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Abstract

We survey our work on a function generalizifng; . This function is a joint eigenfunction of four Askey—Wilson-
type hyperbolic difference operators, reducing to the Askey—Wilson polynomials for certain discrete values of the
variables. Itis defined by a contour integral generalizing the Barnes representatignlohas various symmetries,
including a hidderD4 symmetry in the parameters. By means of the associated Hilbert space transform, the difference
operators can be promoted to self-adjoint operators, provided the parameters vary over a certain polytope in the
parameter spack. For a dense subset of, parameter shifts give rise to an explicit evaluation in terms of rational
functions of exponentials (‘hyperbolic’ functions and plane waves).
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1. Introduction

In the following, we review various papers concerned with a funciién, , a_, c; v, v) generalizing
the hypergeometric functiopFs (a, b, c; w), namely, Refs[11,17,18](referred to as I, Il and IIl) and
Ref.[20]. As is well known, the F1-function can be used to diagonalize the nonrelativistic Schrodinger
operator (2.12), which arises in the context of nonrelativistic Calogero—Moser systerfiqfl] lwe
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introduced theR-function to diagonalize a generalization of (2.12) arising in the context of relativistic
Calogero—Moser systems. The pertinent relativistic quantum operator amounts to an analytic difference
operator (AO) of hyperbolic Askey—Wilson type.

Even though we do consider the nonrelativistic liRit>2 F1 in this survey, it is beyond our present
scope to elaborate on the physical setting and Calogero—Moser contextReitthetion. For information
on these aspects we refer to our lecture nfit®% The results obtained in | have been reviewed before
from various complementary viewpoints [ib2,14,15] viz., integrable systems, special functions, and
sine-Gordon theory, resp. Accordingly, our account of results from | is terse and biased towards subjects
that we need to sketch our more recent work in 11, 11l §2d].

In the above-mentioned articles we have included a great many references to related work, pertinent
to the context at issue. Since we are focusing on our results concernifgftimetion (which, to our
knowledge, has not been studied by other authors), we only mention here various papers where non-
polynomial functions have been considered that are also solutions to an Askey—Wilson-type difference
equation[7,3,5,24,8,6,22]It is an open problem to make their relation to fRéunction more explicit
(cf. in this connection Section 6.6 [4]).

We proceed to sketch the organization of this review. In Section 2, we recall some known }dre on
in a form that suits our later requirements. Section 3 has an auxiliary character, too. Here we collect some
salient features of the hyperbolic gamma function f{@hwhich is the building block of th&-function.

This prepares the ground for Section 4, in which Bafunction is defined. We also specify its ana-
Iyticity properties and collect some manifest symmetries. In Section 5, we detail and discuss the most
prominent feature of the-function, namely its being a joint eigenfunction of four independent hyperbolic
Askey-Wilson-type AOs.

Just as, F; can be specialized to the Jacobi polynomials, Rhieinction can be specialized to the
Askey-Wilson polynomial§l,4]. This is sketched in Section 6.

The results mentioned thus far date back to I. Section 7 is concerned with the main results obtained
in 1. As it turns out, theR-function has a hiddem, symmetry in the four coupling parameterse
C*. This symmetry is best understood in terms of a similarity transfétm , a_, y; v, 9), wherey is
linear ina4,a_ andc, cf. (7.2). Indeed, the-function is D4 invariant, cf. (7.16), whereas the-
function is only D4 covariant. Theg-function also has plane wave asymptotics foriRe> oo, cf.
(7.27)—(7.28).

In Section 8, we obtain the nonrelativistic limits of tRe and &-functions and the four associated
AAOs, tying this in with the preparatory material in Section 2.

The Hilbert space eigenfunction transform corresponding téthanction is studied in Il and surveyed
in Sections 9 and 10. Section 9 concerns a sketch of our solution to the Plancherel problem (orthogo-
nality and completeness). Along the way, the normalization integrals of the bound states arise in explicit
form. For the ground state this gives rise to a hyperbolic analog of the (trigonometric) Askey—Wilson
integral. Since this spin-off of our completeness proof is of considerable interest in itself, we have
isolated it in Section 10. (See Stokman’s prepfRf] for a quite different derivation of the relevant
integral.)

A large amount of additional information can be obtained via an algebra of 32 parameter shifts. In
particular, it can be shown that tlie and &-functions have an elementary character (involving solely
plane waves and hyperbolic functions) foDg invariant dense set in the natural parameter space. We
obtained these results in our recent pd@6t and review them in Section 11.
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2. Preliminaries ono Fy

We begin by recalling that the hypergeometric functdfa admits three distinct representations. In
historical order, these are Euler’s integral representation, Gauss’ series representation, and Barnes’integra
representation, cf. e.f25,2]. Theo F1-generalization at issue is defined by an integral representation of
Barnes form, and no analogs of the Gauss and Euler forms are known. Thus we need only invoke Barnes’
formula

I'(iz)I'(c) ' I'la—i2)I'(b—iz)
2nl(c —iz) I'(a@)I'(b)

2F1(a, b, c; w) = / exp(—izIn(—w)) - dz. (2.1)
%

Here the contou# runs parallel to the real axis, with indentations to avoid the upward pole sequence
z=/lIn,n € N, and the downward sequences —ia — in, —ib — in, n € N. Also, w belongs to the cut
plane|Arg(—w)| < = and In(—w) is chosen positive for negative On account of Stirling’s formula, the
integrand has exponential decay fRez| — oo, and so the integral yields an analytic functionaoin
the cut plane.

Next, we reparametrizgF, by introducing

Yne(d, d; v, D)=2F1((d +d +10)/2, (d +d —i0)/2,d + 1/2; —sinkP v). (2.2)

Then the hypergeometric differential equation implies thatsatisfies the eigenvalue equation

Hv‘pnr = ﬁz'/’nr’ (2-3)
where
2
H, = ~Gu2 — 2[d coth(v) +d tanr(v)]— —(d+d)> (2.4)

Moreover, using the contiguous relations $@#, one can verify thay,, also satisfies a ‘dual’ equation,
to wit,

Agnr = 2 cosh2v) Yy, (2.5)
where
Ay = [0 —id + )]0~ i - d+1)](T2|—1)+(|—>—|)+2 (2.6)

U U — 1
Here and below, the translatid?;f acts as

(IO =fy—m, neC” (2.7)

on functions analytic iry; moreover, an expression of the forf(i) + (i — —i) is shorthand for
F (i) + F(—i), it always being clear from context how to substitute.

For our later purposes it is important to point out that it is possible to verify both the differential
equation (2.3) and the analytic difference equation (2.5) directly (but with due effort) from the Barnes
representation (2.1). Indeed, this verification can serve as a paradigm for obtaining the analytic difference
equations satisfied by thefunction, cf. Section 5.
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Anticipating the similarity transformation of ti&function to thes-function, cf. Section 7, we proceed
to specify the analogous transformation for (2.2). It reads

Enr(d, d; v, D) = 2wne(d, d; V)Y ?Yne(d, d; v, D) —=—, (2.8)
cne(d, d; v)
where
wne(d, d; v) = [2sinhv]?[2 coshv]®, Rev >0, (2.9)
~ 5 r@iv/2)r((iv+1/2
bord, d: §) = 24 12p (g 4 1y LRI+ D/2) . (2.10)
r(0+d+d)/2r(iv+d—d+1)/2)
Note that these functions are normalized so that
wnr(0, 0; v) = ¢nr(0, 0; D) = 1. (2.11)
The corresponding transforms of (2.4) and (2.6) are then
2 dd-1 dd-1
Hoy=——= — , 2.12
v dv? sink? v cositv ( )
Ay =Th+ Vad,d; )T 5 + Viy(d, d; D), (2.13)
where
[y +id+dlly+i(d—d+ DIy —i(d+d—2)][y —i(d—d—1)]
Va(y) = = . S - , (2.14)
Y+ Dy + 20
2(d —d)(d+d—1)
Vo (y) = . (2.15)

y2+1
In particular,H, (2.4) turns into the nonrelativistic Schrodinger operatar (2.12).

3. The hyperbolic gamma function

The role of Euler's gamma functiofi(z) in the o Fi-representation (2.1) is played by the hyperbolic
gamma functiorG (a4, a—; z) in the Barnes-type integral representation forfRainction. We proceed
to summarize some properties@fa. , a_; z), fixing

ar,a_>0 (3.2)
from now on. We also introduce
a=(ay+a-)/2, o=2n/ara_. (3.2)

With these conventions, the hyperbolic gamma function can be defined by the integral representation

B . ood_y sin 2yz .z
G(Z)_eXp(I/o y(ZSinh(aw)Sinh(ay) a+ay>>’ m <l =a. (.3)
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(We often suppress the dependence on the parametess when this causes no ambiguity.) It extends
to a meromorphic function satisfying the analytic difference equatiaxE)A

gz:r—:z;g — 2 costinz/a_). (3.4)
The manifest symmetry of (3.3) under < a_ entails thatG (a., a_; z) also obeys the AE

gzi——:z_;g =2coshnz/ay). (3.5)
From these features it is easy to see thi&f) has polegy;; and zerogy; given by

pr = —ia —ikay —ila—, zxy=—pu, k,1€N. (3.6)
Likewise, the reflection equation

G(-2)=1/G(2) (3.7)
the complex conjugation relation

G(z) = G(—72) (3.8)
and the scale invariance

G(ag, a—;iz) =G(as,a—;z), A>0 (3.9

are evident from (3.3) and (3.1).

We also have occasion to invoke some less conspicuous featutag)ofThese can all be found in
[9], where we introduced and studiédz) (cf. also I, Appendix A). Specifically, we need the duplication
formula

Glay.a ;2= [] Glar.asz+ilay +ma_)/4) (3.10)
l,m=4+,—
cf. [9, (3.24)—(3.25)]and the limits
G 52 7141 _ e (i — 1) In(2 coshiz))]. (3.11)

/IET(]) G(m, Az —idp)
wherex, u € R, andz belongs to the cut plane\{*i[r/2, co)} (cf. [9, (3.91)), and

lim G(x, 7; in/2 — i) explx IN(22)] = (22 (3.12)
a0 T e ERRE T T+ 1/2) '
wherex € C, cf. [9, Proposition 111.6] Moreover, the asymptotics
i 1
G(ay,a_; z) ~ exp(qzzaja_ [ZZ + 1_2(a§ + ai)]) , Rez — +o0 (3.13)

(cf. [9, Proposition 111.4) plays the same role for tHe-function as the Stirling formula does feF; in
its Barnes representation (2.1). Finally, we need the explicit evaluations

Glay,a_; —ias/2) =272, 5=+, — (3.14)
for normalization purposes. (To check (3.14),set0 in (3.4)—(3.5) and use (3.7).)



398 S.N.M. Ruijsenaars / Journal of Computational and Applied Mathematics 178 (2005) 393—-417
4. The R-function: first steps

In order to defineR (a1, a_, C; v, ¥), it is convenient to introduce parameters
s1=co+c1—a—/2, spx=co+c2—ay/2, s3=co+c3, (4.2)
Co=(co+c1+c2+c3)/2 (4.2)

and functions
_ G(z+y+ib—ia)G(z—y+ib—ia)

Fb;y,z2) = - - - — 4.3
by D= i) Gy +ib—ia) (43)
3 .
1 G(is;)
K(c;z) = - i 4.4
©2) G(z—i—la)jl_[:lG(z—i-lsj) (44)
with G(z) the hyperbolic gamma function. At first we specialize to
ceR* Rev,Re?d>0, s1,s0,53€ (—a,a). (4.5)
Then theR-function is defined by the contour integral
N 1 N
R(Cv,v) = —1/2/ F(co; v, 2)K (C; 2) F (Co; 0, 2) dz. (4.6)
(aya-) @

The contourg depends on the location of the poles in the elgtiependenG-functions in the integrand,
cf. (3.6) and (3.7). Specifically, the functidki(c; z) gives rise to four upward pole sequences on the
imaginary axis, beginning at = 0,i(a — s;), j = 1, 2, 3, whereasF'(b; y, z) yields two downward
sequences, beginning at= +y — ib. The contour is given by a horizontal line Im= h, indented (if
need be) so that it passes above the peints-icg, —v — i¢g in the left half-plane and — icg, © —icg in
the right half-plane, and so that it passes below 0. Thus the four upward pole sequences of the integrand
are abover and the four downward ones are bel@wIn view of (3.13), the integrand has exponential
decay agRe z| — oo, so that the integral does not dependon

Starting from the integral representation (4.6) with (4.5) in force, the analyticity properties Bf the
function can be established in great detail. They are most easily explained from the representation (cf. I,
Theorem 2.2)

H(ay.a—.c v, )[[5-1Glay. a_:is;j)

R(ay,a_,c;v,0) = = ~
play,a_,c;v)pas,a—_,C;v)

4.7)

The functionsH, p and p are holomorphic for Re,, Rea_ >0 and(c, v, v) € C8. The functionsp
and p are factorized as a product of eight holomorphic functions whose zero loci consist of a union of
countably many explicitly known hyperplanes. (More specifically, the denominator on the rhs of (4.7) is
given by 1 (2.33), cf. also | (2.23)—(2.24).) Since the analyticity features @f;) are also known, (4.7)
entails that th&®-function is meromorphic in all of its eight arguments (provided:iReRe a_ > 0), with
explicitly known pole hyperplanes.

As a consequence, it now follows that for fixed, a_ > 0 and (generic} € R?* (to which we restrict
attention in this survey), the-function extends to a meromorphic functionucdindv, with poles that can
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(but need not) occur solely for certain points on the imaginary axis. These points are given by collisions
of v- andv-dependent-poles in the integrand witk-poles in the three upwarg-pole sequences, and
by poles of the factors/IG (+v + ico — ia) and Y G(+v + i¢o — ia) in the integrand.

We continue to list some symmetries that are readily established from (4.6) and featuressef the
function mentioned in Section 3. These include evenness,

R(ay,a_,c;v,0)=R(ay,a_,C;6v,80), 6,8 =+,— (4.8)
scale invariance,

R(as,a—,c;v,0) = R(Aay, la—_, Ac; Jv, A0), 2>0 (4.9)
and ‘modular invariance’,

R(ay,a_,c;v,0)=R(a_,ay, IC; v, D), (4.10)

where| denotes the transposition of andc,. (Observe thak; is invariant under the interchange
(as, c1) < (a_, ¢2), cf. (4.1).) Defining next dual couplings

1 1 1 1

t=Jc, JE% i _i _1 j (4.11)
1 -1 -1 1
one readily verifies
co+cj=co+¢j, j=1,23. (4.12)
Recalling (4.1), it is now not hard to deduce the self-duality property
R(ay,a_,c;v,0)=R(ay,a_, € 0,v). (4.13)

5. The hyperbolic Askey—Wilson AAOs

We proceed to expound the eigenfunction properties oRHfgnction. To this end we introduce the
notation

s5(y) = sinh(ny/as),  ¢s5(y) = cosh(ny/as). (5.1)
Now we define coefficient functions
ss(y —ico) cs(y —ic1) ss(y —ico —ia—s/2) c5(y —icz —ia—s/2)
Cs(c; y) = - - 5.2
CN=T00  al) sO—iasd ol —ias2 (5:2)
and AAOs
A5(C; y) = Cs(C; y)(Ty, = 1) + Cs(C; —y) (T, — 1) + 2¢5(i(co + c1+ c2+ ¢3)), (5.3)

wheres = +, — and the translations are defined by (2.7).
Focusing ond (c; v), we begin by pointing out that it is a hyperbolic analog of the trigonometric
Askey-Wilson AAO. Indeed, the latter arises via the analytic continuatior> —2ix. It follows from the
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scale invariance (3.9) and the analyticity properties summarized above tRafiithetion allows the same
analytic continuation, but in the process several symmetries are destroyed and the integral representatior
becomes awkward to handle. Moreover, from the viewpoint of relativistic quantum mechanics there is no
need for the fulR-function in the trigonometric regime: One only needs the Askey—Wilson polynomials to
diagonalize the trigonometric Hamiltonian, and these arise via suitable discretizationseithetion,
cf. Section 6.

In any case, we keep our convention (3.1) and continue to sketch why the eigenfunction property

AL (C;v)R(C; v, D) =2¢ (20)R(C; v, D) (5.4)

holds true. Basically, the verification of this second ordaEAcan be reduced to one of the first-order
AAEs satisfied by th&-functions in the integrand, cf. (3.4)—(3.5). Indeed, (3.5) entails fat y, z)
(4.3) andK (c; z) (4.4) satisfy a first-order AE with shift ia_ both iny and inz. Choosing first suitable
parameters and variables in tR€unction, so that the action of theMO A, (c; v) can be transferred to
the integrand, it is now possible to exploit these first ord®EA to demonstrate (5.4), cf., |, Theorem 3.1.

Taking (5.4) for granted, itis clear from symmetries (4.10) and (4.13Rbalves three more eigenvalue
problems, viz.:

A_(Ic; v)R(C; v, D) = 2c_(2D)R(C; v, D), (5.5)
A4 (C; D)R(C; v, 0) =2¢4(2v)R(C; v, D), (5.6)
A_(I&; D)R(C; v, 0) = 2c_(2v)R(C; v, V). (5.7)
In words, theR-function is a joint eigenfunction of four independent hyperbolig®s of Askey—Wilson

type.

In this connection we would like to point out that even though these fa@#manifestly commute
(as operators on meromorphic functionsvodnd v), there are no general results ensuring that a joint
eigenfunction exists. Stronger yet, restricting attention to tw®ABA 1 (y) of form (5.3) with iu-periodic
coefficientsC+(y) (so thatA, and A_ commute), there is no guarantee that any meromorjphic)
exists that is a joint eigenfunction.

Returning to the Askey—Wilson case at issue, it may well be that when one of the eigenval(&s 2
of the AAOs A is altered, no solution to the joint eigenfunction problem exists. These open questions
exemplify various other ones in the area of lineats, which is quite underdeveloped at present.

6. The relation to the Askey—Wilson polynomials
The locations of eventual poles in tRefunction are known exactly. In particular, providggds chosen
rationally independent af ., a_, ¢1, ¢2 and¢cs, no pole occurs at the points
Uy =liCo+ina—, neZ. (6.1)
Thus we may define the functions
R,(v) = R(C;v,0,), ne€LZ. (6.2)

We now explain the special character of these functions:far N. Note first that foro = vg the
eigenvalues ofi ; (c; v) andA_(Ic; v) on R(c; v, D) are given by 2, (2ico) and 2 _ (2icp), cf. (5.4) and
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(5.5). These are just the eigenvalues of thes on the constant functions, as is clear from (5.3). Thus
it should not come as a surprise that one has

Ro(v) = 1. (6.3)

This identity can be shown by shifting the contour in (4.6) across the (simple) pele-&, picking
up residue 1 due to the normalization factor up front. Now one cai ¢einverge tojg without poles
colliding with the contour, so that the vanishing factgiGl(—v + ico — ia) implies (6.3).

Next, we write out the eigenvaluedk (5.6) for the pointd = v,,. It reads

C-l—(é; Un)[Ry—1(v) — R, (v)] + C+ € _ﬁn)[Rn—i—l(U) — R, (v)]
+ 2¢4 (2ico) R, (v) = 2¢4-(2v) R, (V). (6.4)
Due to the rational independence assumption, the coefficients are pole-frée &hd-v,) does not

vanish forn € N, cf. (5.2). But we hav&€' (€; 1g) = 0, so that it follows recursively from (6.4) and (6.3)
that one has

R,(v) = P,(c+(2v)), neN (6.5)

with P, (x) a polynomial of degrerin x with real coefficients. After an analytic continuatien — —2xi,
these polynomials become the Askey—Wilson polynomigiEos v) and (6.4) becomes their three-term
recurrence relation.

7. The &-function: D4 symmetry and asymptotics

From (5.2) it can be seen why the parametg(s. ., c3 are couplings, physically speaking. Indeed,
when they vanish, the coefficienfs.(c; y) reduce to 1, so there is no interaction and tS A5(c; y)
(5.3) reduce to the ‘free’ AOs

AP =T1) +T d=+,—. (7.1)

la_s —la_gs’
To obtain a new symmetry property, however, it is crucial to work instead with shifted parameters
Y0, - - - » V3, defined by (inversion of)
c() = (o+a,n+a-/2, 72+ a/2,73). (7.2)
Then we have
4]_[i:oc+(y — iy, —ia-/2)
s+ (2y)s1(2y —ia-)
AT _ge—(y — iy, —ias/2)
s—(2y)s—(2y —iay)

Hence the AOs A (c(y); y) andA_(Ic(y); y) are invariant under arbitrary permutationsgf. . ., y3.
The shift vector in (7.2) is invariant undéi(cf. (4.11)), so when we set

Ci(c(y)y) =~

Cc_c(y);y) =— (7.3)

v=Jy (7.4)



402 S.N.M. Ruijsenaars / Journal of Computational and Applied Mathematics 178 (2005) 393—-417

we obtain
SJ=')/'0+'VJ+CI=',}\)O+"7)]+CZ, ]=152’3 (75)

cf. (4.1). We now introduce a renormalizBefunction

3
Ri(ay,a—,; U’ﬁ)ER(a-l-’a—,C(V);Uvﬁ)/l_[ G(ay,a—;i(y +7y; +a)). (7.6)

j=1

(This function amounts to the functid®en(as, a_, ¢; v, 0) Il (1.13), reparametrized byinstead ofc.)
Recalling (4.1)—(4.6), we see this entails

RiG 0. )= ! 1/2/ Fhotdiv. 9FGot a0 g (7.7)
ara_ )" Je Gz +ia)[[;1G Gz + i+ v; +a)
whereas properties (4.8)—(4.10) and (4.13) yield
Ri(ay,a_,y;v,0) = Re(ay,a_,y;0v,50), 6,0 =+, —, (7.8)
Ri(ay,a_,y;v,0) = R(Jay, da_, Ay; v, AD), A>0, (7.9)
Ri(ay,a—,y;v,0) = Re(a—, as, y; v, 0), (7.10)
Ri(as,a—,v;v,0) = Ry(ax,a—,7; 0, v). (7.12)

From (7.7) one reads off th&; is invariant under permutations of, y,, y3, whereas the,-dependence
is quite different from the ;-dependence.

We will presently see thaR, is indeed not invariant under permutations involvjggBut this is most
easily established by similarity transforming to a functiom; v, 0) that is not only invariant under any
permutation ofy, . . ., 73, butalso under sign flips involving an even number,ofThese transformations
generate the Weyl groly of the Lie algebraD,, and it is crucial in the sequel thasatisfies

IWI=1. (7.12)

(This is easily checked from the definitions. Note that wiers the transposition ofy andy;, the
transformatiordwJequals the product of a permutation and a double sign flip.)
The similarity transformation involves tteefunction

3
=——T]G» —ip. 7.13
c(p:y) G(2y+|a)££ (v —ipw (7.13)
Specifically, thes-function is defined by
(A 1
E(yyv,0) = A% Re(y; v, 0) ——. (7.14)
c(y;v) c();v)

Here,y is the phase factor

1) = explialy - /4 — (@2 +a® +asa_)/8)), o=2n/aia_. (7.15)
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The phase occurs for normalization purposes and is cl&diiyariant. The crux is now thaf is W
invariant:

E;v,0)=Ew(y);v,0), YweW. (7.16)
Accepting this, it follows thaR, satisfies

R0, 0 coPsv)eyP;0)
G0 0) O S0y 50 G _ ), wy e W, j=1,2 (7.17)
Ri(y@;v,0)  c(y@;v)c(Jy@; D)

(In particular, takingws the identity map andv; the transposition ofy andy;, the rhs is a nontrivial
function ofv.)

To appreciate why (7.16) holds true, it is important to examine the similarity transfor@gs ANVe
begin by noting that (7.13) and tli& AAEs (3.4)—(3.5) entail

c(y;y)/c(y;y —ia—) =CL(C();y), c(yy)/cly;y —iap)=C_(Ic(p);y) (7.18)
cf. (7.3). From this we deduce that tha@s
A (33 y) = (s )AL CO); V(s y), A (33 y) = el y)TTA_ICk); y)e(ysy)  (7.19)

can be written as

A5 Y) =Tia_s + Vas (s WT—ia_s + Vos(i3 ), o=+, — (7.20)
with
16[13_gcs (v + iy, +ia—s/2)cs(y — iy, +ia_s/2)

Vas(yiy) = —+ ra— - : (7.21)

55(2y)ss(2y +ia_s)ss(2y + 2ia_s)

3

V.o (3 ¥) = —Co(C(1): y) — Ca(C(y); —y) — 25 [ 1Dy, +ias |- (7.22)

u=0

Obviously,V, s(y; y) is not onlySs invariant, but also invariant under arbitrary sign flips. At face value,
Vi.s(y; y) isonly S invariant. In fact, howevei/, s(y; y) is D4 invariant. This follows from an alternative
representation, namely,

(Pe,s — Ps,6)¢5(2y) + (pe,s + ps,s)cs(ia—s)

VoG =T S sy Fas/D) (7.23)
where
3 3
pes=4]]csln),  pos=4]sslin. (7.24)
u=0 u=0

(Equality to (7.22) can be readily checked by comparing periodicity, residues and asymptotics.) As a
consequence, we obtain

As(w®);y)=As5(3y), o=+,—, weW (7.25)
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The upshot of these developments is that; v, v) is a joint eigenfunction of the foub, invariant
AAOSs .7 5(y; v), .7/ 5(7; ) with eigenvalues &;(20), 2¢5(2v), § = +, —. Although this ‘explains’ why
&(y; v, 0) is itself D4 invariant (cf. (7.16)), we are not aware of any general result from which this
conclusion rigorously follows.

Even so, in the special context at issue a complete proof of (7.16) can be constructed by exploiting
a quite different feature of th€-function, namely its Re — oo asymptotic behavior. Introducing the
‘Smatrix’

u(p; y) =—c(p; y)/c(p; —y) (7.26)
and leading asymptotics function
Eady; v, 0) = expiovd) — u(y; —0) exp(—iavd) (7.27)

this asymptotics reads, roughly speaking,
E(7; v, 0) — Sas(y; v, V) = O(exp(—p Rev)), Rev — oo, (7.28)

where the rate@ > 0 depends only on the parametéts, a—, y). (The precise result is rather technical,
and involves in particular a proviso for the special case-a_, y = 0. We refer to Theorem 1.2 in Il for
the details.)

The relevance of asymptotics (7.28) for the problem of provingsymmetry is due ta(p; y) being
manifestlyD4 symmetric. Indeed, using the reflection equation (3.7) we obtain the representation

[T0G = ip)G(y +ipy)
G2y +ia)G(2y —ia)

which reveals that the-function is even invariant under arbitrary sign flips of the parameigrs. ., ps.

Our proof of D4 symmetry, as encoded in (7.16), and (a strong form of) the asymptotics (7.28) in Il is
quite involved. It is beyond our scope to even sketch it, but we do add that it involves an entanglement of
the two distinct features that we are unable to avoid.

To conclude this section, we note that the duplication formula (3.10) entails

u(p;y) =— (7.29)

ctesy) =1, (7.30)
wherey; corresponds to the ‘free’ case= 0, cf. (7.2):

= (—a,—a_/2, —a,/2,0). (7.31)
Thus we get (recall (7.1))

A5(0; ) = S50 3) = AT (), d=+, —. (7.32)

Sincey; is also self-dual, it should not come as a surprise that for zero couplingfinection coincides
with its asymptotics. Specifically, we have

&(y; v, V) = 2 coSowd). (7.33)
Sincey(ys) = 1 (cf. (7.15) and (7.31)), this identity amounts to (recall (7.14))
Ry (ys; v, 0) = 2 cOSowD). (7.34)
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Yet another equivalent formula reads
R(0; v, v) = coqawD). (7.35)

Indeed, taking equal toy; in (7.6), theG-product reduces té, cf. (3.14). In Section 11 we sketch the
proof of (7.34).

8. The nonrelativistic limit

In this section, we specify the limiting transitions leading from the functi®ns and AAOSA .., .«/+
to their counterparts in Section 2. To start with, we define
Viel(4, C; v, ) = R(m, 4, /C; v, 0/2). (8.1)
Then we have

'«i?& Yrel(Z, C; v, A0) = Y (co + ¢2, ¢1 + ¢3; v, D) (8.2)

with ¥, given by (2.2). Thus this amounts to a linkt> > F.
To date, this limit is a formal one. We conjecture that (8.2) holds true uniformly on compact subsets of
thev-region

#={veC|Rev>0,|lmv|l<r/2} (8.3)

and compact subsets of thieplane. (Note that the boundary &f corresponds to theF;-cut, cf.
(2.1)-(2.2).) Not even pointwise convergence has been rigorously proved, though. We now explain the
most important reason why the conjecture is plausible.

First, we substitute — 1z in the integral representation ¢f, (given by (8.1) and (4.6)) and factorize
it into two ‘side’ functions and a ‘middle’ function, given by

St (4, co; v, 2) = exp2iz In 2)F (n, 4, Aco; v, 42), (8.4)
I\ L2

M@, Cz) = (—) exp(—2iz IN(4)K (x, 4, /C; /z2), (8.5)
Y

Sr(L, 603 0, 2) = exp2iz IN(2A) F(x, 4, 1co; 19/2, 12). (8.6)

Using (3.11)—(3.12), we now deduce
|§% S1.(J, co; v, 7) = exp(—iz In(sinkfv)), Rews 0, (8.7)

I'(iz)I'(co+ c2+1/2)

lim M4, c;z) = . 8.8
740 ( 2) 2nl(co+c2+1/2—1iz2) (8.8)
. A I'(Co+iv/2—iz) I'(Co—1iv/2—iz)

Ilm S )u, , U, == ~ N ~ N . 8.9
I Sk(% Coi V. 2) = = a3 Ieo—19/2) (8.9)

Thus the integrand correspondingyt@, converges to that of,, for 2 | 0, cf. (2.1) and (2.2). This holds
true uniformly on sufficiently small discs around any point on the contour. To control the limit, however,
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one would need a suitable uniform bound on the tails so as to invoke the dominated convergence theorem,
and no such bound has been proved yet.

Next, we consider the limiting behavior of the fouk®sA , (c; v), A_(Ic; v), A+ (€; ) andA_(I¢; V)
when the substitutions going with (8.1) and (8.2) are made /asmthken to 0. Thus we should substitute

ai,a_,C,v,0 — m, A, AC, v, A0/2 (8.10)

and study the behavior of the coefficients, translations and eigenvalug¢s@g\s regards the translations,
we note that (2.7) entails

v ~exp(n S ) =1, 9 ¢ w4 + 0P -0 (8.11)
~ — ,
1 P ndy ndy 2 dy? RN ’

whereadl;;” has no reasonable behavior fpr> co. Since substitution of (8.10) iA_(1¢; ¥) yields an
AAO with diverging translations

/2 2in d

T, '°~ex —_—— 8.12

+in p<:F 2 dﬁ) ( )

as/ | 0, it becomes useless. (Note that the reparametrized eigenvalue(2:ag5h diverges, too.)
Setting

d=co+c2, d=c1+c3 (8.13)
it is readily verified that the remaining threé\®s satisfy
AL (G v) =2+ 22H, + O(%), (8.14)
A_(iIc; v) = [exp(—in(d + d)) + O Z/HTL + (i — —i) + O(e"¥™/*), Rewv>0,
(8.15)
AL(& 70/2) = Ay + O, (8.16)

whereH, andA; are given by (2.4) and (2.6), resp. The eigenvalug pfic; v) is given by
2 coshid) = 24 2292 + 0%, (8.17)

whereas the eigenvalues of the twa®@s on the lhs of (8.15) and (8.16) atendependent, namely,
2 coshizv) and 2 coslRv), resp.

We now turn tog(y; v, v) and the MAOs .74 (y; v), o7+ (); D). The substitutions foy andy associated
with (8.10) are given by (cf. (7.2))

y—=>y D) =ic—0a(l), P> D =—-0d), cA)=(n+2)/2, 1/2,1/2 0). (8.18)
From this and (7.20)—(7.22) we obtain
AL (p(2);v) =2+ 2P Hy + OUY, (8.19)

A _(3(2); v) = TV + [expin(d + d)) + O(eZ™/H) T, + O(e?™/*), Rev>0, (8.20)
A+ (5(1); 20)2) = oy + O(%) (8.21)
with 27, and.«Z; given by (2.12) and (2.13)—(2.15), resp.
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Next, we use the duplication formula (3.10) and limit (3.11) to obtain (recall (2.9))

lim 7((2)/e((D: v) = wnr(d. d: v, Rev>0. (8.22)
Likewise, using also (3.12) we get (recall (2.10))
3
lim c((A); 10/2) ]_[ G(is; (1) = }é d, d; D) (8.23)
)HLO ) j=1 J\ 2 nr s Uy . .

Combining all this, we finally obtain

Ij% E(m, A, p(A); v, A0/2) = Enr(d, d:v,?), d=co+c2, d=c1+c3 (8.24)

with &, given by (2.8)—(2.10).

We point out that under the nonrelativistic limit almost all of the symmetries dRttad&-functions
disappear. TheD, symmetry leaves one footprint, however. Indeed, when we rewrite the sign flip
(y1, y3) = (=71, —y3) in terms ofy(7) (given by (8.18)), then it amounts to

c1+c3—>1—c1—ca. (8.25)
The resulting/ — 1 — d invariance of¢(d, d: v, ) amounts to the well-known identity
2F1(e, B, y:x) = (L= )P oF(y — B,y — o, 3 ). (8.26)

Next, we note that#, (2.12) is not only invariant undet — 1 — d, but also unded — 1 — d. But
the latter symmetry cannot be viewed as the remnantiaf aansformation, and indeet, (d, d: v, )
is not invariant unded — 1—d. (Of coursegn (1 —d, d: v, 9) does yield a secon#’,-eigenfunction.)

Finally, we mention that in Il we did not study the nonrelativistic limit of théunction and associated
AAOs. In our recent lecture notgxl], however, we briefly looked at this question,[@fL, (6.19)—(6.22)]
We would like to point out that the right-hand sides of (6.20) and (6.22) have an incorrect dependence on
the couplings. This is rectified in (8.23); also, the above definition (2.10) differsfean(6.21)]by the
three factors up front.

9. The Hilbert space transform associated t&

For parameter&,,a_, y) in
= {(as+,a—,p) € RO | ay,a_ >0} (9.1)

the functioné (a4, a—, y; v, 0) is meromorphic i andv, with eventual poles that are located solely on
the imaginary axis. These locations are known as linear functions of the parameters. In particular, in the

polytope
P={(ay,a_,p)e||py<a, n=0,...,3} (9.2)

the &-function has no poles at the origin. More generally, no such poles occur for generic parameters in
II, but it is likely that there do exist parameterdirfor which & has a pole at the origin.
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Restrictingla, a—, y) toPfrom now on, we can define alinear operator (generalized Fourier transform)
F 1 %= CL(0,00) C # = L0, 00), db) — # = L?((0, o0), dv) (9.3)

by usingé as a kernel:

12 [
(,%)@)E(Zin) /O s, D)pd)dd, ¢ e (9.4)

Due to the regularity of for realv and its plane wave asymptotics for— oo (cf. (7.28)), the function

(7 ¢)(v) isindeedin#. Moreover, itis the restriction of a meromorphic function (denotety) (v) as
well) to (0, o0), so thatthe AOs.«7 . (y; v) have awell-defined action on it. Using the known meromorphy
properties of and the eigenvalue equations

A 5(7; 0)E(, V) = 2¢5(20)6 (v, V) o=+, — (9.5)
it is not hard to see that this action is given by
o \L/2 [ R o n
20 FHW = (5) [ 3 0.0)200200000) . (9.6)
T 0

This implies in particular that the meromorphic functief(y; v)(Z ¢)(v) has a restriction t@0, co)
that belongs to#. Thus we obtain well-defined Hilbert space operators

As FCCH —> H (9.7)
satisfying
,jZ/éﬁd):%%éd), 5=+’ ) d)e(ga (98)

where.# s denotes multiplication by (20) on #.

With due effort, it can now be shown that the operat@rs are essentially self-adjoint aa% and that
Z is isometric. We proceed to sketch a few key steps in the proof of these properties. To this end it is
convenient to work with parameters

as = min(a4,a-), a =maXa,a-). (9.9)

First, symmetry of the operatov's with the smallest step size; is shown via contour shifts and
Cauchy’s theorem. Second, essential self-adjointnesg©is derived from Nelson’s analytic vector
theorem. Hence the ‘interacting evolution’ éxpz.«7) is diagonalized by7, in the sense that

exp(—itd ) F ¢ = F exp(—itlls)p, ¢eE. (9.10)

At this stage, however, it is neither clear whetleis a bounded operator, nor whether it is invertible on
FE.
Third, this interacting evolution is compared to a free evolution defined by

exp(—it./ Q) = Foexp(—it.ils) T, (9.11)

whereZ g is essentially the sine transform, namely,

o \L/2 [ A .. A
(904))(1;)5(%) /0 [expliavd) — exp(—ixvd)]d(D) db. (9.12)
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(Note this implies that the action of the generac@p) on the core7 o% amounts to that of the AO Aéo),
cf. (7.1).) The result is that one obtains

Wy =77}, (9.13)

whereW,. denotes the — oo wave operator. Sinc& g is unitary andWw.. isometric, it now follows not
only that is isometric, but also thai(y; v) encodes the scattering.

Fourth, symmetry of the secondM® .«7; with the largest step size follows from isometry of
Z, and its essential self-adjointness from the analytic vector theorem. Then another application of
time-dependent scattering theory shows thét v) is also theS-matrix for the pair of evolutions
exp(—it.</)), exp(—im/l(o)).

We mention in passing that at face valug¢does not appear to be symmetric, in as much ag)fseras
the contour shifts involved give rise to nonzero residues. But sivices symmetric (as follows from
isometry of#), the residuesummust vanish. This exemplifies that the issue whether a Hilbert space
operator associated to a formally self-adjoimt@ is symmetric is quite delicate.

Next, using the self-duality property of the kerdgadf 7 (which can be derived from (7.11) and (7.14)),
it is not hard to see tha#* is also isometric for paramete(s,., a_, y) in P N P, where

P ={(ay.a_, p) | (ay.a_, p) € P}. (9.14)

Thus the scattering states are completezirior parameters iP N P.
The results sketched thus far extend to a parametdfegbat is slightly larger thaR. It is defined by
allowing onep, to become equal taor —a. In particular,7 is unitary for(a, a_, y) in Pe N Pe, With

Pe defined by (9.14) with? — Pe. Note that the self-dual parametéts., a_, y¢) belong toPe\ P, and
that the associated transform amounts to the cosine transform, cf. (7.33).

For parameters itPe that do not belong tdP, unitarity of # breaks down. It is not hard to see that
parametersa., a_, ) belonging toPe do not belong taP if and only if

max([jol, 1711, 1921, [73]) > a. (9.15)
By D4 invariance we may and will assume (in addition to our standing assumtigm_, y) € P)

Jo<—a (9.16)
from now on. The key point is that since théy (y; v)-eigenfunction lc(y; v) satisfies

c(:v) "t~ () Tt explaGo + a)v), v —> oo (9.17)

(as follows from (7.13) and (3.13)), assumption (9.16) entails that it i ilMore generally, the eigen-
functions

v, (v) = P,(coshaasv))/c(v), n €N (9.18)
(whereP, (x) are the polynomials from Section 6) areinwhenever
Jo+a+nas<0, n=0,...,N—-1 (9.19)

as is clear from (9.17). (HereJ > 1 is the largest integer so that the inequality holds true.)
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It can now be shown that the vectapsg, ..., yy_1 € # are pairwise orthogonal, and orthogonal
to Ran%) as well, so thatZ7* is not isometric. Moreover, these bound states and the scattering states
F ¢, ¢ € #, are complete:

H =F(H) D Spartyy, ..., Iy_1). (9.20)

We proceed to sketch the main steps of the proof of orthogonality and completeness in lll.
First, in view of the AAO action

As(p; vV, (v) =2c0%2n()g + a + nas)/a)y,(v), n=0,...,N—1 (9.21)

the action of the Hilbert space operaigg (thus far defined only oeF %) can be extended in an obvious
way toyy, ..., ¥ y_1, Namely via (9.21). Distinctness of the eigenvalues in (9.21) now yields pairwise
orthogonality, and orthogonality to R&m) follows from the eigenvalues being smaller than the spectral
values 2 cost®rv/a)) >2 on Rars).

Second, the isometry violation gf* can be explicitly related to the symmetry violation of the operator
/s 0N Z*% associated to the pertinent duaA@. Specifically, this yields the identity

(AT 1. F*bp) — (F b1, AT *$))
o0 o0
:W/o dvlqal(ul)fo dvado(v2)u(y; v2) B(v1, v2), (9.22)
where /" is a normalization constant and

B(v1, v2) = ¥y (v)Yy_1(v2) — (V1 < v2). (9.23)

The third and last step exploits the Christoffel-Darboux identity

N-1
B(v1, v2) = [cOSh(uasv1) — coshaasv2)] Y B, (WD), (v2) (9.24)
n=0
and the relation
u(y; V)Y, (v2) = =, (v2), v2>0 (9.25)
(recall (7.26)) to arrive at the formula
N-1
FF =1y — Y vty ® Uy, (9.26)
n=0
wherevg, ..., vy_1are positive normalization coefficients. From this we deduce the completenessrelation

(9.20), concluding the proof.

In 11l we did not study the transform for parameters outsRdeFor two one-parameter subfamilies,
however, we previously obtained the operator-theoretic properties of the transf¢id).imThere we
established breakdown of isometry outside (the analo@fh explicit detail. It may be expected that
for the full four-parameter case the picture emerging ff@8j remains basically the same.
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10. A hyperbolic analog of the Askey—Wilson integral

The key identity (9.22) arises from a contour shift on the Ihs, where residues at two palas 6j
are encountered that give riseyiq_1(v) andy (v). The normalization constant” follows from this
residue calculation. It involves the value 0&1); v) atv = — 0 and the residue of/L(y; v) atv =0 _1.
(Recallv, is defined by (6.1).) Now these quantities can be expressed in terms@ffthmeetion, and the
recurrence coefficients of the bound states are explicitly known from (6.4). Therefore the normalization
coefficientsy, in (9.26) (yielding||y,, ||) can be calculated in closed form.

In particular, we have

o dv 1
(Wor Vo) = / - (10.1)
0 c(ve(yv) VYo
Using
clay,a—,y;v)=clay,a—,y;, —v), veR, (ay,a—,y) €ll (10.2)

(cf. (3.8)), thec-function definition (7.13) and the reflection formula (3.7), formula (10.1) now takes the
explicit form

1_[ OG(U + IVM)G(_U + Wﬂ) 1/21_[O<H<\;<3G(iyﬂ + ij/v + Ia)
v=(ata_) .

10.3
G(2v — ia)G(—2v — ia) G(Y3_gy, + 3ia) (103)

This identity may be viewed as a hyperbolic counterpart of the ‘trigonometric’ Askey—Wilson weight
function integral[1,4]. Indeed, provided the latter is expressed in terms of the trigonometric gamma
function from[9], it has essentially the same appearance as (10.3). To demonstrate this, we reparametrize

[4, (6.1.1)—(6.1.2)by setting
g—> €4, g el p el @B gy g (10.4)

Then the Askey—Wilson integral can be written

—0Gt(0 +i0,) G (=0 + o <y<3Gt(oy, +io, +ia
f oGO + i) Ge(~ ") 40 = 201G (ia) 110<1=r <31 ). (10.5)
Gt(20 — ia)Gt(—20 — ia) Gt(lzu ot + 3ia)
Here we have
G(0) = Gig(1/2, 2a; 0) (10.6)

with Gyig(r, a; z) the trigonometric gamma function frof@]. To check thaf4, (6.1.1)]can indeed be
written as (10.5), the duplication formula for the trigpnometric gamma functiof9cf3.148)) should
be used to expand the denominator on the lhs of (10.5).

11. Parameter shifts

The factor]‘[ G(is;) in (4.4) ensures the simple normalizatifiiic; v, ico) = 1, cf. (6.1)—(6.3). Due
to its v- and v- mdependent zeros and poles, however, this normalization factor is awkward for several
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other purposes. The renormalizBeunction R, (given by (7.6)) does not have this drawback. As will
become clear shortly, this is only one of the reasons why we focu& @n., a_, y; v, 0) in the account
that follows.

As mentioned at the end of Section 5, to date the general theory of lindas feaves many natu-
ral questions unanswered. In particular, the specific context of independent comma@syléads to
problems concerning joint eigenfunctions about which little appears to be known. Specializing to the
commuting Askey—Wilson-type AOs A (c(y); v) andA_(Ic(y); v) (given by (5.1)—(5.3) and (7.2)) we
now assume until further notice

ayfa_ ¢ Q. (11.1)

The only meromorphic functions with periodg;i and k_ are then the constants. This leads to the
conjecture that the space of meromorphic joint solutions to thiesA

A (C(p): v)F(v) = 2c1(20) F (v), (11.2)
A_(Ic(y); v)F(v) =2c_(20) F (v) (11.3)

is at most two-dimensional. (Since it contaiRga, a_, y; v, v), it is at least one-dimensional.)
We are not aware of a proof of this conjecture. Under an additional assumption, however, it can indeed
be proved. To be specific, the assumption is that two joint solutitfis(v) exist satisfying
lim FPw)/FTPw) =0, Revel, (11.4)
Im v—o00
wherel is some interval, and the proof can be foundli, Section 1]
This result plays a pivotal role in the sequel. We first exploit it for the special,casg to deduce

(7.34). To begin with, it is evident from the first paragraph of Section 7 that far-Ré (say), the plane
waves

B (v) = exp(£iowd) (11.5)

are joint solutions to (11.2)—(11.3) satisfying the extra assumption (11.4) for anr. Thus the joint
solution space is two-dimensional, and so we have

Re(pg3 v, ) = py D) FL P () + p— () F{ (v) (11.6)
for certain prefactorg. (0). Now R, is even inv, implying p.(v) = p_(v) = p(0). Hence we obtain
Ry (755 v, 0) = 2p (D) cogawd) (11.7)

Finally, R, has leading asymptotics 2 ¢as?) for v — oo (sinceR, = & for y = v¢), so p(v) equals 1
and (7.34) follows for parameters., a_ obeying (11.1). Since such parameters are dens@, isv)?,
we deduce (7.34).

Formula (7.34) can be viewed as an explicit evaluation of the integral on the rhs of (7.7) for the special
casey = y¢. From the perspective of understanding fyefunction, a principal result di20] is that this
integral admits explicit evaluation as an ‘elementary’ function (in a sense defined shortly) fer_, )
in a subseflg of IT (9.1) that isdensein II. Dropping assumption (11.1) from now on, there are two
equivalent definitions ofi¢ that are both useful.
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Embarking on the first one, we define a subgedf 74 x 7* by requiring that fonM, N) € Z the
four pairs(M,, N,), u € {0, 1, 2, 3}, are distinct mod(2); equivalently, the pairs are of the form (even,
even), (odd, odd), (even, odd), (odd, even). Thigncan be defined by

3

1
lei = {(ay,a,p) €Ml p=>5 Y (Mya_+ Nyay)e,, (M,N) € Z ¢, (11.8)
v=0
whereey, . . ., e3 are the canonical basis vectorsif.

It is clear from this definition thaflg is invariant under the Weyl grol of the Lie algebraD,. In
the sequel the weight lattice of the latter is crucial. For our present purposes, it suffices to characterize
2 as the lattice generated by, . . ., e3 and the row vectors

”O = (19 17 17 1)/27 ry = (17 17 _15 _1)/27 rp = (17 _15 1’ _1)/27 r3 = (19 _17 _1’ 1)/2

(11.9)
of the matrixJ (cf. (4.11)). Note that we have
Jry=ey Jey=r,, 1n=0,123 (11.10)
so that
JP?=2. (11.11)
The second definition now reads
Ier={(ay,a_,p)ell | p=ws) +a_i- +ayiy,we W,y € P} (11.12)

(Noting (11.8) entailss belongs tollg, cf. (7.31), the equivalence of the two definitions is readily
verified.) In view of (7.12) and (11.11), the second definition (11.12) implies

(ay,a_,p) €l < (at,a—, p) € g (11.13)
From now on, we call a function

p(er(v), e—(v), e (D), e— (D),  es(y) = explny/az), 6=+, — (11.14)

that has rational dependence on its four argumehggparbolicfunction. Likewise, we reserve the term
elementaryfunction for functions of the form

> ' (es(v), e-(v), ex (D). e (D)) explicowd), (11.15)
o=+,—

where the coefficients® of the plane waves are hyperbolic. (Observe that the coefficients of an ele-
mentary function are uniquely determined.)

To appreciate the special character of parametdigjirwe fix (a4, a—, y) € Il and begin by showing
that the twoc-functionsc(as., a—, y; v) andc(as, a—, y; v) are hyperbolic. Thanks to (11.13), we need
only consider the first one. Recalling (7.13) and the duplication formula (3.10), we can invoke the first
definition (11.8) ofilg to infer thatc(ay, a—, y; v) is the product of four functions of the form

G(ay,a—;w+ikay +ila_)
G(ay,a—; w)

. klez (11.16)
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withw=v+ia, v+ia_/2,v+iay/2, v. Inview of theG-AAEs (3.4)—(3.5), each of these is hyperbolic,
soc(ay, a—, y; v) is hyperbolic, as asserted.

Recalling (7.14), we now see that for parametengdpn elementarity o, is equivalent to elementarity
of &. From (7.17) and (11.12) we also deduce that to prove elementaiyai I1¢|, we need only show
elementarity for parameters of the form

(at,a_,y+a_i_+aily), Ixr€P. (11.17)

This can be achieved via the parameter shift$20f, starting from the free cas@., a_, y;), where
elementarity ofR, is plain from (7.34).
In order to detail this, we define 16M0s

Sf{‘”(y)z = )( =T ) (11.18)

S((S_”O) (%

1‘[2c5<y—w,,> T 2= 1‘[2co(y+ 0 Tl | (11.19)
u=0

)= 25(5( y)

S (iy) = (4es(y —ing)es(y =iy T p— (i —> =), k=1,23  (11.20)

—i
2S5(ZY)

ST (9 y) =

5 (2 )(4ca(y —imes(y = i) Ty o — (= =), (11.21)

where{k, I, m} = {1, 2, 3}. They satisfy 32 shift relations

(Lru)

(ery)

(73 AL(CM); ¥) = Ay (C(y) + ea—sr; IS5 " (03 y), (11.22)
SS 0 A_(T60): y) = A-UCG) + a5y 1ISY™ G5 ) (11.23)

and 16 identities compatible with their shift features:
ST (4 4 sars ST (53 ) = AL (C); ) + 261 (208, + i), (11.24)
ST+ ATy NS y) = A_(Ic(); y) + 2 (2}, + ieay). (11.25)

(In these formulas, we haye= 0, 1, 2, 3 ande, 6 = +, —. We point out that in Egs. (2.14)—(2.16) of
[20] we forgot to include the transpositidnin A_.) Moreover, all of the shift commutators save those
following from (11.24)—(11.25) vanish:

(—e/r“/) (—s’ru/)

o Fea—er Y)Se (i y) — y=dagr; VS, ()

= 48506/6}1ﬂ/588/s0(2|))u)so'(ia—G) (1126)

(ery) ( ,,)(

S

g

(Here we have, ¢, ¢, ¢ =+, —andu, ¢/ =0, 1, 2,3.)
The proofs of relations (11.22)—(11.26) consist of long, but routine calculations, using symmetries
wherever possible, cf20] Section 2. To establish the action of the shiftsRnthough, we need a far
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more conceptual reasoning. Skipping this for the moment, the result reads

S5 6 0) Rey 0, 9) = Ry — acorys v, ). (1127)

S (2 V) Re (3 v, ) = [2¢5(20) + 2¢5(20, + ia_s)IRe(y + a—sr v, 0). (11.28)
By (11.10) and the self-duality relation (7.11), this implies

S @ D) Re (3 v, ) = Re(y — asey; v, ), (11.29)

S((;r“) (73 D) Rr (75 v, 0) = [2¢5(2v) + 2¢5(2iy, +ia—5)1Re(y + a—sey; v, V). (11.30)

Taking (11.27)—(11.30) for granted, it is easy to deduce elementarRy fofr the parameters (11.17).
Indeed, it is clear from their definition that the 32 shifts featuring in (11.27)—(11.30) leave the space
of elementary functions invariant. Now; is elementary for = y; (as shown above), and the square
bracket factors in (11.28) and (11.30) are hyperbolic. Hence it follows recursivelRthatlementary
for parameters (11.17). (RecaHl is generated by translations ovgrandr,.) Therefore,R; andé are
elementary orle|, as announced.

Obviously, the shiftactions (11.27)—(11.30) are compatible with (11.22)—(11.26) and the eigenfunction
characteristics oR;. But we have not found a proof of these formulas that involves solely the algebraic
relations (11.18)—(11.26) and the eigenfunction features. In this connection we would like to point out
that the integral representation (7.7) definRygappears of no help: acting with the shifts on the integrand
yields no clue as to why (11.27)—(11.30) should hold true.

We proceed to sketch the proof of (11.27)—(11.28)[28] Section 3. It involves auxiliary functions
andy-values

3
Fyin@.0), p(M,N)=y+ Y (Ma_+ Nyagr,, M.N ez (11.31)
v=0

The former are generated from the plane waves
F§g (v, 9) = exp(iovd) (11.32)

by acting solely with the 16 shiftslggr“)(-; v) in a stepwise fashion. Therefore their general structure can

be determined, c{20, pp. 490-491]

Requiring again an irrational quotieat /a_, the functionsF/f,,i}v(v, 0) now play the same role as
the plane WavesFﬁ(i)(v) in the above argument proving (7.34). Indeed, it readily follows from their
definition that for sufficiently large R&andl| of the form(A, oo) with A sufficiently large, they satisfy
(11.4). Since they are also joint solutions to (11.2) and (11.3) yithy(M, N), we deduce as before
(exploiting evenness features)

Re(y(M,N):v.9) = pun(® Y Fypy(. ). (11.33)
o=+,—

A suitable use of the shifts, combined with the knowr> co asymptotics of the relevant functions
and shifts, yields recurrence relations for the prefaciggsy (v). (This step requires again substantial



416 S.N.M. Ruijsenaars / Journal of Computational and Applied Mathematics 178 (2005) 393—-417

calculations.) Usingo,o(0) =1, the shift relations (11.27)—(11.28) now follow for Reufficiently large,
ay /a_ irrational, and of the formy(M, N) (11.31). By analyticity, they are then valid fery., a_, y) € IT
andv, v € C, and so the proof is complete.

We conclude this section with some remarks. First, the presence of the normalizatiorj factds ;)
in the R-function renders its shift formulas slightly more involved. On the other hand, provigéa
is irrational, this factor takes values ik on Ilg that can be determined in closed form. Indeed, for
(a4+,a—,y) € IleI the quantities; = yo + 7; + a are given by

sj=3(Mja_+ Njay), j=123 M; NjeZ (11.34)

with the parity of the three pairg/;, N;) being (odd, even), (even, odd) and (even, even). (This readily
follows from the first definition (11.8) affl¢|.) Using theG-AAEs (3.4)—(3.5), we can therefore calculate
G(is;) explicitly, using eitheiG (0) = 1 or one of evaluations (3.14).

Next, we note that the plane wave summands

R®(ay,a,y;v,0), (ay,a_,y) € g (11.35)

inheritthe eigenfunction properties and symmetrie®0&xcept evenness (7.8): the latter formula implies
thatR™™ andR{™ are related by

RV (=0, 0) =R7(,9) =R (v, =), (ay,a_.y) € e, (11.36)

Finally, let us require once more irrationality@f /a_. Then functions (11.35) span the joint solution
space. This suggests that the joint solution space remains two-dimensional,fam &f. In point of
fact, though, this is not the case. More precisely, only even linear combinatidn('éL)oandRr(_) (i.e.,
multiples of R;) admit continuous interpolation to all &°*. For the pertinent ‘no-go’ result, s¢&9, pp.
532-533]
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