First order analytic difference equations and integrable
quantum systems

S. N. M. Ruijsenaars
Centre for Mathematics and Computer Science, P.O. Box 4079,
1009 AB Amsterdam, The Netherlands

(Received 3 January 1996; accepted for publication 26 July)1996

We present a new solution method for a class of first order analytic difference
equations. The method yields explicit “minimal” solutions that are essentially
unique. Special difference equations give rise to minimal solutions that may be
viewed as generalized gamma functions of hyperbolic, trigonometric and elliptic
type—Euler's gamma function being of rational type. We study these generalized
gamma functions in considerable detail. The scattering and weight functions (
and w-functiong associated to various integrable quantum systems can be ex-
pressed in terms of our generalized gamma functions. We obtain detailed informa-
tion on theseu- andw-functions, exploiting the difference equations they satisfy.
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I. INTRODUCTION

This paper is concerned both with the general theory of first order analytic difference equa-
tions (from now on AAEs) and with certain special functions that arise as solutionsA&# of a
quite restricted type. As announced and partly detailed in our stiarey lecture,among these
special functions are the weight functions and scattering amplitudes associated with relativistic
quantum integrable systems of Calogero-Moser type—which, in turn, for special parameter
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1070 S. N. M. Ruijsenaars: Difference equations and integrable systems

choices reduce to functions occurring in various well-known infinite-dimensional integrable sys-
tems, such as the sine-Gordon theory, the XYZ chain and the eight-vertex model.

The first part of the papetSections Il and Il does not involve integrable systems. To
describe the scope of the results obtained therein, we start from two quite elementary first order
AAEs, namely,

M(w+1)=cM(w), we(, ceC*, (1.2
M(w+1)=wM(w), weC. (1.2

Obviously, the first one is solved by the function ext c) and the second one by Euler's
gamma functiod’(w). These functions can be used as building blocks for solviade# of the
form

M(w+1)=Q(w)M(w), weC, (1.3
whereQ(w) is a rational function ofv. Indeed, any function of the form

M I'(w—bj)

M(w)=e?W—F———,
(W) HE=1F(W_C|<)

a,bj ,CkE C, (14)

satisfies(1.3) with Q(w) rational, and varying the parameteasM,N,b;,c,, yields all rational
functions.

Suppose now that one can find meromorphic solutions to the &.3) for Q(w) equal to the
Weierstrasgr-functiono(w; w,w’) with ,—iw’ e (0,,), and its trigonometric{iw’ =) and
hyperbolic @=«) degenerations—the sine and sinh-function@he additional factor
cexp@w?) in the degenerate-functions is easily taken into account—one need only include a
factor expP(w)) with P(w) a third order polynomial. Then the respective solutions
Mei(W),Myig(w) and My, (w) can be used as building blocks to solve thaB (1.3 with
Q(w) any elliptic function with periods @,2w’ or its trigonometric and hyperbolic counterparts,
resp. Indeed, any elliptic functio@(w) can be written in the forni1.4), with the exponential
replaced by a constant adt{w) by o(w), so a corresponding meromorphic solutikt{w) to
(1.3 is obtained by takind"— My, in (1.4).

Among other things, this paper presents and studies special functions generalizing the gamma
function, which can be used as building blocks to soleEs of the three types just described. In
one case the pertinent function is not really new—up to a constant and an exponential it amounts
to Thomae’sg-gamma functior’:* For the other two cases, however, the corresponding general-
ized gamma functions are new, and turn out to have some quite remarkable properties. The
comprehensive study of these functidtsbe found in Section l)lconstitutes one of the principal
results of this paper.

In order to sketch the setting from which our generalized gamma functions emerge, we begin
by pointing out that even when one restricts attention to functi@fs) and solutionsvi (w) that
are meromorphicas we dg, there is an enormous ambiguity in the solution. Indeed, assuming
M(w) is a solution andn(w) any meromorphic function with period 1, it is obvious that the
function m(w)M (w) is a solution as well. The importance of singling out solutions sjtkecial
properties is therefore evident.

In previous literature, the class ofMks to be studied—that is, the class of meromorphic
functionsQ(w)—has been narrowed down by insisting tk¥tw) have a special asymptotics for
Rew—o. In particular, Nolund in his comprehensive monograplses this prescribed asymp-
totics to construct the uniquely determined solution he refers to as the “Haupti (see also
Refs. 6-8.
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By contrast, the key requirement @(w) andM (w) we impose is a special asymptotics for
[Im w|— o0, satisfied in particular for function®(w) that are periodic in the imaginary direction.

As will transpire below, this leads to essentially the same solutions only for rational and hyper-
bolic Q(w), whereas Ndund’s methods do not apply to the trigonometric and elliptic cases.

As a matter of fact, we have opted for a shift in the imaginary direction—in contrast to the
shift by 1 in the AAE (1.3). This corresponds to the applications to integrable systems, and is also
convenient in view of our different requirements concerning asymptotics. Moreover, we shall treat
the step size as a variable, and we do not single out the positive or negative imaginary direction.
Thus our starting point is the X&

F(z+ial2)=®(z)F(z—ial2), (1.5

where®(z) is meromorphic, and where the step sizis an arbitrary positive number. Of course,
this AAE is related by a scaling and a shift over half the step size to tkie A.3), so all results

can be rephrased fdfi.3—at the expense, however, of cumbersome notation, which moreover
hides some symmetries that naturally emerge when the second convention is used.

We are now prepared to describe the organization and results of the paper in more detail.
Section Il contains our general results on first ord&EA. In Subsection Il A we set the stage by
delineating the class of function®(z) allowed in (1.5). As a first requirement, we insist on
®(2) being free of zeros and poles in a stflmz|<s, s>0. We denote such AEs as regular
AAEs, and refer to solutions that are free of zeros and poles in the Istizp<s+ a/2 as regular
solutions. The poles and zeros of a regular solufigm) outside|Imz|<s+a/2 are completely
determined by the poles and zeros®fz) outside|Imz|<s, as easily follows fron(1.5).

Regular AAEs can be rewritten in the additive form

f(z+ial2)—f(z—ial2) = ¢(2), |Imz|<s, (1.6)

where ¢(z) denotedqa suitable branch oin®d(z2). Thus the search for regular solutions(105) is
reduced to finding solution§(z) to (1.6) that are analytic foflmz|<s+a/2. Using well-known
properties of the partial differential operatatiz= dy+idy, and Runge’s approximation theorem,

it can be proved that such solutions exist. We shall not detail this, however, since the existence
arguments yield no information on the solution thus obtair(@eh existence proof can be as-
sembled from Ref. 9, for example.

By contrast, the extra requirements we imposedqz) (or equivalently¢(z)) enable us to
constructexplicit solutions, with special properties that render them essentially unique. Roughly
speaking, we require thab(z) have at worst polynomial increase Hez|—, and construct
solutions f(z) with the same property, which are moreover regulae., analytic for
[Imz| <s+a/2). We refer to such solutions asinimal solutions: both their singularities and their
asymptotics folRez| —« are “best possible’—being enforced by the singularities and asymp-
totics of ¢(z). Among other things, Theorem II.1 entails the uniqueness up to a constant of
minimal solutions to the additive AE (1.6)—assuming they exist.

In Subsections I[IB and IIC we study two classes oABs that do admit minimal
solutions—as is shown by exhibiting a minimal solution via explicit formulas involvitg),x
€ R. The key results are Theorem I1.2 and II.5, resp. Theorem 1.2 presupposes(t)ais an
L(R)-function, whose Fourier transformt(y) is in L1(R), too, and satisfiegs(y)=0(y) for
y—0; its corollary Theorem 11.3 handles functions that have these properties after taking a certain
number ofx-derivatives. In Theorem IL.5 it is assumed thaix) has periodsw/r,r>0, and its
zeroth Fourier coefficient vanishes; then Theorem 11.6 handles functigw} for which ¢®
(x),k e N*, has these properties.

The arbitrary additive constant in a minimal solution to th&EA(1.6) can and will be fixed
in the Fourier transform setting of Theorem 11.2 by requiring that the solution go to X tfore;
in the Fourier series setting of Theorem I1.5 it is fixed by requiring that the minimal solution
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(which is shown to ber/r-periodig have vanishing zeroth Fourier coefficient. The unique solu-
tion f(a;z) thus obtained is given by2.26 and (2.106, resp. From the identity2.38 it then
follows thatf(a;z) satisfies the addition formul@.28 in both settings.

The solutionf(a;z) has another illuminating feature: In both cases it satisfies

limiaf(a;z)=¢(z), |Imz|<s, 1.7
alo

where (z) is a primitive of ¢(z). Thereforejaf(a;z) may be viewed as a “generalized primi-
tive” of ¢(z). It should be noted that this feature is obviously compatible with th& AL.6), but
nota priori implied by it: In view of the huge multiplier ambiguity already discussed, the pertinent
limit typically does not exist for more general solutions.

Theorems 1.4 and 11.7 are concerned with g0 limit of minimal solutions to the AE
(1.6) when ¢ is allowed to have a suitabla-dependence. At first sight, the assumptions may
appear very restrictive, but they can in fact be verified for the applications occurring in Section IIl.
The limit (1.7) may be viewed as a quite special consequence of these zero step size limit
theorems.

In Appendix A we derive various results that involve Euler's gamma function, not only as a
concrete illustration of the theory developed in Subsections Il A and Il B, but also to prepare the
ground for Section Ill, which is devoted to a study of generalized gamma functions. B&léw
we have already delineated the three cases that will be considered in Section Ill. Since we employ
the AAE (1.5 and not the AE (1.3, however, the trigonometric case turns into the hyperbolic
case and vice versa. Moreover, the Weiersti@a$anction and its degenerations are traded for
close relatives, to which the theory of Section Il applies. The resulting minimal sol\tiemdered
unigue in obvious wayswill be dubbedG-functions.

More specifically, Subsection IIl A deals with the hyperbdBefunction—the unique mini-
mal solution to the AE

G(z+ial2)=2ch wz/b)G(z—ial2), b>0, (1.9

that satisfies5(0)=1 and|G(x)|=1 for realx. Now it is evident that any solutio(z) to (1.8)
has the property that the quotie@{z+ib/2)/G(z—ib/2) is ania-antiperiodic function. It is not
at all obvious, though, that a solution exists for which this quotient equals72h]. The
hyperbolicG-function does have this striking property: It is given by

_ _(=dy[ sin2yz z
Ghyp(a,b,z)—exp<|jo V(W_a_by ), |Im22|<a+b, (1.9
and hence is manifestly symmetric under b.

We present our results on the hyperbdBefunction in seven propositions. Proposition II1.1
deals with the three elementaryA&s to whichG is a minimal solution, and Prop. 111.2 details
various automorphy properties. As already noted above, the poles and zeros of a regular solution
to (1.5) readily follow from those ofb(z); similarly, residues at simple poles can be determined
in terms of®(z). This is worked out foGy,y,, in Prop. 111.3. An important dichotomy first emerges
here: Whena/b is an irrational humber, all poles and zeros are simple, whereas for rational
a/b this is not the case.

SinceGpy(2) is a minimal solution, its logarithm is polynomially bounded fRez| — and
|Imz|<a/2. For the case at hand, the precise asymptotics can be explicitly determined by com-
parison to the casa=h. (This case has special features that render it more acces$tbbposi-
tion 111.4 presents the details; the restriction |émz| is readily lifted by exploiting the AE (1.8).

From the representatioil.9) it is already clear that for fixed in the strip|Im2z|<a+b the
G-function is real-analytic on (&) in the parametera andb. In Prop. 1ll.5 we prove thaG
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actually extends to a function that is meromorphi@ib andz, as long as the quotiebta stays

away from the negative real axis. This readily follows from a representation fdB thection in

terms of an infinite product of gamma functions. To control the convergence of this product, some
estimates on Laplace transforms assembled in Appendix B are crucial.

The latter estimates are also exploited in proving that a renormalized version of the hyperbolic
G-function converges to the gamma function when one taked and|b|—0 in any sector
|Argb|<x,x € [0,7). This is detailed in Prop. 1ll.6. Two more zero step size limits are obtained
in Prop. 111.7. In the latter context the limit has branch cuts on the imaginary axis that arise from
a confluence of zeros and poles.

Before turning to a sketch of Subsection Il B, we would like to mention &g}, is not only
the key building block for the hyperbolic scattering and weight functions of Subsections IVA and
VA, but also for our recent generalization of Gauss’ hypergeometric fungkgnin this context
Gpyp Plays the role of the gamma function in the Barnes representatiogF-fer-except that the
generalization is far more symmetric. Eé¥, the symmetry is broken, since a step size is taken to
zero that leads to the two quite different limiting functions of Propositions 111.6 and (¢f.7Ref.

2, Subsection 6.3, and papers to apjpear
In Subsection Il B we study the elliptiG-function, which is given by

sin2nrz

Ge”(r,a,b;z)=ex;{|nzlm , |Im2z|<a+b, (1.10

along the same lines as its hyperbolic counterph). It is not obvious, but true thab, is a
minimal solution to an AE of the form

S@H1al2) o (Cotciz+0y2%)0(2+ibI2:mlar ibl2 11
G(Z_ialz)—exp(co C1Z+Cyz%) a(z+ib/2;m/2r,ib/2), (1.11
whereo denotes the Weierstrassfunction. Thus it can be used as a building block to solve the
AAE (1.5 with ®(z) an elliptic function—as already discussed above.

As it turns out, it is quite convenient to trade thefunction o(z; 7/2r,ia/2) for a closely
related functions(r,a;z) (2.89. The latter function is odd and/r-antiperiodic inz, and has
limits r ~1sinrz and wa~‘shmra ™1z for aj~ andr |0, cf. (2.90 and (2.92, resp. Similarly, the
function arising on the rhs of1.11) will be denotedR(r,b;z). In view of (1.10 it is given
explicitly by

R(r,b;z)= Ecosmrz Im2z|<b 1.1
(r,b;z)=ex —n:1m . |Im2z|<b, (1.12

so it is even andr/r -periodic inz. Most of the propositions in Subsection Il B may be viewed as
generalizations of hyperbolic counterparts, since one has

lim exp(72/6rb)R(r,b;z)=2ch mz/b) (1.13
rl0
and
lim exp(m?z/6irab)Gey(r,a,b;z)=Gpy(a,b;2), (1.14
rl0
cf. Prop. 111.12.

Subsection 11l C concerns the trigonometric case. Our trigonom@&tfanction is given by
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* e2inrz
Guig(r,a;2)= exp( nzl m) . Im2z>—a, (1.15

and can be obtained as a limit of the ellip@zfunction, viz.,

Guig(r,a;2)=limGgy(r,a,b;z—ib/2). (1.16
bies

In this case the elementaryMx satisfied by thé&-function reads

G(z+ial2) i 11
Gz—ia2) = ¢ (2.17
Since the rhs has zeros on the real axis, this is not a regulde. Aowever, any shift
z—z+ip,p>0, yields a regular AE, to which the(shifted G-function is a minimal solution.
Propositions 111.14-111.19 concern various properties of @dunction that are quite easily
obtained from the series representati@rily or the product representation
G :7)= ﬁ ! 1.1
wiglr,2:2) = 1—exp(2irz—(2m—-1)ar) " (1.18

m=1

Proposition 111.20, however, involves more work. Here, we prove that a renormalized version of
Gyig converges to the gamma function foy0.

Fixing a>0, it is clear from(1.18 that Gyy(r,a;z) extends to a meromorphic function of
r and z, as long ag stays in the right half plane. But one cannot solve the hyperboli& A
obtained from (1.17 upon taking r—iw/b,b>0, by making use of the trigonometric
G-function. By contrast, onés allowed to takeb—i/r,r>0, in the hyperbolicG-function,
yielding the trigonometric function 2coson the rhs of(1.8). Accordingly, the quotient of the
renormalized versions @by,,(1,i7/r;z) andGyg(r,1;2) (both of which converge to the gamma
function asr | 0) is a quite nontriviai-periodic function, cf(3.17)—(3.173.

Just as in Subsections Il A and 11l B, the last proposition of Subsection Ill C deals with two
zero step size limits; once again, a confluence of zeros and poles gives rise to branch cuts. The
subsection is concluded by detailing the relation of our trigonomeBifunction to the
g-gamma function.

We continue by sketching the physical setting in which the scattering and weight functions
u(z) andw(z) of Sections IV and V, resp., arise. These functions are associated to relativistically
invariant integrable generalizatidfis! of the nonrelativistic Calogero-Mosét-particle quantum
systems? The dynamics of these relativistic systems belongs to a commutative algebra generated
by N independent commuting analytic difference operators. The step size in these difference
operators is inversely proportional to the speed of lighand forc— < the commuting difference
operators converge to commuting differential operators.

Now a factorized product afi-functions is expected to encode the asymptotics of the diago-
nalizing joint eigenfunction transform, whereas a factorized produat-fifnctions can be used to
transform the difference operators and eigenfunctions to an especially convenient form. In par-
ticular, in the trigonometric case the transformed eigenfunctions amount to Macdonald’s
g-Jacobi multivariabléd_; polynomials, and the product of weight functions yields the function
with respect to which the polynomials are orthogo(wl Ref. 2, Subsection 6.2 and references
given there. (This is whyw(z) is referred to as a “weight function)”

The key point is now that(z) andw(z) solve first order AEs to which the theory developed
in Sections Il and Il applies. In fact, in suitable parameter regim@ can be characterized as
the unique minimal solution satisfying(0)=1 and |u(x)|=1 for real x, whereas a reduced
weight functionw,(z) (closely related taw(z)) can be characterized in a similar way. It would
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S. N. M. Ruijsenaars: Difference equations and integrable systems 1075

take us too far afield to explain here how theskEs (which are specified in Sections IV and V
emerge from the difference operators and their eigenfunctions. Instead, we refer to Ref. 1, p. 187,
and Ref. 2, Subsection 4.3, for a derivation of thAPs satisfied byu(z) andw(z), resp.(See

also our forthcoming papéf)

From the viewpoint of special function theory, the and w-functions are just simple com-
binations of the G-functions from Section Ill: Both functions are of the form
G(--)G(--+)IG(---)G(--+). The pertinent combinations, however, turn out to have quite re-
markable properties, which reflect their origins in the context of analytic difference operators and
eigenfunction transforms.

We study the functiona(z) andw(z) along similar lines, once more handling the hyperbolic,
elliptic and trigonometric cases successively. In each case we first define the relevant function in
terms of G-functions, read off some automorphy properties, and introduce some associated func-
tions and/or parameter regimes. Then we study the functions in relation to the elemeftsy A
they obey. As it happens, there is an additional elementaf fpertaining to a parametées-
sentially the coupling constant in the integrable system pigtusbich makes it possible to
expresau(z) andw(z) in terms of products o$-functions(i.e., sh(),s(-) and sin{), resp) for
certain parameter values. In the hyperbolic and elliptic cases, these values aredenfsain the
parameter space.

After obtaining these elementary representations for special parameters, we return to the
general case and derive various representations of a different character. At the end of each sub-
section we obtain a number of limits, whose existence is suggested by the formal limiting behavior
of the difference Hamiltonians. Quite a few of these limits may be physically interpreted as
nonrelativistic limits. For the scattering functions we also derive limits that may be viewed as
classical limits. The zero step size results of Sections Il and Il are the main tools in controlling
most of the limits—in particular the classical limits.

To conclude this introduction, we would like to point out that our results entail a great many
nontrivial identities. As a rule, these identities are not spelled out: they follow from different
representations for the same function. To be sure, quite a few of these formulas can be assembled
via elementary identities—one may even assert that this is precisely what we have done in this
paper. But this hindsight wisdom obscures what we view as the basic reason underlying most of
the identities, namely, the uniqueness of minimal solutions to first orddfsAthat admit such
solutions.

To render the previous paragraph more concrete, we add an example. The sine-Gordon spe-
cialization of theu-function from Subsection IV A has been known in terms of the inte@r&0
for almost two decade&f. Ref. 14 and references given ther8pecifically, using our conven-
tions, thisS-matrix element reads

2; fdy sta— nl2)y Im22|<d 1.1
u(m,a,m2;z) =ex Y chmyi2)shay ———————sin2yz|, |Im2z|<d, (1.19

with d given by(4.32. (In point of fact, the integral occurred even earlier as a partition function
of the six-vertex model, cf. Ref. 15Nevertheless, the resu(@.28, expressing(1.19 as an
elementary function for the dense $4t27) of a-values, is new. Fon<< the resulting identity
can be verified directly by noting that the rhs(df28) is a minimal solution to the AE (4.6) with
6=—, a, = anda_ = a, which moreover has value 1 and modulus 1Zer0 andz real, resp.,
just as(1.19.
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Il. GENERAL RESULTS ON ANALYTIC DIFFERENCE EQUATIONS

A. Preliminaries

As announced in the Introduction, we are concerned wiNE# of the form

F(z+ial2) o 0 21
F=ial2) (2), a>0, 2.1
where ®(z) is a function that is meromorphic ifi (briefly: meromorphiz We shall call a
function F(z) a solutionto (2.1) if and only if F(z) is meromorphic in a stripimz|<s+a/2,s
e (0x), andF(2) satisfieg2.1) for |Imz|<s.

The first thing to note is that any solution thus defined extends to a meromorphic function.
Indeed, one can exterfez) upwards strip by strip via

k
F(z+ika)EH1 ®(z+(j—1/2)ia)-F(z), |Imz|<al2, 2.2
&

and downwards via

k
) 1
F(z—lka)=j1:[1 B(—(-12ia) ‘F(2), |Imz|<a/2. (2.3
Clearly, the quotient of two solutions 1@.1) is ania-periodic meromorphic function.

Whenever (x+iy),X,y € R, converges to 1 foy— o, uniformly for x varying over arbitrary
compact subsets df and sufficiently fast, the infinite product

1

F+(Z)E,—H1 ®(z+ (- 1/2)ia) 24

defines a solution t@.1). We shall refer td=, as the upward iteration solution. It is readily seen
that it is the only solution satisfyin§(x+iy)—1 for y—o. Similarly, the downward iteration
solution

F_(2=]] ®(z—(j—1/2)ia) (2.5
j=1

exists providedb (x+iy)—1 for y— —oo (uniformly onx-compacts and sufficiently fastand is
the unique solution satisfying(x+iy)—1 for y— —o.
Consider, for example, the XEs with right-hand sides

®,(z)=chz, ®,(z)=1—expiz—s), Pi(z)=1—-exp(iz+s), s>0. (2.6

In the first case no iteration solution exists, whereas in the second and thirdcasessts, but
F_ does not.

Our main interest is in AEs (or, equivalently, meromorphic function®(z)) that admit
solutions with special properties in the stfinz|<a/2. Specifically, we shall restrict attention
from now on to meromorphic function®(z) that have no poles and zeros in a stiimz|<s.
Such functions and the associated2s (2.1) will be calledregular. A solution to a regular AE
will be calledregular iff it has no poles and zeros {imz|<a/2. In view of (2.2) and(2.3) it then
actually has no poles and zeros|imz|<s+a/2. Clearly, the quotient of two regular solutions is
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ania-periodic nowhere vanishing entire function. Note that the thra&#\defined by2.6) are all
regular; in the second ca$e. is regular, whilst in the third cage.. is not(it has a pole in the set
ia/2[ —1,1]).

It should be noticed that a regular solution is “maximally analytic,” in the sense that it is free
of poles and zeros in the stripmz|<a/2; its poles and zeros outside the latter strip are then
determined by the AE (2.1), and can be read off frort2.2) and (2.3), whenever the poles and
zeros of®(z) are known. We shall be primarily concerned with a restricted type &E Awhich
admits regular solutions that are “minimal.” To define this notion, we observe that a regular
solution F(z) to (2.1) admits a one-valued analytic logarithm fimz|<s+a/2. We callF a
minimalsolution iff INF(2) is polynomially bounded ihlmz|<a/2. That is, there exist,d>0 and
k € Nsuch that

lINF(z)|<c+d|z|, Vze{|lmz|<a/2}. 2.7
Takingz=x € R in (2.1), we deduce
|®(x)|°<exp2c+2d|x|%), VxeR, &==1. (2.8

Thus,®(z) must satisfy(2.8) for minimal solutions to exist.

To show that AEs admitting minimal solutions are by no means exceptionadj(l8t be any
meromorphic function that is analytic iflmz|<s+a/2 and polynomially bounded in
|Imz|<a/2. Then the AE with rhs ®(z)=exp@(z+ia/2)—g(z—ia/2)) admits a minimal solu-
tion, viz., F(z) =exp@(2). It is also to be noted that the right-hand side functidn(g) of (2.1)
that admit minimal solutions form a group: F(z) is a minimal solution tq2.1), then 1F(z) is
a minimal solution td2.1) with ®—1/®, and if F;,F, are minimal solutions to AEs(2.1) with
rhs &,,d,, resp., then F(z)=F.(2)F,(z) is a minimal solution to (2.1) with
P (2)=D1(2)P2(2).

A minimal solution is not only maximally analytigsince it is regular by definition but also
has the slowest increase %o and/or decrease to 0 for Re> +« in the strip|Imz|<a/2 that is
compatible with(2.1). This will be clear from the following theorem, which shows, moreover, that
minimal solutions have “minimal ambiguity.”

Theorem II.1: Assume that the meromorphic functidrz) is regular and satisfies (2.8). Let
F1(2) and F»(z) be minimal solutions to theXE (2.1). Then there exist @ C* and | € Z such
that

F1(2)/F,(z)=Cexp2mlz/a). (2.9

If F1(2) and F,(z) are bounded away frofi ande on R, then one has+0 in (2.9). If ®(z) is
even, then for all minimal solutions(E) the function Kz)F(—z) is constant. I{P(0)=1 and the
function®(z)®(—2z) equals 1, then for any minimal solution there exists ke Z such that
exp(2rkzla)F(2) is an even minimal solution

Proof: SinceF, andF, are minimal, they ara fortiori regular. Thereforel1(z)/F,(z) is an
ia-periodic entire functiorg(z) without zeros. Hence there exidtse 7Z such that the function
Jo(2) =q(z)exp(—2mlz/a) has zero winding number around 0 agoes fromz, to zy+ia.

To prove thatqgy(z) is constant, we note that it can be written gXp], with r(z) an
ia-periodic entire function. Sincé; andF, are minimal,r(z) is polynomially bounded:

[r(2)|<C1+Cylz|%, |Imz|<a/2. (2.10
It is not hard to see that this entails constancy (). (Indeed, we can, for instance, argue as
follows. Sincer(z) is ia-periodic and entire, it can be writteR,,_,c ,Ww"=s(w), where
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w=exp(2rz/a), and where the series converges ¥ore C*. In view of the bound(2.10, the
functionws(w) has limit 0 forw— 0, so it is analytic aiv=0. Hencegc,,=0 for n<0. Similarly,
since(2.10 entailss(w)/w—0 for w—o, we deducec,=0 for n>0.)

We have now proved the first assertith9). The second one is then clear frd&9). Now
assumed(z) is even and~(z) is a minimal solution. Consider the functig®(z)=1/F(—2). It
satisfies

G(z+ial2) F(-z+ial2)
G(z—ial2) F(—-z—ial2)

O(-2)=>D(2), (2.11

so it is a solution, too. From minimality & one easily deduces minimality &, so(2.9) entails
there existsl e 7 such thatF(z)/G(z)=Cexp(2rlz/a). But the function on the lhs equals
F(z)F(—2z) and hence is even. Therefore, we hawed and the third assertion follows.

To prove the last assertion, consider the functitfz)=F(—2z). It satisfies

H(z+ia/2) F(-z—ial2)
H(z—ial2) F(—z+ial2)

=1/P(—2)=P(2), (2.12

and so it is a second minimal solution. Thus we must hage z) = Cexp(2rlz/a)F(2). Putting
z=0 yields C=1 and puttingz=ia/2 yields (-)'®(0)=1, so thatl is even. But then
exp(2rkza)F(2) with k=1/2 is an even minimal solution. O

Thus far, we have been dealing with meromorphis&s of the multiplicative form2.1). To
study these in more detail and, in particular, to construct minimal solutions, it turns out to be
convenient to also considerMcs of the additive form

f(z+ial2)—f(z—ial2)=¢(z), a>0. (2.13

Here,¢(2z) is assumed to be meromorphic in a sttipz| <s, s e (0,%), and we restrict attention
to functionsf(z) that are meromorphic in the stripmz|<s+a/2 and that satisfy(2.13 for
[Imz|<s; the term “solution to(2.13” will be used only for such functions. The function
¢(2) and the associatedE (2.13 will be termedregular iff ¢(z) is analytic in|Imz|<s, and
a solutionf(z) to a regular AE will be calledregular iff f(z) is analytic in|Imz|<s+a/2.

Obviously, taking logarithms of a regularMe of the multiplicative form(2.1) leads to a
regular AAE of the additive form(2.13. Since the meromorphic functioh(z) may have zeros
and/or poles fofimz|=s, its logarithm may have branch points fdémz|=s. Such branch points
are irrelevant for studying the XE (2.1), and therefore we restrict attention to the strip
|Imz|<s in the additive case.

The above-mentioned notions and results connectéd.1p have obvious analogs f@2.13.
In particular, a regular solutiof(z) to a regular AE (2.13 will be termedminimal iff it is
polynomially bounded inimz|<a/2, and a necessary condition for the existence of minimal
solutions is thatp(z) be polynomially bounded oR. Of course, in the additive case two minimal
solutions can only differ by a constant, cf. the proof of Theorem II.1.

Let us now compare the above to the older literature on first orddesA cf. in particular
Refs. 5-8. Here, one usually considers additiveEA of the form

u(w+1)—u(w)=b(w). (2.149

Of course, these are essentially equal2dl3), as follows by making the change of variables
z=ia(w+1/2) in (2.13. But these different conventions reflect a different emphasis. Indeed, our
main interest is in the behavior ap(z) and associated solutions in the sttipnz|<a/2; in
particular, we shall obtain representations for minimal solutions that hold true in this strip, cf. the
next two subsections.
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By contrast, Ndund® singles out the “principal solution’(Hauptlesung to (2.14 by impos-
ing conditions onb(w) for Rew—oo; accordingly, his principal solution can be characterized
among all other solutions by its having the slowest possible increase for-Re The principal
solution equals the obvious iteration solution(f014) wheneverb(w) goes to 0 sufficiently fast
for Rew—oo, but it can be defined for larger classes of right-hand sides by modifying the iteration,
cf. loc. cit. Chapters 3 and 4. As we have already sggn®4(z) in (2.6)], an iteration solution
need not be regular, and sofortiori, it need not be minimal. Moreover, minimality concerns the
asymptotics for Inn— * o, and not Rev— * .

If one writes the hyperbolic and elliptic XEs occurring below(for which we construct
minimal solution$ in the form (2.14), then Naolund’'s conditions are violated, and no principal
solution exists. On the other hand, tmd’s conditions allow right-hand side functiogz) in
(2.13 that are not polynomially bounded dR; in that case,2.13 does not admit minimal
solutions. For the regular trigonometric and rationalEs occurring below, both Ntund’s and
our solution methods apply, and the principal solution is then a minimal solution. Our Fourier
series representation for the trigonometric case is however very different from the representations
for the principal solution occurring in Ref. 5.

B. Fourier transform solutions

In this subsection we obtain minimal solutions to a large classAXE#by exploiting Fourier
transformation or.?(R). (This class contains the ¥Es that occur in the hyperbolic context, cf.
the Introduction). Our normalization reads

“ 1 (= )
\If(y)EEJ_ dx¥(x)e™ (2.15
so that

T (x)= f:dy\i«y)e—ixy. (2.16

Of course, we may and will use the definiti¢®.15 for ¥ e LY(R), too; in this case, recall
WY(y)—0 for y— *o (Riemann-Lebesgue lemmaNe also have occasion to use the distribu-
tional Fourier transform

Tz

a

» ) 1 i
f dye 2V p——=— ;th

shay ., |Imz|<a/2, (2.1

where P denotes the principal valu@his formula can be verified by a straightforward contour
integration)
Theorem I1.2: Assumep(z) is a function with the following properties:

#(z) is analytic in a strip|Imz|<s,se (02), (2.18
$(x) e LY(R), (2.19
#(y) e LX(R), (2.20
#(y)=0(y),y—0. (2.23)
Then the AE
f(z+ial2)—f(z—ial2)=¢(2), a>0, |Imz|<s, (2.22
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has a unique solution(f;z) such that

f(a;z) is analytic in the strip|imz|<s+a/2, (2.23
f(a;z) is bounded in the strigimz|<a/2, (2.24
lim f(a;x+it)=0, te[—al2,a/2]. (2.25

X— + o

Explicitly, this solution can be written as

f(a;z)= f dy ¢(2 3;/) e % |Imzl<al2, (2.26
or as
1 (= T
f(a;z)=ﬁf_mdmb(u)thg(z—u), |Imz| <a/2. (2.27

It satisfies the addition formula

k
=2 f
=1

az+—(k+1 2])) (2.28

If ¢(z) is even/odd, then(f;z) is odd/even. Finally, let)(x) be the following primitive of

#(x),xeR:
1/ (x %
H(x)= 5( J_mdwﬁ(U)—L dU(b(U))- (2.29
Then one has
limiaf(a;z)=y(2) (2.30
a—0

uniformly on compact subsets of the stiipz|<s.

Proof: First we prove uniqueness. Thus, tHz) be the difference of two solutions {@.22
with properties(2.23—(2.25. Thend(z) is an analytic function inlmz|<s+a/2, satisfying
d(z+ia/2)=d(z—ia/2) for |Imz|<s. Therefored(z) extends to ana-periodic entire function.
By virtue of (2.24), d(z) is bounded in the period stripmz|<a/2, sod(z) is constant in view of
Liouville’s theorem. On account a®.29 this constant equals 0, so uniqueness follows.

Next, we us€2.19 and(2.2)) to infer that the functionp(2y)/shay is bounded and satisfies

|p(2y)/shay|=o(e"a), y— oo, (2.31)

Thus, defining a functiori(z) by the rhs of(2.26), it is clear thatf(z) is analytic in|Imz|<a/2
and thatf (x+it) converges to 0 fok— = and|t|<a/2. Moreover, using als2.20), we infer
that the functions

b. (x)—f d i(ra);) *a¥e=2¥X  xeR, (2.32

are continuous and vanish ate, and that we have
J. Math. Phys., Vol. 38, No. 2, February 1997
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limf(x*ita/2)=b. (x) (2.33
11

uniformly on R.
Now consider the auxiliary function

A(z)=f(z—ial2)+ ¢(z). (2.39
Clearly, A(z2) is analytic in the strip
S,={ze(|Imze(0,y)}, y=min(s,a), (2.39

andA(x+ie) converges td_(x)+ ¢(x) ase|0, uniformly for x in compact subsets df. But
from (2.32 we have

b+(X)—bf(X)=2f:dy;/5(ZY)e_2iyx= ¢(x), (2.36

so this boundary value is equalla (x). On the other hand, the functidiiz+ia/2) is analytic in
the strip Inz e (—a,0) and converges uniformly ddto b, (x) as Inz70. Consequently, we may
invoke Painlevis lemma to deduce thaf(z+ia/2) extends to an analytic function in
Imz € (—a,y), which coincides withA(z) whenz € S, . That is, the AAE (2.22) holds true for
ze S, .

We may now exploif2.22 for z € S, to deduce thaf(z) extends to an analytic function in
|Imz|<s+a/2. Since the functiong(x*=ia/2) equalb.(x), they converge to 0 fokx— =,
Moreover, recalling the definition df(z), we obtain

= (2
If(2)|<f dy'[iiﬁﬁ'eaiyl, lImz|<a/2, (2.37)

and in view 0of(2.20 and(2.21) the rhs is finite. Therefore, the rhs (#.26) defines a solution to
(2.22 with the propertieg2.23—-(2.25.

Next, we prove(2.27). Replacing the integral if2.26 by a principal value integral, and the
functions¢ and ¢ in (2.27) and(2.26 by a Schwartz space functignand its Fourier transform
X, resp., the equality of the resulting integrals is clear fr@r? and the Plancherel relations.
SinceS(R) is dense inL1(R), we deducg?2.27) from (2.26).

The function at the rhs .28 obviously solve€2.22) with a replaced bya/k. Since it also
has the propertie®.23—(2.25 that uniquely determin&(a/k;z), we obtain(2.28. Alternatively,
(2.28 follows directly from the representatiq.26 by using the elementary identity

k
ay | shay)
jzl ex T(k+l_2j)) ~ shiay/k) " (2.39

The parity assertion can be read off from both of the representat®oB§ and(2.27).

It remains to prove the last assertion. To this end we first observe that the represdgatafipn
entails that(2.30 holds true pointwise foz=x e R. Next, we use the boun(2.37) and the
assumptions(2.20 and (2.21) to infer that the functionaf(a;z) remains bounded by an
a-independent constant in the sttipnz|<a/2 asa—0. By iteration of the AE (2.22 we now
deduce thaaf(a;z) remains bounded in compact subsets of the $triz|<s asa—0. There-
fore, the last assertion follows from Vitali's theorem. O
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For our purposes the conditiorf2.18—(2.21) on ¢(z) are sufficiently weak. In general,
however, the condition&2.20 and(2.21) may be difficult to check. Requiring sole(@.18 and
(2.19, the rhs of(2.27) defines a functiorf(z) that is clearly analytic in the strigmz|<a/2 and
that satisfies

lim f(x=xit) —+—f due¢(u), te(—al2,al2). (2.39

X— *®

We conjecture that this function is in fact a solution(f622) satisfying(2.23 and(2.24).

Returning to the assumptions of the theorem, let us note(#hat) entails that the primitive
¥(x) (2.29 vanishes attw. Thus, writing ¢(u)= ¢’ (u) in the representatiof2.27), and inte-
grating by parts, we obtain the formula

f(a;z)= f du——, |[Imz|<a/2. (2.40
Rz (2=

Comparing this representation to Ef4) in Chapter 4 of Ndund’s monograph,one sees that the
solutionf(a;z) and Nalund's principal solution differ only by a constant whenevgz) satisfies
not only the assumptions of Theorem I1.2, but also the various restrictions thaindmeeds for
his principal solution to exist and admit the representatieh in loc. cit. (As already mentioned,
his assumptions or(z) are quite different from ours, cf. the discussion af@d4).)

It is also of interest to observe that the assumptihd9—(2.21) entail that¢(y) is an
L2(R)-function in the domain of the unbounded self-adjoint multiplication operator a1g8j.
From this point of view the functionf(a;x),x e R, given by (2.2, is the obvious

2(}R) -solution to(2.22 with z e R, reinterpreted as a Hilbert space equatidndeed, the func-
tion f(a y)—being equal to ¢(y)/25h(ay/2)—|s in the domain of multiplication by
exp(ray/2).)

We proceed by generalizing the above key result Theorem 11.2. We shall detail this generali-
zation in the multiplicative contex®.l); the additive version will be clear from this.

Theorem I1.3: Assumed(z) is a meromorphic function that has no poles and zeros in the
strip |Imz|<s for some s= (0,2). Setting

d |
¢|<z>z(d—z> Ind(2), 1<, (2.4

assume there exists& N* such thate(z)= ¢, (z) satisfies (2.18)(2.21). Then the AE

F(z+ial2)

admits minimal solutions. Any minimal solution can be written as

F(z)=expe(z)+P(2)), (2.43
where
g 1 i, N
e(z)sf_ dy‘i(riy)( 2iy) —ZWZ—JZO(ZJ.%Z) . |Imz|=<a/2, (2.44
and
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k
P(2=2, ¢, Z/j!, co, ... cceC. (2.45
=0

The coefficients G ...,c, are uniquely determined, whereas;, d¢s uniquely determined
mod 27/a.
Proof: Consider the AEs

fl(z+ial2)—f(z—ial2)=¢(2), 1=0,...k. (2.46

By virtue of Theorem I1.2 the function

= (2 .
fk(z)zﬁ dy%ez'yz, |Imz|<a/2, (2.47

admits an analytic continuation ttmz|<s+a/2 and satisfie$2.46) with | =k. Introducing
z
fk—l(Z)ECkZ—’_f dek(S), CkEC, (248
0

we infer that the rhs of the resulting equation

z+ial2

fk,l(z+ia/2)—fk,l(z—ia/2)=iack+J dsfi(s) (2.49
2

z—ial

equals¢y_1(z) for a suitable choice of, [since itsz-derivative equalsp,(z)]; specifically, we
may and will choose, such that

ial2
iack+f dsf(s)= d_1(0). (2.50
—ial2
Proceeding recursively, we obtain functiohgz),f,._1(2), ... ,fo(2) related by
z
f|_1(Z):C|Z+J' de|(S), I=1,...k, (25])
0

with ¢, given by

ial2
¢.,1(0)—f_ia/2dsf,(s) . 1=1,... k. (2.52

1
C|:E

Thenf,(z),l € {0, ... k}, is analytic in|Imz|<s+a/2 and is a minimal solution t(2.46). More-
over, from(2.51) and(2.47 one easily sees thé§(z) equals the sum a#(z) and a polynomial of
degree<k. The proof can now be completed by invoking Theorem 11.1. O

In Appendix A we show(among other thingshow the above results can be used to arrive at
the psi and gamma functions, and derive various salient features along the way. Here, we add two
applications exemplifying the above, yielding identities we have occasion to use later on. First,
consider the function

ar T
F(z)=cthz— ECth;. (2.53

It satisfies the AE
J. Math. Phys., Vol. 38, No. 2, February 1997
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F(z+ial2)—F(z—ial2)=cth(z+ia/2) —cth(z—ia/2)=x(z). (2.59
Inverting (2.17) yields the distributional Fourier transforms

i m_expt (—myl2a+ By)

fjc dxctha(x*iB)e™= a>0, Be(0mla), (2.59

@ sh wyl2a) '
so we have
=3, fw dxx(xe—i LT g 25
X(y)—z . Xx(x)e _IW’ ae(0,2m). (2.56

Thus, x(z) satisfies the assumptiof®.18—(2.20, but not(2.21). But ¢(z)=x’(z) does satisfy
(2.18—(2.21), since

A shy(a—m)/2
¢(y)—yw- (2.57
Therefore, we obtain a solution
N yshla—m)y
f(Z)—4J;) dyWCOSZS/Z (25&

to the AAE (2.22. Now sinceF’(z) satisfieg2.22), too, and obviously has the properti@s23—
(2.25, we must have (z)=F'(z), by uniqueness. Integrating the resulting identity wz,twe
obtain

the—— thﬂ—z—zfmd Sa—my 25
c EC a o ymstyz. (2.59

Here we hava e (0,27) in view of the restriction in2.56). But forz € R the integral converges
for anya>0, and so it readily follows tha2.59 holds for anya>0 (taking|Imz| small enough,
of course. Integrating once more now yields
In(she)— | ahw—z—fxdysr(a_”)yl >0 2.6
n(shz) —In 7_rs 2= )0y smyshrry( coszyz), a>0. (2.60

Second, consider the function

h(2)= Zcthes 2.6
(z)=5ct _ (2.6
It satisfies the AE
w2z
h(z+ial2)—h(z—ia/2) =ith—. (2.62

Therefore h’(2) satisfies the AE

Hz+ial2) - Hz—ia2)= = L[ e ™| = 26

(z+ial2)—f(z—ia )_Ed_z c = =¢(2z). (2.63
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Now one readily verifies

~ ay2

d(y)= 2mshay2)’ a>0, (2.64

S0 ¢(2) satisfies the assumptions of Theorem 11.2. The resulting solution

f(z)= —J dy cosyyz (2.65

shzay

must then be equal to (z), sinceh’(z) clearly has the propertig2.23—(2.25. Integrating twice
w.r.t. z we now obtain

thes—a+ wad (1-cosdy2 o 26
wzca—aaoyw,a . (2.66

The identities(2.66 and(2.60 can be combined to evaluate integrals occurring below. First,
they entail that fom e (0,7) one has

am | mshe L _fwd amshia—m)y a2 L
a—m" oz | Tt tas | dy (a—q-r)ysmyshﬂy_sl”?ay( C0sy2).
ashy
(2.67
Taking z—o and using the Riemann-Lebesgue lemma we obtain the integral
am o amsha—m)y a2
a— Wlng+a J dy (a—m)yshayshmy skay)’ (2.69
Adding the elementary integral
fwd & 1= 2.6
o Plsiay "7/~ 289
yields
dy(shia— a—
|nf:f ysa-my_( ”)) (2.70
a Jo vy \shayshry amy
and combining this with2.60 we get
dy(shia— w)y (a—m)
In(sh—) In(she) = j W oSy z— amy a>0. (2.77

Just as in the above examplesABs with a-dependent right-hand side functions will be
encountered later on. The last theorem of this subsection concerns tha4infitin this setting.
It is convenient to use the assumptions of Theorem 11.2 as a starting point; corresponding results
in the slightly more general context of Theorem 11.3 can then be obtainddfbld integration.
Specifically, we consider anXE of the form

f(z+ial2)—f(z—ial2)=¢,(2), a>0, (2.72
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where¢,(z) satisfies the assumptiof.18—(2.21) for anya e (0,a4]. (Of course, the choice of
ag is irrelevant for the limita—0.) We allow dependence of the maximal numbgre (0] in
(2.18 on a; in particular, one may have,—0 asa—0. However, we do assume that for any
a e (0,ap] the functiong,(z) is analytic in the open right half plane

Jy={ze C|Rez>0}. (2.73
Moreover, we assume that for any compHKc .7, there existCx>0 with
|pa(z)—ax(z)|<Cka? V(a,z)e(0a5]%XK, (2.74

where x(z) is analytic in.%.

Now let f,(z) be the unique solution t2.72 given by Theorem I1.2with ¢(z) — ¢4(2), of
course. Thus, f,(z) is analytic in the strigimz|<a/2+sy(a) and in.%Z,. We are now in the
position to state the next result.

Theorem I1.4: In addition to the above assumptions, let

[fa(2)|<Csm, V(a,2)e(0a0]X{zeC|Reze[s,M],|Imz|<a/2}, (2.79
for any 6>0 and M> 4, and let the pointwise limit

limf (2)=f(2) (2.76
alo

exist for any ze (0,). Then f,(z) converges uniformly on compact subsets/&f to a function
f(z) that is analytic in.72,. Moreover, one has

f'(2)=—ix(2),ze. %, (2.77

with x(z) defined by (2.74).
Proof: Upward iteration of the AE (2.72) yields

L
fo(z+ila)="f(2)+ 21 ba(z+(j—1/2ia), |Imz|<al2. (2.79
<

Choosing
L=N[a '], Ree[dsM], 0<d<M, (2.79

in this equation, the arguments abp, occurring on the rhs stay in a closed rectangle
K(N,8,M)C.%, asal0. Thus we may invoke the bound2.74) and (2.79 to conclude that
fa(z) remains bounded for Res [ §,M],Imz € [O,N], asa| 0. Similarly, iterating downwardk
times and requiring(2.79, we deduce thaf,(z) remains bounded for Ree [4,M],Imz

e[ —N,0].

Combining uniform boundedness ©f(z) on compacts ofZ, with the pointwise convergence
assumptior(2.76), it follows from Vitali's theorem thaf ,(z) converges uniformly on compacts of
o 1o a functionf(z) that is analytic in7%2,. Therefore, it remains to prov@.77.

To this end, we us€2.72 to write

¢a(z) 1 (z+ial2
— =fl(2)+— dw(fi(w)—f(2)), ze.%. (2.80
ia ia 2

z—ia

Clearly, the second term on the rhs can be majorized by
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SURye {z+iblbe[-azarzyl fa(W) — F4(2)]. (2.8

Now f/(z) converges td’(z) uniformly on compact& C.7, and the Ihs 0f2.80 converges to
—ix(2) uniformly onK [due to(2.74], so one easily deducég.77). O

We conclude this subsection with some comments on the assumptions of the theorem just
obtained. In later applications, the assumptionsg¢g(z) are easily verified. Moreover, fixing
€ %y, the functiong,(z) is actually real-analytic im for a € R. (Note this property is stronger
than (2.74).) Possibly, these properties already entail the hypothés@$ and (2.76), but we
believe this is not true in generdObserve that the functiof,(z) is not likely to be analytic at
a=0forz e .%,.)

The above convergence result should also be compared to the last assertion of Theorem 11.2.
Taking ¢,(z)=a¢(z), one sees that this assertion amounts to a simple special case of Theorem
Il.4—except that the analyticity region is different, and that the constant left undetermined in
f(z)=—1¢(2) by (2.77) is fixed in terms ofy(z) = ¢(z). In this connection we point out that the
choice of the regionZ, (2.73 in which ¢,(z) is assumed to remain analytic as-0 is deter-
mined more by convenience of exposition than by necessity. Indeed, as will be exemplified by
Prop. 1.7 below, the maximal region with this property can be larger, and correspondingly one
can obtain convergence in this larger region.

C. Fourier series solutions

We proceed by obtaining results that will enable us to solwdE# occurring in the trigono-
metric and elliptic contexts. Correspondingly, we will be dealing with meromorphic functions that
are periodic in the real direction. It is convenient to parametrize this periatfby < (0,2). For
W(x) e L%([— =/2r,w/2r],dx) we employ Fourier coefficients

r (=l2r

Vo=— dx¥ (x)e?"™  ne7z, (2.82
T ) —ml2r
so that
‘P(X)=E \i,ne—Zinrx (2.83
neZl

with the series converging in tHe?-topology.

As we have seen in the previous subsection, tidEA2.22) naturally leads to hyperbolic
functions wheny satisfieq2.18—(2.21), cf. (2.26) and(2.27). In much the same way, periodicity
of ¢(z) leads to the emergence of elliptic functions. It is convenient to collect some features of the
functions that arise before stating the analog of Theorem I1.2. First, we recall the product repre-
sentations of the Weierstrassfunction (cf., e.g., Ref. 1§ We have, taking,a>0,

T ia sinrz (1—pXexp(2irz))(z— —z)
R 2
o-( z; o 2) exp(nzr/ ) ; kljl (1=p9? (2.89
with
p=exp(—2ar) (2.895
or, alternatively,
T ia ~ shmzlayy (1-prexp(2mz/a))(z— —2)
= 152
o(z, TR exp(n'z%lia) —a k]l 1=752 (2.86
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with
P=exp(—272/ar). (2.87

Here, » and »' are connected by Legendre’s relation

n'=inarlm—ir. (2.88
The function
T ia
s(r,a;z)ar(z;z,?) exp(— nz°r/ ) (2.89

plays a key role in the sequel. In view (.84 s is odd and=/r-antiperiodic, and satisfies

) sinrz ]
lim s(r,a;z)=T (uniformly on compacts (2.90

a—o

Moreover, using2.86 and(2.88 one sees tha solves the AE

s(z+ial2) _ 2i ’9
S(z—iai2) SA—2rz) (2.90
and obeys
. / .
lims(r,a;z)= i (uniformly on compacts (2.92

r—0

Note thats(r,a;z) is not a regular solution to the reguladAk (2.91): It has zeros for I=0.
Next, using the power series for InfX),|x <1, one easily verifies the identity

)

kHl (1- pkexp(2irz))(z—>—z)=exp< ->

—nra

2 mcosmrz), [Imz|]<a. (293

Combining this with(2.84) and(2.89 one obtains

o

sinrz e nra
s(r,a;z)= ——ex
( ) r =1 hshhra

(1—c052hrz)), |Imz|<a. (2.99

From this representation we deduce

)

S(r.aiz) rz+2r >, s 2 Imz| < 2.9

m—rco 2+ 21 2, oosinnrz, [Imz|<a. (2.99
Using the elementary Fourier series

cotr(z+ial2)=—i—2i >, e "2z |mz>—a/2, (2.96

n=1

we finally obtain
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—2inrz
K(r,a;z)=|r+|rn§Z* e |Imz|<a/2, (2.97
where we have introduced
d .
K(r,a;z)Ed—zlns(r,a;z+|a/2). (2.98
Note that(2.92 entails
™ TML
limK(r,a;z)= —th— (2.99
(=0 a a

uniformly on compact subsets iinz| <a/2.
Theorem I1.5: Assumep(z) is a function with the following properties:

¢(2) is analytic in a strip|Imz| <s,se (0»), (2.100
¢(z) has periodw/r, (2.101
$o=0. (2.102

Then the AE (2.22) has a unique solution(d;z) such that

f(a;z) is analytic in the strip|Imz|<s+a/2, (2.103
f(a;z) has period«/r, (2.109
fo=0. (2.109

Explicitly, this solution can be written as

. 1 (Aﬁne—Zinrz
f(a,z)— EnEEZ* W, |Imz|sa/2, (2106
or as
1 wl2r
f(a;z)=-— dugp(u)K(r,a;z—u), |Imz|<a/2. (2.10%
2im —al2r

It obeys the addition formula (2.28). #6(z) is even/odd, then(f;z) is odd/even. Finally, the
limit relation (2.30) holds true uniformly on compact subsets of the $hniz| <s, with (x) the
primitive of ¢(x) that satisfiesyy=0.

Proof: In order to prove uniqueness, we argue as in the proof of Theorem I1.2 to conclude that
the differenced(z) of two solutions satisfyind2.103—(2.105 extends to ana-periodic entire
function. Sinced(z) has periodr/r, too, we deduce that(z) equals a constant. Now we have
0=dy=ad/r by (2.105, and so uniqueness follows.

Next, we define a functionf(z) by the rhs of (2.106. Clearly, f(z) is analytic in
|Imz|<a/2 and has propertie®.104 and(2.105. Moreover, the functions
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1
b.()=5 2>

neZ*

g *nra
H
¢ne _
e 2inrx

— ., XeR, (2.108

are smooth andr/r-periodic, and(2.33 holds true uniformly orR. (Note that the Fourier coef-

ficients :ﬁn form a fast decreasing sequence, sigde) is real-analytic andr/r-periodic) Since
we also have

by(X)—b_(X)= >, ¢ne 2= g(x), (2.109

ne’Z*

the reasoning in the proof of Theorem 1.2 can be repeated, showind (thasolves(2.22) and
has property(2.103.

The representatio2.107 follows from (2.10§ and the Fourier serie®.97) by using the
Plancherel relations an@.102. The addition formulg2.28 follows in the same way as in the
proof of Theorem 11.2. The parity claim is obvious from eith@r106 or (2.107. Using(2.106
with z € R, it follows from routine arguments that

&5 g~ 2inrx
n

limiaf(a;x)= 2 —5——

a—0 ne’Z*

=y(x), XxeR, (2.110

and thati/(x) is a primitive of ¢(x) with ¢y=0. The uniform convergence assertion then follows
in the same way as before from Vitali's theorem. O

Recalling the limit(2.99, one sees that the representati@107 turns into (2.27) for
r—0. More precisely, this holds true for functiori&(r;u) with a suitable dependence an
Clearly, one needs some restrictions on this dependence to ensure uniform convergenice for
compacts of the striimz|<a/2 (say), but we shall not pursue thig-or an explicit example, see
Prop. 111.12 in Subsection Il B.

We continue with an analog of Theorem 11.3.

Theorem 11.6: With (2.18)}-(2.21) replaced by (2.108Y2.102) and (2.44) replaced by

1 ¢ “ ! (=2inrz)l
=_ N o —k| a—2inrz_ <
e(z)= 22;* smral 207K e ,Zo x . |Imzl<a2, (2.11)

the assertions of Theorem 11.3 hold true.
Proof: With Theorem I1.2 replaced by Theorem II.5, a(@47 by

fk(z)EEE ﬂe*2ian [Imz|<a/2 (2.112
2,5 smra ' '

the reasoning in the proof of Theorem 11.3 applies verbatim; note that boundedrigég)ah the
strip |Imz|<a/2 entails polynomial boundedness fgfz) in this strip. O

We conclude this subsection with a result pertaining &EA(2.72), adapting the assumptions
of the previous subsection to the periodic context. Thus, forary (0,a5] the right-hand side
¢.(2) is assumed to satisfi2.100—(2.102 and to be analytic in the open period strip

Ity ={zeC|Reze (0,m/r)}. (2.113
Furthermore, the boun@.74) is assumed to be valid for any comp#oLC.7, , with x(z) analytic
in.%, .

Denoting byf,(z) the unique solution t42.72 given by Theorem II.5, we are prepared to
state the analog of Theorem I1.4.
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Theorem I1.7: Assume in addition to the above that (2.75) holds true for&my (0,7r/r) and
M e (6,7/r), and that the pointwise limit (2.76) exists for anyz(0,7/r). Then the assertions of
Theorem I1.4 hold true, withZ2, replaced by.%, .

Proof: TakingM </r in (2.79 and replacingZ, by .%, , the proof of Theorem 1.4 applies
verbatim. O

The comments after Theorem 1.4 apply with obvious changes to Theorem 1.7, so we shall
not spell them out again.

lll. GENERALIZED GAMMA FUNCTIONS

A. The hyperbolic case

Consider the integral

fwdy< sin2yz z

oy \2sta,ysha_y a,a_y

Eg(a+,a_;2), (31)

where we take s € (0,2),6=+,—, until further notice. Obviously, this integral converges abso-
lutely providedz belongs to the strip

S={ze(||Imz|]<(a,+a_)/2}, (3.2
and it defines a functiog that is analytic inS. In this subsection we study the function
G(z)=exp(ig(2)) (3.3

in considerable detailHere and in the sequel, we suppress the dependenag @ whenever
this causes no confusigniVe shall collect our results in propositions that concern various features
of G(2).

Proposition Ill.1 (defining AAEs): The function Gz) is analytic and has no zeros in the
strip S. It extends to a meromorphic function that is a minimal solution to the theEsA

G(z+iayl2) _, y se 3.4
Gz ia 2 2cmza-g, o=+.-, (3.4
and
G(z+i(ar—a_)l2) B shiwz/a_) 3
G(z—i(ay,—a_)2) shwzla,) 3.5
It is the unique minimal solution satisfying
G(0)=1, |G(x)|=1, xeR. (3.6

Proof: The first assertion is clear frof8.1)—(3.3). Taking = + in (3.4) and denoting the rhs
by ®(z), the assumptions of Theorem I1.3 are satisfied, witha, , s=a_/2 andk=3. Indeed,
we have

2

_ d\3 7 d
¢(Z)=<d—z) Ind)(z)—a—(d—z) th(mrz/a_) (3.7

so that(cf. (217))
J. Math. Phys., Vol. 38, No. 2, February 1997
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—iy2

d(y)= 2sHa_yi2)’ (3.8
From this the propertie€.18—(2.21) are evident.

As a consequence theME at hand admits minimal solutions; these can be writte(2 23—
(2.44 with k=3 and

1 d )
e(z)=— —j —y(e‘z'yz—(l—Ziyz—Zyzzz))
4)_.ysha,ysha_y
= dy sin2yz
- Jo sha+yshay< 2y _Z)' (39

To determinec,,c,,c3 we follow the proof of Theorem 11.3. Thus, we start from

f3(z):—4if dyy?cog2yz)/sha, ysha_y, (3.10
0
cf. (2.47). Then we get
z o
jdsf3(3)=—2if dyysin(2yz)/sha,ysha_y (3.11
0 0
so that
ia /2 w a\2
f dsf3(5)=4J dyy/shay=(—) . (3.12
—ia /2 0 a_

From (2.50 we then havee;=0, and so

fo(2)=—2i J':dyysin(Zyz)/sragsm,y. (3.13
Now f,(z) is odd, so(2.52) yieldsc,=0. Hence,

fi(2)=i fomdy(cquyz)—1)/sm+ysm_y, (3.19

cf. (2.51), so that

z [ [sin2yz
j dsfl(s)=|J dy( 5 —z)/sm+yshay=e(z), (3.1
0 0 y

cf. (3.9. Now we have

a, 1
). (3.19

. 1=
te(xia, /l2)= EJO dy( sha yste_y - ysha_y

Also, recalling(A33) and (A34), we may write
J. Math. Phys., Vol. 38, No. 2, February 1997
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o 1 1
In2=J’0 dy ﬂz—m). (3.17
Using (2.52 once more, we obtain
o 1
cl=(ia+)‘1(ln2—e(ia+/2)+e(—ia+/2))=iJO dy(sm+ysmy— 2y (3.189
Combining(2.51) with (3.195 now vyields
fo(z)=ciz+e(z)=ig(a, ,a_;z), (3.19

cf. (3.2). In view of (3.3), this entails thatG(z) solves(3.4) with §=+. Since the functiorG is
manifestly symmetric ira, ,a_, it solves(3.4) with §= —, too.
To prove thatG also satisfies the AE (3.5), we observe that we may write

G(z+i(a;—a-)/2) G(z—ia_/2+ia,/2) G(z—ia,/2—ia_/2)
G(z—i(a,—a_)/2) G(z—ia_l2—ia./2) G(z—ia./l2+ia_[2)"

(3.20

From (3.4 we now deduce that3.5) holds true. Finally, the uniqueness assertion is clear from
Theorem II.1. O

We point out that the identity2.71) can also be obtained from theM& (3.5). Similarly, the
proposition entails the identity

Ly
oY
Indeed, this identity amounts to the functian[as given by(3.1)] satisfying the additive versions

of the AAEs (3.4). The integral3.21) can also be derived directly frofd\33), (A34) and(2.17).

In this way one can obtain a shorter proof(8f4). The above proof, however, shows how the
function G(z) emerges from the general theory presented in Subsection Il B, when one takes one

of the AAEs (3.4) as a starting point.
Proposition I11.2 (automorphy properties): One has

1 cosyz
ay shay

, a>0, |Imz|<a/2. (3.2)

mz
) =In( 2ch—
a

G(—2)=1/G(z), (3.22
G(a_,a,;;z2)=G(a; ,a_;2), (3.23
G(Aay,Na_;A2)=G(a,,a_;z), Ae(0m). (3.29

For any M,N e N* one has the multiplication formula

o day o da_
a+,a_,z+2M(M+1 2j)+ 2N(N+1 2k)|. (3.2H5

ay a,_
G V,w,z

=11

M
=1

N
I] &
k=1

Proof: All of these properties readily follow from the integral representati®i)—(3.3) and
meromorphy ofG. Indeed, the first three are immediate fr¢gnl). Taking firstN=1 in (3.25,
and using(3.1) and the identity(2.38 to rewrite the rhs, one obtains the desired result for

G(a,; /M,a_;z); the general case then follows by usi(®23. O
Note that when one takdd =N in the formula(3.25, one can us€3.24 to write its lhs as
G(a;,a_;N2).

Proposition 111.3 (zeros, poles, residugs The zeros and poles of (@) are given by

J. Math. Phys., Vol. 38, No. 2, February 1997
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zi=i(a,(k+12+a_(1+1/2), kleN (zeros, (3.26
zg=-25, kleN (poles. (3.27

For a given(ky,lo) € N?, the multiplicities of the polek_%IO and zero ido are equal to the number
of distinct pairs(k,1) e N? such that =z, ; in particular, for a, /a_ ¢ all poles and zeros
are simple. The pole atygis simple and has residue

_ 1/2
Moo 27r(a+a_) - (3.28
More generally, if the quantity
k [
tk|EH sin(qrma+/a,)H sin(7na_/ay) (3.29
m=1 n=1

is non-zero, then the pole af,zs simple and has residue
Ma= (=)= 12  rgo/ty . (3.30

Conversely, if g is a simple pole, then one hag t* 0.
Proof: In view of (3.23, we may assuma, <a_ . Iterating the AAE (3.4 with 6=+ we

obtain
G(z—-iMa,)=Py(2)G(z), MeN*, (3.30)
where
M -1
v
Pu(2=| [] 2ch—(z—ia.(m=-12) | . (3.32
m=1 -

Now the poles ofPy,(z) occur at(and only at
Zn=ia,(m—1/2)—ia_(1+1/2), m=1,... M, leZ. (3.33
Introducing the strip
S_={ze(llmzea_[—-1/2,1/2}, (3.39

and fixingm e {1, ... M}, there exists a unigue=0 such that,,, € S_. SinceG(z) is analytic
and non-zero inS_, it now follows from (3.31) that G hasM and only M poles (counting
multiplicity) in the shifted stripS_—iMa. ; these occur ag, ,k=0,... M—1, with| € N
uniquely determined bk and M.

Now for a given pair kq,lg) € N? one can find som# o>k, such thalz,jOIO e S_—iMpa,
(since the shifted strips cover the lower half planglso, for any pair k,1) e N? such that
zlgzzk’do, one must havkk<Mj (sincez,, € S_—iMjpa; entailsa,(k+1/2)+a_I<a,My).
Consequently, the multiplicity of the pole @fMO(z) at z=zk_0,0+iM0aJr equals the number of

pairs satisfyingz, = Zy -

The upshot is that the poles &f(a, ,a_ ;z) in the lower half plane are given .27 and
have the asserted multiplicity. Sin€ is non-zero inS_ andP,, has no zeros at all, it follows
from (3.31) that G is non-zero in the lower half plane. Recalli(8.22), the first two assertions
easily follow.
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To prove the third one, we ug8.4) with 5=+ to get
AT
G(z—i(as+a_)l2)= —2isha— G(z+i(ar—a_)/2). (3.395

From this we read off

roozlj—w G(i(ay—a_)/2). (3.39

Similarly, using(3.4) with §=— we obtain

roozlj—+ G(i(a_—a;)/2). (3.39

v
Combining these two expressions fog, with (3.22, we deduce
G(i(a;—a-)l2)=(a;/a_)? (3.39

and so(3.28 follows. (Note that(3.1) and (3.3) entail thatG is positive forz € i(a,+a_)
X(—1/2,1/2). Note also thaB.38 can be derived front3.5).)
Finally, we exploit both AEs (3.4) to write

k | -1
G(z+2z)= ()| T 2ish—(z—ima) ] 2ish—(z—ina_)| G(z+zy).
m=1 a_ n=1 a,

(3.39

Taking z— 0 in this identity, the remaining assertions follow. O
In principle, the residue & can still be determined by using.30 even whenzk‘oIO is not

a simple pole. Indeed, in that case one must have/a_ e (); choosing sequences
agn—as, 0=+,—, forn—o such thata, ,/a_ &0, the residue equals the limit of the sum of
the residues at the simple poles that coalesa@‘oaot. There is presumably an explicit formula for

the limit, but we have not pursued this.

It is evident from(3.3) and the above thaj(z) extends from an analytic function i@ to a
multi-valued function with logarithmic branch points .26 and (3.27). It is convenient to
specialize to the branch obtained by restrictmtp the cut plandi(a, +a_), where

C(d)y=C\{=i[d/2,)}, d>0. (3.40
This branch will be again denotag(z). Asymptotic properties for Re— *+«~ are most easily
obtained for the special casg =a_=a, the general case can then be handled by a comparison

argument, cf. Prop. 111.4 below.
We start from the identity

1
g(a,a;z)z—; b(wzla), (3.4)
where we have introduced

b(W)EfowdttCtht, we C(27). (3.42

J. Math. Phys., Vol. 38, No. 2, February 1997
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1096 S. N. M. Ruijsenaars: Difference equations and integrable systems

(To see that this holds true, ug8.1) on the Ihs and take-derivatives; this yields a linear
combination of the identitie€2.66) and(2.69.) Next, we write ch=sh+e~! to obtain

b(w)=w?/2+c,.—b.(w), Ren>0, (3.43
where
b —fmd te”! R 0 3.4
+(w)= y tm, av>0, (3.49
= tet (O) 1 AP
c+=fo dt = Zl 57 = 13 (3.45

cf. (A8) and(A10). From this representation we read off the bounds

w?
b(w)=7+ 12+O(exp((¢s 2)w)), Rewn—x, (3.46
b’ (w)=w+O(exp((e—2)w)), Rew—oo, (3.47)

Here, € is a fixed positive humber and the bounds hold true uniformly fow lrarying over
compact subsets df.

Of course, these bounds entail boundsgga,a;z) via (3.41). More generally, they can be
exploited to derive bounds ay(a, ,a_ ;z), as will now be detailed.

Proposition 111.4 (asymptotic9: Fixing e>0 and setting

ap=maxa,,a_) (3.48
one has
- e T TR B e (e 2 Rez— +
_g(a+,a,,z)——m—ﬂ a_,+a +O(exp( = (e—2mlay)2)), &+ o,
(3.49
z
ig’(a+,a,;z)=—awa +O(exp = (e—2mlay)z)), Rez— =, (3.50

+d_

where the bounds are uniform fémz in R-compacts.

Proof: Since g is odd in z, it suffices to verify the Re—c asymptotics. Now when
a,=a_, the formulas(3.49 and(3.50 are immediate fron{3.41), and(3.46 and(3.47), resp.
Sinceg is symmetric ina, ,a_, it remains to consider the casge <a_ .

To this end we rewrité3.1) as

a,a_g(a,,a_;z)=a’g(a,a;z)+d(2), (3.5

where we have introduced

2\ 12

a= a era , (3.52
d(z)zf:dyl(y)sinZyz, (3.53

J. Math. Phys., Vol. 38, No. 2, February 1997
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S. N. M. Ruijsenaars: Difference equations and integrable systems 1097
with

1 a,a_ a® .
2y|sha.ysha_y stfay/’ (3.54

I(y)=

Here, we takez in the stripS (3.2), so that the integral convergésotea, +a_<2a). Now we
have

I(y)=c(a,,a_)y+0(y?), y—0, (3.59

sol(y) is analytic in the striplmy|<s/a_ . Hence, fixingz € Sandr e (0,7/a_), we may shift
contours to obtain

2id(z)=e*2rzﬁo dul(u+ir)e?z, (3.5

From this we deduce thal(z) andd’(z) areO(e 2'%) for Rez—, uniformly for z in a closed
substrip ofS.

Combining these bounds witf8.51) and the Re—«~ asymptotics ofg(a,a;z), we deduce
that (3.49 and (3.50 hold true uniformly forz in the strip|Imz|<a. . Finally, we exploit the
AAEs

g(zxia,)=g(z)Filn Zchal(ziia+/2) (3.57

to infer that the bounds hold uniformly foimz|<2a. ; by iteration, the proposition now follows.
O
Thus far, we have takem, anda_ positive. However, fixing € R, it is already obvious from
(3.1 thatG(a, ,a_ ;z) extends to a function that is analytic and non-zercafora_ in the (open
right half plane. Note this is consistent with the analytic continuatio(3d26 and(3.27): The
imaginary part of the rhs is non-zero far. ,a_ in the right half plane.

More generally, we shall now prove th@tcan be continued to a function that is meromorphic
in a, ,a_ andz, provided the ratio variable

p=a_la, (3.58

stays away from the negative real axis. To this end we consider the auxiliary function

)

A(p,)\)EHOF((j+1/2)p,)\), peC™, \eC, (3.59
=

whereC™ denotes the cut plan@15). In view of (B22) and(B19) this is a well-defined mero-
morphic function inC™ X C. Moreover, from(A40) we readily deduce

> dt
A(p,)\)=ex% fo W(Z)\—sﬁht)cth(t/Z)) , p>0, |R@\|<p. (3.60

Now from (3.1) and(3.3) we have
J. Math. Phys., Vol. 38, No. 2, February 1997
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1098 S. N. M. Ruijsenaars: Difference equations and integrable systems

. , © dt i 2iz
G(z+ia, /2)G(z— |a+/2)=exp( Jo W(sﬂltz/agcth(t&)— a_) )

]2

4z
a+sr(a t/2a+) at

] 2iz
=A(p,—|z/a+)exp(——ln2 , (3.61)
a,
where we usedA33) and (A34). Next, we introduce the new variable
=-—izla, (3.62
and combing3.61) and the AAE (3.4) to deduce
G(a, ,a_;z+ia /2)2=A(p,\)exp(2\In2)-2cog m\/p). (3.63

We are now prepared for the following proposition.

Proposition 111.5 (meromorphic continuation): The function Ga, ,a_ ;z) admits analytic
continuation to a function that is meromorphic in.ga_ and z providedp=a_/a, stays in
C™. Fixing a, ,a_ with Imp # 0, one obtains a meromorphic function whose zeros and poles are
simple and located at (3.26) and (3.27), resp.

Proof: The function

B(p,N)=A(p,\)cog 7\/p) (3.649

is meromorphic inC™ X C, so in view of(3.63 we need only show that fg5& R all of its zeros
and poles are double and located at

A=k+(+1/2p, kleN (zeros, (3.69
A=—-k—=1-(1+1/2)p, k,/eN (poles. (3.66
Recalling the definition$2.59 and (A39), we obtain the representation

T((j+12p+2) T(1+(j+1/2p+N\)
Blp,M)= COS[””")H T+ 12p—N) T+ (£ 12p—N)

exp(—4NIn(j +1/2)p)
(3.67

from which these features can be read off. O
Of course, the proposition just proved entails that various formulas invol@ngan be
analytically continued. We mention specificall$.4), (3.5, (3.22—(3.25 [note one can tak&
e C* in (3.24)], (3.28—(3.30, and the special values
G(i(ag—a_gl2)=(asla_s)'? G(xiag2)=2"2 s=+,—. (3.689

(These values easily follow fror8.1)—(3.5).)
We proceed by detailing the relation to the gamma function. To this end we introduce

H(p:2)=G(1p;pz+il2)expizin(2mwp)—2 n(2m)), peC”, zeC. (3.69

This renormalized version @&(a. ,a_ ;z) is such that the two AEs(3.4) translate into the AE

J. Math. Phys., Vol. 38, No. 2, February 1997
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H(p;z+i/2) ishmpz

H(p;z—il2)  mp 3.70
and functional equation
chmz
H(p;Z)H(p;—Z)=T- (3.7

(Use(3.22 to check(3.71).) We shall now show that the— 0 limit of H(p;z) exists and equals
1M (iz+1/2). Accordingly,(3.70 and(3.71) turn into the AAE and functional equation satisfied
by the gamma function.

Proposition II1.6 (relation to gamma function): Takingp € (0,), one has

lim H(p;2)=1M(iz+1/2) (3.72
plO

uniformly for z inC-compacts. More generally, fixe (0,:),¢ € (0,7), and an arbitrary compact
KCC. Then there existé§= 6(€,®,K) e (0,2) such that

[H(p;2)T'(iz+1/2)—1|<e, zeK, |Argp|<m—¢,|p|e(0,5]. (3.73
Proof: We begin by proving3.72. Since the function 11(iz+ 1/2) is entire, we need only
show
lim P(p;z)=1 (uniformly on compacts (3.79
plO
P(p;z)=H(p;2)I'(iz+ 1/2). (3.7

Now from Prop. 11.3 we see that the poleslofiz+ 1/2) are matched by zeros Hif( p;z), so that
P(p;z) has no poles and zeros in the strip

S,={ze C|[Imz|<1/2+ 1/p}. (3.76

We continue by deriving an integral representationRgp;z) that holds true ir5,. To this end
we first take|Imz| < 1/2. Then we may usé8.3) and(3.1) to write

_ »dy(edPWeY—e 2%y iz 1
G(l,p;pz+|/2):ex;{ J;) 7( astyshpy — V+ m) ) (3.77
Also, from (A37) we obtain
I(iz+1/2 oy 1 eiHe—e)
Wz— ex;{ f ize —2 oy —4Sf'y3hoy )) (3.7&

Finally, combining(A37) (with z=1/2) and the integralA29), we write the remaining factor in
(3.69 as

exﬁizln(pr))=ex;<f dy(—_ﬂﬂze 2PY)> (3.79
oy\y shy '

Putting the pieces together, we obtain
J. Math. Phys., Vol. 38, No. 2, February 1997
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P(p;2)= iJ’wdy e’ in(2 2
(piz)=exp 5 0Vw(sm( py2z)—2zstpy) |. (3.80

Clearly, this representation can be analytically continued to the Sjripas announced above.
Now we fix a compacK C C and noteKC'S, for p small enough. Rewriting the integral {8.80
as

1= e %(sin(2yz)—2zs c
EL d ( n(yzir;/ V) (sh):/y)’ c=1/p, (3.8)

it becomes evident that it converges to 0 fer> uniformly on K. Consequently, we have now
proved that(3.72 holds true uniformly on compacts.

To prove the stronger asserti¢® 73, we observe that far € K andc>0 large enough, the
contour in(3.81) may be rotated te'Xy,y e [0,), with | x|<(7— ¢)/2, cf. the proof of Theorem
B.1. The resulting integral can now be estimated in an obvious way i with |c| large enough
and|Arg(e'Xc)|<(m— ¢)/2, and then3.73 easily follows. O

The functionP(p;z) (3.79 is of some interest in itself: It is the unique minimal solution to the
AAE

F(z+i/2) B shmrpz
F(z—il2) wpz

(3.82

[cf. (3.70] that satisfies=(0)=1,/F(x)|=1x e R. Note that the representatid8.80 can be
understood from Theorem I1.3.

We conclude this subsection by deriving two more zero step size limits, now involving the
function G(,a;-) for a—0. (The choicea, = 7 is notationally convenient; the scaling relation
(3.24) can be used for othex, -values) In fact, we shall phrase the limits in terms of the branch
g(z)= —iInG(2) defined in the cut plan€(w+a), cf. the paragraph containin@.40. Introduc-
ing the functions

d.(\,u;2)=g(m,a;z+iNa)—g(m,a;z+iua), zeC(wm+a), \uek, (3.83
D.(z)=ag(m,a;z), zel(w+a), (3.84

we are prepared for the following proposition.
Proposition 1.7 (zero step size limit3: One has

limdy(N\,u;2)=—i(A—pu)In(2che), N ueR, (3.85
alo
lImMD,(z)=— jde|n(2ChN), (3.89
alo 0

uniformly on compact subsets of the cut plaifer) (3.40). Here,In is real-valued for z and w
real, resp., and the integration path in (3.86) belong<{ar).

Proof: From the AAE (3.4) with az=a,a_ s= 7, we deduce thaf3.85 need only be proved
for \,u € [—1/2,1/2). Taking from now ora e (0,7/4] (say, we fix A andy in this interval and
z in the strip|Imz|< /2. Then we may us€3.1) to write

xdy((k—m _ sha(A—p)y cog2yz+ia(\ +pu))

0y , (3.87

J. Math. Phys., Vol. 38, No. 2, February 1997
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(3.88

b _dey ay sinzyz z
a(2)= o y2\shay 2shmy ="

From straightforward estimates one sees that these representations entail the limits

fimd,(n JTN )dey( 1 coszyz) (3.89
imda(\, u;2)=—i(A— —|=- : :
a0 K B )oy \my  “shmy

, »dy(sin2yz z

imoue1= [ 26y 2] &%

and boundedness foa(z) e (0,7/4]X K, with K a compact subset ¢fmz| < /2.

Invoking now Vitali's theorem and recalling the identi{®.21), it follows that (3.85 and
(3.86 hold true uniformly on compacts iimz| < /2. Next, we exploit Theorem I1.4 to obtain
uniform convergence on compacts in the right half pléh&3. To this end we need only observe
that the AAEs with step size obeyed bys2d, andd>D, satisfy all of the assumptions of Theorem
1.4, cf. the proof of Prop. 1ll.1. Similarly, we infer uniform convergence on compacts of the left
half plane. Since any compact ii{7) can be written as a union of three compacts in the strip
|Imz| < 7/2 and in the left and right half planes, the proposition now follows. O

We point out that(3.85 amounts to

- G(m,a;z+iNa) B
ggm—exqo\—u)lnﬁcm)), )\,,LLER, (39])

uniformly on compacts irti(77). Observe that the rhs is not meromorphic, unbkessu € Z. The
emergence of branch cuts can be understood from the coalescence of zeros and poles taking place
for a—0, cf. Prop. I11.3.

B. The elliptic case

In this subsection we are concerned with a function that is a minimal solution to tliYEe A
generalizing the hyperbolic AEs (3.4) and(3.5). We study this function along the same lines as
in Subsection Il A. Our starting point is the infinite series

©

sin2nrz
=1 2nshra, . shra_

=g(r,a,,a_;z), (3.92

where we take at first,a; € (0,°),5=+,—. Clearly, this series converges absolutely and uni-
formly for z in an arbitrary compact of the strip (3.2), so it defines a functiog that is analytic
in S. As before, it is convenient to suppress the dependence on the parameters whenever this
causes no confusion. With this convention, our goal is to study the funGtiah (3.3).

To this end we introduce the “right-hand side function”

o

R(r,a;z)=—2ire @[] (1—e 2an2.gl"Zg(r a:z+ial2). (3.93
k=1

Using the definition2.89 of s and the product representatit84) of the o-function, one easily
verifies thatR can be rewritten

o

R(r,a;z)= (1—exp2irz—(2k—1)ar))(z——2), (3.99
11
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where the infinite product converges absolutely and uniformly on compacts. From this one readily
obtains the representation

~. coshrz
R(r,a;z)=exp( ->

2 nsmra)’ |Imz| <a/2. (3.95

(Use the power series for In{Ix) to verify this; cf. also(2.93.)
In the sequel it is convenient to employ the abbreviations

gs=exp(—asr), (3.99
——2|rq1’2H (1-0392, (3.97)
ss(z)=s(r,as;2), (3.98
Rs(z)=R(r,a5;z) =c4"?ss(z+ia?2), (3.99

where 6= +,—. We are now prepared for the following proposition.
Proposition 111.8 (defining AAEs): With (3.4) replaced by

G(z+iag2)

G(Z——iaﬁ/Z):R_(S(Z)’ o=+,—, (3100

and (3.5) by

. B o 2k\ 2
G(z+i(a,—a_)/2) H( q) s-(2) (3.103

G(z-i(a.~a)2) i |1-g% s.(2)’

the assertions of Prop. 11l.1 hold true.
Proof: In view of (3.99 and(3.95, Theorem 1.5 may be invoked to solve the additive form
of (3.100. Specifically, we may take

e2|nrz

d(2)=— >

ne7*

2nsmra_g’ (3.102

s=a_42 anda=a;. The solution given by2.106 is then equal tag(r,a, ,a_ ;z) [cf. (3.92],
and so(3.100 follows.
Next, we usg3.20 and the AAEs (3.100 to conclude that3.10) amounts to the identity

s (2) « [1-9%%\2 R_(z—ia_/2)
5.0 0, ( & R.za.2 (3.103
This identity can be deduced fro(8.96—(3.99, so the proposition follows. O

Proposition 111.9 (automorphy properties): The function G is periodic with primitive period
7r/r. It obeys the multiplication formula (3.25) and the period doubling formula

G(2r,a,,a_;z)=G(r,a,,a_;z)G(r,a,,a_;z—wl2r). (3.109
Moreover, it satisfies (3.22), (3.23), the scaling relation

G(A"trna,,Na_;A2)=G(r,a,,a_:z), \e(0>), (3.105

J. Math. Phys., Vol. 38, No. 2, February 1997
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and the duplication formula

G(r,a,,a_;22)= H G(r,a,,a_;z—i(la,+ma.)/4)
I, m=+,—
XG(r,a,,a_;z—i(lay+ma_)/4—=/2r). (3.106
Proof: These features follow from the series representat®f?) in the same way as in the

hyperbolic case(Combine(3.25, (3.104 and(3.105 to check(3.106.) O
Proposition 111.10 (zeros, poles, residugs The zeros and poles of(@) are given by

Zy=jmlr+zq, jeZ KkleN (zeros, (3.107
Z=—Zw. j€Z kleN (poles, (3.108

with z, defined by (3.26). The multiplicities of the polgs z and zeros %0 ,j € 7, are equal to
the number of distinct pairgk,l) € N? such that Z,= z;do . The poles atg,,j € Z, are simple and
have residue

o0 _l
roo=il 2r[I (1= (1—-g?" | . (3.109
n=1
Whenever
k |
eq= |1 is_(ima,)]] is.(ina_) (3.110
m=1 n=1

is non-zero, the poles afz,j € Z, are simple and have residue

1 k+1 ) ) *
fk|=(—)k'<§) qUZ Dk 12k +k>(|+1/2>nl;[l (1- g2 21— 2 rooleq .
(3.11)
Conversely, if g, is a simple pole, then,g # 0.

Proof: We proceed along the same lines as in the proof of Prop. 111.3. H&!&]) holds true
with (3.32 replaced by

M -1
PM(Z)E< Il rR_(z—ia,(m—1/2)) (3.112
m=1

and then the poles &®,,(z) are located aj w/r +z,,, with j € Z andz,, given by(3.33. By
periodicity we may restrict attention to poles and zeros on the imaginary axis. In viga2@f the
first two assertions then follow just as in the hyperbolic case.

Turning to the third one, we now get

G(z—i(a,+a_)2)=(c_exfdir(z—ia_/2)]s_(z)) 'G(z+i(a,—a_)/l2) (3.113

so that[cf. (3.96 and(3.97)]

©

roﬁ%ﬂ (1-92")~*G(i(a; —a_)/2). (3.114

n=1
J. Math. Phys., Vol. 38, No. 2, February 1997
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Using symmetry ina, ,a_, we deduce

[

. (1—g°"
G(l(a+—a,)/2)=nl:[1ﬁ

and so(3.109 follows. (Note that(3.115 can also be derived fror{8.101).)
Finally, from the AAEs (3.100 we calculate

(3.115

_ ra_ ra,
G(z+ zk,)=(—)k'( ck_cLexp(T[(|2+|)(2k+ 1)+k]+ T[(k2+ K)(21+1)+1]

k | -1
cexp(irz[k+1+2kI) [] s_(z—ima)]] s+(z—ina_)) -G(z+ 2g).
m=1 n=1

(3.116

Using (3.96 and( 3.97), the remaining assertions readily follow from this. O

At the elliptic level the choicea, =a_ does not appear to yield extra information, as com-
pared to the general case. But sitigés 7r/r-periodic, there is no analog of Prop. 111.4, and so we
do not need additional information on this special case.

Next, we turn to an analog of Prop. III.5.

Proposition 111.11 (meromorphic continuation): The function G admits the representation
1— qimf 1q27nfle—2irz

G(r,a+,a_;2)=m1;[:1 [Tt dsmex—a). (3.117

It can be analytically continued to a function that is meromorphic ja,r,a_ and z provided
a,r and a_r stay in the right half plane. Fixing,a, ,a_ with Re(@a.r) andRe(@_r) positive,
one obtains a meromorphic function whose zeros and poles are located at (3.107) and (3.108),
resp.

Proof: It suffices to proveg3.117, since the remaining assertions are clear from this formula.
To this end we observe that the numerator infinite product is the downward iteration solution to
both of the AAEs

F(z+iay2)
- 7 _R=) - = _
F(Z_ia§/2) R (aféuz): o +,—, (3118
with
R )(a;z)=]] (1—e (@ Darg-2irz) (3.119
k=1

Similarly, the denominator infinite product is the upward iteration solution to

F(z+iayl2)
T T R(H) : 4
F(Z_ia5/2) R (afﬁaz)r é +,—, (3120
with
R)(a;2)=R(a; - 2); (3.12)

cf. (2.1)—(2.5. But we have

J. Math. Phys., Vol. 38, No. 2, February 1997

Downloaded-10-Sep-2006-t0-134.107.3.141.-Redistribution-subject-to-AlP-license-or-copyright,~see-http://jmp.aip.org/jmp/copyright.jsp



S. N. M. Ruijsenaars: Difference equations and integrable systems 1105

R'")(as;2)R(as;2)=Ry(2), (3.122

cf. (3.99, so the rhsG of (3.117 solves the AE (3.100. Since both solution§& and G are
w/r-periodic, have no zeros and poles in the sttipz| <a /2, and satisfyG(0)=G(0)=1, we
deduceG=G. O

We continue by detailing the relation of the elliptiG-function to the hyperbolic
G-function. This relation is the first instance of a general type of limiting transition between
meromorphic functions that will reappear several times. Therefore, it is convenient to introduce a
term referring to the type of limit involved.

To this end, assumk,(z) is a family of meromorphic functions parametrized by cN. we
shall say thaff ,(z) converges mero-uniformly to a meromorphic functifz) asp— p, when-
ever one hasfy(z)—f(z) uniformly on compacts not containing poles df(z), and
1/f,(2)—1/f(2) uniformly on compacts not containing zeros fffz). (Equivalently, viewing
meromorphic functions as holomorphic functions fréinto the Riemann spher&!, one has
f,—f mero-uniformly agp— p iff the convergence i$*-uniform on arbitraryC-compacts.

Defining the renormalized function

m’z
6ira a_

Gre(r,a,,a_;2)=G(r,a, ,a_ ;z)ex;{ (3.123

we are now prepared for the next proposition.
Proposition 111.12 (relation to hyperbolic G-function): Fixing a, ,a_>0, one has

lim Gfr,a,,a_;z)=G(a,,a_;z2), (3.129
r|o

where the limit is mero-uniform.
Proof: Writing G,e= exp(Q,en), We obtain

) g 1 sin2nrz z
ra,,a_;z)=r>, — _
Grerl 8+ & nr\2smra,smra_ nra,a_

, ZeS; (3.125
cf. (3.92. Comparing to(3.1), a routine dominated convergence argument now yields

lim gedr.a.,a_;z)=9g(a,,a_;z), zeS, (3.129
rio

uniformly on S-compacts.
Next, we note thaG,., satisfies the AE

G(z+ia,/2) R 312
G(Z_ia+/2) - 7,ren(z) ( . 7)
with
7T2
R,,en(z)zexy{ 6ra) R_(2). (3.128
In view of (3.126 this entails that fofimz|<a_/2 we have
lim R B G(a,,a_;z+ia,/2) _, hqr_z 312
r'?; ~rerl 2)= Ga, .a z-ia,2) & (3129
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1106 S. N. M. Ruijsenaars: Difference equations and integrable systems

where we used3.4). Recalling(3.99 and the limit(2.92, we deduce

I ™ ey 27 3.13
r|[2 ex ora (IC_)_a_,' (3.130
Using then(2.92 once more, one sees tH8t129 holds uniformly onC-compacts. Therefore, one
may exploit the AE (3.127 and uniform convergence &, to G on S-compacts to obtain
uniform convergence ofi-compacts that do not contain the pogg,j,k € N, of G. Moreover,
(3.126 entails uniform convergence ofG/.,to 1/G on S-compacts, so one can also y8el27)
and(3.129 to infer 1/G,.— 1/G uniformly on compacts not containing the zerzﬁg. [l
As a corollary of the proof we obtain the limit

©

lim rexp{w—2 1T (1—e*2”ar)2=z a>0; (3.13)
(10 6ra/n=1 a’ ’ '

cf. (3.130 and (3.97). Equivalently, this can be written
li i e ™ ! Inr | =I a >0 3.13
r'?; “nlsmra nra) )T &7 (3.132

The last proposition of this subsection is the analog of Prop. 111.7 in the previous one. To state
it, we introduce the cut plane

C(r,d)y=C\{=i[d/2,2) +kalr|keZ}, r,d>0, (3.133

and define a branaof(r,A,a;z) of —ilnG in C(r,A+a) via (3.93 for |Imz| <(A+a)/2. Then we
set

da(r,AN,u;2)=g(r,A,a;z+iNa)—g(r,A,a;z+ina), zeC(r,A+a), N ueR,

(3.139
D.(r,A;z)=ag(r,A,a;z), ze((r,A+a) (3.135
(This should be compared {8.83 and(3.84).)
Proposition 111.13 (zero step size limit3;: One has
lim dy(r,A N, w;2)=—i(A—w)INR(r,A;2), N\ ueR, (3.136
alo

z
lim Da(r,A;z)=—f dwinR(r,A;w), (3.137

0

alo

uniformly on compact subsets of the cut pldife,A) (3.133). Here|n is real-valued for z and
w real, resp., and the integration path in (3.137) belongs$:to,A).

Proof: This follows in the same way as Prop. 111.7, wiB.93), (the logarithm of (3.95 and
Theorem 1.7 playing the role 0f3.1), (3.2) and Theorem II.4, respSince the limits are
«/r-periodic in the striglmz|<A/2, one need only handle compactsi) (2.113.) O

In terms ofG, (3.136 reads

i G(r,Aa;z+ira) N - o .
al?(:G(r,A,a;Z+i,u,a)_qu( _Iu‘)n (r, ,Z)), yme R, ( ) 8
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S. N. M. Ruijsenaars: Difference equations and integrable systems 1107

uniformly on compacts ifi(r,A). Once more, the branch cuts arise from coalescence of zeros and
poles, cf. Prop. 111.10.

C. The trigonometric case

The trigonometric case is most easily understood by viewing it as a limiting case of the elliptic
case. In view 0f(2.90, this should involve sending one af, ,a_ to . We shall fixa,=a
e (0°) and leta_=A go to . To get finite limits, we clearly should shifz in an
A-dependent way. We take—z—iA/2, and thus wind up with

G(r,a;2)=1lim G(r,a,A;z—iA/2). (3.139

A— oo

From the product representatidf.117 it is immediate that this limit exists mero-uniformly,
yielding

G(r,a;z)= || (1—-g2™1e?rz)~1 q=e 2. (3.140
m=1
For Imz>—a/2 we can also evaluate the [imi8.139 by using (3.92); this yields the series
representation
e2inrz

G(r,a;z)=ex ;lm) Imz> —al2. (3.14)

We continue by studying the trigonometi@& function just defined.
Proposition 111.14 (defining AAE): The function Gr,a;z) is the upward iteration solution

to the AAE
G(z+ial2) 12z 314
G(z—ial2) ~ ° (3.142
Proof: This is clear from the product representati@140 [recall (2.1)—(2.4)]. O

Notice that the AE (3.142 is not regular. However, a shift—z+ia/2 (say) gives rise to a
regular AAE. Indeed, the function

d(2)=In(1—exp2ir (z+ial2)))=— Zl n~lgne?nrz (3.143

satisfies the assumptions of Theorem I1.4, &(d,a;z+ia/2) is a minimal solution to the asso-
ciated multiplicative AE. [Compare the logarithm af3.141) with (2.106 to see thig. Observe
also that(3.142 agrees with theA—co limit of the elliptic AAE

G(r,a,A;z—iA/2+ia/2) 3
G(r,a,A;z—iAl2—ial2)

—2ir [ (1—e 2An2.¢irzg(r A:7), (3.144
n=1

cf. (3.100, (3.96—(3.99, (3.139 and(2.90.
Proposition 111.15 (automorphy properties):. The function G is periodic with primitive
period 7r/r. It obeys the multiplication formula

ia
r,a;z+—M(M+1—2j) , (3.145

G 2

M
:H G
j=1

a
r—:;z
M
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1108 S. N. M. Ruijsenaars: Difference equations and integrable systems

the period doubling formula
G(2r,a;z)=G(r,a;2)G(r,a;z— w/2r), (3.1406
the scaling relation
G(A"'r\a;A2)=G(r,a;z), \e(0>), (3.147

and the duplication formula

G(r,a;2z)= G(r,a;z—icald)G(r,a;z—icald—ml2r). (3.148

o=+,—

Proof: These properties follow from the series representat®hd]) in the same way as in

the two previous cases. O
Proposition I11.16 (zeros, poles, residugs The function Gz) has no zeros and simple poles
given by
zy=jmlr—ia(k+1/2), jeZ, keN (poles. (3.149

The residues at the polesyzj € Z, are given by

o0 -1 .
r0=i(2r]_[1 (1—q2”)) =2|—rG(ia/2), (3.150

and the residues at the remaining polggs,7 € Z,k € N*, are given by

k
re=ro/ [ (1—q=2m). (3.15))
m=1

Proof: The first assertion is immediate frof8.140. The residue$3.150 follow either from
(3.109 by taking a limit, or directly from(3.140. Using

k
G(z+z(,k)=n£[l (1—q~2Me2"2)~1G(z+ 74, (3.152

the residues at the remaining poles can now be obtained, yie(@it§J). O
Proposition 111.17 (asymptotic9: The function G satisfies the bound

G(r,a;2)=1+0(exp —2rIimz)), Imz—oo, (3.153

uniformly forRez € R.

Proof: This estimate readily follows from the series representat®h4]). O

Proposition 111.18 (meromorphic continuation): The function G can be analytically con-
tinued to a function that is meromorphic ina and z provided ar stays in the right half plane.
Fixing r,a with Re(ar)>0, one obtains a meromorphic function without zeros and with simple
poles located at (3.149).

Proof: This can be read off from the product representat®d40. O

The propositions derived thus far have elliptic and/or hyperbolic analogs. In the previous two
cases, however, th&-function satisfiesG(z)G(—2z)=1, a relation that does not hold in the
trigonometric case. Instead, we have the following result.

Proposition 111.19 (functional equation): The trigonometric G-function satisfies
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S. N. M. Ruijsenaars: Difference equations and integrable systems 1109

G(r,a;2)G(r,a;—z)=R(r,a;2) 1, (3.159

where the rhs is given by (3.93).

Proof: This is obvious from the series representati®441 and(3.95. O

We point out that this functional equation may be seen as a footprint left by the seadad A
satisfied by the ellipticG-function: Takinga—a. , the rhs can be writteR, (z) ", so(3.159
can be deduced fror8.100 with 6= — and the limit(3.139.

Next, we introduce the function

T(r;z)= G(r.1.0 z izIn(2 1| Re >0 3.15
(r,z)=mex 7+|zn( r)—EnTr , a>0. (3.155

This renormalized version d&(r,a;z) satisfies the AE

T(r;z+i/2)_ isinrz
T(r;z—il2)

(3.156

and functional equation

s(r,1;z+i/2)

T(r;z)T(r;—z)=w‘1exqrzz+irz)w

(3.157)

Takingr | 0, the right-hand sides dB.156 and(3.157 obviously converge tdz and =~ ‘chnz
[recall (2.92], resp., in accordance with the next proposition.
Proposition 111.20 (relation to gamma function): One has

limT(r;z2)=1MT(iz+1/2) (3.158
rlo

uniformly for z inC-compacts.
Proof: We begin by noting that it suffices to show t{8t158 holds uniformly on compacts
of the lower half plandLHP). (Indeed, from(3.156 we have

[ i
T(r;z+ik)= Fsinr(z+i(k— 1/2))- - - Fsinr(z+i/2)T(r;z), (3.159
so if (3.158 holds uniformly on LHP-compacts, then the rhs(8f159 converges in the same
sense to
iz—k+1/2 iz—1/2 = ! 3.16
(iz=kH112)- - (2= 1) F 5 = T (zF i+ 172) (3160
Hence,(3.158 follows for compacts of Im<k). To this end we use the formula
z w
e(z)=e(0)+ze’(0)+f dWJ ds€'(s) (3.161)
0 0
to rewrite the logarithms of (r;z) and 1I'(iz+1/2). This yields
1 z w
T(r;z)=exp(—iln7r+izK(r)+J dwf dsh(r;s)) (3.162
0 0

with
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* nre72inrz
h(r,z)EZrnZ,lWJrr, Imz<1/2, (3.163
“oor
K(r)=|n(2r)+nzlm (3.164

[cf. (3.155 and(3.141] and

! = 1I [ ! fzd fwd 3.16
m—ex —EI’HT—IZlﬁ E + o w o sh(s) (3.165
with
o y —2iyz
h(z)=2f0 dy sy Imz<1/2, (3.169
cf. (A37), (A12), and(A33), (A34).
Comparing(3.163 and(3.166, we deduce
lim h(r;z)=h(z) (3.167

rio

uniformly on LHP-compacts. Comparing théh162 with (3.165, we see that it remains to show

lim K(r)=—(3). (3.168
rl0

To prove this, we use the XEs (3.156 and(A24) to write

T(r;=i) I'(312) r
T(r;0) T(1/2) 2sHr/2)" (3.169
Due t0(3.162 and(3.165, the lhs can be rewritten
1 =i w
exp( K(r)+¢ > +f dwf dgh(r;s)—h(s)]|, (3.170
0 0

and since the integral converges to 0 fgil0 we now obtain3.168. Therefore, the proof of the
proposition is complete. O
Comparing the AEs (3.156 and (3.70), we deduce that the quotient
Q(r;2)=T(r;2)/H(ir/m;z), Rea>0, (3.17)

of the trigonometric and hyperbolic functionsiiperiodic. Moreover, comparing poles and zeros
of T andH, we deduce tha) is entire inz and has simple zeros at

z=—kwlr+i(1+1/2), keN*, leZ. (3.172
Furthermore, recalling Prop. III.6, we infer

lim Q(r;z)=1 (uniformly on compacts (3.173

rl0
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Our last proposition concerns two zero step size limits that may be tied in(2:itl36§ and
(3.137 via (3.139. We set

C_(r,d)=C\{—i[d/2,0)+km/r|keZ}, r>0d=0, (3.179
and define a branct(r,a;z) of —ilnG in C_(r,a) by requiring

oo

e2|nrz

g(r,a;z)=—i Imz>—al/2, (3.175

&4 2nsra’

cf. (3.141). Now we put
da(r,\,u;z)=g(r,a;z+iNa)—g(r,a;z+ipa), zeC_(r,a), N ueR, (3.176
D.(r;z)=ag(r,a;z), zeC_(r,a). (3.179

(Compare this td3.133—(3.135.)
Proposition 111.21 (zero step size limit3: One has

lim da(r,\,u;2)=—i(A—w)In(1—e??), \,ueR, (3.179
alo
z _
lim Da(r;z)z—f_ dwin(1—e?™), (3.179
al0 190

uniformly on compact subsets of the cut plane(r,0) (3.174). Here,In is real valued for
z,w e i(0,»), and the integration path in (3.179) belongs(o(r,0).

Proof: From (3.175 it readily follows that the proposition is valid when the cut plane
C_(r,0) is replaced by its upper half plane subset. Applying Theorem 1.7 to the functions
fa(2)=d,(z+i) andf,(z)=D,(z+i) (which satisfy the hypotheses of that theoremdgrsmall
enough, one obtains validity for all of the cut plane. O

Translated tdG, the limit (3.178 becomes

i G(r,a;z+ika) | 2irz
i S azripa) ORI, hpch (3180

uniformly on compact subsets of the cut plafe(r,0). Just as in the previous two cades
(3.91 and(3.138], this formula is evident from the definingM= when\ — u is an integer. For
N—u & Z, the branch cuts in the lower half plane arise from the coalescence of poles and zeros
that can be read off fron3.149.
We conclude this subsection by detailing the relation of the trigopnom&riunction
G(r,a;z) to theg-gamma functiol’g(2). Recall the latter is given bicf., e.g., Ref. 4, p. 16
o (a-EY
rg@=1-0"1l 7=z (3.181

Comparing this to the product formu(8.140 for G, we see that when we take
q=qg’=e 2 (3.182

we may writeG as
J. Math. Phys., Vol. 38, No. 2, February 1997
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G(r,a;a2)=T5(—iz+1/2)(1-g) 2 Y2[] (1-gm~* (3.183
n=1

From this we readily obtaifrecall (3.159]

—=Inm+ ——izln

T(r;z)= 5 5

I'5(1/2) p( 1 rz?
= ——6€X
I5(iz+1/2)

1-e &
<

Using these relations, some of the above results can be translated in teiigs oécovering
results that have been obtained by several authors, cf. Ref. 4 and references given there.

IV. SCATTERING FUNCTIONS

A. The hyperbolic case

We present our results on the hyperbolic scattering funatiGam, ,a_ ,b;z) in a form that
anticipates our account of the elliptic case. First of all, we defiry

G(z—ib+i(a,+a_)/2)G(z+ib—i(a,+a_)/2)
G(z—i(ar—a_)/2)G(z+i(a,—a_)/2) '

u(z)= (4.7

whereG(z)=G(a, ,a_ ;z) is the hyperbolicG-function from Subsection Il A. In4.1) and in
many later formulas, the dependenceagnanda _ is suppressed. This should cause no confusion,
sinceu—ijust like G—satisfies

u(ay,a_;z)=u(a_,ay ;z), (4.2

cf. (3.23. Similarly, the automorphy properti€¢8.22 and (3.24 yield
u(—2)=1u(z), 4.3
u(hay ,\a_ ,\b;Az)=u(a; ,a_,b;z), Ae(0x). (4.9

By virtue of Prop. 1.5 theu-function is meromorphic ira, ,a_,b and z, provided the
quotienta, /a_ stays away from the negative real axis. As a rule, however, we restrict our
considerations to parameters in the set

s={(a,,a_,b)la, ,a_>0beR}. (4.5

This choice corresponds to physical applications; in particular, it guarahiéed =1 for real
X.
Next, we observe that theXEs (3.4) entail thatu solves the AEs

u(z+iay/2) 3 s_s(z—ib+iag2)s_sz+ib—ia42)

u(z—iag2) s_sz+iag2)s_sz—iayg2) (4.6
where we have introduced
_ shiwz/ay) B
35(2)=Ta6, o=+,—. 4.7

(This definition mimicks the elliptic definitiori3.98, cf. (2.92.) Fixing § € {+,—}, the AAE
(4.6) is regular unless the parametess,(,a_ ,b) belong to the planes
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S. N. M. Ruijsenaars: Difference equations and integrable systems 1113

as=2na_g5, nelN*, 4.8
or
b:ka,5+a5/2, keZ. (49)

These planes separate the regiéf (4.5 into infinitely many connected components, one of
which reads

.%55{(a+ ya_ ,b) € 7/1 ase (O,b_!;),b € (a5/2,a_5+ a5/2). (41@

Choosing parameters 75, the u-function may now be characterized as the unique minimal
solution to the AAE (4.6) that satisfies

u(0)=1, Ju(x)|=1, xeR. (4.11)

Indeed, the pole/zero properties of t@efunction (cf. Prop. 111.3 entail thatu (4.1) is a regular
solution to(4.6) if and only if (a, ,a_ ,b) € %5. Moreover, forall @, ,a_,b) € .77 one has

u(z)=exp(tal—7;(b—a+)(b—a_) +0(exp = (e—2mlay)z)), Re—*x, (4.12

uniformly for Im z in R-compacts, cf. Prop. lIl.4. Therefora, is indeed a minimal solution to
(4.6) for parameters in%s (4.10. From Theorem 1.1 and4.11) one now easily deduces the
above uniqueness assertion.

It should be remarked at this point that thaB (4.6) does admit minimal solutions whenever
the parameters do not belong to the platg®) and (4.9). Indeed, this readily follows from
Section II. More concretely, a minimal solution can be constructed by multiplyay by finitely
many factors of the fornss(z— p)/ss(z+ p) that cancel the poles and zerosugfz) in the strip
|Imz|<ay/2. (Observe thati(z) has no poles and zeros fdmz|=as/2 unlesg4.8) or (4.9) holds
true)

Since the rhs of(4.6) is a_gsperiodic in b, the quotientu(b+a_g;z)/u(b;z) is
ia s-periodic inz. Specifically, one obtains frortd.1) and(3.4)

u(b+a_;s;2) B ss(z+ib)

u(b;z)  ss(z—ib)’ (4.13
Therefore, iteration yieldgakingk . ,k_ € 7)
u(b+k,a,+k-a_;z) ﬁ‘ s_s(z+i(ksl|kg) (b—ay2)+iasjs— 1/2))
u(b;z) P (z—-2) '
(4.19
Next, we introduce the parameter subset
y={(a, ,a_,b)e #|b=k,a, +k_a_ k, ,k_eZ} (4.15

of .7 (4.5). Since the numbers,a, +k_a_ ,k, ,k_ e 7, are dense iR whenevera, /a_ & (),
the subset” is dense inZ. Now from (4.1) we read off

u(a,,a_,a;;z)=u(a,,a_,a_;z)=1 (4.16

and also, using3.4),
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u(ay,a_,0;2=-1. 4.1
Hence,(4.14) yields

u(a,,a_kia,+tk_a_;z)=c, 'k_5=1_+[’, j'ﬁl S_ﬁ(ZJrE?jEj_&B 0(ks))) 4.18

with

0, j<o,

10=; -0 (419

and
c=(—)11 ke (4.20

In words, theu-function is an elementary function for parameters in the dense sabset’7. (Of
course, whenevea_/a, is a rational number, there exist infinitely many distinct paiksl X
e 72 for which the numbeka, +la_ is the same; this yields different representations for the
same functior).

We continue by noting the symmetry property

u(b;z)=u(a,+a_—b;z), (4.21
which can be read off fron4.1). Combining this with(4.14) (takingk, ,k_=1), we deduce

u(=b;z) s,(z+ib) s_(z+ib)
u(b:z)  s.(z—ib) s_(z—ib)"

(4.22

Since this parameter transformation leageg4.19 invariant, it does not give rise to additional
elementary representations for
Next, we derive analogs of the multiplication formy&25. First, we usg4.1) to get

+ . )_ﬁ G(z—ib+i(a./2) +i(a_-/2) +i(a, /M) (1-])))
[ Cj=1 G(z—i(ai/2) +i(a_f2) +i(a, /M) (M—j))

u

G(z+ib—i(a,/2) —i(a_/2) +i(a, IM)(M—}))

G(z+i(ay/2) —i(a_/2) +i(a /M) (1-j)) (4.23
with G(z)=G(a, ,a_ ;z). Rearranging and usin@.1) once more, we deduce
a Mot a
u(—+,a,b;z =u(a+,a,,b;z)H u a+,a,,b;z+ik—Jr
M k=1 M
y G(z+ik(a. /M) —ib+i(a_/2) —i(a,./2))
G(z+ik(aL /M) —ib+i(a_/2) +i(a,;/2))
G(z+ik(a; /M) —i(a_/2) +i(a,/2
( (a+ /M) —i(a_/2) +i(a.,/2)) 4.24

X Gzrik(a, IM) —i(a 12) —i(a,12) "

This can be simplified by using theME (3.4), which yields
J. Math. Phys., Vol. 38, No. 2, February 1997
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a. M1 _(z+ija, /M)
U(V,a_,b;z)=(—)""‘1k1;[ ula, ,a_ bz+|k—)j=1 S (z=bTa M) (4.25
Equivalently, we may also rearran@#®.23 to get
a, oMt a \""'s (z+ib—ija. /M)
u(m,a_,b;z)z(—)"" 1'(1:[0 a,,a_,b;z—ik— L (4.26

Substitutinga_—a_ /N in the formulas(4.25 and (4.26), and using firs{4.2) and then one of
these formulas again, one obtains four representationsufar. /M,a_/N,b;z) in terms of
u(a, ,a_,b;z) and sh-quotients.

The choicesh=a,/2 or b=a_/2 yield the sine-Gordon soliton—solito&matrix. Taking
b=a,/2, it follows from (4.18 that there exists a dense setaof-choices yielding an elementary
u. Specifically, choosing_=a, (1+2j)/2l withj € N,| e N*, we haveb=a,/2=la_—ja, .
Thus, setting

aj =57 1+2J) jEN, | e N*, (427)

2| (
we deduce from4.18
j

u(m,ay ,m2,2)= 11 11 5“Z+Ika]|)

m=1 (z—-2) k=1 (z—-2)

shma;, Yz+imm)!

(sG). (4.28

We proceed by obtaining and studying integral representations. In vi¢&«fand(3.3), we
may rewriteu (4.1) as

u(z)=expE(z)) (4.29
with
d +—b _—b)y .
E(z)= 2|f Vysr(a shajzzrr:iy )y3|n2yz. (4.30

Clearly, the integral converges absolutely provided

|Imz|<d(a, ,a_,b)/2, (4.3)
where
d(a;,a_,b)=a,+a_—|a,—b|—|a_—b|. (4.32
In particular, one has
d(a,,a_,b)>as=(a, ,a_,b)e %y, (4.33

cf. (4.10. This bound amounts to the regularity ofz) in .25, viewed as a solution t¢4.6): u
has no poles and zeros in the stiimz|<as2 when @, ,a_,b) € .%;.
More generally, setting

7={(a,,a_,b)e#|be(0a,+a )}, (4.34
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1116 S. N. M. Ruijsenaars: Difference equations and integrable systems

the representatio®.29 makes sense and holds true in a strip around thezreais if and only if
the parameters belong 0. Indeed, one easily verifies

d(a;,a_,b)>0<(a, ,a_,b)e?. (4.35

Observe thatz, U.72_ is a proper subset of".

Letting |Imz|<as2 and choosing parameters.id;, we can derive a second integral repre-
sentation from Theorems 1.3 and 11.2, as applied to thldEA4.6). From(4.29 and(4.30 we read
off that the minimum integek in Theorem I1.3 equals 1. Setting

S_s(z—ib+ias2)s_s(z+ib—ias2)
s_s(zt+iasg2)s_s(z—ias2)

%(z)zln( (4.36

with In real for z real, we now deduce
1 o T ;
E(z)= —J’ dx¢s(x)th—(z—x), (a,,a_,b)e. s, |Imz]<ay2. (4.37
2ias) —w as

(Indeed, both lhs and rhs vanish fbr0, and equality of derivatives is easily derived a27)
with a—as and ¢(u)— ¢5(u).) Notice that the integral on the rhs converges absolutely for real
zand any &, ,a_,b) e .%; even so(4.37 is in general false for parameters not belonging to
5. Note also that for parameters i, N.72_ one gets two different representations without
manifesta, «<a_ symmetry.

Using the identity(A42) we can rewrite(4.37) as

sr(27rz/a(;)J°c P s(x)dx

E(z)= iag o ch(2mz/as)+ch(2mx/as)’

(a,,a_,b)e. s, |Imz]<ay?2.
(4.38

Combining this with(A43), (A44) and the Plancherel relation for the cosine transform, one
recovers the symmetric representatidr30).

We proceed by deriving yet another asymmetric representation far-thection, in terms of
an infinite product of gamma functionsSomewhat surprisingly, this representation is not an easy
consequence df3.63, (3.64 and(3.67).) First, we introduce

v(p,9,8)=I'(s+1+1/p)I'(—=s+g+I1/p)'(s+1l/p)I'(—=s+1—g+I1/p)l(s——5),
(4.39

wherel € N,p e C,g,s € C. Fixingl,g,s and takingp>0 and small enough, we may invoke
(A45) to deduce

=dy sh(g—1)yshZsyshgy _
0,9 =exp 4| — e 2vlr). 4.4
n(p.9,9) D( fo y shy (4.40
This representation is well defined and valid for
IR&(p~1)>|Reg| + |Res|. (4.4)
By virtue of (B18) it can be rewritten
7|(p,g,s)=exn(4f e 2Vrfy(g—1,25,9,t)dt|. (4.42
0
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S. N. M. Ruijsenaars: Difference equations and integrable systems 1117

Next, we assert that the function

N
P(p,g,9=lim [I %(p,9,9) (4.43

N—o =1

is well defined and meromorphic it X C2. To prove this, we fix a compa&C C~ X (2 and put
w=2l/p. Letting (p,g,s) vary overK, we can ensur€by takingl =L with L large enoughthat
the boundB21) applies for a suitablg € (0,7/2) andR (depending orK). Thus we deduce that
v, is analytic onK and satisfies

|%(p,9,5)—1|<Cy /1%, V(p,g,5)eK, VI=L. (4.44

Consequently, the functior]ﬂ,N:Ly, converges uniformly onK to an analytic function for
N— o, and the assertion easily follows.
We claim thatu can be written

( iz b
r|——+—
a_ a_

(z——-2)

iz
{2
a

a_ b iz

u(a,,a_,b;z)= 2.'a 'a
L a_'a_

: (4.45

Since we already know that is meromorphic for &_/a, ,b,z) € C~ X (2, we need only prove
this for z=x e R and parameters it*” (4.34). To this end we show that the rhs is given by
exp(E(x)) (with E(x) defined by(4.30): Using (A45) and (4.40 we have(with g=b/a_)

iX iX
F;‘l‘l F(—a—+g N a_ ix
TEEr— 7'<a'9€)
dy sh(1—g)ysin(2xy/a_ N
=exp<2i fo?y il g)ysr;( Y )(e‘gy—ZSkgy|21 exp(—2|ya+/a_)>>

(e~ by(ea+y_ e a+Y)

_focdy shla_—b)ysin(2xy)
=expi| —
Y sha_ysha.y

+(e PY— ebY)e—a+y(1—e—Za+NY))> : (4.49

A dominated convergence argument now shows that we mayNake> under the integral sign,
yielding the limit expE(x)), as claimed.

We conclude this subsection by deriving four distinct limits of th&nction, using param-
eters

a,=ma_=pv,b=gvg, B,vr>0, gek. (4.47
First, we assert that
ip

ri—+1
v

lim u(,Bv,Bvy; Bp)=

510 ) (I limit), (4.48

where the limit is mero-uniform ip. To show this, we usét.1), (3.22), (3.24) and(3.69 to write
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1118 S. N. M. Ruijsenaars: Difference equations and integrable systems

H(p; p/v—ig+il2)H(p;— p/v—il2)
(p——p)

u(m,Bv,Brg; Bp) = , p=pvlm. (4.49

Then the assertion follows froif8.72.

The formula(4.48 can be interpreted as tHeonrelativistig I, limit of the (relativistic)
Il S-matrix, cf. Ref. 1, Eq(3.49. It can also be derived from the product representat@iofd).
Indeed, one has

lim P(p,g,5)=1 (4.50
pl0

uniformly for g,s in a fixed compacBC (2. To verify this, note first thaty,(p,g,s) (4.39 is
analytic inB for p>0 small enough, and given k4.40. From this representation it follows that
v(p,9,s) converges to 1 ag| 0, uniformly for (g,s) € B. Next, observe that fop<e (with €
depending only oB) one may us€4.42 and the boundB21) with w=2l/p to deduce

[7(p,9,s)— 1|<Cgp?/1?><Cgé?/I?, V(g,5)eB, VIeN*. (4.52)

Clearly, this bound suffices to dominate thdependence, so one infdPs—1, uniformly onB.
The next limit amounts to taking the,llimit of the dual 1l S-matrix, cf. Ref. 1: We claim

lim u(w,Bv,Brg;vx)=expim(1—9g)), Xe.Zy (lg limit), (4.52
Y

where the limit is uniform on compacts of, (2.73. Before proving this, let us note that the
restriction onx is essential: for Re<0 one obtains the complex conjugate phase factor by virtue
of (4.3). (Forg « 7, the poles and zeros afbecome dense on the imaginary axis349, cf. (4.1)
and Prop. 11.3) Observe also that the phase amounts to a limit of the phageif).

To prove(4.52, we use the product representati@45 and several results from Appendix
B. First, we handle the prefactor

_T(ix/B+ 1 (=~ ixIB +9)

It can be rewritten
. 'w,+1) 'w_+g) iX
— al7m(1-9) (g—1)Inw (1—g)lnw_ =+

Using (B23) to rewrite the functions in brackets, and lettikxgvary over a fixed compact
KC.%,, we now exploit the boundB20). First, takingR=1+|g| and y= /4 (say, one can
ensurev, ,w_ € Sg , forall x e K by choosing3 small enough. Then it follows froifB20) that

lim Qg(g,x)=expim(1—g)) (4.55
BlO

uniformly for x e K. (This may be viewed as the -1, S-matrix limit, cf. Ref. 1, Eq.(3.45.)
It remains to prove

lim P(p,g.,iy/p)=1 (4.56
plO

uniformly on compacts ofRey>0}. To this end we first usé4.39 and(B23) to write
J. Math. Phys., Vol. 38, No. 2, February 1997
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S. N. M. Ruijsenaars: Difference equations and integrable systems 1119

(p.9,iylp)=exp(- Zo((iy +1)/p,1,9) + Zo((—iy +1)/p,9,1) + Z5((iy +1)/p,0,1~-0)
+ Zo((—iy+1)/p,1—g,0)). (4.57)

Next, we lety vary over a compad C.7%,, and use the boun@B20) in the same way as before
to infer thaty,—1 for p| 0, uniformly onK.

As a consequencé4.56) will follow provided we can supply a bound controlling the inter-
change of limitsN—« andp|0. Now the estimat€B20) is not sufficiently strong, since it only
leads to 1l-decrease ofy,— 1|, and the sequence (1,1/2,1/3,.) is not inl®. But we can obtain
a suitable bound by combining the representatd? with the estimate¢B21) and (B26), as
follows.

We begin by observing thd#.42 and (B15) entail

(p.9,iy/p)=exp423(21/p,g—19,2y/p)). (4.58

Lettingy vary overK and choosing e (0,e] with e small enough, we may takg=cy /p in the
bound(B21) on #3. Choosing nowy=0,R=(ck+1)/p andL>(ck+1)/2, we deduce

Zal—,9—14, B $WC3, pe(0,e], I=L, yeK. (459

p P

2l 2i_y)_ ipyg(g—1)| _ p°

Next, we use the boun@26) to majorize the rhs of4.59 by Cp/I2. By dominated convergence,
this suffices to conclude that the functibii_, v, converges to 1 ag|0, uniformly onK. Since
we have already shown thaj—1 uniformly onK for all I=1, we may now deducé4.56).
(Notice that(4.58 and(B21) are not adequate for showing— 1 for smalll; this is why we used
(4.57 and(B19).)

Alternatively, (4.52 can be derived as a corollary of Prop. 111.7. Indeed, frghl) we have

G(m,a;z+iml2+ia(1/2—qg)) G(m,a;z—inw/2+ia(g—1/2)
G(ma;z+im/2—ial2) ~  G(w,a;z—iwl2+ial2)

u(m,a,ag;z)= (4.60
Thus, we may usé€3.91) with Rez>0 to deduce the limit4.52).

It is of interest to reconsider this limit in the setting of Theorem I1.4. Choosing, g.9.,
e (1/2,1), one can také,(z) equal tod,Inu(m,a,ag;2); letting a—0, one getss,(a)—0 and
f.(z)—0 uniformly on compacts in the left and right half planes. Evenfg(z) does not remain
bounded near the origin, sincgz) has distinct limits in the left and right half planes.

We continue by obtaining a third limit of the-function, keeping the parametei.47), but
now takingb fixed while letting3] 0. Specifically, we claim

SO NI PR W
I;T) ex —Tln 55D u(w,ﬁv,b,ﬂp)—mex TIn(Zv) ,
be(0,7) (VI, limit), (4.61

where the limit is mero-uniform. The function on the rhs may be viewed agniberelativistic
Toda VI, S-matrix, cf. Ref. 1, Eq(3.45. The limiting transition I};— VI, is readily controlled
at the level of the Poisson commuting classical Hamiltonians, cf. the paragraph containing Eq.
(3.87 in Ref. 2. Formally, it also holds true for the corresponding quantum Hamiltonians. The
S-matrix limit (4.61) agrees with the obvious conjecture that the limit holds true for the suitably
normalized(reducedN = 2) eigenfunctions; the plane wave factor on the Ihs reflects the diverging
position shift(3.87) in Ref. 2.

To prove(4.61), we begin by observing that
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ip
F(—7+g

li L(Zl—pl )——1 4.6
imef | o=y - 422

uniformly on p-compacts.(This limit amounts to the }|— VI, S-matrix limit, cf. Ref. 1, Eq.
(3.49, and the paragraph containing E8.116 in Ref. 2) Indeed, this follows fron{B23) and
(B20) (takingw=g) in a by now familiar way. As a result4.61) will follow once we show

) b
|pl?g P(p,b/ﬂ'p,s)=eX4 ZSln(m)), be(0,m), (4.63

uniformly on s-compacts.
To prove(4.63, we write

vi(p,blmp,s)=exp(Lo(l/p,s+1,—s+1))exp ZLy(l/p,s,—S))
Xexp( Zo((lm+b) mp,—s,S))
xexp Zo((lm—b)/mp,—s+ 1,5+ 1))exp — 2sin(1—b?/127?)). (4.64
Sinceb e (0,7), we have w#+=b>0, and so we conclude usiri§20)

lim y,(p,blmp,s)=exp(—2sIn(1—b?/127?)) (4.65
plO

uniformly on s-compacts. Now from{A23)—(A25) [with «=0, cf. (A28)] one derives the well-
known identity

inb .~ b?

Using this on the rhs of4.63 and comparing with4.65, we infer that we need only supply a
bound that is sufficiently strong to render the interchange of limits legitimate.

The bound(B20) leads to arO(l ~1)-majorization, so it is not strong enough. Just as in the
previous case, we will now derive o@(l~2) estimate(for | sufficiently large by combining
(B21) and (B26). To this purpose we observe that we may write

vi(p,blmp,s)=exp(4.%5(2l/p,—1+bl7p,2s,bl7p)), (4.67)

cf. (4.42 and(B15). Fors in a compacBCC andp € (0,e] with e small enough, we can take
rs=cg/p in (B21). Choosing theny=0,R=(cg+1)/p andL>(cg+1)/2, we obtain

Z. 2l 1 b 2s b sk(b p) p3 C 0 I=L B. (4.6
2z _ | — =< >
BZE P , + p, , P ol m 3, pE( ,E], , Seb. ( . &

Using now(B26), we obtain an upper bour@/1? on the rhs. As before, this suffices to conclude
that (4.63 holds true. The upshot is that the proof(df61) is now complete.
As a corollary of(4.61), we can obtain the integral

1
, |Imz|<§. (4.69

t2+1

(1+iz) sh27rzj°° at
T(1-iz) 21 Jo ch2mz+chat "
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S. N. M. Ruijsenaars: Difference equations and integrable systems 1121
Indeed, combining the integral

0 dt 1
ShZWZfo m=22, |Imz|<§ (4.70

(which results from(A43), e.g), with (4.29, (4.38 and (4.36), we obtain

exr( - 2iz|n( %) ) u(,B,b;Bz)

3 sh2rz (= dt stegt/2+sir?(b—pB12)  p?
=exp —; fo ch2mz+chat | sHBU2+si?B2  sitb) )’ .79

whereB e (0b/2),b € (0,7), |Imz|<1/2. A straightforward dominated convergence argument
now shows that the rhs @¢#.71) converges to the rhs ¢#.69 for 8] 0. From(4.61) we see that
the lhs converges to the lhs ¢£.69, so(4.69 results.

Finally, we obtain a limit that may be viewed as the classical limit of the quantwn II
S-matrix. To this end we introduce

Ly(p)=itInu(m,h/N,b;p), (N,b,p)e(020)X(0,7)X.%y, 4.72
with Inu—0 for p—0, #>0 denoting Planck’s constant. We now claim that

lim dpLz(p)=NXIn st+|b?Kp—|b) (classical limij (4.73
h—0 S p

uniformly on compact subsets of the right half plasg, with In real valued forp>0. (The rhs
amounts to the classicald| phase shift, cf. Ref. 1, Eq2.75 with =1
To prove this claim, we substitueg—b in (4.60 and use(3.83 and (3.84) to write

ialnu(m,a,b;z)=—Dy(z+iw/2—ib)—Dy(z—i7w/2+ib)+ D (z+im/2)+ Dy(z—i7/2)
—ady(1/2,0z+im/2—ib)—ad,(—1/2,0z—imw/2+ib)
+ady(—1/2,0z+i7/2)+ad,(1/2,0z—i7/2). (4.79
Taking a— 0, the limit of (4.74) exists uniformly on compacts %2, by virtue of (3.85 and

(3.86). Taking z-derivatives, one readily obtains a limit that amount$4d3).

B. The elliptic case

The elliptic scattering function is defined in terms of the elligiifunction from Subsection
Il B via (4.2). In view of Prop. lll.11, this yields a function that is meromorphicria_ ,a_,b
andz, as long asa,r anda_r stay in the right half plane. We shall from now on restrict the
parameters to

£={(r,a,,a_,b)|[r>0(a, ,a_,b)e.#}, (4.795

cf. (4.5. By virtue of Prop. 111.9 the ellipticu-function is periodic inz with primitive period
7/r; moreover, it satisfie$4.2), (4.3), and

u(2r,a,,a_,b;z)=u(r,a,,a_,b;z)u(r,a,,a_,b;z—«/2r), (4.79

u(N"tr Nay ha_ ,Ab:Az)=u(r,a,.,a_,b:z), Ne(0>). 4.77
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Recalling(3.96—(3.100, and using alsd2.91), we see thati solves the AEs

u(z+iayl2) s_s(z—ib+iag2)s_s(z+ib—iag2)
—————=exp2r(as;—h)) - -
u(z—iayl2) s_s(zt+iasg2)s_s(z—ias2)

(4.79

It now follows just as in the hyperbolic case thais a regular solution t¢4.78 if and only if
(a;,a_,b) e #5. Sinceu is w/r-periodic inz, the latter restriction also ensures thats the
unigue minimal solution satisfyin@.11). Furthermore, with(4.6) replaced by4.78), the remark
below (4.12) applies verbatim to the elliptic case.

Using (3.100 and (2.91) we now obtain the analog d#.13:

u(b+a_5;z):_e2irz Ss(z+ib) 479

u(b;z) ss(z—ib)’
To simplify the iterations of these AEs, we use the formula

s(r,a;z++ina)_ dirn(z, +2.) s(r,a;z,)

s(r,a;z_—ina) sraz )’ neN, (4.80

which follows from(2.91). Then we obtain once more the relatiGh14), but now with an extra
factor exp(2rz(k, +k_—2k,k_)) on the rhs. Noting the elliptic analog

u(r,a,,a_,a,;z)=u(r,a,,a_,a_;z)=1 (4.8)
of (4.16), we deduce the elliptic analog
u(r,a, ,a_,0;z)=—e 2" (4.82
of (4.17) and, more generally, the explicit formuld.18, with (4.20 replaced by
C=(—) " lexp2irz(k+1—-2kl—1)), kleZ (4.83
It is clear that the symmetry proper.21) continues to hold in the elliptic case. Moreover,
it leads again to the relatiof®.22 betweenu(—b;z) andu(b;z). Next, we note that4.23 still

holds true, since the elliptiG-function satisfies the multiplication formul&.25. Hence,(4.24)
follows as before. Using the AEs (3.100 and(2.91) we then obtain as the analogs(df25 and

(4.26
a . M—1 ; : .
u r,V,a,,b,z =(—) explir(M—1)(2Mz+ia . —ib))
M-1 M-1 ..
Ay s_(z+ijay /M)
~k1:[0 u r,a+,a,b,z+|kﬁ> j];[l s (z=ib+ija, M) (4.89
and
a+ . M—1 . . .
u r,ﬁ,a_,b,z =(—) exp(ir(M—1)(2Mz—ia, +ib))
M-1 M-1 . ..
ay s_(z+ib—ija, /M)
-k[[o ulr.a..a. biz-ikyr j]:[l s (z=Ta. /M) (4.85
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Once more,a,«—a_ symmetry can now be used to obtain four distinct representations for
u(r,a,/M,a_/N,b;z) in terms ofu(r,a, ,a_,b;z) ands-quotients.

The choicesb=a,/2 or b=a_/2 yield the XYZ soliton-solitonS-matrix. Thus it follows
from (4.18 and(4.83 that the counterpart d#.28 reads

u(r,maj ,ml2;z)=exp2irz(I—j+2lj—1))

] s(r,aj ;erima-r)'IZ[1 s(r,mz+ika;)

e (z—-2) (=1 (z—-2)

(XYZ).  (4.86

Next, we usg4.1), (3.92 and(3.3) to obtain

o

u(Z)=exp(E(z)):eXp< 2 S sh(a, —b)nrshia_—b)nr

A=1 nsha, nrsha_nr

sin2n rz) . (4.87

The series converges absolutely if and only4if31) holds true. As before, regularity of(z) for
parameters in%s can be read off from4.33. Furthermore, the series representat{dr87) is
valid for realz iff the parameters belong to the convergence re@ibg4).

Choosing &, ,a_,b) € .25 and introducing

S_s(z—ib+ias2)s_s(z+ib—ias2)
S_s(zt+iagl2)s_s(z—ias2)

ds(z)=In +2r(ag—b) (4.88

with In real for z real, we can combiné€4.78 and (4.87 to deduce thaips(z) satisfies the
assumption$2.100—(2.102 of Theorem II.5. Thereforg2.107 yields

1 wl2r B
E(2)=5— . dyds(y)K(r,as;z—y), (a;.a_,b)eZs, |Imz<
r

as
2im ) _ '

5 (4.89

This representation amounts to the elliptic counterpatd@7). Once more, the restriction on the
parameters is essentidhough boundary points of2; belonging to.77 (4.5 can be allowed, of
course.

The product representatidB.117 for the elliptic G-function can be combined witf.1) to
yield

[

(1_2q2+mflq27nfle—2irzch(b_(a++ai)/2)+qim72qin72e—4ir2)
u(r,a,,a_,b;z)= |1
m,n=1 (z——-2)

(1_ zqim— 1q2_n— lezirzch(a+ —a_ )/2+ qéim—zqéln—ZeAirZ)
’ (z——2)

. gqs=e "

(4.90
From this product representation one can read off meromorphy and pole/zero properties of
u(z). Notice that it is manifestly symmetric ia, ,a_, in contradistinction to the product repre-

sentation(4.45 for the hyperbolicu-function.
We proceed by deriving four limits of the-function. First, we observe that

limu(r,a,,a_,b;z)=up(a; ,a_,b;z) (llg limit), (4.92
r|o
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1124 S. N. M. Ruijsenaars: Difference equations and integrable systems

where the limit is mero-uniform(Here, uy,,, denotes theu-function from Subsection 1V A.
Indeed, in the definitioif4.1) of the ellipticu-function we may replace the ellipt@-functions by
G,efunctions, cf.(3.123. Then(4.9]) is a consequence of Prop. 111.12.

Second, we assert that the limit

lim u(r,a,A,b;z)=uy4(r,a,b;2) (fllre| limit) (4.92
Ao

exists mero-uniformly(Here,uy;y denotes thei-function studied in the next subsectipiio prove
this, we usg4.1) and(3.22 to write

G(r,a,A;z+ib—ial2—iA/2)G(r,a,A;—z+ial2—iAl2)

u(ra. A 2) = o 7 rib—ial2—iAR)G(r.aAz+ia—iAR) 93
Invoking now (3.139, we obtain the mero-uniform limit
i Ab: _G(r,a;z+ib—ia/2)G(r,a;—z+ia/2) 49
At ur.aA b2 = S = Fib—ial2)G(r.aztial2)’ (4.94
which amounts tq4.92), cf. (4.100 below.
Third, fixingg € R, we claim that
lim u(r,A,a,ag;z)=exp((1—g)(im—2irz)), ze.7%, (TVnr limit), (4.95

alo
uniformly on compacts in the period strigg, (2.113. Indeed, from(4.93 and(3.138 we obtain

lim u(r,A,a,ag;z)=exp(1—g)In(R(r,A;—z—iAl2)IR(r,A;z—iAl2)) (4.96
alo

uniformly on compacts of2, . Now the limit (4.95 easily results from3.93.

We continue by examining this result in the setting of Subsection 1l C. Takieg[ 1,2] and
a e (0,A/4], it entails that Theorem I1.7 applies tQ(z) =Inu(r,A,a,ag;2). In this casef(z) con-
verges to the constantirg—1), uniformly on compactKC.7%,, but f.(z) diverges near
z=0 as a—0. Indeed, themw/r-periodic functionf,(x),x e R, converges pointwise to a
ar/r-periodic functionf(x) that has unequal limits fax] 0 andx{#/r (unlessg=1, of course.
Notice in this connection that it does not follow from the above thé&t) remains bounded in the
strip |Imz|<a/2 asa—0; we do not know whether this holds true.

We conclude this subsection by deriving the generalization of the classical4ifiB. Thus
we define

L,(z)=i#lnu(r,A,AIN,b:2), (r,\,b,2)e(02)2X(0,A)X .2, , (4.97
with Inu—0 for z—0 and#A >0 Planck’s constant. Then we have

s(r,A;z+ib)s(r,A;z—ib)
i — —2rb
f[lTOﬁZLﬁ(z) Nn| e S A

(classical limi} (4.98

uniformly on an arbitrary compa#& C.7, , with In real forz € (0,7/r).
To prove this assertion, we exploit the obvious generalizatioaf4 and Prop. 111.13 to
infer
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R(r,A;z+iA2—ib)R(r,A;z—iA/2+ib)
R(r,A;z+iAI2)R(r,A;z—iA/2)

(4.99

lim iad,Inu(r,A,a,b;z)=In
alo

uniformly onK. Using (3.93 and(2.91), we see that this limit amounts {4¢.98. Notice that the
limit can be understood from Theorem 11.7 a@H78, with alnu(z) playing the role off ;(2).

C. The trigonometric case
The trigonometric scattering function is defined by

G(z+ib—ial2)G(—z+ial2)
G(—z+ib—ial2)G(z+ial2)

u(r,a,b;z)= (4.100

with G(z)=G(r,a;z) denoting the trigonometri&G-function (3.140. From the corresponding
product representation

* (1_q2m72e72rb72ir2)(1_q2me2ir2) -
u(r,a,b;z)= H (1_q2m—2e—2rb+2lr2)(1_q2me—2lr2)1 qu ar’ (4-10])

m=1

we read off thatu admits analytic continuation to a function that is meromorphic,eb and
Z, providedar stays in the right half plane. However, in the sequel we restrict the parameters to

7={(r,a,b)[r>0a>0beR}. (4.102

As before, this restriction entai|si(z)|=1 for realz.
Obviously,u is periodic inz with primitive period#/r; it also satisfieg4.3) and the relations

u(2r,a,b;z)=u(r,a,b;z)u(r,a,b;z— =/2r), (4.103
u(N"tr Na,Ab:Az)=u(r,a,b:z), \e(0). (4.109
From (2.90 and(4.78 [or directly from(4.100 and(3.142] we deduce that satisfies the
AAE
u(z+ial2) 3 ) b sinr(z—ib+ial2)sinr(z+ib—ia/2) 4.10
u(z—ial2) =exp2r(a=b)) sinr(z+ia/2)sinr(z—ial2) (4.109

Clearly, this MAE is regular unlesb=a/2. Now from the product representati¢h10]) we see
that u(r,a,b;z) may be viewed as the unique minimal solution (109 that obeys(4.11),
provided the parameters belong to the regularity region

#={(r,a,b)e.7be(al2,»)}. (4.109
Next, we usg4.10]) to conclude

u(b+a;z)_ 2irZsinr(z+ib)
ubz) . °  sinr(z—ib)’ (4.107

(Alternatively, this follows from(4.79 by taking a limit) By iteration this gives rise tétaking
ke7)

u(b+ka;z)_ 2irkzﬁ sinr(z+i (k/|k|) (b— a/2)+ia(j— 1/2))
ub;z)  © (z—-12) '

(4.108
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Now from the product representatiés.101) we read off
u(r,a,a;z)=1, (4.109
u(r,a,0;z)=—e 217, (4.110

and so(4.108 entails

K. o
oo — K+ 102ir (k—1)z sinr (z-+ia(j — 6(k))
u(r,aka;z)=(—)k"te 11;[1 e ,

keZ, (4.112)

with #(k) defined by(4.19.
The trigonometric specializations of the relatig@s84) and(4.85 read

a
u(r,m,b;z> =(—)Mlexpir(M—1)(2Mz+ia—ib))

Mot Ca\M™t sinr(z+ija/M)
AL r’a'b;“'kﬁ) I =i (4.112
and
u(r,%,b;z)z(—)'\"1exgir(M—1)(2Mz—ia+ib))
h:1:[: u r,a,b;z—ik% 11: Sir;ri(nf;ifi;j/wﬂ ) (4.113

Of course, these formulas can also be verified directly ftérh00 and the multiplication formula
(3.145.

We proceed by obtaining series and integral representations fofldgarithm of the
u-function. From(4.100 and(3.141) we obtain(formally at firs)

u(z)=exp(E(z))=exp<2ii eibnrs“a_b)msinanz . (4.119
n=1 nshanr
(Alternatively, this can be deduced frofd.87) and (4.92.) The series converges absolutely
provided
|Imz|<d(a,b)/2, (4.115
with
d(a,b)=a+b—|a—b|. (4.116
Thus one has
d(a,b)>aeb>a/2 (4.117

in agreement with the fact thatis a minimal solution to the AE (4.1095 for parameters inz
(4.109. More generally, the series representatidriild makes sense and holds true in a strip
around the reat-axis iff the parameteb is positive.

Next, we take (,a,b) € .72 and set
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Downloaded-10-Sep-2006-t0-134.107.3.141.-Redistribution-subject-to-AlP-license-or-copyright,~see-http://jmp.aip.org/jmp/copyright.jsp
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sinr(z—ib+ial2)sinr(z+ib—ial2)
sinr(z+ia/l2)sinr(z—ia/2)

qb(z)zln( +2r(a—hb) (4.118

with In real-valued forz € R. Obviously, ¢ satisfies the assumptiori2.100 and (2.10) of

Theorem 11.5, and comparin@.109 and (4.114 it follows that ¢ satisfies(2.102, too. Thus,
(2.107 applies, yielding the integral representation

l2r

1 a
E(z)=m _lerdyqb(y)K(r,a;z—y), (r,a,b)e. %, |Imz|<§. (4.119

By continuity, the representation still holds for=a/2, but it is false in general fdn<a/2.
To conclude this subsection, we obtain three limits of the trigonometric scattering function.
First, we usg3.155 to write

T(r;z—ib+i/2)T(r;—z—i/2)

u(r'l’b;z):T(r;—z—ib+i/2)T(r;z—i/2) exp2ir(b—1)z). (4.120
Then it follows from Prop. 111.20 that we have
. I'(—iz+g)I'(iz+1) o
lim u(r,1,9;2)= (I, limit) (4.12)
rlo (z—-2)
mero-uniformly inz. (Compare this td4.48).)
Second, we observe that
lim u(r,a,ag;z)=exp((1—g)(i7—2irz)), zec.% (fllnr limit), (4.122

alo

uniformly on compact subsets of the period stif) (2.113. Indeed, this readily follows from
(3.180, cf. also(4.95 and(4.96. The remark below4.96 applies to the case at hand as well.
Third, we introduce

L,(z)=ifInu(r,z/\,b;z), (r,\,b,2)e(02)3X.%,, (4.123
with Inu—0 for z—0 andA >0 Planck’s constant. Then we claim that

] B bsinr(z+ib)sinr(z—ib) ] o
lima,L;(z)=\In| e 2 . (classical limi) (4.1249
ho sinfrz

uniformly on compacts of2, , with In real-valued forz € (0,7/r). To prove this claim, we use
(4.100 and(3.179, (3.177 to write

ialnu(r,a,b;z)=—Dy4(z+ib)+Dy(—z+ib)—D,(—2)+D,(z)—ad,(r,—1/2,0z+ib)
+ady(r,—1/2,0;—z+ib)—ad,(r,1/2,0;—z) + ad,(r,1/2,02), (4.129

where we take e .7, . Invoking now Prop. 111.21, the limit4.124 readily follows.

Comparing the rhs of4.124 to the classical phase shift obtained in Ref. 17, p. 336, we get
agreement when we take— g8 lr—|u|/2,b—|Bg|, save for a constant shift
—2Arb— —|ug|. The latter shift can be understood from the fact that the distance between the
classical actions of the [l system is bounded below Byg| (cf. Ref. 17, p. 258 by contrast, the
minimal distance between successive indicg®;, ; of the multivariable polynomials occurring
at the quantum level equals (Bee also Ref. 2, Subsection §.2.
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V. WEIGHT FUNCTIONS
A. The hyperbolic case

Our study of the hyperbolic weight functiom(a, ,a_ ,b;z) runs largely parallel to our study
of the u-function in Subsection IV A. Thev-function is defined by

G(z+ib—i(a,+a_)/2)G(z+i(a,+a_)/2)

W= G z=b+i(a, +a)/2G(z—i(a, Ta)i2)’ ®.b
so it satisfies
w(a,,a_;z)=w(a_,a, ;z) (5.2
just asG(z) andu(z), cf. (4.1 and(4.2). The analogs ot4.3) and(4.4) are
w(=2)=w(2), (5.3
w(Aa, ,\a_ ,\b;Az)=w(a, ,a_,b;z), Ae(0x). (5.9
For several purposes it is convenient to introduce a reduced weight function
wi= G
Using the AAEs (3.4), one infers thatv andw, are related by
w(z)=4shwz/la,)shwzla_)w,(z). (5.6

Obviously,w, also satisfie$5.2)—(5.4).

Just as thei-function, the functionsv andw, are meromorphic im, ,a_,b andz, as long as
a_/a, stays away from {,0], cf. Prop. Ill.5. In particular, botln andw, are well defined for
b,z € C. Using(4.1) and(3.4), one readily verifies that the latter functions are related by

o T
4sh— (z+ib)sh— (z+ib)
a, a_

u(iz;ib)=wi(b;2) E a2 6(ib+i(a, —a)2) 6.2
This relation can be used to translate various featureg, dh terms ofu and vice versa.
From now on we taked, ,a_,b) € .7 (4.5. We proceed by studyingg andw, with regard

to the AAEs they satisfy, namely

w(z+ia§/2)_s,{;(z+ib—ia5/2) s_s(z+iayl2) 5.8
wW(z—iay2) s_sz—ib+ias?2) s_sz—ias2) .8
and
W, (z+iay2 s_s(z+ib—iagy?2
(ztiayf2) s 52) 59

w,(z—ias2)  s_sz—ib+iay2)’

resp.(To check this, recall the definitio@#.7) and the AAEs (3.4).)
Consider firstw, . The planeg4.9) separate the regio# (4.5) into infinitely many strip-like
components, one of which reads

ss={(a, ,a_,b)eH|be(as2,a_s+ay2)}. (5.10
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S. N. M. Ruijsenaars: Difference equations and integrable systems 1129

The pole/zero properties @&(z) given by Prop. 111.3 entail thaw, is free of zeros and poles in the
strip [Imz|<ay/2 if and only if (a, ,a_,b) € .5. Now from Prop. 1ll.4 we deduce that for all
(a; ,a_,b) e #Zonehas

Tz
a,a_

(2b—a,—a_)|(1+0O(exp*x(e—27la,)z))), Re— o,
(5.11

Wr(z)=ex;< +

uniformly for Imz in R-compacts. Thus, choosing parameters/ip, one may characteriae, as

a minimal solution to the AE (5.9) that is even and positive far e R; these properties determine
the solution up to a positive constant, cf. Theorem Il.1. Next, we note that the rtsfis
a_ s-periodic inb, and identically equal te- 1 for parameters satisfying.9). (As such, the AE

is regular for all @, ,a_,b) e .7, by contrast tq4.6).) But w, is neithera_ s-periodic inb, nor
an exponential whei.9) holds true. We shall presently obtain the correspondingperiodic
multiplier, after consideringv in relation to the AE (5.8) it obeys.

We begin by noting that the/-function has asymptotics

mhz

(1+0O(exp =(e—2mlay)z))), Rez— *oo, (5.12

2
W(Z)=6X[< *

a,a_

Thus, it is a minimal solution t¢6.8) whenever it has no poles and zeros|fonz| <as/2. In view
of (5.6), for this to happen it is necessary thaf(z) have a double pole at=0. Fora, ,a_ fixed,
this necessary condition is satisfied only for a discrete sét abw is generically not a regular
solution—in contrast tav, , which is regular for parameters irs.

It should be pointed out, though, that both of thABs (5.8) do admit minimal solutions for
all (a; ,a_,b) e 7. (Indeed, this readily follows from Theorem I)3n particular, let us intro-
duce the asymmetric weight function

G(z+ib—i(a,+a_)/2)G(z+i(as—a_s)/2)

Wold+ 8- 0= o i@, Ta ) 2G(z=1(a,—a_,)/2) 613
This function is related tov, andw via
shiwz/a_)
ws(2)=w,(2) “Shmzlay) =w(z)/4st¥(mwzlag) (5.14

on account of3.5), (5.8) and(5.6). Sincew solves(5.8), so doesv;. Choosing the parameters in
Zs (4.10, wy is a minimal solution, as is easily verified. Multiplying and/or dividing by
finitely many factors of the formsg(z—c), one can construct explicit minimal solutions for
arbitrary parameters.

We continue by obtaining analogs of the formu{dsl3—(4.20. First, we use the AEs(3.4)
to obtain

W(b+a_s;2)

v A o A
Wib2) :4Sha_5(z+lb)5ha_5(z_lb)’ W=w,w, ,w, ,w_. (5.195

Takingk, ,k_ e Z, these AAEs can be iterated to yield
J. Math. Phys., Vol. 38, No. 2, February 1997
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W(b+k,a,+k_a_;z)

W(b;2z)
Ikl ks a,
=5:]_+[‘_ jg_[l( (sh— Z4i— K] b— -
1 ks!lkl
viad i Y Jamn] ™ 510
Next, we note that5.5) and(3.4) entail

w(a, ,a_,0;z)=1, (5.17
w(a, ,a_,a42;z)=2th(mz/las)shiwz/a_y), (5.18
w(a, ,a_,(a.+a_)/2;zy=4sHwzla,.)shmwz/a_). (5.19

Therefore, the weight functions are elementary functions for parameters in the dense subset
Zw={(a,,a_,bye b=l a,+l_a_,l.,|_e7/2} (5.20

of 77 (4.5). Specifically, one readily obtains froii.16—(5.19 (using the notatior{4.19 and
takingk, ,k_ € 7)

[kl ks!lksl
wia, a- k.a,tka 2= jHl(4(sh}5<z+ia5<j,s—a(km))(ie—i)) ,
7+,— 5: —
(5.2

w(a,,a_,as2+k,a,+k_a_;z)

Tz mz\|
=2th(—) sr(_) 1|
as a_s/js=1

lk_ sl

il

j-s=1

1 ks/lkql
i3] Ji=-0)

)kaflkal

a
4(sh—(z+ia5
a_s

: (5.22

4(chai<z+ia5<jg— 0(k5>>))<i~—i>
5

w(a, ,a_,(a,+a_)2+k,a,+k_a_;z)

ksl

7z 7z T . 1 _ _ ks/lksl
:43)’(; sI—(Z 5:1:[‘_ jgl (4(Chat5 z+iagl js— E))>(|—>—|)) .

(5.23

We proceed by noting that none of the weight functions has the reflection sym@ety of
the scattering function. Instead, one gets fr@b) the relation

w,(a,+a_—b;z)=1M,(b;z). (5.249

Combining this with(5.16), one obtains

-1

Wr(—b;z)wr(b;z)zgﬂ_ 4sh;—5(z+ib)sh%(z—ib) . (5.25
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S. N. M. Ruijsenaars: Difference equations and integrable systems 1131

Using the multiplication formuld3.25, one can work out analogs of the relatiof@s23—
(4.26 for the weight functions. We shall not do so, however. We do point outwhaatisfies an
additional relation involving shifts db—as opposed to shifts af

a, a_
b;z

a_
M,N,,

N

M—-1 N-1
= H H Wi
]=0 k=0

a, .
W, a,,a_,b+ VH kiz|. (5.26

(Indeed, this formula readily follows fror(6.5 and(3.25.)
By contrast to the scattering function, the weight functions are elementary functions on all of
the sine-Gordon lines. In particular, fro(d.6) and(5.18 we have

w(,a,m2:z)=2thzsh(ma"'z) (sG) (5.27

for all >0. (Compare this td4.28).)
Next, we obtain an integral representation ¥gr: From (3.2), (3.3) and (5.5 we have

w,(z)=expl(z)), (5.28
where
~>dy(sha;+a_—2b a.+a_—2b
|(Z)Ef0 7y r(sr:hysha_y )yCOSZyZ— +a+Ty (5.29
This integral converges absolutely provided
[Imz|<e(a, ,a_,b)/2, (5.30
where
e(a; ,a_,b)=a,+a_—|2b—a,—a_|. (5.3)
Thus we have in particular
e(a;,a_,b)>as=(a, ,a_ ,b)e.”s, (5.32

which says once more that, is regular for parameters itr’y.
More generally, the integral representati28 sense and holds true in a strip around the
real z-axis iff the parameters belong © (4.34). Indeed, one clearly has

e(a,,a_,b)>0<=(a,,a_,b)e?. (5.33
Combining the representation with.6), (5.14 and(5.15, we obtain the positivity property
W(a, ,a_,b;x)>0, V(a,,a_,b,x)e ZXR*, W=w,w,,w, w_. (5.39

From (3.1) and (3.3) we also obtain an integral representation for the asymmetric weight
functionw; (5.13), viz.,

Ws(z)=expl 5(2)) (5.3
with
_ . [~dy[sha_;—b)ycha;—b)y a_s—b
|5(z)=2f07 st ysta_y cosyz- — - (5.3
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Obviously, this integral has the same convergence properties as the ite88also the analysis
embodied in(4.31)—(4.35 applies once again.

We have not found illuminating analogs of the representati@n38 and (4.45, so we
conclude this subsection by deriving two limits of the weight functien(Corresponding limits
for w,,w, andw_ readily follow, so they will not be spelled outOnce again, we switch to
parameters4.47).

First, we usg5.1), (3.22, (3.24 and (3.69 to obtain

H(p; p/v+il2)H(p;— plv+il2)

(5.37
Therefore, Prop. 11.6 entails
I'(ip/lv+g)I'(—iplv+
im(28v) 2w(m, By, B0 Bp) = — pr(”ip,firi_ o7 9 (1 imit), (538

BlO

where the limit is mero-uniform(The limiting weight function is associated to the analytic
difference operators of the,lregime, cf. Refs. 1 and P.
Second, we may write

G(m,a;z—iw/l2+ia(g—1/2)) G(m,a;z+iw/2+ia(1/2))

w8802 = G e in2tial—12)  G(maztinl2tia(lz—g) o)
Therefore, we deduce fror3.91)
lim w(,Bv,Bvg;vX)=exp2gIn(2stwx)), xe. %y (Il limit) (5.40

Bl0O

(with In real-valued forx>0), uniformly on compacts of2,. (The limit is the weight function of
the Il,,, regime, cf. Refs. 1 and)2

B. The elliptic case

The elliptic w-function is defined by replacing ifb.1) the hyperbolicG-functions by their
elliptic counterparts. Obviously, this yields a function that is periodie imith primitive period
ar/r, and which satisfie$s.2), (5.3), and(4.76), (4.77) with u replaced byw.

Just as in the hyperbolic case, we introduce a reduced weight functigb.By Then we
obtain via(3.100 and(3.96—(3.99

w<z>=4r2k[[1 (1-9292%(1-9%)%s,(2)s_(2)W,(2). (5.49)

Evidently, w, shares the automorphy propertieswoimentioned above.
From Prop. lll.11 we deduce that andw, are meromorphic im,a, ,a_,b andz, provided
a.r anda_r stay in the right half plane. As the analog (&£7) we then obtain

4rMIy_,(1—-9%%2(1-g*9)%- s, (z+ib)s_(z+ib)

u(iz;ib)=wr(b:2) — & o G —a 2)G(ib+i(a, —a )i2)

(5.42

From now on we take the parametersdn(4.75. Turning to the AAEs satisfied byw and
w,, we obtain once more
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W(z+ia 2) s_s(z+ib—iag2) s_jz+ia,2)

W(z—iay2) s_sz—ib+ias?2) s_sz—ias2)’ (5.43
wheread5.9) is replaced by
w,(z+ias?2) . s_g(z+ib—iay2)
wiz—ia 2 M2 o b ia, ) (5.44

Considering firstw, , we reach the same conclusion as in the hyperbolic case—Prop. 111.10
and 7r/r-periodicity in z play the role of Prop. 1.3 and the asymptoti¢s.11). Turning to
w(z), one readily sees that it generically has double zeras=dt7/r .,k € 7, and hence is not
regular. The asymmetric functiom; defined by(5.13 is now related tav, andw via

- (1—q2_k5> s 4(2) w(z) 5.5

wi=w@ L | ) G - wna-adsier
Sinces,(z)? is notia s-periodic,w s does not satisfy the AE (5.43), however. To obtain minimal
periodic solutions td5.43, one should rather multiplw(z) by an elliptic function with periods
7/t andias. We shall neither embark on this nor on a study of theEs solved by the functions
w, andw._.

We continue by obtaining the counterparts (6115—(5.19. First, from (5.1), (5.45 and
(3.100 we readily get

W(b+a_52) 25—2rb . 2ky 4 i i
W—M e kl:[l (1—qg5)" ss(z+ib)ss(z—ib), W=w,w, W, w_.
(5.46
To obtain the analog of5.16), we employ the relation
s(r,a;z, +ina)s(r,a;z_—ina)=e 2MZ+~2)g2aM’g(r 2.7 )s(r a:z ), nel,
(5.47

which is easily derived fron(2.91). (This formula plays the same role &80 in simplifying the
iterated AAEs) A straightforward calculation now yieldsvith k, ,k_ € 7)

W(b+k, ,a,+k_a_;z)

=exp2rb(2k, k_—k,—k_)) J] exprasksks—1)(2k_s
o=+,—

W(b;z)
-1 ﬁ (42ﬁ 1-g% 4( +'ﬁ<b—i§>
))15:1 r k:1( q=s)"| s-s| 2 I|k5| >
1 kél‘kél
+iag j,;—z)))(iﬂ—i)) . (5.49
Next, we usg5.1) and(3.100 to obtain
w(r,a, ,a_,0;z2)=1, (5.49
w(r,a;,a_,a42;2)=4r2[[ (1-g¥9%(1-q*)2 %2 s_52), (5.50
k=1 Rs(2)
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w(r,a,,a_,(a,+a_)/2;z)=4r2 k]_[ (1—-q%)2-s4(2). (5.51)
=1

5=+,—

If we now combine these formulas with the quotient form{@al8, we obtain obvious analogs of
(5.2)—(5.23—which we do not spell out.

We proceed by observing thég.24) holds true for the elliptiav, , too. In tandem with{5.48),
this entails

-1

W,(—b;z)wr(b;z)=5 4r2k1;[l (1—0%9* sx(z+ib)ssz—ib) | . (5.52

=+,—

Analogs of(4.23—(4.26 for the elliptic weight functions are readily derived from the multipli-
cation formula(3.25, so they will be skipped. The latter formula also entails that the elliptic
w,-function obeyg5.26).

As the elliptic counterpart of5.27 we obtain from(5.50 and(5.41)

[

s(r,m;z)
o) — 2 _a—2kmr\2/1 _ A= 2kary2, .
W(r,m,a,wl2;z) = 4r kljl (1—e 2kmm)2(] — g~ 2kar) Rt m2) s(r,a;z)  (XYZ).
(5.53
This holds true for alle>0, as opposed to the explicit formul4.86), which holds for the dense

set(4.27).
We now turn to deriving and studying a series representatiorwfor Recalling (3.3) and
(3.92, the definition(5.5) entails

sh(a,+a_—2b)nr

w,(z)=ex;18(z))=exp( > coshrz|. (5.54)

=1 hsha,nrsha_nr

The convergence properties of the infinite seB€g) occurring here are the same as those of the
integrall (z) (5.29, so the analysis encoded (6.30—(5.33 applies verbatim. Using this repre-
sentation(5.46 and(5.45, we now deduce the positivity property

W(r,a, ,a_,b;x)>0, V(r,a,,a_,b,x)e&ZX(0,alr), W=w,w, w, ,w_. (555

It is of interest to compare the series representafiodd) to Theorem I1.5. Choosing param-
eters in.”’s, one deduces that Theorem 1.5 applies to the additive versiaib.4#), and that
w, corresponds to the unique minimal soluti@106. Via (2.107 one can now obtain an integral
representation fow,—as an analog of the representati@n89 for the elliptic u-function.

To conclude this subsection, we derive three limits of whéunction. First, we use Prop.
111.12 to infer

. b .
I:[rg exp{m w(r,a,,a_,b;z)=wy(a,,a_,b;z) (Il limit), (5.56

where the limit is mero-uniforn’(.Here,whyp denotes thav-function from Subsection V A.Note
that the renormalizing exponential is necessary, and that no such factor occursuifiutingtion
counterpari4.93).

Next, we claim that the limit

lim w(r,a,A,b;z) =Wig(r,a,b;z) (Il ¢ limit) (5.57
Ao
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exists mero-uniformly(Here,w;y denotes thev-function studied in the next subsectipmdeed,
we may rewrite(5.1) as

G(r,a,A;z+ib—ial2—iA/2)G(r,a,A;—z+ib—ial2—iA/2)

w(r,a,A.b;2)= G(r,a,A;z—ial2—iA/2)G(r,a,A;—z—ial2—iAl2) , (558
s0(3.139 yields the mero-uniform limit
] G(r,a;z+ib—ial2)G(r,a;—z+ib—ia/2)
lim w(r,a,A,b;z)= (5.59

At G(r,a;z—ial2)G(r,a;—z—ial2)

In view of (5.61) below, this entailg5.57).
Finally, fixingg € R, one has

lim W(r,A,a,ag;z)=exp( Zgln<2rH (1—e‘2kAr)2-s(r,A;z))), ze. %, (IV,, limit)
alo =
(5.60

(with In real forz e (0,#/r)), uniformly on compacts af%, (2.113. To check this, one need only
substituteb=ag in (5.58), invoke the limit(3.138, and recall(3.96—(3.99.

C. The trigonometric case
The trigonometriav-function is defined by

G(z+ib—ial2)G(—z+ib—ial2)

W(r.a,b:2)= =" 3 G(—z=ian) (5.61
with G given by (3.140. Thus, it can be written
* 1_q2ne2irz -
W(r,a,b;z)=nl;[0 W (Z—>—Z), g=e ar, (5.62

We note thatwv is 7/r-periodic and even ia, and satisfie$4.103 and(4.104 with u replaced by
w.
Next, we introduce the reduced weight function

w,(2)=G(z+ib—ial2)G(—z+ib—ial2), (5.63

which has the same automorphy propertiesvadRecalling the functional equatio3.154 and
AAE (3.142 satisfied by the trigonometriG-function, one readily verifies that, andw are
related by

©

w(z) :4r|H1 (1—9%")2-s(r,a;2)sin(rz)w,(z). (5.64

Obviously,w, andw are meromorphic im,a,b andz, as long asr stays in the right half plane.
As the counterpart of5.42 one easily gets

[

u(iz;ib)=4r]l (1-q2)2-5(r,az-+ib)sine (z+ib) e ot 202)
=1
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Taking from now on parameters i (4.102, we turn to the AEs solved by andw, , viz.,

w(z+ial2) B sinr(z+ib—ia/2) sinr(z+ial2)

w(z—ial2) sinr(z—ib+ial2) sinr(z—ial2) (5.66
and

w,(z+ial2) B i sinr(z+ib—ia/2)

wiz=ial2) M) G S Tian) (5.67

Clearly, both AAEs are regular for arbitrary parameters. Choosing parameters (#.106, one
readily verifies that the reduced weight function is a minimal solutiofbt67) that is even and
positive forz e R. As such, it is uniquely determined up to a positive constant, cf. Theorem II.1.
Forb=a/2, however, it has poles in the stifilnz|<a/2, so it is not regular. The weight function
w(2z) has double zeros fa=kmx/r,k € Z, unlesb= —na,n e N; in the latter case one easily sees
thatw is a minimal solution td5.66).

To proceed, we note that andw, satisfy theb-AAE

W(b+a;z)_

—2rbgi o i _
Wib2) 4e”“"sinr(z+ib)sinr(z—ib), W=w,w,. (5.68

Hence, iteration yieldéwvith k e 7)

. || K/|K|
W(b+ka;z) orbkark ( _ _ k( al| [, 1 _ _ )
A —ark(k—1) R _Z _
Wbz ° j];[l 4 sinr z+||k| b—|+ialj= 5| | |(i—=D] .
(5.69
Now from (5.61) we read off
w(r,a,0;2)=1, (5.70
so we deduce
Il
w(r,a,ka;z)=e 2 k=DTT (4[sinr(z+ia(j— (k) ][i——i]¥¥, (5.79)
j=1
wherek e 7 and the notatiori4.19 is used. Moreover, fron8.154 we have
w,(r,a,a/2;z)=R(r,a;z) "%, (5.72
so recalling(5.64 we obtain(with k € 7)
w(r,a a/2+ka'z)=4rﬁ (1— 2I)Z-MSWZ
o ' =1 a R(r,a;2)
(K| 1 k/|K|
H (4(sinr z+ia j_i) )(i—>—i)) . (5.73
j=1

Using the multiplication formul&3.145, one easily derives analogs @.112 and(4.113 for the
weight functions. In addition(3.145 entails thatw, satisfies
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S. N. M. Ruijsenaars: Difference equations and integrable systems 1137

M-1

a
W,(r,m,b,z)=k1:[0 W,

a
r,a,b+ Mk,z). (5.74

Next, we usg3.14)) to obtain a series representation fgr, namely

* enr(afzb)
wr(z)zexp( > —cos2nrz). (5.75

i=1 hshmra

Providedb>0, this representation makes sense and holds tru@irfaj <b. In particular, this
entails once more thaw, is a minimal solution to(5.67) when the parameters belong &
(4.106. (More specifically,w, amounts to the unique minimal solution given (:106.) Fur-
thermore, using5.68 and(5.64) one deduces

W(r,a,b;x)>0, V(r,a,b,x)e.sX(0,m/r), W=w,w,. (5.76

We finish this subsection by obtaining two limits of the trigonometric weight function
Recalling(3.155, we rewrite(5.61) with a=1 as

T(r;—z+i/2)T(r;z+i/2)
T(r;—z—ib+i/2)T(r;z—ib+i/2)

w(r,1,b;z)= exp(rb(1—b)+2bin(2r)). (5.77

From Prop. I11.20 we now infer

I'(—iz+g)I'(iz+Q)

lim(2r) "*w(r,1.8:2) = —F 1 F i)

r0

(1, limit), (5.79

where the limit is mero-uniform(Compare this td5.38.)
Next, we substitutdb=ag, with g € R fixed, in (5.61). Recalling then the limi{3.180, we
deduce

lim w(r,a,ag;z)=exp2gIn(2sirrz)), ze.%, (Il limit) (5.79
alo

(with In real-valued foz e (0,7/r)), where the limit is uniform on compact subsets of the period
strip .7, (2.113.
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APPENDIX A: THE GAMMA FUNCTION AND RELATED INTEGRALS

This appendix serves a twofold purpose. First of all, it is included to render this paper more
self-contained. Indeed, most of the Laplace, sine and cosine transforms we derive below can be
found—without proof—in standard sources such as Refs. 18 and 19; moreover, all of the proper-
ties of the psi and gamma functions we need can be found—with detailed proofs—in various
sources, for instance Ref. 16. Our second purpose, however, is to demonstrate how these proper-
ties can be very quickly derived via the minimal solutigh26 to a suitable AE (2.22); this
yields a paradigm for the study of generalized psi and gamma functions undertaken in Section Il

Specifically, our starting point is the A&

J. Math. Phys., Vol. 38, No. 2, February 1997

Downloaded-10-Sep-2006-t0-134.107.3.141.-Redistribution-subject-to-AlP-license-or-copyright,~see-http://jmp.aip.org/jmp/copyright.jsp



1138 S. N. M. Ruijsenaars: Difference equations and integrable systems

: , i
F(Z+I/2)—F(Z—I/2)—Z_—i/2=)((2). (Al)
A contour integration yields

) 1= 0 )
x(y)=5ﬁ dxs—7=e"Y=—e"0(y), (A2)

so this AAE is of the type considered in the proof of Theorem I1.3. Indé&@) entails

d(y)=iye Y20(y), ¢(2)=x"(z2)=—i(z—i/2)"? (A3)

and thereforep(z) has all of the propertie€.18—(2.21). From Theorem .2 we now obtain a
solution

f(z)=2i dey&_ye—2iyZ Imz< 1 (A4)
0 Sl,y 1 7

to the AAE (2.22), which is the uniquely determined solution with properti223—(2.25.
As a consequence, the function

© e_y .
Fl(z):Fl(O)+clz+f dy—(1—e 2V?) (A5)
o ~ shy
is a solution to(Al) for a certainc; € C. Now we have
0 efy
F1(|/2)_F1(_|/2)=|Cl+f dy—(—ey-i-e*y):ICl—Z (AG)
o sty

Hence, notingx(0)=—2, we needc,;=0 to solve (Al). Of course, we are free to choose
F1(0), and weshall set

3 e 2y e Y
F1(0)=f0 dY(T—W)E—% (A7)

(As will soon become cleary is Euler's constant.The upshot is that we obtain a solution

. e—2y e—y(1+2iz)
Fl(z)Efody( y - sty ) Imz<1, (A8)

to the AAE (Al). Note that the functiofr,(z)=F,(—z+i) yields a second solution t#1), so
thatF(z) —F4(—z+1) is ani-periodic meromorphic functiofdetermined explicitly beloy

Next, we observe that the XE (2.22), with ¢(z) given by (A3), can also be solved by
downward iteration, yielding the solution

'f"(z):—ikZl (z—ik) 2. (A9)

Now this solution clearly has the propertigs23—(2.25, so we must havz(z) =f(z). From this
we readily deduce
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S. N. M. Ruijsenaars: Difference equations and integrable systems 1139

1
(Z)——'y-HE( — |k)' (A10)

(Indeed, the function on the rhs has derivatT‘(e)z f(z) and value— y for z=0, just asF4(2),
(A7) and(A8).) As a consequence, we obtain the functional equation

o

Fy(z+il2)—Fy(—z+il2)=— E

=imthmz. (A1l

iz+n+ 1/2 |z—n—1/2)

Note that the rhs amounts to thgeriodic meromorphic function mentioned beldi8).
We are now prepared to make contact with the psi and gamma functions. First, we introduce

% e"2y gv(1-22
P(2)=F(—iz+i)= 0dy<T— shy ) Rez>0. (A12)
Then we obtain from{Al) and (A11) the AAE
P(z+1)—P(z2)=1/z (A13)
and functional equation
P(z+112) — p(—z+ 1/2) = wtgmz. (A14)
Moreover, we haves(1)=—y and (z) has simple poles &=0,—1,—2, ..., cf.(A10).

Next, consider any primitivel’(z) of (z), restricted to the cut plane
C ={ze(|z¢(—»,0]}. (A15)
Clearly, ¥(2) is analytic inC™ and satisfies
V(z+1)—V¥(z)=Inz+c,, zeC, (A16)
V(z+1/2)+V(—z+1/2)=—In(cosrz)+Cy, =*zeg[l/20), (A17)

in view of (A13) and (A14). Now from (A12) we have

-2y ey

2 = [e
\P(Z)—\If(l)zfldwlﬁ(w)zfo dy(T+ zysh),(e*“y—e*ZV) -0, (A18)

so thatc; =0 in (A16). Clearly,c, in (A17) depends on the arbitrary constantiir{z); we render
¥ unigue by requiring #(1/2)=In7 and then we get,=In# by takingz=0 in (A17).
The upshot is that we obtain a primitive(z) of (z) satisfying

V(z+1)—-W(z)=In z, (A19)
U (z+1/2)+ V(- 2+ 1/2) = In(w/cosnz). (A20)

Introducing the function
I'(z)=exp(¥(2)) (A21)
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1140 S. N. M. Ruijsenaars: Difference equations and integrable systems

(defined at first inC™), it readily follows thatl'(z) extends to a meromorphic function without
zeros and with simple poles a&=0,—1,—2, ... .Indeed, from(A10) and(A12) we deduce that
we have

V(z)=a—yz—Inz— 2, (In 1+§ —;) (A22)

n=1
for somea e C (with Inzreal forz>0, of course. Therefore, we obtain

1

- at YZz eiﬂn A23
(2 11 (A23)

z
1+ =
n
and from this the assertion is clear. Fr@Ail9) and (A20) we also obtain the AE
I'1+2z)=zI'(2) (A24)
and functional equation

I'(z+1/2)I'(— z+ 1/2) = =/ cosmz. (A25)

In order to determiner, we note thai{A23) and (A24) entail

1 1
e “=lim == A26
,0Zl'(z) T'(1) (A26)
Now from (A24) and (A25) we have
w(—z+1/2)
[(z+12T(-z+3/2)= ————, (A27)
cosrz

which yieldsI'(1)?=1 for z—1/2. Thus we conclude

I'il)=1, «a=0, (A28)

sincel'(z) is positive forz>0. (To see this, note thaA12) entails ¢(z) is real forz>0. As
¥ (1/2) is real, it follows thatV(z) is real forz>0, so positivity is clear fron{A21).)

Combining (A23) and (A28), we see thal’(z) is the customary gamma function in Weier-
strass product form, as anticipated by our notation. Similat() is the usual psi functiofthe
logarithmic derivative of the gamma functigrand (A12) amounts to Gauss’ formula, cf., e.g.,
Ref. 16.

We now derive a number of definite integrals by exploiting the propertieg(a) and
I'(z) established above. The order in which this is done is determined by the order in which these
integrals are needed in the main text, except when logical necessity requires otherwise.

First, we use the well-known integral

ody B o P pds
f —(e"W—-e py)=f dyf dse sy:J —=In(p/q) (A29)
oY 0 q g S
and(A12) to obtain

= (1 1
_ — o —-2yz
W(z+1/2) |nz—f0 dy(y Sw)e Y2 Rez>0. (A30)
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S. N. M. Ruijsenaars: Difference equations and integrable systems 1141

Integrating this from 0 t@ and using 2 (1/2)=Inm, we arrive at

1
——Inw zInz+z= f (1-e %), Re>0. (A31)

oY

1
z+ =

Vizt3

sty

wdy( 1
y

Now the function on the lhs is analytic iti” and the integral on the rhs converges absolutely for
Rez=0. Thus,(A31) holds true for Re=0, too. Puttingz=ix andz=—ix,x € R, in (A31), and
taking the sum of the resulting equations, we obtain usX2)

In(7r/chmx)—In7+ C dey(l 1) Y (A32)
n(/chmx)—In x=C— | —|———/|cosx,
ar T T 17 0 y y SW
where we have set
c—fmdy ! 1) (A33)
~Joyly shy)

If we now takex— in (A32), then the integral has limit (by virtue of the Riemann-Lebesgue
lemma, so we must have

C=In2. (A34)
Combining this with(A31) and(A21), we obtain the integral representation

[(z+1/2)= (Zw)l’zexp(zlnz z——J d7y
0

—— ih]) e—zﬂ) , (A35)
y s

which holds true for Re=0.
Next, we putg=2,p=2w in (A29) and integrate w.r.tw from O toz to obtain the identity

=dy[ e -1
zInz—z=f —le ¥z+ ———— (A36)
oY 2y
Inserting this in(A35), we get the representation
I(z+1/2) = (27) 2 de oy L, A37
(z )= (27)Y%ex 0y ze 2y 25ty | (A37)
which is valid for Reg>—1/2. A routine calculation usingA37) and (A29) (with g=2,p=2w)
now yields
C(w+X\) BN f il st e M—_egut A38
Tw+p)© ), T¢ mt——et | (A38)

which holds true for R&>max(0,— Rex,— Reu). Therefore, the function

W+ A

F(W,)\)E m

2
F(W+)\) eZAIHW) (Asg)

I'(w—N\)

admits the representation
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1142 S. N. M. Ruijsenaars: Difference equations and integrable systems

»dt
F(W,)\)=exr{2f Te‘Wt(Z)\—sW\tctht/Z) , (A40)
0

provided R&>|Re\|. (To check this, uséA38) and (A29) with g=w—\ andp=w+\.)

The functionF(w,\) will reappear in Appendix B; it is crucial for obtaining Prop. 111.5 in
Subsection Ill A. We conclude by deriving some formulas that are used towards the end of
Subsection IV A. First{A12) entails the cosine transform

Y((p+1+ix)/12)— p((q+1+ix)/2) + (X— —X)

dy
:Zf W(e Y—e M)coxy, Rep,Reg>-1, xeR (A41)
0

Now we take Rep € (—1,1) and pug=—p. Using(A14) and the elementary identity

. _ 2sin2o .
tg(0'+l7')+tg(0'—l7')=m, o,7eC, (A42)

we obtain

T sinmp

f dy SW ——COXYy= 2 m |Rep|<1, xeR. (A43)

Integrating this with respect tp from s to t yields

=dy (chty—chs chawrx+cosrs
2f dy (cfty—ctey) y:I( " IRes|,|Ret| <1. (A4d)
0

y shy chax+cosrt )’

Finally, we integrate(A41) w.r.t. x from O to —2is and putp=t+\,q=t—\. The resulting
formula entails the identity

D(s+(1+A+D/2)T(=s+(1-A+D/2) dyshkysh?sy
(s——s) J

Ret—lR@\|>—1, seilR. (A45)

APPENDIX B: UNIFORM ESTIMATES

The main goal of this appendix consists in deriving bounds that are sufficiently strong to
control the convergence and meromorphy properties of infinite products involving gamma func-
tions, which occur in the main text. Our tool for doing so is Theorem B.1, which deals with
Laplace transformg& (w),w e C, of a certain type. More generally, this theorem can be used to
obtain estimates on remainders in asymptotic expansions that hold uniformly in sectorial regions
|Argw|<7—€,|w|=K=K(e) for any e>0. As such, it is inspired by, but simpler than, the
methods that can be found in Ref. 20, Sections 21-25, and Ref. 16, Section 13.6.

Assumeh(z) is a function that is analytic in the right half plane 2e0 and atz=0.
Moreover, assumB(z) satisfies the bound

Ih(te'?)|<C(x)e", V(t,¢)e[07)X[—x.x], (B1)
wherey € [0,7/2) andr e [0s0), and whereC(y) is a positive non-decreasing function on

[0,7/2).
Theorem B.1: The function
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L(W)Ej:e“”‘h(t)dt (B2)

is well defined and analytic iffRew>r}. Furthermore, l{w) can be continued to a function that
is analytic in

U,={Rew=0,w|>r}U{Rew<0,[Imw|>r}. (B3)
Finally, fixing x € [0,7/2) and R>r one has
IL(w)|<C(x)(R—-1)"!, VweSg, (B4)
where
Srx=U|g={Re(€'?w)=R}. (B5)

Proof: The first assertion is obvious. To prove the second one, consider the integral
ein exp(—wtéX)h(teX)dt, ye(—m/2,7/2). (B6)
0

Due to the boundB1) this defines a functioh,(w) that is analytic in the region
U, ,={Re(e*w)>r}. (B7)

We claim that_, (w) equals.(w) in U, ;N U, . Taking this for granted, the second assertion
follows, since we have

Ur:U|X\<w/2Ur,X- (88)
To prove the claim we first take e [0,7/2). Fixingw € U, ;N U, ,, we then have
inf {Ree'*w)}=min(Rew,RegeXw))=r+ ¢ (B9)
$e[0.x]

with €= e(w)>0. Using(B1) we now obtain
lexp(—wté?)h(te'?)|<C(x)e™ <, V(¢,t)e[0,x]X[02). (B10)

This bound entails that the integral ®f?h(z) over the contour=Ke'?,¢ e [0,x], vanishes for
K —o. Thus we may replace the contaeX,t e [0%), in thez-plane by the positive real axis,
yielding L, (w) =L (w). This proves our claim for non-negatixe and the same reasoning applies
to negativey.

It remains to prove(B4). To this end we fixw € Sz, . In view of (B5) we can find¢
e [—x,x] such that Rege'¥)=R. Then we get

|L(W)|=|L¢(w)|$f:|exp(—Wtei¢)h(tei‘/’)|dt$C(X)f:e’Rte“dt=C(x)(R—r)’l,
(B11)

where we usedB1). Thus(B4) holds true. O
To illustrate how this result can be applied, we consider the Laplace transform
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Aw)= fowe‘W‘f(t)dt, (B12)
1 1
f(t)E ?—a, (813)

occurring on the rhs ofA30). Integrating by part® times, we obtain
n o
Aw)— D, w"f("l)(O):W’”f e Wi M(t)dt. (B14)
I=1 0

Now the functionh(t)=f((t) satisfies the assumptions of Theorem B.1 with0, so (B4)
yields a bound on the remainder integral that is uniforngdn, ; fixing 6>0, the sectorial region
|Argw| < /2+ x — 6,|w|=K, belongs taSg , for K=K(4,R,x) large enough, cf. Fig. 1.

The Laplace transform ifA35) can be handled in the same way. This yields an asymptotic
expansion that is substantially equivalent to the Stirling series, valid uniformly in sectorial regions
of the above type.

For applications in the main text, however, we shall exploit Theorem B.1 to obtain uniform
estimates pertaining to the Laplace transforms

:%]-(w):j e Wi, (dt, j=1,2,3, (B15)
0
with
1
f1= 7 (20— shtctht/2)=11(0)=0, f1(0)=—\(2A*+1)/6, (816
1 e Mg #
shhtshutshkt
fy= o =13(0)=0, 5(0)=hux. (B18)

Then the functionsh,=f7,h,=f, and h;=f} satisfy the hypotheses of Theorem B.1. Corre-
spondingly, we deduce the bounds

A(2\%+1) C1(x,\) B
LW\ + o2 ‘s WI(R=T7)" r{=|I\|, (B19)
B (A=) (N +u+1)|  Colx.\,u,)
Lo(W,N, ) — = ,  r=max|\|, , B20
2(W, N, 2) o WiR=ry =MD, (®20
_ )\MK C3(X!)\1/~L:K)
;%:;(W,)\,,LL,K)_ W2 = |W2|(R—r3) ' r3E|)\|+|lu’|+|K|1 (821)

which hold true forR>r; and allw € Sz, . The functionsC; are positive and non-decreasing in
x for fixed values of the parameters, and they are continuous in the parameters foy.fixed
Recalling(A40), one easily obtains a corresponding bound on

F(W,\)=exp(2.%1(W,\)). (B22)
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» X

FIG. 1. The regiorg , and the complement of the regids .

We will need this bound in Subsection Ill A. Similarly, frofA38) one has

T'(W+\)

Fwr g &= e LWk ), (B23)

and the bound on the lhs following frofB20) will be used several times in Subsection IV A. For
the applications ofB19) and (B20) we do not need a bound on the parameter dependence of
C, andC,; continuity in the parameters suffices. As concei®21), however, it is important to
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have more information o€;. Indeed, in Subsection IV A we shall ugg21) on four occasions;
in two cases the parameters vary otecompacts, but in the remaining applications one or two
parameters go to infinity.

In order to control this divergence, we first note that the function

n(t,p)= 0 (824

satisfies the bounds
laih(te'?,p)<d;(x)|p|"* texp|plt),  V(t,4,p) e[02) X[ — x,x]XC, (B25)

with d; positive non-decreasing functions of0,7/2), and j=0,1,2. (Write h as
pf(pt),f(x)=skx/x, to verify this) Factorizingf; accordingly, we deduce that the functiég in
the bound(B1) on 3 satisfies

|C3(x N, ) [<AOO N  (INP+ [P+ [ )2+ N g + [N |+ [ o] (B26)

with d positive and non-decreasing ¢0,7/2). This bound on the parameter dependence is
sufficient for our purposes.
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