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Abstract

We survey our work on a number of special functions that can be viewed as
solutions to analytic difference equations. In the infinite-dimensional solution spaces
of the pertinent equations, these functions are singled out by various distinctive
features. In particular, starting from certain first order difference equations, we
consider generalized gamma and zeta functions, as well as Barnes’ multiple zeta
and gamma functions. Likewise, we review the generalized hypergeometric function
we introduced in recent years, emphasizing the four second order Askey-Wilson type
difference equations it satisfies. Our results on trigonometric, elliptic and hyperbolic
generalizations of the Hurwitz zeta function are presented here for the first time.
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1 Introduction

In the following we survey various special functions whose common feature is that they
can be viewed as analytic solutions to (ordinary linear) analytic difference equations with
analytic coefficients. Some of these functions have been known and studied for centuries,
whereas a few others are of quite recent vintage.

The difference equations that will be relevant for our account are of three types. The
first type is the first order equation

F (z + ia/2)

F (z − ia/2)
= Φ(z), a > 0, (1.1)

and the second type its logarithmic version,

f(z + ia/2)− f(z − ia/2) = φ(z). (1.2)

The third type is the second order equation

C(+)(z)F (z + ia) + C(−)(z)F (z − ia) + C(0)(z)F (z) = 0, a > 0. (1.3)

Introducing the spaces

M≡ {F (z) | F meromorphic}, (1.4)

M∗ ≡M\ {F (z) = 0,∀z ∈ C}, (1.5)

we require
Φ, C(±), C(0) ∈M∗, (1.6)

and we only consider solutions F ∈ M to the equations (1.1) and (1.3). The right-hand
side functions φ(z) in (1.2) are allowed to have branch points, giving rise to solutions f(z)
that have branch points, as well.

We are primarily interested in analytic difference equations (henceforth A∆Es) ad-
mitting solutions with various properties that render them unique. In this connection
a crucial point to be emphasized at the outset is that the solutions form an infinite-
dimensional space (assuming at least one non-trivial solution exists). More specifically,
introducing spaces of α-periodic multipliers,

P(∗)
α ≡ {µ(z) ∈M(∗) | µ(z + α) = µ(z)}, α ∈ C∗, (1.7)

and assuming F ∈ M∗ solves (1.1) or (1.3), it is obvious that µ(z)F (z), µ ∈ P∗
ia, is also

a solution. Likewise, adding any µ ∈ P∗
ia to a given solution f(z) of (1.2), one obtains

another solution.
In view of this infinite-dimensional ambiguity, it is natural to try and single out solu-

tions by requiring additional properties. In a nutshell, this is how the special functions at
issue in this contribution will arise. The extra properties alluded to will be made explicit
in Section 2, with Subsection 2.1 being devoted to the first order equations (1.1) and
(1.2), and Subsection 2.2 to the second order one (1.3).

Section 2 is the only section of a general nature. In the remaining sections we focus
on special A∆Es, giving rise to generalized gamma functions (Section 3), generalized zeta
functions (Section 4), the multiple zeta and gamma functions introduced and studied
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by Barnes (Section 5), and a novel generalization of the hypergeometric function 2F1

(Section 6). This involves special A∆Es of the multiplicative type (1.1) for the various
gamma functions, of the additive type (1.2) for the zeta functions, and of the second order
type (1.3) for our generalized hypergeometric function.

The special functions surveyed in Sections 3 and 6 play an important role in the context
of quantum Calogero-Moser systems of the relativistic variety. Here we will not address
such applications. We refer the interested reader to our lecture notes Refs. [1, 2] for an
overview of Calogero-Moser type integrable systems and the special functions arising in
that setting. The present survey overlaps to some extent with Sections 2 and 3 of Ref. [2],
but for lack of space we do not consider generalized Lamé functions. The latter can also
be regarded as special solutions to second order A∆Es. They are surveyed in Section 4
of Ref. [2] and in Ref. [3].

2 Ordinary linear A∆Es

In most of the older literature, nth order ordinary linear A∆Es are written in the form

n∑
k=0

ck(w)u(w + k) = 0, w ∈ C. (2.1)

Here, the coefficients c0(w), . . . , cn(w) have some specified analyticity properties, and one
is looking for solutions u(w) with corresponding properties. We have adopted a slightly
different form for the A∆Es (1.1), (1.3), since this is advantageous for most of the special
cases at issue. (Note that these A∆Es can be written in the form (2.1) by taking z → iw,
shifting and scaling.)

To provide some historical perspective, we mention that the subject of analytic differ-
ence equations burgeoned in the late 18th century and was vigorously pursued in the 19th
century. In the course of the 20th century, this activity subsided considerably. Nörlund
was one of the few early 20th century authors still focussing on (ordinary, linear) A∆Es.
His well-known 1924 monograph Ref. [4] summarized the state of the art, in particular
as regards his own extensive work. Later monographs from which further developments
can be traced include Milne-Thompson (1933) [5], Meschkowski (1959) [6], and Immink
(1984) [7].

Toward the end of the 20th century, it became increasingly clear that a special class
of partial analytic difference equations plays an important role in the two related areas
of quantum integrable N -particle systems and quantum groups. An early appraisal of
this state of affairs (mostly from the perspective of integrable systems) can be found in
our survey Ref. [8]. The most general class of A∆Es involved can be characterized by
the coefficient functions that occur: They are combinations of Weierstrass σ-functions
(equivalently, Jacobi theta functions).

Even for the case of ordinary A∆Es (to which we restrict attention in this contribu-
tion), this class of coefficients, referred to as ‘elliptic’ for brevity, had not been studied
in previous literature. Our outlook on the general first order case, which we present in
Subsection 2.1, arose from the need to handle the elliptic case and its specializations.
In the same vein, the aspects of the second order case dealt with in Subsection 2.2 are
anticipating later specializations. In particular, we point out some questions of a gen-
eral nature that, to our knowledge, have not been addressed in the literature, and whose
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answers would have an important bearing on the special second order A∆Es for which
explicit solutions are known.

2.1 First order A∆Es

In this subsection we summarize some results concerning A∆Es of the forms (1.1) and
(1.2), which we will use for the special cases in Sections 3–5. The pertinent results are
taken from our paper Ref. [9], where proofs and further details can be found.

To start with, let us point out that all solutions to (1.1) satisfy

F (z + ika) ≡
k∏

j=1

Φ(z + (j − 1/2)ia) · F (z), (2.2)

F (z − ika) ≡
k∏

j=1

1

Φ(z − (j − 1/2)ia)
· F (z). (2.3)

Whenever Φ(x + iy), x, y ∈ R, converges to 1 for y → ∞, uniformly for x varying over
arbitrary compact subsets of R and sufficiently fast, the infinite product

F+(z) ≡
∞∏

j=1

1

Φ(z + (j − 1/2)ia)
(2.4)

defines a solution referred to as the upward iteration solution. Similarly, the downward
iteration solution

F−(z) ≡
∞∏

j=1

Φ(z − (j − 1/2)ia) (2.5)

exists provided Φ(x + iy) → 1 for y → −∞ (uniformly on x-compacts and sufficiently
fast).

The restrictions on Φ(z) for iteration solutions to exist are clearly quite strong. Indeed,
they are violated in most of the special cases considered below. It is however possible to
modify the iteration procedure, so as to handle larger classes of right-hand side functions
Φ(z). This is the approach taken by Nörlund [4], which gives rise to the special solution
he refers to as the ‘Hauptlösung’ (cf. also Ref. [10]).

Nörlund’s methods do not apply to the case where Φ(z) is an elliptic or hyperbolic
function, whereas the solution methods we consider next do not apply to all of Nörlund’s
class of Φ(z). The latter methods, however, can be used in particular for elliptic and
hyperbolic right-hand sides Φ(z). (Specifically, by exploiting the elliptic and hyperbolic
gamma functions of Subsections 3.3 and 3.4.)

We begin by imposing a rather weak requirement: We restrict attention to functions
Φ(z) without poles and zeros in a strip |Im z| < c, c > 0. (Usually, this can be achieved by
a suitable shift of z.) Then we can take logarithms to trade the multiplicative A∆E (1.1)
for the additive one (1.2), with z restricted to the strip |Im z| < c. Let us next require that
φ(z) have at worst polynomial increase on the real axis. Then we may and will restrict
attention to solutions f(z) that are polynomially bounded in the strip |Im z| ≤ a/2 and
that are moreover analytic for |Im z| < c + a/2.

We call solutions f(z) of the form just delineated minimal solutions: Their analytic
behavior and asymptotics for |Re z| → ∞ are optimal. The polynomial boundedness is
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critical in proving that minimal solutions are unique up to an additive constant, whenever
they exist. (Note that entire ia-periodic functions such as ch(2πz/a) are not polynomially
bounded.)

It is readily verified that the resulting function F (z) = exp(f(z)) extends to a mero-
morphic solution of (1.1) that has no poles and zeros for |Im z| < c + a/2, and whose
logarithm is polynomially bounded for |Im z| ≤ a/2. Once more, solutions to (1.1) with
the latter properties are termed minimal, and now they are unique up to a multiplier
α exp(2πkz/a), α ∈ C∗, k ∈ Z. (The exponential ambiguity reflects the ambiguity in the
branch choice for ln Φ(z).)

A large class of right-hand sides arises as follows. Assume that φ(z) satisfies (in
addition to the above)

φ(x) ∈ L1(R), φ̂(y) ∈ L1(R), φ̂(y) = O(y), y → 0. (2.6)

Here, φ̂(y) denotes the Fourier transform, normalized by

φ̂(y) ≡ 1

2π

∫ ∞

−∞
dxφ(x)eixy. (2.7)

Then the function

f(z) =

∫ ∞

−∞
dy

φ̂(2y)

shay
e−2iyz, |Im z| ≤ a/2, (2.8)

is clearly well defined, and analytic for |Im z| < a/2. Proceeding formally, it is also obvious
that f(z) satisfies (1.2) (by virtue of the Fourier inversion formula).

As a matter of fact, it can be shown that the function f(z) defined by (2.8) analytically
continues to |Im z| < c+a/2 and indeed obeys the A∆E (1.2). Moreover, f(z) is bounded
in the strip |Im z| ≤ a/2 and goes to 0 for |Re z| → ∞ in the latter strip. (Therefore, it
is a minimal solution.) The solution f(z) is uniquely determined by these properties. A
useful alternative representation reads

f(z) =
1

2ia

∫ ∞

−∞
duφ(u)th

π

a
(z − u), |Im z| < a/2. (2.9)

(See Theorem II.2 in Ref. [9] for proofs of the facts just mentioned.)
Another extensive class of right-hand sides Φ(z) admitting minimal solutions arises by

assuming that Φ(z) has a real period, in addition to the standing assumption of absence
of zeros and poles in a strip |Im z| < c. To anticipate our later needs, we denote this
period by π/r, r > 0. Now φ(x) = ln Φ(x), x ∈ R, is well defined up to a multiple of
2πi. We assume first that Φ(x) has zero winding number around 0 in the period interval
[−π/2r, π/2r]. Then φ(x) is a smooth π/r-periodic function, too. Defining its Fourier
coefficients by

φ̂n ≡
r

π

∫ π/2r

−π/2r

dxφ(x)e2inrx, n ∈ Z, (2.10)

we also assume at first φ̂0 = 0.
With these assumptions in effect, it is clear that the function

f(z) =
1

2

∑
n∈Z∗

φ̂ne
−2inrz

shnra
, |Im z| ≤ a/2, (2.11)
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is well defined, and analytic for |Im z| < a/2. Again, it is formally obvious (by Fourier
inversion) that f(z) satisfies the A∆E (1.2). Once more, it can be shown that f(z) (2.11)
has an analytic continuation to |Im z| < c + a/2 and solves (1.2) (cf. Theorem II.5 in
Ref. [9]). Thus one obtains minimal solutions to the A∆E (1.1).

Next, we point out that the assumption φ̂0 = 0 is not critical. Indeed, when φ̂0 6= 0,
one need only add the function φ̂0z/ia to f(z) (2.11) to obtain a solution. Of course, this
entails that f(z) is no longer π/r-periodic.

The obvious generalization detailed in the previous paragraph is relevant to the case
in which Φ(z) has winding number l ∈ Z∗ on [−π/2r, π/2r]. Then one needs to take the
z-derivative of the A∆E (1.2) to obtain a rhs φ′(z) that is π/r-periodic, but for which
the zeroth Fourier coefficient of φ′(x) equals 2irl, cf. (2.10). Thus the solution f ′(z)
obtained as just sketched has a term linear in z, and so f(z) is the sum of a π/r-periodic
function and a quadratic function. Clearly, this still gives rise to a minimal solution
F (z) = exp f(z) to the A∆E (1.1).

The idea underlying this construction is easily generalized to functions Φ(z) for which
a suitable derivative of ln Φ(z) has period π/r. Likewise, the Fourier transform method
yielding the minimal solution (2.8) can be generalized to Φ(z) for which φ(z) ≡ ∂k

z ln Φ(z)
has the three properties (2.6) for a suitable k ∈ N∗. (See Theorems II.3 and II.6 in Ref. [9]
for the details.)

We have thus far focussed on the A∆E (1.1) with meromorphic rhs Φ(z) and its
logarithmic version (1.2). But we may also consider (1.2) in its own right, relaxing the
requirement that exp φ(z) be meromorphic to the requirement that φ(z) be analytic for
|Im z| < c. In that case the above —inasmuch as it deals with (1.2)—is still valid.
Moreover, the analytic continuation behavior of the minimal solution f(z) follows from
the A∆E (1.2), in the sense that one can extend f(z) beyond the strip |Im z| < c + a/2,
whenever φ(z) can be extended beyond the strip |Im z| < c. For example, a function φ(z)
that has branch points at the edges of the latter strip gives rise to a minimal solution
f(z) that has the same type of branch points at the edges of the former strip.

This more general version of (1.2) is relevant for the various zeta functions encountered
below. In those cases the pertinent functions φ(z) are analytic in a half plane Im z > −c or
in a strip |Im z| < c, and they extend to multi-valued functions on all of C due to certain
branch points for |Im z| ≥ c. Using the A∆E, the zeta functions admit a corresponding
extension. We will not spell that out, however, but focus on properties pertaining to the
analyticity half plane or strip.

2.2 Second order A∆Es

We begin by recalling some well-known facts concerning the general second order A∆E
(1.3), cf. Ref. [4]. Let F1, F2 ∈M∗ be two solutions. Then their Casorati determinant,

D(F1, F2; z) ≡ F1(z + ia/2)F2(z − ia/2)− F1(z − ia/2)F2(z + ia/2), (2.12)

vanishes identically if and only if F1/F2 ∈ Pia. Assuming from now on F1/F2 /∈ Pia, it is
readily verified that the function (2.12) solves the first order A∆E

D(z + ia/2)

D(z − ia/2)
=

C(−)(z)

C(+)(z)
. (2.13)
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Next, assume F3(z) is a third solution to (1.3). Then the functions

µj(z) ≡ D(Fj, F3; z + ia/2)/D(F1, F2; z + ia/2), j = 1, 2, (2.14)

belong to Pia (1.7). (Indeed, quotients of Casorati determinants are ia-periodic in view
of the A∆E (2.13).) It is routine to check that one has

F3(z) = µ1(z)F2(z)− µ2(z)F1(z). (2.15)

Conversely, any function of this form with µ1, µ2 ∈ Pia solves (1.3). Therefore, whenever
two solutions F1, F2 exist with D(F1, F2; z) ∈M∗, the solution space may be viewed as a
two-dimensional vector space over the field Pia of ia-periodic meromorphic functions.

In contrast to ordinary second order differential and discrete difference equations,
various natural existence questions have apparently not been answered in the literature.
As a first example, the existence of a solution basis as just considered seems not to be
known in general.

Further questions arise in the following situation. Assume that two A∆Es of the above
form,

C
(+)
δ (z)F (z + ia−δ)+C

(−)
δ (z)F (z− ia−δ)+C

(0)
δ (z)F (z) = 0, aδ > 0, δ = +,−, (2.16)

are given. Then one may ask for conditions on the two sets of coefficients such that joint
solutions F ∈ M∗ exist. Next, assume there do exist two joint solutions to (2.16) whose
Casorati determinants w.r.t. a+ and a− belong to M∗. When a+/a− is rational, this
entails that the joint solution space is infinite-dimensional. (Indeed, letting a+ = pa and
a− = qa with p, q coprime integers, one can allow arbitrary multipliers in Pia.) Now it is
not hard to see that one has

Pia+ ∩ Pia− = C, a+/a− /∈ Q. (2.17)

But it is not clear whether this entails that the joint solution space is two-dimensional for
irrational a+/a−.

On the other hand, assuming F1, F2 ∈M∗ are two joint solutions to (2.16) with a+/a−
irrational, there is a quite useful extra assumption guaranteeing that the solution space
is two-dimensional with basis {F1, F2}. Specifically, one need only assume

lim
Im z→∞

F1(z)/F2(z) = 0, (2.18)

for all Re z in some open interval. Indeed, the sufficiency of this condition can be eas-
ily gleaned from the proof of Theorem B.1 in Ref. [11], where certain special cases are
considered.

Questions about joint solutions arise from commuting operator pairs, not only in the
elliptic context of Ref. [11], but also in the hyperbolic one of Ref. [12] and Section 6. In
order to detail the latter setting in general terms, consider the eigenvalue problems for
the analytic difference operators

Aδ ≡ Cδ(z)Tia−δ
+ Cδ(−z)T−ia−δ

+ Vδ(z), δ = +,−, (2.19)

on M, with Cδ ∈ P∗
iaδ

, Vδ ∈ Piaδ
, and T±iaδ

given by

(TαF )(z) ≡ F (z − α), α ∈ C∗. (2.20)
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Thus we are interested in solutions to the A∆Es

AδF = EδF, Eδ ∈ C, δ = +,−. (2.21)

Fixing E+ and E−, these are of the form considered before. Moreover, since A+ and A−
clearly commute, it is reasonable to ask for joint solutions.

In Section 6 we encounter an operator pair with this structure. Furthermore, we have
one joint solution R(z) available for a family of joint eigenvalues (E+(p), E−(p)), p ∈ C.
Fixing p, the three solutions R(z+ ia+), R(z− ia+) and R(z) to the A∆E A+F = E+(p)F
are related via the A∆E (A−R)(z) = E−(p)R(z) with coefficients in Pia− , in agreement
with the general theory. Put differently, when one fixes attention on one of the A∆Es,
the other A∆E can be viewed as an extra requirement of monodromy type.

The coefficients occurring in Section 6 are analytic in the shift parameters a+, a− for
a+, a− ∈ C∗, and entire in four extra parameters. The joint solution R(z) is real-analytic in
a+, a− for a+, a− ∈ (0,∞) and meromorphic in the extra parameters. But we do not know
whether another joint solution exists for general parameters. On the other hand, upon
specializing the extra parameters, we do obtain two joint solutions for all a+, a− ∈ (0,∞)
and p ∈ C, which moreover satisfy the extra condition (2.18) for all Re z > 0 and p in the
right half plane, cf. Ref. [12].

In the latter article we also arrive at a commuting analytic difference operator pair
Bδ(b), b ∈ C, as considered above, which depends analytically on the extra parameter b,
and which admits joint eigenfunctions for a set of (a+, a−, b) that is dense in (0,∞)2 ×
R. But from the properties of these eigenfunctions one can deduce that the pair does
not admit joint eigenfunctions depending continuously on a+, a−, b. (See the paragraphs
between Eqs. (3.11) and (3.12) in Ref. [12].) From such concrete examples one sees that
expectations based on experience with analytic differential equations need not be borne
out for analytic difference equations.

3 Generalized gamma functions

When F (z) solves the first order A∆E (1.1), it is evident that 1/F (z) solves the A∆E with
rhs 1/Φ(z). Likewise, when F1(z), F2(z) are solutions to the A∆Es with right-hand sides
Φ1(z), Φ2(z), then F1(z)F2(z) clearly solves the A∆E with rhs Φ1(z)Φ2(z). Since elliptic
right-hand sides Φ(z) and their various degenerations admit a factorization in terms of the
Weierstrass σ-function and its degenerations, it is natural to construct ‘building block’
solutions corresponding to the σ-function and its trigonometric, hyperbolic and rational
specializations.

We refer to the building blocks reviewed below as generalized gamma functions. In-
deed, in the rational case considered in Subsection 3.1, the pertinent gamma function
amounts to Euler’s gamma function. Trigonometric, elliptic and hyperbolic gamma func-
tions are surveyed in Subsections 3.2–3.4. As we will explain, these functions can all be
viewed as minimal solutions, rendered unique by normalization requirements. They were
introduced and studied from this viewpoint in Ref. [9]. The hyperbolic gamma function
will be a key ingredient in Section 6, where we need a great many of its properties sketched
in Subsection 3.4.
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3.1 The rational gamma function

We define the rational gamma function by

Grat(a; z) ≡ (2π)−1/2 exp(−iz

a
ln a)Γ(−iz

a
+

1

2
). (3.1)

(This definition deviates from our previous one in Ref. [2] by the first two factors on the
rhs. We feel that the present definition is more natural from the perspective of the zeta
functions in Sections 4 and 5.) The Γ-function A∆E Γ(x + 1) = xΓ(x) entails that Grat

solves the A∆E
G(z + ia/2)

G(z − ia/2)
= −iz. (3.2)

More generally, when Φ(z) is an arbitrary rational function, we can solve the A∆E (1.1)
by a function F (z) of the form

F (z) = exp(c0 + c1z)

∏M
j=1 Grat(a; z − αj)∏N
k=1 Grat(a; z − βk)

. (3.3)

Indeed, when we let the integers N, M vary over N and c1, αj, βk over C, then we obtain
all rational functions on the rhs of (1.1) (save for the zero function, of course).

We now explain the relation of Grat to the notion of ‘minimal solution’. To this end
we first of all need a shift of z on the rhs of (3.2) in order to get a function Φ(z) that is
analytic and free of zeros in a strip around the real axis. Taking

Φ(z) ≡ −i(z + ia/2), (3.4)

a simple contour integration yields

1

2π

∫ ∞

−∞
dxeixy∂2

x ln Φ(x) =

{
−ay exp(ay/2), y < 0,
0, y ≥ 0.

(3.5)

Therefore φ(z) ≡ ∂2
z ln Φ(z) has the three properties (2.6), and the corresponding minimal

solution (2.8) is then given by

f(z) = −2

∫ 0

−∞
dy

yeay

shay
e−2iyz. (3.6)

The point is now that the rhs of (3.6) equals ∂2
z ln Grat(a; z + ia/2), so that Grat(a; z +

ia/2) may be characterized as a minimal solution to the A∆E with rhs (3.4). It is not
hard to check the asserted equality via Gauss’ formula for the psi function (the logarithmic
derivative of Γ(x)). But one may in fact reobtain various results on the gamma function
(such as Gauss’ formula) by taking the function (3.6) as a starting point. Put differently,
if one would not have been familiar with the gamma function beforehand, one would have
been led to it (and to a substantial part of its theory) via the ‘minimal solution’ approach
sketched above.

We have worked out the details of this useful perspective on Euler’s gamma function
in Appendix A of our paper Ref. [9]. We cite in particular one Γ-function representation
derived there, which we have occasion to invoke in Subsection 4.1. It reads

Γ(w) = (2π)1/2 exp

(∫ ∞

0

dt

t

(
(w − 1

2
)e−t − 1

t
+

e−wt

1− e−t

))
, Re w > 0, (3.7)
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cf. Eq. (A37) in Ref. [9]. Here we only add a few more remarks on several features that
are important with an eye on the generalized gamma functions introduced and studied in
later subsections.

First, it should be observed that the shift of z by ia/2 is arbitrary; any shift z →
z + ic, c > 0, would yield substantially the same conclusions.

Second, a shift z → z− ic, c > 0, on the rhs of (3.2) yields in the same way as sketched
above solutions to (3.2) of the form α exp(−iza−1 ln a) exp((2k + 1)πz/a)/Γ(iz/a + 1/2),
with α ∈ C∗, k ∈ Z. Hence the quotient of such a solution and Grat(a; z) is ia-periodic.
This is in agreement with the well-known reflection equation, which becomes here

Γ(
iz

a
+

1

2
)Γ(−iz

a
+

1

2
) = πch(

πz

a
)−1. (3.8)

(This identity can also be derived from the A∆E-viewpoint, cf. Appendix A in Ref. [9].)
Third, we recall that the minimal solutions to the A∆E (1.1) with rhs (3.4) (obtained

via twofold integration of f(z) (3.6)) are analytic and zero-free for |Im z| < a. From the
A∆E one then sees that they are analytic and zero-free for all z not in −iaN∗, whereas
they have simple poles for z = −iak, k ∈ N∗. (Similarly, the shift z → z − ic, c > 0, in
(3.2) yields minimal solutions without poles and with a zero sequence in the upper half
plane.) Of course, this is once again well known for the special function Grat(a; z) (3.1).
It is illuminating to compare its pole sequence

z = −i(k + 1/2)a, k ∈ N, (poles), (3.9)

to those of the generalized gamma functions introduced below.

3.2 The trigonometric gamma function

In the same way as Grat(a; z) (3.1) serves as a building block to solve A∆Es with rational
right-hand sides, the trigonometric gamma function can be used to handle trigonometric
functions Φ(z) with period π/r. (More precisely, functions in the field C(exp(2irz)).)
Specifically, letting

F (z) = exp(c0 + c1z + c2z
2)

∏M
j=1 Gtrig(r, a; z − αj)∏N
k=1 Gtrig(r, a; z − βk)

, (3.10)

with Gtrig(r, a; z) solving
G(z + ia/2)

G(z − ia/2)
= 1− exp(2irz), (3.11)

one obtains all trigonometric functions by letting N, M vary over N and c1, c2, αj, βk over
C in the quotient F (z − ia/2)/F (z + ia/2).

The obvious solution to (3.11) is the upward iteration solution

Gtrig(r, a; z) ≡
∞∏

k=1

(1− q2k−1e2irz)−1, q ≡ e−ar. (3.12)

Indeed, the infinite product clearly converges, yielding a meromorphic solution without
zeros and with poles for

z = jπ/r − i(k + 1/2)a, j ∈ Z, k ∈ N, (poles). (3.13)
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Another representation for Gtrig arises by writing

∞∏
k=1

(1− q2k−1e2irz)−1 = exp(−
∞∑

k=1

ln(1− q2k−1e2irz)), (3.14)

and using the elementary Fourier series

ln(1− e2ir(z+ic)) = −
∞∑

n=1

e2inr(z+ic)

n
, c > 0. (3.15)

Indeed, this gives rise to the formula

Gtrig(r, a; z) = exp

(
∞∑

n=1

e2inrz

2nshnra

)
, Im z > −a/2, (3.16)

as is easily checked.
Taking z → z + ic, c > 0, in the A∆E (3.11), it is of the form discussed in Subsec-

tion 2.1. Taking next logarithms and using (3.15), one deduces that (3.16) amounts to
the special solution (2.11). That is, Gtrig(r, a; z) is once more a minimal solution to the
(shifted) A∆E (3.11). As such, it is uniquely determined by the asymptotics

Gtrig(r, a; z) ∼ 1, Im z →∞, (3.17)

which can be read off from (3.16).
Our trigonometric gamma function is closely related to Thomae’s q-gamma function

Γq(x) [13]: One has

Gtrig(r, a; z) = exp(c0 + c1z)Γexp(−2ar)(−
iz

a
+

1

2
), (3.18)

for suitable constants c0, c1. The A∆E-perspective from which Gtrig arises leads to various
other features that are detailed in Ref. [9]. A useful limit that is not mentioned explicitly
there reads

lim
r↓0

exp(− π2

12ar
)Gtrig(r, a; 0) = 2−1/2. (3.19)

(This follows by combining Eqs. (3.128), (3.129) and (3.154) in loc. cit., taking z = 0.)
Using Proposition III.20 in loc. cit., we then deduce

lim
r↓0

exp

(
− π2

12ar
+

iz

a
ln(2r)

)
Gtrig(r, a; z) = Grat(a; z). (3.20)

Finally, we point out that it is evident from the infinite product representation (3.12)
that one can allow r to vary over the (open) right half plane, whereas one cannot take
r ∈ iR. This is why one needs another building block function to handle hyperbolic
right-hand side functions Φ(z) in the A∆E (1.1), cf. Subsection 3.4.
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3.3 The elliptic gamma function

The elliptic gamma function is the minimal solution to the A∆E

G(z + ia/2)

G(z − ia/2)
= exp

(
−

∞∑
n=1

cos(2nrz)

nsh(nrb)

)
, |Im z| < b, (3.21)

obtained via the formula (2.11):

Gell(r, a, b; z) ≡ exp

(
i
∞∑

n=1

sin(2nrz)

2nsh(nra)sh(nrb)

)
, |Im z| < (a + b)/2. (3.22)

Indeed, our definition entails that the functions

F (z) = exp(c0 + c1z + c2z
2 + c3z

3)

∏M
j=1 Gell(r, a, b; z − αj)∏N
k=1 Gell(r, a, b; z − βk)

, (3.23)

give rise to all elliptic right-hand side functions Φ(z) with periods π/r and ib.
To explain why this is true, we recall first that any elliptic function with periods π/r

and ib admits a representation as

α
N∏

j=1

σ(z − γj;
π
2r

, ib
2
)

σ(z − δj;
π
2r

, ib
2
)
, (3.24)

where α, γj, δj ∈ C. The crux is now that the function on the rhs of (3.21) is of the form

exp(d0 + d1z + d2z
2)σ(z + ib/2;

π

2r
,
ib

2
). (3.25)

Hence the functions F (z+ia/2)/F (z−ia/2), with F (z) given by (3.23), yield all functions
(3.24) (with α 6= 0) by choosing

N = M, αj = γj + ib/2, βj = δj + ib/2, j = 1, . . . , N, (3.26)

and appropriate constants c1, c2, c3 determined by the constants α, d0, d1 and d2.
Next, we mention that the elliptic gamma function can also be written as an infinite

product

Gell(r, a, b; z) =
∞∏

m,n=1

1− q2m−1
a q2n−1

b e−2irz

1− q2m−1
a q2n−1

b e2irz
, qa ≡ e−ar, qb ≡ e−br. (3.27)

To check this, one need only proceed as in the trigonometric case: The infinite product
can be written as the exponential of a series; using the Fourier series (3.15) and summing
the resulting geometric series yields (3.22).

From (3.27) one can read off meromorphy in z and the locations of poles and zeros.
Specifically, one obtains the doubly-infinite sequences

z = jπ/r − i(k + 1/2)a− i(l + 1/2)b, j ∈ Z, k, l ∈ N, (poles), (3.28)

z = jπ/r + i(k + 1/2)a + i(l + 1/2)b, j ∈ Z, k, l ∈ N, (zeros). (3.29)
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It is immediate from the product representations (3.12) and (3.27) that one has

Gtrig(r, a; z) = lim
b↑∞

Gell(r, a, b; z − ib/2). (3.30)

It is also not difficult to see that for the renormalized function

G̃ell(r, a, b; z) ≡ exp(
π2z

6irab
)Gell(r, a, b; z), (3.31)

the r ↓ 0 limit exists. This yields the function

Ghyp(a, b; z) = lim
r↓0

G̃ell(r, a, b; z), (3.32)

studied in the next subsection. For further properties of the elliptic gamma function we
refer to Subsection III.B in Ref. [9].

3.4 The hyperbolic gamma function

The defining A∆E of the hyperbolic gamma function reads

G(z + ia/2)

G(z − ia/2)
= 2ch(πz/b). (3.33)

Clearly, any solution Ghyp(a, b; z) of (3.33) can be used to solve (1.1) with Φ(z) an arbitrary
hyperbolic function with period ib. Indeed, all functions Φ ∈ C(exp(2πz/b)) arise via
functions of the form

F (z) = exp(c0 + c1z + c2z
2)

∏M
j=1 Ghyp(a, b; z − αj)∏N
k=1 Ghyp(a, b; z − βk)

. (3.34)

As before, there is a certain arbitrariness in the choice of A∆E for the building block
function. Our choice 2ch(πz/b) together with the requirement that the solution be min-
imal will lead us to a function Ghyp(a, b; z) with various features that would be spoiled
by any other choice, however. (In particular, the constant 2 cannot be changed without
losing the remarkable (a ↔ b)-invariance of the hyperbolic gamma function (3.35).)

Following the method to construct minimal solutions sketched in Subsection 2.1, one
readily verifies that φ(z) ≡ ∂3

z ln(2ch(πz/b)) has the three properties (2.6). The Fourier
transform can be done explicitly, and integrating up three times then yields our hyperbolic
gamma function,

Ghyp(a, b; z) ≡ exp

(
i

∫ ∞

0

dy

y

(
sin(2yz)

2sh(ay)sh(by)
− z

aby

))
, |Im z| < (a + b)/2. (3.35)

Since Ghyp(a, b; z) has no poles and zeros in the strip |Im z| < (a + b)/2, one readily
deduces from the defining A∆E (3.33) that Ghyp extends to a meromorphic function with
poles and zeros given by

z = −i(k + 1/2)a− i(l + 1/2)b, k, l ∈ N, (poles), (3.36)

z = i(k + 1/2)a + i(l + 1/2)b, k, l ∈ N, (zeros). (3.37)
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In Section 6 we need various other properties of Ghyp(a, b; z). Some automorphy prop-
erties are immediate from (3.35): One has

Ghyp(a, b;−z) = 1/Ghyp(a, b; z), (3.38)

Ghyp(a, b; z) = Ghyp(b, a; z), (3.39)

Ghyp(λa, λb; λz) = Ghyp(a, b; z), λ > 0. (3.40)

It is also easy to establish from the defining A∆E that the multiplicity of a pole or zero
z0 equals the number of distinct pairs (k, l) ∈ N2 giving rise to z0, cf. (3.36), (3.37). In
particular, the pole at −i(a+ b)/2 and zero at i(a+ b)/2 are simple, and for a/b irrational
all poles and zeros are simple.

The remaining properties we have occasion to use are not clear by inspection, and we
refer to Subsection IIIA in Ref. [9] for a detailed account. First, we need to know the
residue at the simple pole −i(a + b)/2. It is given by

Res(−i(a + b)/2) =
i

2π
(ab)1/2. (3.41)

(Here and below, we take positive square roots of positive quantities.)
Second, we need two distinct zero step size limits of the hyperbolic gamma function.

The first one reads

lim
b↓0

Ghyp(π, b; z + iλb)

Ghyp(π, b; z + iµb)
= exp((λ− µ) ln(2chz)), (3.42)

where the limit is uniform on compact subsets of the cut plane

C \ {±iz ∈ [π/2,∞)}. (3.43)

When λ − µ is an integer, this limit is immediate from the (a ↔ b)-invariance of Ghyp

and the A∆E (3.33). For λ−µ /∈ Z, the emergence of the logarithmic branch cuts on the
imaginary axis may be viewed as a consequence of the coalescence of an infinite number
of zeros and poles on the cuts.

The second zero step size limit yields the connection to the Γ-function. Consider the
function

H(ρ; z) ≡ Ghyp(1, ρ; ρz + i/2) exp(iz ln(2πρ))/(2π)1/2. (3.44)

From the A∆E (3.33) and its (a ↔ b)-counterpart one sees that H satisfies the A∆E

H(ρ; z + i/2)

H(ρ; z − i/2)
=

ish(πρz)

πρ
, (3.45)

and reflection equation
H(ρ; z)H(ρ;−z) = π−1chπz. (3.46)

(Recall also (3.38) to check (3.46).) Therefore, it should not come as a surprise that one
has

lim
ρ↓0

H(ρ; z) = 1/Γ(iz + 1/2), (3.47)

uniformly for z in C-compacts.
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We have made a (convenient) choice for the first parameter a of the hyperbolic gamma
function, but it should be pointed out that the scale invariance (3.40) can be used to handle
arbitrary a. In particular, recalling the definition (3.1), this yields the limit

lim
b↑∞

exp

(
iz

a
ln(2π/b)

)
Ghyp(a, b; z − ib/2) = Grat(a; z), (3.48)

which should be compared to the trigonometric limit (3.20).
Third, we need the |Re z| → ∞ asymptotics of Ghyp. To detail this, we set

c ≡ max(a, b), σ = 1− ε, ε > 0. (3.49)

Then we have

∓i ln Ghyp(a, b; z) = −πz2

2ab
− π

24

(
a

b
+

b

a

)
+ O(exp(∓2πσRe z/c), Re z → ±∞. (3.50)

Here, the bound is uniform for Im z in R-compacts, but it is not uniform as ε ↓ 0, since it
is false for σ = 1 and a = b.

Finally, in Subsection 4.4 we need the representation

∂z ln Ghyp(a, b; z) =
π

2ia2

∫ ∞

−∞
du

ln(2ch(πu/b))

ch2(π(z − u)/a)
, |Im z| < a/2, (3.51)

which cannot be found in Ref. [9]. To prove its validity, we first note that when we take
two more z-derivatives, then the resulting formula amounts to a special case of (2.9).
Indeed, this follows upon trading the z-derivatives for u-derivatives, and then integrating
by parts three times.

As a consequence, ∂z ln Ghyp is given by the rhs of (3.51) plus a term of the form Az+B.
Now since ∂zGhyp/Ghyp is even, we must have A = 0. To show B = 0, we consider the
Re z →∞ asymptotics of the rhs of (3.51). Changing variables u → z−x, it is routine to
check it reads −iπz/ab + o(1). Comparing to the derivative of (3.50) for Re z → ∞, we
deduce B = 0. (By virtue of Cauchy’s formula, it is legitimate to differentiate the bound
(3.50).)

To conclude this subsection we add some further information on the hyperbolic gamma
function. First of all, this function was introduced in another guise and from a quite
different perspective in previous literature—a fact we were not aware of at the time we
wrote Ref. [9]. Indeed, our hyperbolic gamma function is related to a function that
is nowadays referred to as Kurokawa’s double sine function [14]. The latter is usually
denoted S2(x|ω1, ω2), and the relation reads

Ghyp(a, b; z) = S2(iz + (a + b)/2|a, b). (3.52)

The first occurrence of the double sine function is however in a series of papers by
Barnes, published a century ago. He generalized the gamma function from another view-
point to his so-called multiple gamma functions; the double sine function is then a quotient
of two double gamma functions. We return to Barnes’ multiple gamma functions in Sub-
section 5.2, where they will be tied in with the minimal solution ideas of Subsection 2.1.

Multiple gamma functions show up in particular in number theory. The double gamma
and sine functions were studied from this viewpoint in a paper by Shintani [15]. He derived
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a product formula that can be used to tie in the hyperbolic and trigonometric gamma
functions in a quite explicit way, and we continue by presenting the pertinent formulas.

First, we should mention that Ghyp(a, b; z) admits a representation as an infinite prod-
uct of Γ-functions, from which meromorphy properties in a, b and z follow by inspection.
To be specific, using the scale-invariant variables

λ ≡ −iz/a, ρ ≡ b/a, (3.53)

one has

Ghyp(a, b; z +
ia

2
)2 = 2 cos(πλ/ρ)e2λ ln 2

·
∞∏

j=0

Γ((j + 1
2
)ρ + λ)

Γ((j + 1
2
)ρ− λ)

Γ(1 + (j + 1
2
)ρ + λ)

Γ(1 + (j + 1
2
)ρ− λ)

e−4λ ln(j+ 1
2
)ρ. (3.54)

Here, one needs ρ ∈ C \ (−∞, 0] for the infinite product to converge, cf. Prop. III.5 in
Ref. [9]. (Observe that for non-real ρ the poles and zeros on the rhs are double, as should
be the case.)

It follows in particular from this representation that Ghyp(a, b; z) has an analytic con-
tinuation to b ∈ i(0,∞). Now for b = iπ/r, r > 0, the rhs of (3.33) can be rewritten
as

exp(−irz)[1− exp(2ir[z + π/2r])]. (3.55)

Comparing to the rhs of (3.11), we deduce that the quotient function

exp(−rz2/2a)Gtrig(r, a; z + π/2r)/Ghyp(a, iπ/r; z) (3.56)

is ia-periodic.
Using Shintani’s formula, we can determine this ia-periodic quotient explicitly. For

the case at hand his product formula amounts to

Ghyp(a, iπ/r; z) = exp

(
−rz2

2a
− 1

24
(ra− π2

ra
)

) ∞∏
k=1

1 + exp(2iπa−1[iz + i(k − 1/2)πr−1])

1 + exp(2ir[z + i(k − 1/2)a])
.

(3.57)
From the definition (3.12) of the trigonometric gamma function we then get the remarkable
relation

Ghyp(a, iπ/r; z) = exp

(
−rz2

2a
− 1

24
(ra− π2

ra
)

)
Gtrig(r, a; z + π/2r)

Gtrig(π/a, π/r; iz + a/2)
, (3.58)

from which the ia-periodic function (3.56) can be read off. (The reader who is familiar
with modular transformation properties may find more information on this angle below
Eq. (A.27) in Ref. [16], where we rederived Shintani’s product formula.)

4 Generalized zeta functions

This section is concerned with the Hurwitz zeta function ζ(s, w), and with ‘trigonometric’,
‘elliptic’ and ‘hyperbolic’ generalizations thereof. These generalizations are arrived at by
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combining the perspective of Subsection 2.1 with the trigonometric, elliptic and hyper-
bolic gamma functions of Section 3, respectively. To our knowledge, the generalized zeta
functions studied in Subsections 4.2–4.4 have not appeared in previous literature. (In any
event, our results reported there are hitherto unpublished.) A different generalization of
the Hurwitz zeta function has been introduced and studied by Ueno and Nishizawa [17].

A suitable specialization also leads to a ‘trigonometric’ and ‘hyperbolic’ generalization
of Riemann’s zeta function ζ(s) = ζ(s, 1). Via the latter we are led to some integral
representations for ζ(s) that seem to be new. See also Suslov’s contribution to these pro-
ceedings [18], where—among other things—different generalizations of ζ(s) are discussed.

4.1 The rational zeta function

The Hurwitz zeta function is defined by

ζ(s, w) ≡
∞∑

m=0

(w + m)−s, Re w > 0, Re s > 1. (4.1)

From this definition it is immediate that ζ(s, w) is a solution to the (additive) first order
A∆E

ζ(w + 1)− ζ(w) = −w−s. (4.2)

Let us now introduce
φs(z) ≡ −(c− iz)−s, c > 0, (4.3)

and consider the A∆E
f(z + i/2)− f(z − i/2) = φs(z). (4.4)

Using Euler’s integral

Γ(x) =

∫ ∞

0

ux−1e−udu, Re x > 0, (4.5)

we may write

φs(z) = − 1

Γ(s)

∫ ∞

0

ts−1e−cteitzdt, Re s > 0, Im z > −c. (4.6)

Thus we have

φ̂s(y) =

{
−(−y)s−1ecy/Γ(s), y < 0,
0, y ≥ 0,

(4.7)

cf. (2.7). Taking Re s ≥ 2, we deduce that φs(z) satisfies the conditions (2.6). The
corrresponding minimal solution (2.8) to the A∆E (4.4) reads

fs(z) =
1

Γ(s)

∫ ∞

0

dy(2y)s−1e−2cye2iyz/shy, Re s ≥ 2, (4.8)

where we may take Im z > −c− 1/2. Writing

1/shy = 2e−y

∞∑
m=0

e−2my, y > 0, (4.9)
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this yields (using (4.5) once more)

fs(z) =
∞∑

m=0

(
1

2
+ m + c− iz)−s = ζ(s,

1

2
+ c− iz), Re s ≥ 2. (4.10)

The upshot is that for Re s ≥ 2 we may view the function ζ(s, 1/2 + c − iz) as the
minimal solution (2.8) to the A∆E (4.4). Note that it manifestly has the properties
mentioned above the alternative representation (2.9). For the case at hand the latter
specializes to

ζ(s,
1

2
+ c− iz) =

i

2

∫ ∞

−∞
(c− iu)−s tanh π(z − u)du. (4.11)

Next, we integrate by parts in (4.11) and change variables to obtain

ζ(s, w) =
π

2(s− 1)

∫ ∞

−∞

(w − 1/2 + ix)1−s

ch2(πx)
dx, Re w > 1/2. (4.12)

Clearly, one can shift the contour up by i(1−ε)/2, ε > 0, so as to handle more generally w
in the right half plane. From these formulas (which we have not found in the literature)
one can easily deduce some well-known features of ζ(s, w).

Specifically, one infers that for Re w > 0 the function s 7→ ζ(s, w) has a meromorphic
continuation to C, yielding a simple pole at s = 1 with residue 1. Moreover, one obtains

ζ(0, w) = 1/2− w, (4.13)

and

∂sζ(s, w)|s=0 = −1

2
+w+

π

2

∫ ∞

−∞

(w − 1/2 + ix) ln(w − 1/2 + ix)

ch2(πx)
dx, Re w > 1/2. (4.14)

The latter formula gives rise to a representation for ln Γ(w) that seems to be new.
Indeed, one also has

∂sζ(s, w)|s=0 = ln Γ(w)− 1

2
ln(2π), Re w > 0. (4.15)

This well-known relation can be more easily derived via the representation

ζ(s, w) =
1

Γ(s)

∫ ∞

0

ts−1e−wt

1− e−t
dt, Re s > 1, (4.16)

which follows from (4.8) and (4.10). Indeed, noting

t

1− e−t
= 1 +

t

2
+ O(t2), t → 0, (4.17)

we can write (using (4.5))

ζ(s, w) =
1

Γ(s)

∫ ∞

0

dt

t2
tse−wt

(
t

1− e−t
− 1− t

2

)
+ w−s

(
w

s− 1
+

1

2

)
. (4.18)
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It is clear by inspection that this representation continues analytically to Re s > −1, and
it yields (using 1/Γ(s) = s + O(s2) for s → 0)

∂sζ(s, w)|s=0 =

∫ ∞

0

dt

t
e−wt

(
1

1− e−t
− 1

t
− 1

2

)
− w + w ln w − ln w

2
. (4.19)

Using the Γ-representation (3.7), it is now straightforward to check (4.15).
The above properties of the Hurwitz zeta function have been known for a long time,

cf. e.g. Ref. [19]. But the minimal solution interpretation of ζ(s, w) seems to be new.
From the A∆E viewpoint it can also be understood why the relation (4.15) between the
zeta and gamma functions holds true. Indeed, due to the (analytic continuation of the)
A∆E (4.2), the lhs of (4.15) satisfies the A∆E

f(w + 1)− f(w) = ln w, (4.20)

just as the rhs. (Of course, the constant does not follow from this reasoning.)
We now introduce a ‘rational zeta function’

Zrat(a; s, z) ≡ a−sζ(s,−iz

a
+

1

2
), a > 0, Im z > −a/2. (4.21)

In view of (4.11) and (4.12), it admits integral representations

Zrat(a; s, z) =
i

2a

∫ ∞

−∞
(−iz + ix)−sth(πx/a)dx, Re s > 1, Im z > 0, (4.22)

Zrat(a; s, z) =
π

2a2(s− 1)

∫ ∞

−∞

(−iz + ix)1−s

ch2(πx/a)
dx, Im z > 0. (4.23)

Furthermore, it satisfies the A∆E

Z(z + ia/2)− Z(z − ia/2) = −(−iz)−s. (4.24)

(As before, it is understood that in (4.22)–(4.24) the logarithm branch is fixed by choosing
ln(−iz) real for z ∈ i(0,∞).) Finally, upon combining (4.15), (4.13) and (3.1), one obtains

∂sZrat(a; s, z)|s=0 = ln(Grat(a; z)), Im z > −a/2. (4.25)

In the following subsections we take the above state of affairs as a lead to introduce
‘zeta functions’ that are minimal solutions to trigonometric, elliptic and hyperbolic gen-
eralizations of (4.24). These generalizations turn out to be such that analogs of (4.25)
are valid, with the rational gamma function replaced by the trigonometric, elliptic and
hyperbolic gamma functions from Subsections 3.2–3.4, resp.

4.2 The trigonometric zeta function

Following the ideas explained at the end of the previous subsection, we start from the
A∆E

Z(z + ia/2)− Z(z − ia/2) = −(1− e2irz)−s. (4.26)

20



Indeed, the s-derivative of the rhs at s = 0 reads ln(1−exp(2irz)), which equals ln Gtrig(z+
ia/2)− ln Gtrig(z− ia/2), cf. Subsection 3.2. Thus we expect to obtain a minimal solution
Ztrig to the (shifted) A∆E (4.26), satisfying

∂sZtrig(r, a; s, z)|s=0 = ln(Gtrig(r, a; z)). (4.27)

We proceed by validating this expectation. Taking z → z + ia/2, we obtain an A∆E

f(z + ia/2)− f(z − ia/2) = −(1− qe2irz)−s

= − exp(s
∞∑

n=1

n−1qne2inrz), (4.28)

to which the theory sketched in Subsection 2.1 applies. Indeed, for all s ∈ C the rhs is
analytic in the half plane Im z > −a/2 and π/r-periodic.

As a consequence, a minimal solution to (4.28) is given by

iz

a
+

1

2

∞∑
k=1

tk(r, a; s)

sh(kra)
e2ikrz, (4.29)

with

tk(r, a; s) =
r

π

∫ π/2r

−π/2r

exp(s
∞∑

n=1

n−1qne2inrx)e−2ikrxdx, k ∈ N∗. (4.30)

Due to analyticity and π/r-periodicity of the integrand, the contour can be shifted down
by i(a− ε)/2 for any ε > 0. From this we obtain a majorization

|tk(r, a; s)| ≤ exp(C(ε)|s|) exp(−kr(a− ε)), k ∈ N∗, (4.31)

where C(ε) > 0 diverges as ε ↓ 0. Now tk(s) is manifestly entire. Hence it readily follows
that the solution (4.29) is analytic in the half plane Im z > −a for fixed s ∈ C, and entire
in s for z in the latter half plane.

We now define the ‘trigonometric zeta function’ by taking z → z−ia/2 in this solution.
Expanding the first exponential in (4.30), one readily obtains

tk(r, a; s) = qkpk(s), (4.32)

with pk(s) the polynomial

pk(s) ≡
k∑

m=1

sm

m!

k∑
n1,...,nm=1

n1+···+nm=k

1

n1

· · · 1

nm

. (4.33)

Thus our definition amounts to

Ztrig(r, a; s, z) ≡ i(z − ia/2)

a
+

∞∑
k=1

pk(s)

2sh(kra)
e2ikrz, Im z > −a/2. (4.34)

Next, we observe that (4.33) entails

∂spk(s)|s=0 = 1/k. (4.35)
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From this we deduce

∂sZtrig(r, a; s, z)|s=0 =
∞∑

k=1

e2ikrz

2ksh(kra)
. (4.36)

Comparing this to (3.16), we see that (4.27) holds true, as announced.
An alternative representation for Ztrig can be obtained by noting that when one adds

1 to the rhs of (4.26), one obtains an A∆E that admits an upward iteration solution. A
uniqueness argument then yields

Ztrig(r, a; s, z) =
i(z − ia/2)

a
+

∞∑
l=1

(
(1− q2l−1e2irz)−s − 1

)
, Im z > −a/2. (4.37)

Observe that the relation (4.27) to Gtrig is also clear from this formula and (3.12).
The relation to the Hurwitz zeta function can be readily established from (4.37), as

well. Indeed, one has

lim
r↓0

(2r)sZtrig(r, a; s, z) = lim
r↓0

∞∑
n=0

((
2r

1− exp(−2r[(n + 1/2)a− iz])

)s

− (2r)s

)
=

∞∑
n=0

[(n + 1/2)a− iz]−s

= a−sζ(s,−iz/a + 1/2), Re s > 1, Im z > −a/2. (4.38)

This can be abbreviated as

lim
α↓0

αsZtrig(α/2, a; s, z) = Zrat(a; s, z), Re s > 1, Im z > −a/2, (4.39)

cf. (4.21).
The Riemann zeta function ζ(s) is obtained from Zrat(a; s, z) by choosing a = 1 and

z = i/2, cf. (4.21). Thus, setting

ζtrig(α; s) ≡ αsZtrig(α/2, 1; s, i/2), (4.40)

one obtains a ‘trigonometric’ generalization of ζ(s). In view of (4.34) and (4.37) it admits
the representations

ζtrig(α; s) = αs

∞∑
k=1

e−kα

1− e−kα
pk(s), (4.41)

ζtrig(α; s) =
∞∑

n=1

((
α

1− e−nα

)s

− αs

)
. (4.42)

These formulas entail in particular that ζtrig(α; s) is positive for all (α, s) ∈ (0,∞)2.

4.3 The elliptic zeta function

Proceeding as before, we should start from the A∆E

Z(z + ia/2)− Z(z − ia/2) = − exp

(
s

∞∑
n=1

cos(2nrz)

nsh(nrb)

)
, (4.43)
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cf. (3.21). The rhs is manifestly analytic for |Im z| < b/2, so we need not shift z. Thus
we define Zell as the minimal solution

Zell(r, a, b; s, z) ≡ iz

a
e0(r, b; s)−

∑
k∈Z∗

ek(r, b; s)

2sh(kra)
e−2ikrz, (4.44)

where ek(s) are the Fourier coefficients

ek(r, b; s) =
r

π

∫ π/2r

−π/2r

exp

(
s

∞∑
n=1

cos(2nrx)

nsh(nrb)

)
e2ikrxdx, k ∈ Z. (4.45)

Next, we note that by analyticity and π/r-periodicity of the integrand, we may shift
the contour by ic, with 2c ∈ (−b, b). Therefore, choosing any ε ∈ (0, b], we obtain

|ek(r, b; s)| ≤ exp(C(ε)|s|) exp(−|k|r(b− ε)), k ∈ Z, (4.46)

with C(ε) > 0 diverging as ε ↓ 0. Thus Zell is analytic in the strip |Im z| < (a + b)/2 for
fixed s ∈ C, and entire in s for fixed z in the latter strip.

We proceed by demonstrating the expected relation

∂sZell(r, a, b; s, z)|s=0 = ln(Gell(r, a, b; z)), |Im z| < (a + b)/2. (4.47)

To this end we observe that (4.45) entails

∂sek(s)|s=0 =

{
0, k = 0,

1/2ksh(krb), k ∈ Z∗.
(4.48)

Hence we have

∂sZell(r, a, b; s, z)|s=0 = −
∑
k∈Z∗

e−2ikrz

4ksh(krb)sh(kra)
. (4.49)

Comparing this to (3.22), we deduce (4.47).

4.4 The hyperbolic zeta function

In the hyperbolic context the pertinent A∆E reads

Z(z + ia/2)− Z(z − ia/2) = −[2ch(πz/b)]−s, (4.50)

cf. (3.33). From the known Fourier transform∫ ∞

−∞

eixy

[2ch(πx/b)]s
dx =

b

2π
Γ(

s

2
+

iby

2π
)Γ(

s

2
− iby

2π
)Γ(s)−1, Re s > 0, (4.51)

and the Γ-function asymptotics, we readily deduce that the conditions (2.6) apply to the
function

φ(z) = −∂z[2ch(πz/b)]−s, Re s > 0. (4.52)

The minimal solution (2.9) corresponding to the rhs (4.52) can be rewritten as

f(z) =
iπ

2a2

∫ ∞

−∞
du[2ch(πu/b)]−s/ch2(π(z − u)/a), Re s > 0. (4.53)
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Integrating once with respect to z, we obtain a minimal solution

Zhyp(a, b; s, z) ≡ i

2a

∫ ∞

−∞
du[2ch(πu/b)]−sth(π(z−u)/a), Re s > 0, |Im z| < a/2, (4.54)

to (4.50). More precisely, (4.54) is the unique minimal solution that is odd in z. (The
requirement of oddness fixes the arbitrary constant.)

Of course, we can also start from (2.8) and (4.51) to obtain a second representation

Zhyp(a, b; s, z) =
ib

2π2

∫ ∞

0

dy
sin(2yz)

sh(ay)
Γ(

s

2
+

iby

π
)Γ(

s

2
− iby

π
)Γ(s)−1, Re s > 0, |Im z| < a/2.

(4.55)
This formula appears less useful than (4.54), however.

Performing suitable contour shifts in (4.54), one easily checks that for fixed s with
Re s > 0 the function Zhyp is analytic in the strip |Im z| < (a + b)/2, and that for fixed z
in the latter strip Zhyp is analytic in the right half s-plane. Alternatively, these features
readily follow from (4.55). But the representations (4.54) and (4.55) are ill defined already
for s on the imaginary axis.

This different behavior in s (as compared to the trigonometric and elliptic cases)
can be understood from the A∆E (4.50). For Re s < 0 the function on the rhs is no
longer polynomially bounded in the strip |Im z| < a/2, so the theory summarized in
Subsection 2.1 does not apply. Even so, Zhyp(a, b; s, z) (with |Im z| < (a + b)/2) admits a
meromorphic continuation to the half plane Re s > −2b/a.

We proceed by proving the assertion just made. To this end we begin by noting that
the assertion holds true for ∂k

z Zhyp with k ≥ 1 (cf. (4.53)). Now we exploit the identity

ch(πu/b)−s =
b2

π2s2
∂2

u(ch(πu/b)−s) + (1 +
1

s
)ch(πu/b)−s−2, (4.56)

which is easily checked. Inserting it in (4.54) and integrating by parts twice, we deduce
the functional equation

Zhyp(a, b; s, z) =
b2

π2s2
∂2

zZhyp(a, b; s, z) + 4(1 +
1

s
)Zhyp(a, b; s + 2, z). (4.57)

Consider now the two terms on the rhs of (4.57). The first one has a meromorphic
extension to Re s > −2b/a, and the second one to Re s > −2. In case b > a, one can
iterate the functional equation, so as to continue the second term further to the left. In
this way one finally obtains a meromorphic continuation to the half plane Re s > −2b/a,
as asserted.

At face value, (4.57) seems to entail that Zhyp has a pole for s = 0. This is not the
case, however. Indeed, we may write (4.57) as

Zhyp(a, b; s, z) =
i

2a

∫ ∞

−∞
du

(
− b

as

1

ch2(π(z − u)/a)
· 2sh(πu/b)

[2ch(πu/b)]s+1

+4 (1 +
1

s
)
th(π(z − u)/a)

[2ch(πu/b)]s+2

)
. (4.58)
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From this it is clear that there can be at most a simple pole at s = 0. But in fact we have

lim
s→0

sZhyp(a, b; s, z) =
i

2a

∫ ∞

−∞
du

(
− b

a

th(πu/b)

ch2(π(z − u)/a)
+

th(π(z − u)/a)

ch2(πu/b)

)
=

i

2a

∫ ∞

−∞
du

b

π
∂u[th(πu/b)th(π(z − u)/a)]

= 0. (4.59)

Hence Zhyp(a, b; s, z) is regular at s = 0, as claimed. (The same reasoning shows that Zhyp

has no poles in the half plane Re s > −2b/a.)
Next, we study the function

L(a, b; z) ≡ ∂sZhyp(a, b; s, z)|s=0. (4.60)

Its z-derivative is given by

− iπ

2a2

∫ ∞

−∞
du ln[2ch(πu/b)]/ch2(π(z − u)/a), (4.61)

cf. (4.53). Comparing this to (3.51), we infer

∂zL(a, b; z) = ∂z ln Ghyp(a, b; z). (4.62)

Thus we have L = Ghyp + C. Finally, because both L and ln Ghyp are odd, we obtain
C = 0. As a result, we have proved

∂sZhyp(a, b; s, z)|s=0 = ln(Ghyp(a, b; z)), |Im z| < (a + b)/2. (4.63)

We continue by considering some special cases. First, let us observe that one has

Zhyp(a, b; 2, z) = − b2

4π2
∂2

z ln Ghyp(a, b; z). (4.64)

Indeed, when we take the z-derivative of (3.51), we can integrate by parts twice to obtain
this formula, cf. (4.54) with s = 2. Alternatively, (4.64) follows by combining equality of
the A∆Es satisfied by both functions, their minimal solution character, and oddness in z.

Second, we point out the explicit specialization

Zhyp(a, a; 1, z) =
i

4
th(πz/2a). (4.65)

To check this, one need only verify that the rhs satisfies (4.50) with b = a, s = 1. (Indeed,
(4.65) then follows from minimality and oddness.)

Third, we claim
Zhyp(a, b; 0, z) = iz/a. (4.66)

To show this, we use (the continuation to s = 0 of) (4.53) to infer that the z-derivative
of the lhs is a constant. The rhs is odd and satisfies (4.50) with s = 0, so (4.66) follows.

Fourth, we note that Zhyp(a, b; s, z) is not polynomially bounded for |Re z| → ∞
whenever Re s is negative. Indeed, this feature follows from the analytic continuation of
the A∆E (4.50). As an illuminating special case, we use (4.53) to calculate

∂zZhyp(π, π;−1, z) =
i

π

∫ ∞

−∞
dx

ch(z − x)

ch2x
= ich(z), (4.67)
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so that (by oddness)
Zhyp(π, π;−1, z) = ish(z). (4.68)

Next, we obtain the relation to the rational zeta function (4.21). Changing variables
in (4.54), we get

Zhyp(a, b; s, z − ib/2) =
i

2a

∫ ∞

−∞
[−2ish(π(z − x)/b)]−sth(πx/a)dx, Im z ∈ (0, b). (4.69)

(The logarithm implied here is real-valued for x = 0, z ∈ i(0, b).) Recalling (4.22), we
now deduce

lim
b↑∞

(
2π

b

)s

Zhyp(a, b; s, z − ib/2) = Zrat(a; s, z), Re s > 1, Im z > 0. (4.70)

Via suitable contour shifts, this limiting relation can be readily extended to the half plane
Im z > −a/2.

To conclude this section, we introduce and study a natural ‘hyperbolic’ generalization
of the Riemann zeta function, viz.,

ζhyp(ρ; s) ≡ (2πρ)sZhyp(1, 1/ρ; s, i/2− i/2ρ), ρ > 0. (4.71)

Indeed, from (4.70) we have

lim
ρ↓0

ζhyp(ρ; s) = ζ(s), Re s > 1. (4.72)

From (4.71) we read off that ζhyp(ρ; s) is analytic in the half plane Re s > −2/ρ and that

ζhyp(1; s) = 0. (4.73)

Moreover, from (4.69) we deduce the representation

ζhyp(ρ; s) =
i

2

∫ ∞

−∞
th(πx)

(
πρ

ish(πρ(x− i/2))

)s

dx, ρ ∈ (0, 2), Re s > 0. (4.74)

We proceed by turning (4.74) into a more telling formula. To this end we first write

ζhyp(ρ; s) =
i

2

∫ ∞

−∞
th(πx)

(
1

ix + 1/2

)s((
πρ(x− i/2)

sh(πρ(x− i/2))

)s

−
(

π(x− i/2)

sh(π(x− i/2))

)s)
dx,

(4.75)
where the three logarithms are real for x = 0. The point is now that for Re s ∈ (0, 2) we
may shift the contour up by i/2 and take x → u/π to obtain the representation

ζhyp(ρ; s) = πs−1 sin(πs/2)

∫ ∞

0

du

us
coth(u)h(ρ; s, u), ρ ∈ (0, 2), Re s ∈ (0, 2), (4.76)

where we have introduced

h(ρ; s, u) ≡
(

ρu

sh(ρu)

)s

−
(

u

sh(u)

)s

, ρ ≥ 0. (4.77)
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From the latter representation we read off in particular that ζhyp(ρ; s) is positive for
(ρ, s) ∈ (0, 1)× (0, 2). It can also be exploited to obtain representations for the Riemann
zeta function that have not appeared in previous literature, to our knowledge.

In order to derive the latter, we observe that (4.77) entails uniform bounds

|h(ρ; s, u)| ≤ C1u
2, ρ ∈ [0, 1), Re s ∈ (0, 2), u ∈ R, (4.78)

|h(ρ; s, u)| ≤ C2, ρ ∈ [0, 1), Re s ∈ (0, 2), u ∈ R. (4.79)

Therefore, choosing Re s ∈ (1, 2), we may interchange the ρ ↓ 0 limit and the integration,
yielding

ζ(s) = πs−1 sin(πs/2)

∫ ∞

0

coth(u)

(
1

us
− 1

sh(u)s

)
du, Re s ∈ (1, 2), (4.80)

cf. (4.72). Writing u−s = (1− s)−1∂uu
1−s, we may integrate by parts to get

ζ(s) =
1

s− 1
πs−1 sin(πs/2)

∫ ∞

0

u1−s∂u(coth u[1− (u/sh u)s])du. (4.81)

Evidently, the latter representation makes sense and is valid for Re s ∈ (0, 2). Using the
functional equation, we also deduce

ζ(s) = − 2s−1

Γ(1 + s)

∫ ∞

0

us∂u(coth u[1− (u/sh u)1−s])du, Re s ∈ (−1, 1). (4.82)

5 Barnes’ multiple zeta and gamma functions

In this section we present a summary of some results from our forthcoming paper Ref. [20].
Specifically, we focus on those results that hinge on interpreting the Barnes functions from
our A∆E perspective.

Barnes’ multiple zeta function may be defined by the series

ζN(s, w|a1, . . . , aN) =
∞∑

m1,...,mN=0

(w + m1a1 + · · ·+ mNaN)−s, (5.1)

where we have
a1, . . . , aN > 0, Re w > 0, Re s > N. (5.2)

It is immediate that these functions are related by the recurrence

ζM+1(s, w+aM+1|a1, . . . , aM+1)−ζM+1(s, w|a1, . . . , aM+1) = −ζM(s, w|a1, . . . , aM), (5.3)

with
ζ0(s, w) ≡ w−s. (5.4)

As Barnes shows [21], ζN has a meromorphic continuation in s, with simple poles
only at s = 1, . . . , N . He defined his multiple gamma function ΓB

N(w) in terms of the
s-derivative at s = 0,

ΨN(w|a1, . . . , aN) ≡ ∂sζN(s, w|a1, . . . , aN)|s=0, N ∈ N. (5.5)
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Analytically continuing (5.3), it follows that the functions ΨN satisfy the recurrence

ΨM+1(w + aM+1|a1, . . . , aM+1)−ΨM+1(w|a1, . . . , aM+1) = −ΨM(w|a1, . . . , aM). (5.6)

Comparing (5.1) with N = 1 to (4.21), we infer

ζ1(s, w|a) = Zrat(a; s, i[w − a/2]). (5.7)

Also, comparing (5.5) and (4.25), we get

Ψ1(w|a) = ln(Grat(a; i[w − a/2]))

= ln((2π)−1/2 exp([w/a− 1/2] ln a)Γ(w/a)), (5.8)

cf. (3.1). Now we have already seen that Grat and Zrat can be viewed as minimal solu-
tions to A∆Es of the form (1.1) and (1.2), respectively (cf. Subsections 3.1 and 4.1). In
Subsections 5.1 and 5.2 we sketch how, more generally, the functions ζN and ΨN can be
tied in with the A∆E lore reviewed in Subsection 2.1.

In brief, ζM+1 and ΨM+1 may be viewed as minimal solutions to the equations (5.3)
and (5.6), reinterpreted as A∆Es of the form (1.2), with the right-hand sides viewed as
the given function φ(z). In this way we arrive at a precise version of Barnes’ expression
‘simplest solution’ [21], and we are led to new and illuminating integral representations
for the Barnes functions.

5.1 Multiple zeta functions

Using the identity

N∏
j=1

(1− e−ajt)−1 =
∞∑

m1,...,mN=0

exp(−t(m1a1 + · · ·+ mNaN)), a1, . . . , aN , t > 0, (5.9)

and Euler’s integral (4.5), we can rewrite ζN(s, w) (5.1) as

ζN(s, w) =
1

Γ(s)

∫ ∞

0

dt

t
tse−wt

N∏
j=1

(1− e−ajt)−1, Re s > N, Re w > 0. (5.10)

Consider now the function

φM,s(z) ≡ −ζM(s, AM + d− iz), d > −AM , Re s ≥ M + 2, (5.11)

where we have introduced

AN ≡ 1

2

N∑
j=1

aj, N ∈ N. (5.12)

Since we choose the displacement parameter d greater than −AM , we obtain a non-empty
strip |Im z| < AM + d in which φM,s(z) is defined and analytic. Thus we can use (5.10)
to write

φM,s(z) = −21−M

Γ(s)

∫ ∞

0

dy
(2y)s−1e−2dy∏M

j=1 sh(ajy)
·e2iyz, Re s ≥ M +2, Im z > −AM−d. (5.13)
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Now the Fourier transform φ̂M,s(y) (2.7) can be read off from (5.13). Clearly, it

belongs to L1(R), and it satisfies φ̂M,s(y) = O(y) for y → 0. Moreover, using the series
representation (5.1) for φM,s(x), x ∈ R, it is easily seen that φM,s(x) belongs to L1(R),
too.

As a consequence, the conditions (2.6) are satisfied. Therefore, we obtain a minimal
solution

fM,s(z) =
2−M

Γ(s)

∫ ∞

0

dy
(2y)s−1e−2dy∏M+1

j=1 sh(ajy)
· e2iyz

= ζM+1(s, AM+1 + d− iz), (5.14)

to the A∆E

f(z + iaM+1/2)− f(z − iaM+1/2) = φM,s(z), Re s ≥ M + 2, Im z > −AM − d. (5.15)

In summary, for Re s ≥ M + 2 we may view ζM+1 as the unique minimal solution (2.8).
Next, we exploit the formula (2.9) with φ(z) given by φM,s(z) (5.11). Changing vari-

ables, it yields

ζM+1(s, AM+1 + d− iz) =
i

2aM+1

∫ ∞

−∞
dxζM(s, c− iz + ix)th

π

aM+1

x, (5.16)

where c = AM + d and where we may take Im z > −c. This relation can now be iterated,
but first we integrate by parts, using the relation

∂wζN(s, w) = −sζN(s + 1, w), N ∈ N. (5.17)

(This formula can be read off from (5.1).) Doing so, we obtain

ζN(s, AN + d− iz) =
π

2a2
N

1

s− 1

∫ ∞

−∞
dxζN−1(s− 1, AN−1 + d− iz + ix)/ch2(πx/aN)

=

∫
RN

(
N∏

n=1

πch−2(πxn/an)

2a2
n(s− n)

)(
d− iz + i

N∑
n=1

xn

)N−s

dNx. (5.18)

(Recall (5.4) to check the last iteration step.)
Now we derived this new representation for Re s > N and Im z > −d. But it is

evident that it yields a meromorphic s-continuation of ζN to all of C, with simple poles
occurring only at s = 1, . . . , N . Moreover, suitable contour shifts yield analyticity in z
for Im z > −AN − d. (Observe that we are generalizing arguments we already presented
in Subsection 4.1, where we are dealing with ζ1, cf. (5.7).)

The above integral representation (5.18) was derived for the first time in Ref. [20].
For Re s ≤ N + 1 one can also view ζN(s, w) as a minimal solution, but now in the more
general sense of Theorem II.3 in Ref. [9]. (This hinges on (5.17) and its iterates.) The
details can be found in Section 4 of Ref. [20].

In Ref. [20] we also approach ζN(s, w) from yet another, quite elementary angle. The
latter does not involve A∆Es, but rather a certain class of Laplace-Mellin transforms.
In this way we can easily rederive various explicit formulas and properties established in
other ways by Barnes. For brevity we refrain from sketching this other approach, which
is complementary to the A∆E perspective.
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5.2 Multiple gamma functions

As we have just shown, ζN(s, w) has a meromorphic continuation to C, which is analytic in
s = 0. From (5.18) we can also obtain a representation for the function ΨN(w|a1, . . . , aN)
(5.5), namely,

ΨN(AN + d− iz) =
N∑

l=1

1

l
· ζN(0, AN + d− iz)

+ (−)N+1

(
N∏

n=1

π

2na2
n

∫ ∞

−∞

dxn

ch2(πxn/an)

)
IN(x), (5.19)

where the integrand reads

IN(x) =

(
d− iz + i

N∑
n=1

xn

)N

ln

(
d− iz + i

N∑
n=1

xn

)
. (5.20)

The s = 0 value of ζN appearing here follows from (5.18), too, yielding an Nth degree
polynomial in z. (The coefficients of the latter can be expressed in terms of the Bernoulli
numbers [20].)

As before, the restriction Im z > −d can be relaxed to Im z > −AN − d by contour
shifts, revealing that ΨN(w) is analytic for Re w > 0. Now a second continuation of the
logarithm in the shifted integrand to z ∈ C \ i(−∞,−AN − d] reveals that ΨN(w) admits
an analytic continuation to the cut plane C \ (−∞, 0]. Defining

ΓN(w|a1, . . . , aN) ≡ exp ΨN(w|a1, . . . , aN), (5.21)

it follows that ΓN(w) is analytic and zero-free in this cut plane. Furthermore, the recur-
rence (5.6) entails

ΓM+1(w|a1, . . . , aM+1) = ΓM(w|a1, . . . , aM)ΓM+1(w + aM+1|a1, . . . , aM+1), M ∈ N.
(5.22)

We can now determine the analytic character of ΓN(w) on the cut by exploiting (5.22).
Specifically, taking first M = 0 and noting Γ0(w) = 1/w, we can iterate (5.22) to get

Γ1(w|a1) =
l−1∏
k=0

1

w + ka1

· Γ1(w + la1|a1), l ∈ N∗. (5.23)

From this we read off that Γ1(w|a1) has a meromorphic extension without zeros and with
simple poles for w ∈ −a1N. Writing next

Γ2(w|a1, a2) =
l−1∏
k=0

Γ1(w + ka2|a1) · Γ2(w + la2|a1, a2), l ∈ N∗, (5.24)

we deduce that Γ2(w|a1, a2) has a meromorphic extension without zeros and with poles
for w = −(k1a1 + k2a2), k1, k2 ∈ N. The multiplicity of a pole w0 equals the number of
distinct pairs (k1, k2) such that w0 = −(k1a1 + k2a2). In particular, all poles are simple
when a1/a2 is irrational, and the pole at w = 0 is always simple. Proceeding recursively,
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it is now clear that ΓN(w) has a meromorphic extension, without zeros and with poles for
w = −(k1a1 + · · ·+ kNaN), k1, . . . , kN ∈ N, the pole at w = 0 being simple.

Before concluding this section with some remarks, we would like to point out that
the above account of the functions ζN(s, w) and ΓN(w) has only involved Euler’s formula
(4.5) and the ‘minimal solution’ consequences of the properties (2.6). Taking the latter
for granted, the arguments in this section are self-contained, leading quickly and simply
to a significant part of Barnes’ results.

At this point it should be remarked that Barnes used a different normalization for his
multiple gamma function ΓB

N(w). Specifically, the relation to ΓN(w) reads

ΓB
N(w) = ρNΓN(w), (5.25)

where ρN is Barnes’ modular constant. Our use of ΓN(w) is in accord with most of the
later literature. The constant ρN in (5.25) is (by definition) equal to the reciprocal residue
of ΓN(w) at its simple pole w = 0. Equivalently, one has

wΓB
N(w) → 1, w → 0. (5.26)

We further remark that Kurokawa’s double sine function S2(x|ω1, ω2), which we en-
countered in Subsection 3.4 (see (3.52)), can be defined by

S2(w|a1, a2) ≡ Γ2(a1 + a2 − w|a1, a2)/Γ2(w|a1, a2). (5.27)

(Note that one may replace Γ2 by ΓB
2 in this formula.)

Finally, the special function ΓN(w) can once again be interpreted as a minimal solution
to an A∆E of the form (1.1). This is explained in detail in Section 4 of Ref. [20]. We
also mention that the second (Laplace transform) approach alluded to at the end of
Subsection 5.1 can be exploited to derive uniform large-w asymptotics away from the cut
(−∞, 0], cf. Section 3 in Ref. [20].

6 A generalized hypergeometric function

The subject of this section is a function R(a+, a−, c; v, v̂), depending on parameters
a+, a− ∈ (0,∞), couplings c = (c0, c1, c2, c3) ∈ R4 and variables v, v̂ ∈ C. It general-
izes both the hypergeometric function 2F1(a, b, c; w) and the Askey-Wilson polynomials
pn(q, α, β, γ, δ; cos v). (For a complete account of the features of 2F1 used below we refer
to Refs. [19, 23]. For information on the Askey-Wilson polynomials, see Refs. [22, 13].)
The R-function was introduced in Ref. [1]. Detailed proofs of several assertions made
below can be found in our paper Ref. [16].

In Subsection 6.1 we review various features of the 2F1-function that admit a gener-
alization to the R-function. The latter is defined in Subsection 6.2, where we also obtain
some automorphy properties. In Subsection 6.3 we introduce the four independent hyper-
bolic difference operators of which the R-function is an eigenfunction. In Subsection 6.4
we derive the specialization to the Askey-Wilson polynomials. Subsection 6.5 concerns
the ‘nonrelativistic limit’ R → 2F1. In Subsection 6.6 we study how the R-function is
related to the Ismail-Rahman functions [24, 25], which are eigenfunctions of the trigono-
metric Askey-Wilson difference operator. Though we shed some light on this issue, we
leave several questions open.
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6.1 Some reminders on 2F1

The hypergeometric function was already known to Euler in terms of an integral repre-
sentation. Our generalized hypergeometric function is defined in terms of an integral as
well, but this integral representation does not generalize Euler’s integral representation
for 2F1, but rather the much later one due to Barnes.

The latter representation can be readily understood from Gauss’ series representation,

2F1(a, b, c; w) =
∞∑

n=0

Γ(a + n)

Γ(a)

Γ(b + n)

Γ(b)

Γ(c)

Γ(c + n)

wn

n!
. (6.1)

Using for instance the ratio test, one sees that this power series converges for |w| < 1.
The Barnes representation makes it possible to analytically continue 2F1 to the cut plane
|Arg(−w)| < π. It reads∫

C
dz exp(−iz ln(−w)) · Γ(iz)Γ(c)

2πΓ(c− iz)
· Γ(a− iz)Γ(b− iz)

Γ(a)Γ(b)
. (6.2)

Here, the logarithm branch is fixed by choosing ln(−w) ∈ R for w ∈ (−∞, 0). Taking first
Re a, Re b > 0, the contour C runs along the real axis from −∞ to ∞, with a downward
indentation at the origin to avoid the pole due to Γ(iz). Thus it separates the downward
pole sequences starting at −ia and −ib from the upward sequence starting at 0.

Invoking the asymptotics of the Γ-function, one sees that the integrand has exponential
decay for Re z → ±∞, provided |Arg(−w)| < π. Thus the integral yields an analytic
function of w in the cut plane. After multiplication by 2πi, the residues at the simple
poles z = in of the integrand are equal to the terms in the Gauss series (6.1). A second
somewhat subtle application of the Γ-function asymptotics now shows that when one
moves the contour C up across the poles 0, i, . . . , in, picking up 2πi times the residues
in the process, then the integral over the shifted contour converges to 0 for n → ∞,
provided |w| < 1. Thus the integral (6.2) yields an analytic continuation to the cut plane
|Arg(−w)| < π, as advertised.

The analyticity region cannnot be much improved, since the function 2F1(a, b, c; w)
has a logarithmic branch point at w = 1 for generic a, b, c ∈ C. In this connection we
should add that the representation (6.2) can be modified to handle arbitrary a, b ∈ C:
For Re a ≤ 0 and/or Re b ≤ 0 one need only shift the contour C up, so that the downward
pole sequences starting at −ia and −ib stay below it. In this way one can demonstrate
that for fixed w in the cut plane one obtains a meromorphic function of a, b and c.

Next, we recall that the hypergeometric function can be used to diagonalize the two-
coupling family of Schrödinger operators

H(g, g̃) ≡ − d2

dx2
+

g(g − 1)ν2

sh2νx
− g̃(g̃ − 1)ν2

ch2νx
. (6.3)

Specifically, one first performs the similarity transformation

H̃(g, g̃) ≡ w(νx)−1/2H(g, g̃)w(νx)1/2, (6.4)

where w(y) is the ‘weight function’

w(y) ≡ shy2gchy2g̃. (6.5)
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A straightforward calculation yields

H̃(g, g̃) = − d2

dx2
− 2ν[g coth(νx) + g̃ tanh(νx)]

d

dx
− ν2(g + g̃)2. (6.6)

Then one has the eigenvalue equation

H̃(g, g̃)Ψnr = p2Ψnr, (6.7)

where Ψnr is the nonrelativistic wave function

Ψnr(ν, g, g̃; x, p) ≡ 2F1(
1

2
(g + g̃ − ip

ν
),

1

2
(g + g̃ +

ip

ν
), g +

1

2
;−sh2νx). (6.8)

Indeed, (6.7) is simply the rational ODE satisfied by 2F1(a, b, c; w), transformed to hyper-
bolic form via the substitution w = −sh2νx.

The wave function Ψnr (6.8) is also an eigenfunction of two analytic difference oper-
ators, one of which acts on x, while the second one acts on the spectral variable p. We
will obtain this fact (which cannot be found in the textbook literature) as a corollary of
the nonrelativistic limit in Subsection 6.5.

6.2 The ‘relativistic’ hypergeometric function

The function R(a+, a−, c; v, v̂) we are about to introduce can be used in particular to
diagonalize an analytic difference operator (from now on A∆O) that arises in the context
of the relativistic Calogero-Moser system, cf. Ref. [2], Subsection 3.3.

But just as the nonrelativistic wave function Ψnr (6.8) serves as an eigenfunction
for a 2-coupling generalization of the (reduced, two-particle) nonrelativistic Calogero-
Moser Hamiltonian H(g, 0) (6.3), we will find that the relativistic wave function Ψrel

(6.46) we associate below with the R-function is in fact an eigenfunction of a 4-coupling
generalization of the relativistic counterpart of H(g, 0). Moreover, it is an eigenfunction
of three more independent A∆Os with a similar structure. (In the nonrelativistic limit
two of these give rise to the A∆Os mentioned at the end of the previous subsection.)

We have split the integrand in (6.2) in three factors to anticipate a corresponding
factorization of the integrand for the R-function. Setting

ĉ0 ≡ (c0 + c1 + c2 + c3)/2, (6.9)

the latter reads

I(a+, a−, c; v, v̂, z) ≡ F (c0; v, z)K(a+, a−, c; z)F (ĉ0; v̂, z). (6.10)

Here, the functions F and K involve the hyperbolic gamma function G(z) ≡ Ghyp(a+, a−; z)
from Subsection 3.4, cf. (3.35).

Specifically, F and K are defined by

F (d; y, z) ≡
(

G(z + y + id− ia)

G(y + id− ia)

)
(y → −y), (6.11)

K(a+, a−, c; z) ≡ 1

G(z + ia)

3∏
j=1

G(isj)

G(z + isj)
, (6.12)
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where we use the notation

s1 ≡ c0 + c1 − a−/2, s2 ≡ c0 + c2 − a+/2, s3 ≡ c0 + c3, a ≡ (a+ + a−)/2. (6.13)

We have suppressed the dependence on a+ and a− in G and in F , since these functions
are invariant under the interchange of a+ and a−. (Note K is not invariant, since s1 and
s2 are not.)

Just as we first have chosen Re a, Re b > 0 so as to define the integration contour C in
the Barnes representation (6.2), we begin by choosing

sj ∈ (0, a), j = 1, 2, 3, c0, ĉ0, v, v̂ ∈ (0,∞). (6.14)

Then we choose once more the contour C going from −∞ to ∞ in the z-plane, with a
downward indentation at the origin. The choices just detailed ensure that C separates the
four upward pole sequences coming from the four z-dependent G-functions in K (6.12)
and the four downward pole sequences coming from the z-dependent G-functions in the
two F -factors of the integrand (6.10). (At this point the reader should recall the pole-zero
properties of the hyperbolic G-function, cf. (3.36), (3.37).)

Our R-function is now defined by the integral

R(a+, a−, c; v, v̂) ≡ 1

(a+a−)1/2

∫
C
dzI(a+, a−, c; v, v̂, z). (6.15)

The asymptotics (3.50) of the G-function plays the same role as the Stirling formula for
the Γ-function in showing that the integral converges. Indeed, using (3.50) one readily
obtains

I(a+, a−, c; v, v̂, z) = O(exp(∓2π(
1

a+

+
1

a−
)Re z)), Re z → ±∞. (6.16)

Therefore, R is well defined and analytic in v and v̂ for Re v, Re v̂ 6= 0.
The R-function has in fact much stronger analyticity properties, but to demonstrate

these in detail is well beyond our present scope. Thus we only summarize some results,
referring to Ref. [16] for proofs. Briefly, the R-function extends to a function that is
meromorphic in all of its eight arguments, as long as a+ and a− stay in the (open)
right half plane. Moreover, the pole varieties and their associated orders are explicitly
known. For the case of fixed positive a+, a− and (generic) real c0, c1, c2, c3, the R-function
is meromorphic in v and v̂, with poles that can (but need not) occur solely for certain
points on the imaginary axis. These points correspond to collisions of v- and v̂-dependent
z-poles in the integrand with z-poles in the three upward sj-pole sequences and points
that are given by the poles of the factors 1/G(±v + ic0 − ia) and 1/G(±v̂ + iĉ0 − ia) in
the integrand.

We conclude this subsection by listing some automorphy properties of the R-function.
To this end we introduce the ‘dual couplings’

ĉ ≡ Jc, J ≡ 1

2


1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

 , (6.17)
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whence one has (cf. (6.13))

c0 + cj = ĉ0 + ĉj, sj = ŝj, j = 1, 2, 3. (6.18)

We also define the transposition

Ic ≡ (c0, c2, c1, c3). (6.19)

Then one has the symmetries

R(a+, a−, c; v, v̂) = R(a+, a−, ĉ; v̂, v), (self − duality), (6.20)

R(a+, a−, c; v, v̂) = R(a−, a+, Ic; v, v̂), (6.21)

R(λa+, λa−, λc; λv, λv̂) = R(a+, a−, c; v, v̂), λ > 0, (scale invariance). (6.22)

These features can be quite easily checked directly from the definition (6.15). (Use the
G-function properties (3.39) and (3.40) to check (6.21) and (6.22), resp.)

6.3 Eigenfunction properties

In order to detail the four A∆Os for which our R-function is a joint eigenfunction, we
introduce the quantities

sδ(y) ≡ sh(πy/aδ), cδ(y) ≡ ch(πy/aδ), (6.23)

Cδ(c; z) ≡ sδ(z − ic0)

sδ(z)

cδ(z − ic1)

cδ(z)

sδ(z − ic2 − ia−δ/2)

sδ(z − ia−δ/2)

cδ(z − ic3 − ia−δ/2)

cδ(z − ia−δ/2)
, (6.24)

Aδ(c; y) ≡ Cδ(c; y)
(
T y

ia−δ
− 1
)

+Cδ(c;−y)
(
T y
−ia−δ

− 1
)

+2cδ(i(c0 +c1 +c2 +c3)), (6.25)

where δ = +,−, and where the superscript y on the shifts indicates the variable they
act on. The eigenfunction properties of the R-function are now specified in the following
proposition, whose proof we sketch.

Proposition 6.1 The function R(a+, a−, c; v, v̂) is a joint eigenfunction of the A∆Os

A+(c; v), A−(Ic; v), A+(ĉ; v̂), A−(I ĉ; v̂), (6.26)

with eigenvalues
2c+(2v̂), 2c−(2v̂), 2c+(2v), 2c−(2v). (6.27)

Sketch of proof. In view of the symmetries (6.20) and (6.21) we need only prove the A∆E

A+(c; v)R(c; v, v̂) = 2c+(2v̂)R(c; v, v̂). (6.28)

Also, due to the analyticity properties of the R-function already detailed, we may restrict
the parameters and imaginary parts of v and v̂ in such a way that R is given by

R(c; v, v̂) =
1

(a+a−)1/2

∫
C
F (c0; v, z)K(c; z)F (ĉ0; v̂, z)dz, (6.29)

and that we may let the A∆O A+(c; v) act on the integrand.
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A main tool in proving the second-order A∆E (6.28) is now to exploit the first-order
A∆E

G(z + ia−/2)

G(z − ia−/2)
= 2c+(z), (6.30)

satisfied by the G-function. Indeed, using (6.30), one readily checks that the function F
(6.11) solves the two A∆Es

F (d; y + ia−/2, z)

F (d; y − ia−/2, z)
=

s+(y + z + id− ia−/2)

s+(y − z − id + ia−/2)

s+(y − id + ia−/2)

s+(y + id− ia−/2)
, (6.31)

F (d; y, z − ia−)

F (d; y, z)
=

1

4s+(y + z + id− ia−)s+(y − z − id + ia−)
. (6.32)

Using (6.31) with d = c0 and y = v, one can calculate the quotient

Q(c; v, z) ≡ (A+(c; v)F )(c0; v, z)/F (c0; v, z). (6.33)

A key point is now that Q can be rewritten as

2c+(2z + 2iĉ0) +
4
∏4

j=1 c+(z − ia−/2 + isj)

s+(v + z + ic0 − ia−)s+(v − z − ic0 + ia−)
, s4 ≡ a. (6.34)

This fact amounts to a functional equation that can be proved by comparing residues
at simple poles and |Re v| → ∞ asymptotics. We now observe that the denominator in
(6.34) appears in (6.32) with d = c0, y = v. Thus we get

A+(c; v)F (c0; v, z) = 2c+(2z + 2iĉ0)F (c0; v, z) + F (c0; v, z − ia−)Π(c; z − ia−/2), (6.35)

where we have introduced the product

Π(c; z) ≡ 16
4∏

j=1

c+(z + isj). (6.36)

The upshot of these calculations is the identity

A+(c; v)R(c; v, v̂) =
1

(a+a−)1/2

∫
C
dz[2c+(2z + 2iĉ0)I(c; v, v̂, z)

+F (c0; v, z − ia−)Π(c; z − ia−/2)K(c; z)F (ĉ0; v̂, z)]. (6.37)

To proceed, we now shift C down by ia− in the second term and then take z → z + ia−.
Then we are in the position to exploit a critical property of the function K(c; z): Due to
(6.30) it obeys the A∆E

K(c; z + ia−/2) = K(c; z − ia−/2)/Π(c; z). (6.38)

Therefore we obtain

A+(c; v)R(c; v, v̂) =
1

(a+a−)1/2

∫
C
dz[2c+(2z + 2iĉ0)I(c; v, v̂, z)

+F (c0; v, z)K(c; z)F (ĉ0; v̂, z + ia−)]. (6.39)
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Finally, we use (6.32) with d = ĉ0, y = v̂ to get

F (ĉ0; v̂, z + ia−) = 4s+(v̂ + z + iĉ0)s+(v̂ − z − iĉ0)F (ĉ0; v̂, z)

= 2[c+(2v̂)− c+(2z + 2iĉ0)]F (ĉ0; v̂, z). (6.40)

Then substitution in (6.39) yields (6.28). 2

The joint eigenfunction property just demonstrated shows that the R-function may
be viewed as a solution to a so-called bispectral problem, cf. Grünbaum’s contribution to
these proceedings [26]. In this respect, it has however a much more restricted character.
Indeed, it solves in fact a ‘quadrispectral’ problem. (Note that the latter problem can
be posed more generally whenever one is dealing with a pair of commuting A∆Os of the
form (2.19).)

6.4 The Askey-Wilson specialization

We continue by sketching how the Askey-Wilson polynomials arise as a specialization of
the R-function. With the restriction (6.14) on the arguments in effect, we may and will
use the representation (6.15). We are going to exploit the analyticity properties of the
R-function in the variable v̂ and the eigenvalue equation

A+(ĉ; v̂)R(c; v, v̂) = 2c+(2v)R(c; v, v̂). (6.41)

To prevent nongeneric singularities, we choose ĉ0 rationally independent of a+, a−, ĉ1, ĉ2

and ĉ3. Then R has no pole at the points v̂ = iĉ0 + ina, n ∈ Z, so we may define

Rn(v) ≡ R(c; v, iĉ0 + ina−), n ∈ Z. (6.42)

Proposition 6.2 One has Rn(v) = Pn(c+(2v)), n ∈ N, with Pn(u) a polynomial of degree
n in u.

Proof. The pole of I(z) at z = 0 is simple and has residue −i(a+a−)1/2/2π. (This follows
from (3.41) and (3.38).) Thus we have

R(c; v, v̂) = 1 +
1

(a+a−)1/2

∫
C+

dzI(c; v, v̂, z), (6.43)

where C+ denotes the contour C with an upward indentation at z = 0 (instead of down-
ward).

We can now let v̂ converge to iĉ0 without v̂-dependent poles crossing C+. The factor
1/G(−v̂ + iĉ0 − ia) in I(z) has a zero for v̂ = iĉ0, whereas the factor 1/G(v̂ + iĉ0 − ia)
has no pole for v̂ = iĉ0 (due to the rational independence requirement). Hence we deduce

R0(v) = 1. (6.44)

Next, we write out the eigenvalue equation (6.41) for v̂ = iĉ0 + ina−:

C+(ĉ; iĉ0 + ina−)[Rn−1(v)−Rn(v)] + C+(ĉ;−iĉ0 − ina−)[Rn+1(v)−Rn(v)]

+2c+(2ic0)Rn(v) = 2c+(2v)Rn(v). (6.45)
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The rational independence assumption entails that the coefficients are well defined, and
that C+(ĉ;−iĉ0 − ina−) does not vanish for n ∈ N. Since we have C+(ĉ; iĉ0) = 0
(cf. (6.24)), we may now use (6.44) as a starting point to prove the assertion recursively.
2

Note that when one restricts attention to a finite number of the above functions Rn(v),
one may let ĉ0 vary over suitable intervals without encountering singularities or zeros of the
recurrence coefficients (save for C+(ĉ; iĉ0), of course). We can now continue a+ analytically
to −iπ/r, r > 0, to obtain polynomials Pn(cos(2rv)) with recurrence coefficients that can
be read off from (6.45). The a+-continuation turns the hyperbolic A∆O A+(c; v) into
a trigonometric A∆O with eigenvalue 2ch2r(ĉ0 + na−) on Pn(cos(2rv)). In essence, the
latter A∆O is the Askey-Wilson A∆O and the recurrence is the 3-term recurrence of the
Askey-Wilson polynomials. More precisely, taking r = 1/2, the polynomials Pn(cos v)
turn into the Askey-Wilson polynomials pn(q, α, β, γ, δ; cos v) under a suitable parameter
substitution and n-dependent renormalization, cf. Ref. [16].

6.5 The ‘nonrelativistic’ limit R → 2F1

We continue by clarifying the relation between the R- and 2F1-functions. To this end we
introduce the relativistic wave function

Ψrel(β, ν, (g0, g1, g2, g3); x, p) ≡ R(π, βν, βν(g0, g1, g2, g3); νx, βp/2). (6.46)

Now we change variables z → βνz in the integral representation (6.15), and rewrite the
result as

Ψrel =

∫
C
dzSlMSr, (6.47)

where
Sl ≡ exp(2iz ln 2)F (βνg0; νx, βνz), (6.48)

Sr ≡ exp(2iz ln(2βν))F (βνĝ0; βp/2, βνz), (6.49)

M ≡
(

βν

π

)1/2

exp(−2iz ln(4βν))K(π, βν, βν(g0, g1, g2, g3); βνz). (6.50)

The factorization performed here ensures that the β ↓ 0 limit of the three factors
exists. Indeed, using the two zero step size limits (3.42) and (3.47), we obtain

lim
β↓0

Sl = exp(−iz ln(sh2νx)), (6.51)

lim
β↓0

Sr =

(
Γ(− ip

2ν
+ 1

2
(g + g̃)− iz)

Γ(− ip
2ν

+ 1
2
(g + g̃))

)
(p → −p), g ≡ g0 + g2, g̃ ≡ g1 + g3, (6.52)

lim
β↓0

M =
Γ(iz)Γ(g + 1

2
)

2πΓ(g + 1
2
− iz)

, (6.53)

where the limits are uniform on sufficiently small discs around any point on the contour.
When we now interchange these β ↓ 0 limits with the contour integration, we obviously

get

lim
β↓0

Ψrel(β, ν, (g0, g1, g2, g3); x, p) = Ψnr(ν, g, g̃; x, p), g ≡ g0 + g2, g̃ ≡ g1 + g3, (6.54)
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cf. (6.8), (6.2). To date, we have no justification for this interchange. A uniform L1

tail bound as β ↓ 0 would suffice (by dominated convergence), but it remains to supply
such a bound. In any case, we conjecture that the limit (6.54) holds true uniformly on
x-compacts in {Re x > 0, |Im x| < π/2ν} and p-compacts in C.

Let us now consider the β ↓ 0 limits of the above four A∆Os with parameters and
variables

a+ = π, a− = βν, c = βν(g0, g1, g2, g3), v = νx, v̂ = βp/2. (6.55)

Clearly, A−(ĉ; v̂) and its eigenvalue Ê− = 2ch(2πx/β) diverge for β ↓ 0. For the remaining
A∆Os and their eigenvalues one readily verifies the following limiting behavior:

A+(c; v) = 2 + β2H̃(g, g̃) + O(β4), β ↓ 0, (6.56)

E+ = 2ch(βp) = 2 + β2p2 + O(β4), β ↓ 0, (6.57)

lim
β↓0

A−(c; v) = exp(−iπ(g + g̃))T x
iπ/ν + (i → −i), (Re x > 0), (6.58)

E− = 2ch(πp/ν), (6.59)

lim
β↓0

A+(ĉ; v̂) =
[p− iν(g + g̃)]

p
· [p− iν − iν(g − g̃)]

p− iν
(T p

2iν − 1) + (i → −i) + 2, (6.60)

Ê+ = 2ch(2νx). (6.61)

It can be shown directly that the limiting operators do have the pertinent eigenvalues
on Ψnr (6.8). Indeed, for the A∆O A+(c; v) this amounts to (6.7). The limit A∆O on the
rhs of (6.58) does have eigenvalue 2ch(πp/ν) by virtue of the known analytic continuation
of 2F1(a, b, c; w) across the logarithmic branch cut w ∈ [1,∞). (To appreciate the role
of the cut, it may help to recall that the rhs of (6.8) reduces to cos(xp) for g = g̃ = 0.)
Finally, the eigenvalue 2ch(2νx) for the A∆O on the rhs of (6.60) can be verified by using
the contiguous relations of the hypergeometric function, cf. Ref. [19].

6.6 The relation to the Ismail-Rahman functions

As we mentioned above (6.17), the R-function admits a meromorphic continuation in the
shift parameters a+, a−, provided one requires they stay in the right half plane. Equiv-
alently, scaling out a+ via (6.22), we retain meromorphy as long as the scale-invariant
quotient ρ = a−/a+ varies over the cut plane C \ (−∞, 0]. (Just as for the hyperbolic
gamma function, where the meromorphic continuation is explicitly given by (3.54), we do
not know what happens when ρ converges to the cut.)

Consider now the function

Q(r, a, c; v, v̂) ≡ R(ωπr−1, ωa, ωc; ωv, ωv̂), ω ≡ eiπ/4, r, a > 0. (6.62)

It is meromorphic in c0, . . . , c3, v and v̂, and satisfies

AQ = 2 cos(2rv̂)Q, (6.63)

BQ = 2ch(2πa−1v̂)Q. (6.64)

Here, A and B are the A∆Os (cf. (6.24) and (6.25))

A ≡ Ct(r, a, c; v)[exp(−iad/dv)− 1] + (v → −v) + 2ch(2rĉ0), (6.65)
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B ≡ Ch(r, a, c; v)[exp(−πr−1d/dv)− 1] + (v → −v) + 2 cos(2πa−1ĉ0), (6.66)

with

Ct(z) ≡ sin r(z − ic0)

sin rz

cos r(z − ic1)

cos rz

sin r(z − ic2 − ia/2)

sin r(z − ia/2)

cos r(z − ic3 − ia/2)

cos r(z − ia/2)
, (6.67)

Ch(z) ≡ shπa−1(z − ic0)

shπa−1z

chπa−1(z − ic1)

chπa−1z

×shπa−1(z − ic2 − iπr−1/2)

shπa−1(z − iπr−1/2)

chπa−1(z − ic3 − iπr−1/2)

chπa−1(z − iπr−1/2)
. (6.68)

Moreover, one has

Q(r, a, c; v, iĉ0 + ina) = Pn(r, a, c; cos(2rv)), n ∈ N, (6.69)

where Pn(x) are the polynomials from Subsection 6.4.
It is immediate from (6.64) that we have the implication

Q(v + π/r, v̂) = Q(v, v̂) ⇒ ±iv̂ = ĉ0 + ka, k ∈ Z. (6.70)

Put differently, Q(v, v̂) is not π/r-periodic in v for generic spectral parameter v̂. Now as we
mentioned at the end of Subsection 6.4, the trigonometric A∆O A is essentially the Askey-
Wilson A∆O. Ismail and Rahman [24] construct independent solutions Fj(r, a, c; v, v̂), j =
1, 2, to the Askey-Wilson A∆E (6.63) in terms of the 8φ7 basic hypergeometric function.
Their solutions are manifestly π/r-periodic in v for arbitrary spectral parameters. But in
contrast to our solution Q(r, a, c; v, v̂), the functions Fj(r, a, c; v, v̂) do not admit analytic
continuation to the hyperbolic regime. This is for basically the same reason as Gtrig (3.12)
does not admit continuation to a hyperbolic gamma function: When one takes q from
the open unit disc to the unit circle, one looses convergence. (Cf. the last paragraph of
Subsection 3.2.)

On the other hand, the general theory sketched in Subsection 2.2 entails that we must
have

Q(v, v̂) = µ1(v, v̂)F2(v, v̂)− µ2(v, v̂)F1(v, v̂), (6.71)

with µ1, µ2 ia-periodic in v, cf. (2.15). The open problem of finding these multipliers
explicitly can be further illuminated by a reasoning that is of interest in its own right.

As a first step, let us note that the above A∆Os A and B commute. But in contrast
to the situation considered in Subsection 2.2, the shifts in the complex plane are not in
the same direction. Therefore, the space of joint eigenfunctions is left invariant by elliptic
multipliers, with the period parallellogram corresponding to the two directions. But when
one lets the two directions become equal, such elliptic multipliers generically will diverge.
Accordingly, joint eigenfunctions in general do not converge in the pertinent limit.

The point is now that from the Ismail-Rahman solutions F1, F2 to (6.63) we can
construct joint solutions J1, J2 to (6.63) and (6.64), as we will detail in a moment. It is
quite plausible (but we could not prove) that J1 and J2 form a basis for the space of joint
solutions, viewed as a vector space over the field of elliptic functions with periods π/r and
ia. Assuming this, the problem of explicitly finding µ1, µ2 in (6.71) gets narrowed down
to the problem of finding two elliptic functions ej such that

Q(v, v̂) = e1(v, v̂)J2(v, v̂)− e2(v, v̂)J1(v, v̂). (6.72)
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(In this connection it should be recalled that Q (6.62) is given in terms of a rather
inaccessible integral.)

We continue by filling in the details concerning the functions J1, J2. They are defined
by

Jj(r, a, c; v, v̂) ≡ Fj(r, a, c; v, v̂)Fj(π/a, π/r, ic; iv, iv̂), j = 1, 2. (6.73)

(This makes sense, since F1 and F2 are meromorphic in c0, . . . , c3, v and v̂.) To see that
they solve both (6.63) and (6.64), note first that since the first Fj-factor is π/r-periodic
in v, the second one is ia-periodic in v. Therefore, Jj still solves (6.63). Next, observe
that the substitution

r, a, c, v, v̂ → π/a, π/r, ic, iv, iv̂, (6.74)

that turns the first factor into the second one, also turns A (and its dual) into B (and its
dual). Hence the second Fj-factor solves (6.64), so that Jj solves (6.64), too.

The elliptic multiplier question is of particular interest in view of recent work by
Suslov [27], and by Koelink and Stokman [28]. They study Hilbert space properties
associated with an even and self-dual linear combination Φ(r, a, c; v, v̂) of the Ismail-
Rahman functions F1, F2. Now the above ‘doubling’ argument (which was suggested by
the relation (3.58) between the trigonometric and hyperbolic gamma functions) can be
applied to Φ as well. It entails that the function

Ψ(r, a, c; v, v̂) ≡ Φ(r, a, c; v, v̂)Φ(π/a, π/r, ic; iv, iv̂), (6.75)

is an even and self-dual solution to (6.63) and (6.64), just as Q(r, a, c; v, v̂). Thus one
would be inclined to expect that the even, self-dual function µ defined by

Q(r, a, c; v, v̂) = µ(r, a, c; v, v̂)Ψ(r, a, c; v, v̂), (6.76)

is already elliptic with periods π/r, ia.
We cannot rule out this hunch, but it does lead to consequences that seem startling.

Indeed, assuming µ is elliptic, it has doubly-periodic poles and zeros. The zeros must
adjust the poles of the two Φ-factors in (6.75) (which can be read off from their series
representations, cf. Ref. [28]) to those of the Q-function, whose eventual locations follow
from Ref. [16]. But this gives rise to zero patterns for the Q- and Φ-functions that appear
quite unexpected—though we cannot exclude them for the time being.
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[26] F. A. Grünbaum, The bispectral problem: an overview, this volume.

[27] S. K. Suslov, Some orthogonal very-well-poised 8φ7-functions that generalize Askey-
Wilson polynomials, to appear in The Ramanujan Journal.

[28] E. Koelink, J. V. Stokman, The Askey-Wilson function transform, preprint.

43


