,- .., —T1, —DPN,--- , —D1)

These relations prepare us for the state of affairs on the quantum level, to which
we now turn.

6. EIGENFUNCTION TRANSFORMS

6.1. Preliminaries. As we have seen in Subsections 4.2 and 4.3, the Poisson com-
muting Hamiltonians of the type I-VI systems admit quantizations as commuting
PDOs and AAOs, resp. This section is concerned with the eigenfunctions of these
operators, especially inasmuch as these are relevant to the question whether the
integrable PDOs and AAOQOs are Hilbert integrable—a notion introduced in Subsec-
tion 4.1. Before elaborating on this notion, let us delineate the PDOs and AAOs
we intend to study.

First of all, we shall restrict attention to the systems of type [-IV. For information
on joint eigenfunctions for Toda type PDOs we refer to [15]. For the Toda type
AAOs (4.58) no eigenfunctions are known, and it may well be that these AAOs are
not Hilbert integrable. (Note in this connection that they are not even formally
symmetric. Nevertheless, it is conceivable that the enormous multiplier freedom
for eigenfunctions of AAOs can be exploited to construct a unitary eigenfunction
transform.)

Secondly, for type I-III we discuss the NV = 2 case in some detail, but we also
present information on N > 2 transforms, particularly for type III. At the relativis-
tic level our starting point is formed by the commuting AAOs (4.53). Omitting the
A-dependent factor ¢ in (4.61) and expanding the resulting AAO A (5) according
to (4.63), we obtain commuting PDOs A; 1,...,Ax n that will be our starting
point at the nonrelativistic level.

Taking i = 1 from now on, the latter PDOs have the form

(6.1) A= pj Aen=> (Bipe — glg — DV (x; — z1))
i i<k
(6.2) Ak =D Pi-Din +pr, k>2
i < <lp

where py, has order < k — 1 in p. Also, V(z) is given by (2.38)—(2.40), resp. Recall
that the change g — g(g — 1) is a natural consequence of the nonrelativistic limit.
(As will be seen, the eigenfunctions would have a quite awkward dependence on g
without this change.)
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Thirdly, for type IV we consider again the AAOs (4.53) at the relativistic level.
Here, however, there is no obvious choice for the spectral parameter entering (4.61),
and so we wind up with A-dependent PDOs A, 1,k =1,..., N, when we take the
nonrelativistic limit. In particular, A» » is given by (4.65). We shall in fact restrict
attention to the NV = 2 case. Indeed, eigenfunctions for N > 2 are known only for
g = 0,1; observe in this connection that the AAQOs are ‘free’ for g = 1, too, cf.
(4.56), (4.52) with g = k. (There are also some preliminary results for N > 2 and
g =2,3,... in the nonrelativistic case [8].)

We now turn to some general remarks on the problem of proving Hilbert inte-
grability for the commuting PDOs and AAOs. Let us notice first that this problem
has a distinctly analytic flavor—as opposed to the questions associated with the
weaker notion of integrability, which are of an algebraic character. This parallels
the situation at the classical level, where the completeness assumption defining Li-
ouville integrability belongs to global analysis—as opposed to the local, algebraic
notion of involutivity. In the classical setting, however, the extra requirement is
quite easily verified for the models of type I-VI (as we have seen in Sections 2 and
3). By contrast, Hilbert integrability can only be verified by actually constructing
a unitary joint eigenfunction transform—the quantum analog of the (inverse of the)
action-angle transform.

A natural question is, therefore, whether there exists a more easily verified crite-
rion from which the existence of such a diagonalizing transform would follow. For
instance, one might try and show first that the pertinent operators have a well-
defined action on a common dense invariant domain in L*(G,dr). But even when
such a domain would exist, and the operators would commute and would be essen-
tially self-adjoint on it, it would not follow that the corresponding time evolutions
commute—which is necessary if a joint eigenfunction transform (as defined in Sub-
section 4.1) is to exist. (In case the operators are Hilbert integrable, a domain with
all of the above properties does exist, viz., the subspace £(C§°(A)). This readily
follows from Nelson’s analytic vector theorem, cf. Ref. [35], p. 202.)

To get some feeling for what is involved here, we continue with some simple
examples. First, we recall that the Fourier transform (4.11) diagonalizes both
constant coefficient PDOs and the AAOs (4.13), cf. (4.14), (4.15). Specializing to
the type I and II systems, we can use this transform to obtain ‘free’ transforms of
the form (4.16)—(4.18), as follows.

We begin by noting that wave functions belonging to the symmetric or anti-
symmetric subspaces L2(RY) and L2(RY), resp., are uniquely determined by their
restrictions to the wedge G (2.43) (“Weyl chamber’). Obviously, £ (4.11) intertwines
the permutation operators (4.29) and their counterparts on L2(RY , dp), so it gives
rise to unitary transforms

(6.3) Es, .+ L*(G,dp) — L*(G,dx)

Explicitly, one obtains

64  (Ed@) =@y /G dpexp(ip- 0(x))6(p), = € G

ocESN

(65)  (Ed)@) =@ Y () /G dpexp(ip- o(z))é(p), « € G

ocESN
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In this way we get two examples for a unitary of the form (4.16)-(4.18): A
equals G (2.43), p equals Lebesgue measure, My (p) in (4.18) is given by ex(p)
(4.15), Mi(p) in (4.16) is given by >, p;/2, and My(p) in (4.16) depends, for
k > 1, on the choice of commuting PDOs I5,...,Ixy. The domains of the two
distinct self-adjoint operators on L?(G, dz) obtained via & and &, (both associated
with the PDO Hy, = )_;p7/2) then consist of restrictions to G of symmetric and
antisymmetric functions (respectively) in so-called Sobolev spaces. Similarly, the
domains of the two self-adjoint operators associated via & (£,) with the AAO
Hie = 3, ch(Bp;) /B? consist of restrictions to G of (anti)symmetric functions

that admit analytic continuation to the polystrip (R + i(—43, 3))" and that have
some further L2-properties.

Due to the singularities of the potentials on the ‘walls’ of G, the interacting
Hamiltonians do not have a well-defined action on either of the two pertinent do-
mains, however. For the same reason, it is not at all clear that a dense domain
exists on which the interacting H,e is symmetric—as opposed to the interacting
Hamiltonian H,,, (Schrédinger operator), which is symmetric on the dense subspace
C§°(G) (cf. the discussion at the end of Subsection 4.1).

Returning to the above ‘free’ transforms, let us identify L?(G, dp) and L?(G,dx)
via the antilinear map f(p) — f(z). This is the quantum version of the identifi-
cation of  and Q explained in the paragraph containing (5.93): It entails that &
and &, become antiunitary operators from L?(G,dx) onto itself. Introducing time
reversal

(6.6) (T¢)(z) =4(x), o€ LG, dz)
parity
(6.7) (PY)(z1,...,oN) = P(—2N, ... ,—21), o € L*(G,dz)

and the conjugation

(6.8) C=TP

it is then clear that one has

(6.9)
Flr=PF=FP=CFC=TFT, F'=1, F=TLTED

This should be compared to (5.100).

We conjecture that for suitably restricted g > 0 there exists a unitary Il.q
eigenfunction transform &, given by (4.17), (4.18), with A = G, pu = dp, M}, = e,
(4.15), and & = &;,&1 = &,; with the above identification in effect, the unitary
F= 7’5;1 on L?(G,dx) obeys (6.9), provided 8 = u. To date, we have only shown

this for N = 2 and
(6.10) g €10,1+2x/Bu]

(We have also obtained some fragmentary results on eigenfunctions for N > 2, but
here the unitarity region is still unclear.) We shall present the pertinent N = 2
eigenfunctions in Subsection 6.3. We intend to return to the corresponding trans-
forms elsewhere.
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6.2. Type III eigenfunctions for arbitrary IN. We proceed by discussing eigen-
function transforms for the type III systems. Recall from Subsection 2.2 that one
can distinguish three phase spaces for these systems, the choice depending on the
physical interpretation. Accordingly, there are three state spaces at the quantum
level, namely, the L?-spaces over the sets G, Fiy and Fy, cf. (2.44)—(2.55).

We shall focus attention on the latter choice, which corresponds to indistin-
guishable particles on a ring. (Once the transforms on L?(Fy) are known, one can
obtain transforms on L?(Fj) and L*(G) via suitable coordinate changes.) To ease
the notation we take p = 1 throughout this subsection.

Consider first the free case. Then we can exploit the well-known Fourier series
orthonormal base for L?(TV) ~ L?((—n, 7]V, dz), viz., the functions

(6.11) K(z,n) = (2n) N ?exp(iz -n), z¢€(-malN, nezV

Specifically, the transform

(6.12) £:12(2N) = LX(TV), ¢(n)m Y K(z,n)p(n)
nezZN

is a unitary operator that intertwines the permutation operators on the two Hilbert
spaces involved, so it gives rise to two unitaries £ and &£, mapping the symmetric
and antisymmetric subspaces (resp.) of I2(Z") onto those of L?(T"). Now the
symmetric and antisymmetric functions in L?(TV) are uniquely determined by
their restrictions to Fy; indeed, one has

(6.13)
Fn :Tg/SN, Tg ={re(-mnNz; #2;,1<i<j<N}
That is, Fy can be viewed as a fundamental set for the action of Sy on Tg .
Likewise,
(6.14) ZY¥ ={neZNny <---<ni}

is a fundamental set for the Sx-action on Z¥.
Specializing to the symmetric case first, we therefore obtain an orthonormal base

(6.15) My, (x) =, Z exp(in-o(z)), =€ Fy, n€Ly
cESN

for L?(Fy,dz), provided the normalization constant r, > 0 is suitably chosen.
Equivalently, we obtain a unitary

(6.16) Es l2(Zf) — L*(Fn,dz), ¢(n)— Z M, (x)p(n)
nezZy

which obviously diagonalizes the free AAOs and PDOs.
Similarly, the antisymmetrized base functions K (z,n) can be used. Specifically,
we need here

(6.17) ¥ ={neZN|ny < <m}
and the functions

(6.18) Ap(z)=r Y (=) exp(in-o(z)), z€Fy, neZl,
cESN
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to obtain an orthonormal base for L?(F,dz) (for a suitable constant r > 0). Hence
we get a unitary

(6.19) Ea: 22N ) = L*(Fy,dx), ¢(n)— > An(z)é(n)

N
n€Ly o

which also diagonalizes the free AAOs and PDOs.

With these elementary examples and the associated notation at our disposal, we
can now turn to a description of the g > 0 type III transforms £,. The pertinent
eigenfunctions were introduced (in somewhat different guises) in Refs. [50, 16] for
B =0 and in Ref. [23] for 8 > 0, cf. also Ref. [24]. Not surprisingly, one has & = &
for all N, but &; is only equal to &, for N odd. Of course, & is a ‘free’ transform
for IV even, too, but in this case it is the antisymmetric reduction of the Fourier
base for L?(TV) with antiperiodic boundary conditions, i.e., the functions (6.11)
with n € (Z +1/2)V.

To handle the general case, it is convenient to introduce the vector

(6.20) p(g)zg(N—l,N—?,,...,—NJrl)

and the set

(6.21) Ay ={peRVp—p(g) € 2}

Then the transforms are unitaries of the form

(6.22) £y P(Ag) = L*(Fy,dx), ¢(p) = > E(x,p)¢(p)
pEA,

Here, the [-dependence is suppressed; in the relativistic case f§ > 0 the kernel
E(z,p) is a joint eigenfunction of the AAOs (4.53), satisfying

(6.23) SirE(x,p) = Z exp(+fpr)E(x,p), k=1,...,N
[T|=k
and taking 8 — 0 one then deduces that for the PDOs (6.1), (6.2) one has
i <o <ip

As a consequence, the type III AAOs and PDOs are Hilbert integrable: (4.16)—
(4.18) hold true, with p the counting measure having support on A,.
The eigenfunctions E(z,p) can be written

(6.25) E(z,p) = A(1')1/21310—p(g)(m): r€Fn, peAy

Using from now on a tilde to denote equality up to a positive constant, A(z) is of
the form

(6.26) A(z) ~ H w(z; — )

1<j<k<N

Furthermore, P, (z),n € Ao, is a finite linear combination of the above polynomials
M, (z). We continue by providing more details on the weight function w(z) and
the linear combination involved.

For 8 > 0 the w-function is proportional to an infinite product, namely

oo

(1 —expliz — [B])(z — —x)
(6.27) w() ~ ll] (1= expliz — (1 + 9)8) (@ = —7)
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whilst for § = 0 one has
(6.28) w(z) ~ | sin g|2g (8 =0)

The w-function (6.27) is the trigonometric degeneration of the elliptic w-function
from Ref. [44], which was used in Subsection 4.3, cf. (4.70)—(4.73). As such, the
function A(z) (6.26) gives rise to AAOs Si of the form (4.73). (This is easily
verified directly.) On account of (6.23) and (6.25), these AAOs satisfy

(6.29) SiPa(z) = > exp(B)_(ni+p(9)i)Pa(z), n € Ag
[T)=k iel
i.e., they admit multivariable polynomials as joint eigenfunctions. Taking 5 — 0,
this holds true for the correspondingly transformed PDOs Afc’k, too (recall (4.71),
(4.74), (4.75) in this connection).
Let us now describe the structure of the polynomials P,(z) in more detail. To
this end we need a partial order on the set Ay = Zf :

(6.30)

n;—m;) <0, k=1,... , N—-1
J J

k
=1

N
nSm@Z(nj—mj) =0,
j=1 J

Thus, for a fixed m € Ag there are only finitely many n € Ag satisfying n < m; in

particular, for m; of the form (j,... ,j) there is only one such n, namely n = m;.
The polynomials are now of the triangular form
(6.31) P (z) = Z CmnMn(2),  cmm >0

n<m

with coefficients ¢, depending on f# and g.

Before explaining how the coefficients ¢, are determined, we insert a remark
on the (in)significance of ‘fractional statistics’ for the eigenfunctions E(z,p) (6.25)
at hand. Obviously, the polynomials P,,(z),z € Fy, extend to functions that are
entire and symmetric in x1,... ,zy, both in the nonrelativistic (8 = 0) and the
relativistic (8 > 0) case. Now consider the factor (cf. (6.26), (6.28))

(6.32) A@)/? ~ ] sin %(xj _o)t. weFy  (B=0)
i<k

We have omitted the bars in (6.28), since all of the sines occurring in (6.32) are
positive on Fy (2.48). Clearly, the function at the right-hand side (and hence
E(z,p) as well) extends to a function that is entire and symmetric (antisymmetric)
in z1,...,zn for g even (odd), whereas it has logarithmic branch points on the
‘walls’ of the ‘Weyl alcove’ Fly for noninteger g. This is the so-called ‘fractional
statistics’ phenomenon: The particles are viewed as bosons (fermions) for g even
(odd), and as ‘anyons’ for noninteger g.

We would like to point out that this state of affairs is an artefact of the nonrel-
ativistic limit. For 8 > 0 and g > 0 one gets from (6.27) (by splitting off the [ =0
numerator factor at the right-hand side)

(6.33)

o1
Az)V? ~ H sin 5(:1:J — zp)wy(zj; — )2, zeFy  (8>0)
i<k
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where w,.(z) extends to a meromorphic, even function that is positive on R. (In fact,
from (6.27) one reads off that w,(z) has no zeros and poles in the strip |Imz| <
min(f3, g).) As a consequence, no trace of fractional statistics remains: For all g > 0
the particles ‘are’ fermions. (Of course, for ¢ = 0 the function E(x,p),z € Fn,
extends to a symmetric function; there are noncommuting operations involved here.)

A similar change of ‘anyons’ to ‘fermions’ occurs for the 8 > 0 eigenfunctions of
type II—inasmuch as these are known. It is caused by the same phenomenon as
for type III: fixing g ¢ N, the (meromorphic) w-function has an infinite number of
poles and zeros coalescing on the imaginary axis for 5 | 0 [44].

We continue by explaining how the coefficients in (6.31) are determined. To this
end we introduce the renormalized polynomials

(6.34) Qm(x) = Py (z)/cmm = My (z) — Ry (2)
(6.35) Rp(x) = Y dpnMn(2),  dmpn = —Cmn/Cmm
n<m

the point being that R,,(x) equals the orthogonal projection of M,,(z) onto the
subspace

(6.36) M ={D_ enMylc, € C}

nm

in the Hilbert space L?(Fx, A(z)dz). This determines the coefficients d,;,,, uniquely,
and then ¢, is determined by requiring that Py, (z) be a unit vector in the latter
Hilbert space. In particular, for ¢ = 0 the function A(z) reduces to a positive
constant (cf. (6.26)—(6.28)), and so R,,(z) vanishes. Hence one obtains & = &;, as
announced above.

It is obvious from the previous paragraph that A(z) uniquely determines the
polynomials @, (x), and that one has

(6.37) dzA(z)Q,,(2)Qn(z) =0, n<m

Fn
However, this much is true for a quite arbitrary weight function. Indeed, for N = 2
and A(z) = f(x1 — x2) with f(x) any positive, continuous and even function on
[—2m, 27], the above characterization yields an orthonormal base. (It amounts to
the well-known Gram-Schmidt procedure.) But for N > 2 the vectors M, in the
subspace H,, (6.36) are not totally ordered. (For example, taking

(638) m = (574a 0)7 ny = (57 25 2)7 n2 = (4547 1)

one has n; < m and ny < m, yet neither ny < my nor ny < ny holds true.) The
above weight functions have the (very restrictive) property that (6.37) holds not
only for n < m but for all pairs n # m.

We proceed by sketching how the (transformed) AAOs and PDOs can be used
to prove this orthogonality property; in the process it will become clear why Q,,
is a joint eigenfunction. Let us denote a fixed operator among the AAOs or PDOs
by A. Each of the operators has two key properties. First, it satisfies

(6.39) AMpy = Eq My + > 0t M,
n<m

That is, it is ¢triangular w.r.t. the partial order (6.30) on the ‘free boson eigenstates’
M. Second, it is symmetric on the dense subspace of L?(Fx, A(z)dz) spanned by
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these functions; this amounts to
(6.40) (AM,,, M) = (M,,, AM,), Vm,n € Ay

where (-, -) denotes the scalar product in L?(Fy, A(z)dz).

These two features, combined with the above definition of the polynomials Q,,,
entail that @, is an eigenfunction of A with eigenvalue E,,. Indeed, by virtue of
triangularity of A and @, one obtains

(641) AQm =E,Qmn + Z 0mn@n = EnQm + Ly,

n<m

so it suffices to show L,, = 0. Now (6.37) entails (Q, L) = 0 and so one infers
(using also symmetry of A)

(Lm;Lm) = (AQm;Lm) = (Qm;ALm)

Z amn(Qm) AQn)

n<m

(6.42) =Y amn Y nj(Qm,Q;) = 0
n<m i<n
since 7 < n < m. Therefore, L,, vanishes.

The upshot is, that the eigenfunction property of the polynomials @,, has been
reduced to the triangularity and symmetry relations (6.39) and (6.40). Taking
these relations for granted—their proofs are not difficult, but would take us too far
afield—it is not hard to see that the eigenvalues E,, are in fact given by (6.29) in
the AAO case and, therefore, by (6.24) in the PDO case. Fixing a pair m # n, we
shall now show how this eigenvalue structure entails the announced orthogonality
(Qma Qn) =0.

Clearly, we need only prove that at least one of the AAOs or PDOs Ag, k =
1,..., N, yields eigenvalues E,(,f ) # E;Lk) on @, and @, resp. (Indeed, orthogonal-
ity then follows from symmetry in a well-known way.) Let us assume all eigenvalues
are equal. Now the eigenvalues are the symmetric functions of a matrix of the form
diag(A1,...,An) with Ay < --- < A;. But then equality of all eigenvalues entails
that the two vectors A(m), A(n) involved are equal, so that m = n, a contradiction.

With orthogonality established, one need only normalize to obtain the orthonor-
mal base { P, (7)}nea, of L?(Fn,A(x)dr) and the corresponding orthonormal base
{E(z,p)}pen, of L>(Fy,dz). Note that the argument in the previous paragraph not
only proves orthogonality, but also—using standard quantum mechanical parlance—
completeness of the set of observables {A;,..., Ay}. Rephrased in functional an-
alytic language, the von Neumann algebra, generated by the bounded functions of
the self-adjoint operators on L?(Fy, dz) associated with Ay, ..., Ay via the unitary
&y, is maximal abelian.

The crucial triangularity property (6.39) was first observed and exploited by
Sutherland [50, 49], who used the PDO A = H] = (A} ,)*/2— A} ,. For § > 0 the
AAOs S! and the polynomials @,, were first introduced by Macdonald [23, 24]. To
be more specific, he considers several root systems at once and accordingly works
with the center-of-mass versions of the S§ and Q,,; for the detailed relation we refer
to Subsection 5.2 of Ref. [5].

We conclude this subsection by pointing out some illuminating relations between
the classical and quantum diagonalizing transforms. First, denoting the closure
of the range of variation Ay (5.89) of the actions by A, the set A, (6.21) is
a lattice-type subset of A%, whose boundary points (vectors p for which p; —



SYSTEMS OF CALOGERO-MOSER TYPE 75

pj+1 = g for some j) are also boundary points of A4 (partial equilibria). Moreover,
the eigenvalues of the quantum Hamiltonians on a joint eigenfunction E(z,p) are
obtained by evaluating their classical counterparts in points of {2 whose action
vector equals p € A, C A¢. (‘Semiclassical quantization is exact.’)

Second, in agreement with the correspondence just sketched, the quantum ground
state is obtained by choosing p = p(g), cf. (6.25). (This choice yields the minimal
eigenvalue for the defining Hamiltonians, as is readily verified.) In fact, the trian-
gular structure (6.31) entails

(6.43) Po,(z) =co >0, mo=(0,...,0)
so that the ground state reads explicitly
(6.44) E(z,p(9)) = coA()"/?

Third, the joint eigenfunction property of P, can be translated into a set of
N functional equations. Indeed, recalling (4.73) and the definition of f_(z)? (cf.
(4.52) and (2.108)), we see that (6.29) with n = my amounts to

(6.45)

-1 .
sin 5 (z; — x; — ifg) 1 .
oI —=2= = Y exp(z89 ) (N +1-2j)
. sin 5 (z; — 21) 274
Ic{1,...,N} jeI Ic{1,...,N} Jjel
[I|=k &I |I|=k

These functional equations can also be proved directly, cf. Lemma A.5 in Ref. [43].
In the classical context they are exploited to prove that the type III Lax matrix
has minimal spectral gaps on the set E (5.87). Consequently, they encode both
the classical and the quantum ground state properties; the quantum ground state
(6.44) corresponds to the classical equilibrium subset Ey of E obtained by putting
¢ = 0 at the right-hand side of (5.87).

6.3. Type II and IV eigenfunctions for N = 2. From now on we specialize
to the N = 2 case. It is convenient to separate off the center-of-mass motion by
employing new coordinates

(6.46) X =(z1+22)/2, P=pi+p2

(6.47) T=x1 -2, p=(p1—p2)/2

Then the dependence of the eigenfunctions on the center-of-mass coordinates X, P
and internal coordinates z,p can be factorized:

(6.48) Es((x1,x2), (p1,p2)) = exp(iX P)E(x,p)

Indeed, in this way we obtain an eigenfunction of the AAOs Sy, and PDO A;
with eigenvalues exp(+3P) and P, resp., and it remains to consider the operators
Sil and A272 (61)

Specializing first to the type II case, we restrict the choice of the spectral variables
p1, p2 by insisting that for f > 0 the AAOs S1; yield eigenvalues

(6.49) exp(£Fp1) + exp(£8p2) = 2exp(£LP/2) ch(Bp)
and that for 3 = 0 the PDO A; 5 yields eigenvalue

P2
(6.50) pPip2 = —/— —P2

4
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on F, (6.48). Using the new parameter v = p/2 (which minimizes the occurrence
of numerical factors), it follows that the function E(z,p) at the right-hand side of
(6.48) should satisfy

(6.51)

shv(x —iBg)shv(z — i + iBg
< shvx shv(z —if3)

1/2
)> E(z —if,p) + (8 — —B) = 2ch(Bp)E(,p)

2

_52 7
(6.52) 0,E(x,p) +g(g 1)sh2m

for 8 > 0 and 8 = 0, resp.
We write the elliptic generalizations of the operators at the left-hand sides as

(653)  Hu= (W)m T (W)m (8= —B)

E(z,p) = p°E(x,p)

2

(6.54) Hy = 2 +9(9—1) (P@) + 1)
Here, we have introduced the shift
(6.55) TENx) = flz=¢), £€C

and we are discarding a A-dependent constant in (4.65). In this case there is no
obvious parametrization for eigenvalues, as will be seen below. Just as for the type
IIT case considered in Subsection 6.2, it is in fact more convenient to work with
the measure w(z)dz instead of Lebesgue measure dz, where w(z) is the w-function
that already appeared in Subsection 4.3, cf. (4.70), (4.71). After the corresponding
similarity transformation, one obtains from (6.53) and (6.54) the operators (recall
(4.73)-(4.75))

t S(l‘ B Zﬂg) T

(6.56) Hi, = WTM + (8 — —=B)

d? s'(z) d s'"(z) s'"(z)
6.57 H =—— -2 — - —g(g—1
(6.57) e dzz s(z) dx g s(x) (9=1) s(x)

For the hyperbolic specialization,

t Shl/(:L’—ZBg) T

(6.58) Hy = WTW + (8 = —=B)
d? d

¢ _ 2 2
(6.59) H . = —gE T 2gv coth v =gy
the dual operators expected from the classical level read (recall (5.42))

: shi(p — ivg)
(660) erl = WT;:, + (1/ — —l/)
(6.61) aL=2"r (v )

p

More specifically, writing

(6.62) E(z,p) = Cw(z)'* R(z, p)i(p)'/>
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(where C' > 0 is a normalization constant), one should have
(6.63)
HﬁelR(map) = 2Ch(6p)R(CC,p), HﬁelR(map) = 2Ch(V.’L')R(.CE,p)

(6.64) H!.R(z,p) = p*R(z,p), H! R(z,p) = 2ch(vz)R(z,p)

In our survey [38] we have already pointed out that this expectation is satisfied
in the nonrelativistic case. Indeed, here one has

_ 1 p, 1 D 1 N
(665) R(.’E,p)— 2F1(2(g+l’/)72(g Zy)ag+ 2’ sh V.’L')

cf. L.c. (3.35), and the dual equation follows from the contiguous relations for the
hypergeometric function » F1. In l.c. (3.37)—(3.42), we have also presented solutions
to (6.63) with all of the expected properties, taking however g € N.

The general solution (which we have obtained in recent years) reduces to this
special case for g € N, but it has a quite different appearance. As mentioned in
the Introduction, its structure is actually such as to admit a straightforward gen-
eralization to a simultaneous eigenfunction for four Askey-Wilson type hyperbolic
AAOs, each of which depends on four coupling constants. We shall describe these
AAOs and the general solution first, using notation that is convenient to bring out
the symmetry properties, and then detail the pertinent specializations. We write
the four couplings involved as

(6.66) c = (co,c1,02,c3)
It is convenient to introduce matrices
10 00 1 1 1 1
1 -1 _
660 1=l g3 00| =31 a1 o
0 001 1 -1 -1 1
satisfying
(6.68) IJ=JI, K=K*=K ' K=1I,J
and dual couplings given by
(6.69) ¢ = Jc = (é,¢é1,69,63)
To define the four AAQOs, we use the functions
(6.70)
ss(z) =sh(wz/as), cs(z) =ch(nz/as), 6=+,—, ay,a_ >0
and the shift (6.55). Now we introduce the AAO
(6.71)

As(c;2) = Cs(2) (T;;J - 1) + C5(—2) (ij - 1) +265(2i0), 0=+, —
where
(6.72)
Cs(2) = ss(z —icy) c5(z —icy) ss(z —ico —ia_5/2) cs(z —ics —ia_s/2)
s5(2) cs(2) ss(z —ia_s/2) cs(z —ia_s/2)
The function R we are about to introduce is a joint eigenfunction of the AAOs

(6.73) Ay(csv), A-(Iesv), Ap(&0), A (I¢;0)




78 S.N.M. RUIJSENAARS

with eigenvalues
(6.74) 2¢4(20), 2¢_(20), 2¢4(2v), 2¢_(2v)

resp. (Note in this connection that the two AAQOs acting on v or on ¢ commute; cf.
also the paragraph containing (4.19).) It is given by an integral involving products
of the function

(6.75)
. [ dy sin 2yz z
Glay,a_;z Eexp(z/ —( — ))
(a+,0-52) o ¥ \Bh(a,y)sh(ay)  aray

where [Imz| < 3(a; + a—). This building block is studied in detail in Subsection
3.1 of Ref. [44]. The G-function extends to a meromorphic function that satisfies
three elementary first order analytic difference equations. It may be viewed as
a generalization of the gamma function, and the integral representation for the
eigenfunction R may be viewed as a generalization of the Barnes representation for
the hypergeometric function.

The G-function is manifestly symmetric in a4,a_; we shall suppress these pa-
rameters. Taking from now on

(6.76)

~ ~ a4 a_
v,0,¢0,C0 >0, cop+c1 < 7+a_, co+ c2 <a++7

(this restriction is imposed to ease the exposition), we define

1
, Co+tez< §(a++a_)

(6.77) R(ay,a_,c;v,0) = (a+a,)*1/2/dzI(a+,a,,c;U,ﬁ,z)
r

where I' is a contour along the real axis, indented downwards near the origin so as
to avoid a simple pole. The integrand is given by
(6.78) I =F(co;v,2)K(ay,a_,c;2)F(éo;0, 2)

The function F' is symmetric in a4, a_:
Gly+z+ic—ilay +a-)/2)
Gly+ic—i(as +a_)/2)

By contrast, the kernel function K is not symmetric:

K(ay,a_,c;z) = 1 Gli(co+c1) —ia_[2)
+,0—, ¢, - G(Z+Z(G,+ +a_)/2) G(Z+i(00+cl)—ia_/2)
G(i(CO + Cz) - ia+/2) G(i(Cg + 63))

G(z +i(co + ¢2) —ia4/2) G(z +i(co + ¢3))

679 Flewo=( ) -

(6.80)

However, it satisfies

(6.81) K(ay,a_,c;z) =K(a_,a4,Ic;z)
which entails

(6.82) R(ay,a—,c;v,0) = R(a—,ay,Ic;v,0)
It is also clear from the above that one has

(683) R(aJr)af:C;U)ﬁ) = R((J,Jr,(],,,é;ﬁ,’l))

(6.84) R(at,a_,c;v,0) = R(a_,ay,I¢;0,v)
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From these symmetry properties it is immediate that the AAOs (6.73) have eigen-
values (6.74) on R iff one of the AAOs yields the respective eigenvalue.

Even a sketch of the proof of the eigenfunction property would carry us too far
afield—among other things, it involves various properties of the G-function [44]. To
proceed, we detail one simple way to obtain the relativistic type II eigenfunction
R(z,p): One can take

(6.85) R(z,p) = R(2m, Bv, (Brg, Bryg, 0,0); va, Bp)

Indeed with this choice of variables the AAOs A, (c;v) and Ay (€;9) turn into
Ht, (6.58) and ﬁﬁel (6.60), resp., and (6.63) and self-duality (symmetry under

v,B,z,p — B,v,p, ) follow by specialization from (6.73), (6.74) and (6.83), resp.
As our final topic, we turn to relativistic type IV eigenfunctions, taking

(6.86) g=M+1=2,3.4,...

The w-function corresponding to this choice reads [44]

M
(6.87) wy(z) = Cs*(x) [[ s(e +ijB)s(z —ijB), C >0

j=1
and the corresponding AAO H!, (6.56) will be written Ap. Anticipating the
outcome of an Ansatz to be detailed shortly, we find eigenfunctions

(6.88) ApRps(2,)) = Epr (V)R (,0)

depending on a complex parameter A that plays the role of p for the previous case.
(It does not reduce to p for the hyperbolic specialization, however.) For an infinite
sequence of A-values the function R/ (x, \) is 2w-periodic or 2w-antiperiodic; taking
B(M + 1) € (0,—2iw") (for simplicity), this countable infinity of functions spans a
subspace D in the Hilbert space H = L?([0, 2w], was(x)dz) on which the AAO Ay,
is symmetric; in particular, the eigenvalues of Ajp; on the sequence of functions are
real. (Probably, D is dense in H; if so, Aps is Hilbert integrable.)
The function Ry is of the form

(6.89) Rur(2,\) = Far(z,\) + Far(—x, \)

where Fy(£z, ) are linearly independent eigenfunctions with eigenvalue Ens()\).
Since Az is parity-invariant, we need only discuss Fis(x, ). This eigenfunction is
found via an Ansatz of the form

(6.90)
Fa(z,\) = (k:ﬁMs(m + iﬂk)> H s(@ = zj) exp <% o (%))

(This Ansatz was inspired by our previous results for the hyperbolic ¢ € N case
[38].) Requiring that (6.88) with R — F' hold true, one readily obtains

(6.91) Ey H (s(iB + z;)s(iff — z;)) "1/

Jj=1
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s( s(z — z;)

Therefore, we obtain an eigenfunction whenever Cps(z) does not depend on z.

We proceed by studying if and when the zeros zi1,...,zy can be chosen such
that this happens. We begin with the simplest case by far, namely M = 1. We
take z; incongruent to 0 (modulo the period lattice), so that the poles at z = 0 and
x = z; of the two summands of C(z) are simple. Now C}(z) is elliptic in z, and
since the residues at z = 0 and = z; cancel, C; (z) is constant. Thus we may put
x = i to obtain (taking A equal to z; from now on)

_is(2ip) ( 1 )1/2
(6:55) B = Py —Pam)

Summarizing, F;(z, A) (6.90) is an eigenfunction of 4; with eigenvalue E; () (6.93).
Letting the zero z; = A vary over the line segment between i3 and ', the eigenvalue
E; ()\) is positive and decreases monotonically from oo to a finite limit.

Next, we take M > 1. Again, Cj(z) is readily seen to be elliptic, but now
C () is not constant in general. However, we can proceed as follows. First, choose
z1,...,2)M pairwise incongruent, and incongruent to 0. Then the two summands
of Cs(z) have only simple poles, and the residues at z = 0 cancel. Requiring now
that the residue sum at the poles = z;, vanish, too, we obtain

(6.94)

. M .
Cute) = i LD T 2= (i - 25) 4 (5 -)

M M
s(zr +iBM)Hs(zk — 2 —iB)Hs(zj —iB)—(B—-6)=0, k=1,... , M
j=1 Jj=1
J#k
This constraint system of M equations for M unknowns Z = (z1, ... ,2nm) admits
the solution
(6.95) Zy = (i8,2i0,... ,Mip)

as is readily verified. An application of the implicit function theorem now shows
that there exists a solution curve A\ — Z(\) near Zp, with A equal to z;. Hence
Ch(z) is constant on the curve, and so we obtain eigenfunctions and eigenvalues
depending on the curve parameter A.

We intend to elaborate on the above assertions in Ref. [45]. We conclude our
sketch of type IV results by detailing the relation to the Lamé functions that solve
the eigenfunction problem for the operator Hy, (6.54), with the restriction (6.86)
in force.

First, taking 8 to 0 in (6.90) yields

M
(6.96) Fu(x,\) — s(x)2M1 H s(z — z;) exp(zs'(z)/s(25))
j=1
Second, dividing the constraints (6.94) by 8 and letting § — 0, we obtain
i M- — . M,
(6.97) MS(Z’“)—ZM— &) o k=1, M
s(zr) o s(a—2z) o s(x)

J#k
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Third, recalling (2.89), we have

s'(z) nz
(6.99) ==
where ( is the Weierstrass (-function. Therefore, the limit functions (6.96) and
constraints (6.97) amount to the Lamé functions and associated constraints that
are specified by Whittaker and Watson, cf. p. 572 and p. 574, resp., of Ref. [54].
Quite recently, Etingof and Kirillov have tied in the latter functions with the rep-
resentation theory of affine Lie algebras [10].
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