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Nevanlinna theory for the g-difference operator and meromorphic
solutions of g-difference equations

D. C. Barnett*, R. G. Halburd*, R. J. Korhonen' and W. Morgan*
(MS received ;)

It is shown that, if f is a meromorphic function of order zero and ¢ € C, then

m (n ZE) = o ) &

for all r on a set of logarithmic density 1. The remainder of the paper consist of
applications of identity (f) to the study of value distribution of zero-order
meromorphic functions, and, in particular, zero-order meromorphic solutions of
g-difference equations. The results obtained include g-shift analogues of the Second
Main Theorem of Nevanlinna theory, Picard’s theorem, and Clunie and Mohon’ko
lemmas.

1. Introduction

Valiron has shown that the non-autonomous Schroder g-difference equation

flgz) = R(z, f(2)), (L.1)

where R(z, f(z)) is rational in both arguments, admits a one parameter family of
meromorphic solutions, provided that ¢ € C is chosen appropriately [28]. If |g| > 1,
it was shown by Gundersen et al. [11] that the order of growth of these solutions is
equal to log, (deg; 1), where log|, is the |g|-based logarithm. Their result implies
a g-difference analogue of the classical Malmquist’s theorem [24]: if the g-difference
equation (1.1) admits a meromorphic solution of order zero, then (1.1) reduces to
a g-difference Riccati equation, i.e. degy R = 1.

There are a variety of methods which can be used to study the value distribution
of meromorphic solutions of the Schroder equation (1.1). Eremenko and Sodin [9]
used methods from complex dynamics to show that the Valiron and Nevanlinna
deficient values of meromorphic solutions of the autonomous Schréder equation
(1.1) always coincide with the exceptional values of R(z). Ishizaki and Yanagihara
[19] constructed an example showing that this is not true in general for the non-
autonomous Schroder equation. They have also applied Nevanlinna theory to study

Borel and Julia directions of meromorphic solutions of the Schréder equation [20,
21].
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Linear ¢-difference equations with rational coefficients do not always admit mero-
morphic solutions, even if the coefficients are constants. Bergweiler, Ishizaki and
Yanagihara gave sufficient conditions for the existence of meromorphic solutions of
linear g¢-difference equations, and characterized the growth of solutions in terms
of the Nevanlinna characteristic T'(r, f) [3]. They concluded that all meromor-
phic solutions f of a linear g-difference equation with rational coefficients satisfy
T(r, f) = O((logr)?), from which it in particular follows that all solutions are of
zero order of growth. For entire solutions there are efficient methods, for instance,
a g-shift analogue of the Wiman-Valiron theory by Bergweiler, Ishizaki and Yanag-
ihara [4], and a functional analytic method by Ramis [27], by which the asymptotic
behavior of solutions may be characterized even more precisely.

Bergweiler and Hayman [2] studied the zero distribution of entire solutions of
linear g-difference equations. They found an asymptotic formula for the locations
of zeros of solutions by showing that, under a certain condition, solutions behave
asymptotically like products of f-functions. Heittokangas et al. [18] studied the
density of zeros and poles of meromorphic solutions of linear g-difference equations
by using methods from Nevanlinna theory.

When applying Nevanlinna theory to study the growth and value distribution
of meromorphic solutions of differential equations, estimates involving logarithmic
derivatives have often proved to be useful [10, 23]. Recently, similar tools involving
shifts have been developed to study ordinary difference equations [7, 14, 15]. The
following theorem [14] is among the fundamental results of this type.

Theorem A. Let f be a non-constant finite-order meromorphic function, and ¢ €

C. Then
fet+o)\ _ (T [)
m(r,———= ) =0
f(2) ro
for any § < 1, and for all r outside of an exceptional set with finite logarithmic
measure.

Theorem A and its corollaries proved to be indispensable when singling out
Painlevé type equations out of large classes of difference equations [12, 13]. The-
orem A may also be used to study value distribution of finite-order meromorphic
solutions of large classes of difference equations, including difference Riccati and
difference Painlevé equations.

One of the main results of this paper is the following theorem which is a g¢-
difference analogue of Theorem A, and of the Lemma on the Logarithmic Derivative.

Theorem 1.1. Let f be a non-constant zero-order meromorphic function, and

g € C\ {0}. Then
flgz)\ o(T(r
m (r, 7]0(2) ) =o(T(r, f)) (1.2)

on a set of logarithmic density 1.

Theorem 1.1 may be used to study zero-order meromorphic solutions of g-difference
equations in a similar manner as Theorem A applies for finite-order meromorphic
solutions of difference equations. The restriction to zero-order meromorphic func-
tions is analogous to demanding finite order of growth in the ordinary shift case.
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For instance, all meromorphic solutions of linear and g-Riccati difference equation
are of zero order.

Concerning the sharpness of Theorem 1.1, the exponential function does not
satisfy (1.2) for any ¢ € C, and so the assertion of Theorem 1.1 cannot be extended
to hold for all finite-order meromorphic functions. In fact, if f is an entire function
of order p € (0,1/2) with real negative zeros such that n(r,1/f) ~ r?, then there
is a positive constant ¢, independent of 6, such that log|f(re®)| ~ er? cos pf on
the ray 6 = 6y, where —m < 6y < 7 [5]. So f does not satisfy the conclusion of
Theorem 1.1 for any g > 1, since

f(gre™) b1\
log‘ Fire®) c(q” — 1)r? cos pb.

Thus zero order cannot be replaced by small order in the statement of Theorem 1.1.

The remainder of the paper is organized as follows. Before proving Theorem 1.1
we discuss its applications to ¢-difference equations in Section 2. We present ¢-
shift analogues of the Clunie and Mohon’ko lemmas which can be used to study
value distribution of zero-order meromorphic solutions of large classes of ¢-difference
equations. In Section 3, we prove a ¢-shift analogue of the Second Main Theorem of
Nevanlinna theory, and give an outline of how it can be used to analyze the value
distribution of zero-order meromorphic functions. Its corollaries include a Picard
type theorem for the g-shift operator. We give explicit examples of g-difference
equations with zero-order meromorphic solutions expressible in terms of ¢-Gamma
functions in Section 4. These examples show that the results obtained in Sections 2
and 3 are, in a sense, best possible. In Section 5 we prove Theorem 1.1 by a series
of lemmas, and finally, we make some concluding remarks concerning our results in
Section 6.

2. Applications to g-Difference Equations

Theorem 1.1 is a powerful tool in the study of complex analytic properties of zero-
order meromorphic solutions of large classes of g-difference equations. In this section
we are concerned with functions which are polynomials in f(g;z), where ¢; € C,
with coefficients ay(z) such that

T(r,ax(z)) = o(T(r, f))

on a set of logarithmic density 1. Such functions will be called g-difference polyno-
mials in f(2).

The following theorem is analogous to the Clunie Lemma [8]. It can be used
to study pole distribution of meromorphic zero-order solutions of non-linear g¢-
difference equations.

Theorem 2.1. Let f(z) be a non-constant zero-order meromorphic solution of
f(Z)nP(Z, f) = Q(Z’f)>

where P(z, f) and Q(z, f) are q-difference polynomials in f(z). If the degree of
Q(z, f) as a polynomial in f(z) and its q-shifts is at most n, then

m(r, P(z, f)) = o(T(r, [))
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on a set of logarithmic density 1.

Proof. We follow the reasoning behind the original Clunie Lemma, see, for instance,
[23], replacing the Lemma on the Logarithmic Derivative with Theorem 1.1.

In calculating the proximity function of P, we split the region of integration into
two parts. By defining

Ey = {p€0,2n] : |f(re'?)| < 1}

and
By = [Oa 27‘—]\E1a

we have
2rm(r, P(z, f)) = / log™ |P|dy +/ log™ | P| dep. (2.1)
E1 E2

First we consider F7. Each term of P is of the form

ax(2)f(2)° flq2)" - flaw2),
and so, writing with A = (lg,...,1,),
=P =) an@f ()" fla=)" - flaw2)"
el el
For each \ we have

| flgure™)
Te’%"

)

?)] flire’?)

|Py(re)| < |ax(re’ Frei)

whenever ¢ € F;. Therefore for each A we obtain

+ i dﬁ - ( f(qu)>
/Ellog | Py (re )|27T§m(r,a,\)+0 ;m T, ) ,

which, together with Theorem 1.1 and our assumption, implies that
+ i@ d(p
log ‘P(T@ 7f)| 27 = O(T(T, f)) (22)
By m

on a set of logarithmic density 1.
Now we consider Es. To do this case we note that

20) =) Qu(z ) =D by(2)f(q02)" - flguz)",

~yedJ ~yeJ
where, by our assumption iy +--- +1{, < n for all v = (lp,...,l,) € J. Hence we
have

1
[Pz, f)l = flz)n D by (2) () fqr2) - flguz)
yeJ
flare™) f qure’?)
S Z |b | ’ eup eup ’

yeJ



Nevanlinna theory and meromorphic solutions of q-difference equations 5
and so, by Theorem 1.1 again,

| 1ot 1Pe . NI 5 = o1 (r 1) (23)

on a set of logarithmic density 1. The assertion follows by combining (2.1), (2.2)
and (2.3). O

Let o and f be meromorphic zero-order functions such that T'(r, o) = o(T(r, f))
on a set of logarithmic density 1. Then « is called a slowly moving target or a
small function with respect to f. In particular, constant functions are always slowly
moving compared to any non-constant meromorphic function. The next result can
be used as tool to analyze the value distribution of zero-order meromorphic solutions
f, with respect to slowly moving targets. It is an analogue of a result due to A. Z.
Mohon’ko and V. D. Mohon’ko [25] on differential equations.

Theorem 2.2. Let f(z) be a non-constant zero-order meromorphic solution of
P(z, f)=0 (2.4)

where P(z, f) is a g-difference polynomial in f(z). If P(z,«) Z 0 for slowly moving
target o, then

—

m(np i) = o )
on a set of logarithmic density 1.

Proof. By substituting f = g + « into (2.4) we obtain
Q(z,9) + D(2) =0, (2.5)

where
Qzg)= Y by(2)g=)g(@z)" - ga,z)"
Y=(Jo,---1Jv)€J
is a g-difference polynomial in g such that all of its terms are at least degree one,
and T'(r, D) = o(T(r,g)) on a set of logarithmic density 1. Also D # 0, since « does
not satisfy (2.4).
Using (2.5) we have

o(rt)sm:2) om(:)
(152 ().

Note that since the integral m(r,1/g) vanishes on the part of |z| = r where |g| > 1
it is sufficient to consider only the case |g| < 1 from now on. Then

(2.6)

> by (2)g(2)0g(q12)" - glqu)
yeJ (2.7)

15t
o[t o)

yeJ

’Q(Z,g)’ _ 1
g gl
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and

m(ra b’Y) = O(T(T» g))

on a set of logarithmic density 1 for all v € J. Also by Theorem 1.1

o (82) e

on a set of logarithmic density 1 for all ¢ € C. Hence by (2.6) and (2.7) and the
fact that Z;:o l; > 1 for all v € J we have

m <r, ;) = o(T(r, g))

on a set of logarithmic density 1. Since g = f — « the assertion follows. O

3. Second Main Theorem

In this section we present a g-shift analogue of the Second Main Theorem of Nevan-
linna theory and discuss its applications in the study of the value distribution of
zero-order meromorphic functions.

Let f(z) be a non-constant meromorphic function of zero order, let ¢ € C\ {0, 1}
and let a € C. By denoting

Agf = flgz) — f(2),

and by applying Theorem 1.1 with the function f(z) — a, we have

m (r 2L ) ot ) (3.1)

T’f—a

on a set of logarithmic density 1. If g is a meromorphic function such that T'(r, g) =
o(T(r, f)) for all r on a set of logarithmic density 1, or in other words g is slowly
moving with respect to f, we say that T'(r,g) = S,(r, f).

The following theorem is obtained by modifying Nevanlinna’s proof of the Second
Main Theorem [26], and by applying Theorem 1.1.

Theorem 3.1. Let f be a non-constant meromorphic function of zero order, let
q € C\{0,1}, and let a1, ...,a, € C, p > 2, be distinct points. Then

m(Ta f) + Zm (T’, 1> S 2T(T’ f) - NpaiT(r7f) + Sq(r’ f)

— f—ak

where

1
Npair(rg f) = 2N(T7 f) - N(T, Aqf) + N <T, Aqf) .
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Proof. Using the First Main Theorem we have

Fnta) S

¢ (3.2)
=pT(r, f) ( (1 + S

where ,

P(f) = 10 = ax)

k=1
Since
1 o i Qe
P T

o (i) <3 (n L) 5 =5,

m (r, P(lf)> —m (n ﬁ(qu’) Aqu> <m (r, Aqu) + S, ). (33)

By the Valiron-Mohon’ko identity (see, e.g., [23, p. 29])

pT(r, f) =T(r, P(f)) + O(1),

and thus, by applying the First Main Theorem and inequality (3.3), equation (3.2)
becomes

and so

zpjm(r ak) = T(r,P(f)) — N (r, P(lf)) +Sq(r, f)

- m (r, P(lf)) +S,(r )

m (r, A1qf> + Sq(r, f)

S
:T(r,Aqf)—N( A1f>+5( f)-

IN

Therefore we have

+Zm<r, —Clk;) < T(r, f) + N(r, Ay f) + m(r, Ay f)

k=1

-N (r, A1qf> — N(r, f) + Sy (r, f).
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But

A f
f

by equation (3.1). This implies

Aof
f

it 8gf) = (rr 22 ) <o gy (7 250 ) =i )+ 5,00

1 1
m(r, f) —|—kz::lm (T, f_ak> <2T(r, f) + N(r,Ayf) — N (r, Aqf)

72N(T5 f) + Sq(T7 .f)a
as required. O

We will now give examples of how to apply Theorem 3.1 to analyze the value
distribution of zero-order meromorphic functions. Let a, b and ¢ be distinct points
in the extended complex plane, and assume that f is a meromorphic function of
order zero such that all a, b and ¢ -points of f appear only in infinite point sets
{q" 2 fnenugoy, where z; € C is the generating point of the set. (Note that this
assumption do not rule out the possibility that some, or all, of the values a, b and
¢ are Picard exceptional.) Assume further that multiplicities of values of f do not
decrease when n increases. Without loss of generality we may take a = 0, b= 1 and
¢ = oo. Then,

N(r f)+ N (n ]10) N (r, fll) < Nowin(r f) + Sq(r, ),

and so, by Theorem 3.1,
T(r, f) = Sq(r, f)

which is a contradiction, unless f is a constant function.

We say that the value a in the extended complex plane is a g- Picard exceptional
value of a zero-order meromorphic function f if ¢ € C\ {0,1}, and f assumes the
value a only in the sets {¢"z;}nenuqoy for some z;, with at most finitely many
exceptions. Then the above reasoning may be summarized as follows.

Corollary 3.2. If a zero-order meromorphic function f has at least three q-Picard
exceptional values, then f is constant.

Corollary 3.2 may be described as a ¢-shift analogue of Picard’s theorem. Con-
cerning the sharpness of this result, zero-order meromorphic functions with two
distinct g-Picard exceptional values can be constructed by means of Hadamard
products [16]. An explicit example showing the sharpness of Corollary 3.2 can be
found in the following section.

One can obtain more precise information concerning the value distribution of
zero-order meromorphic functions by a careful analysis of the term Npq. (7, f) in
Theorem 3.1. In the remainder of this section we describe the relevant terminology
needed towards this end and list a number of theorems which can be obtained by
using Theorem 3.1 together with known methods from Nevanlinna theory. We omit
the proofs of these results since one can easily reproduce them from proofs of the
analogous results in [15] by using Theorem 1.1 instead of Theorem A.
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Let ¢ € C\ {0,1} and a € C. We define the counting function ny(r,a) to be the
number of points zq in the disc of radius 7 centered at the origin such that f(z9) = a
and f(gzo) = a, where the contribution to ny(r,a) is the number of equal terms
in the beginning of Taylor series expansions of f(z) and f(¢z) in a neighborhood
of zg. We call such points g-separated a-pairs of f in the disc {z : |z| < r}. The
number of g-separated pole pairs n,(r,c0) is the number of g-separated 0-pairs of
1/f. This means that if f has a pole with multiplicity p at zo and another pole with
multiplicity s at gzo then this pair is counted min{p, s}+m times in ny(r, 00), where
m is the number of equal terms in the beginning of the Laurent series expansions
of f(z) and f(gz) in a neighborhood of zj.
The integrated counting functions are defined in a natural way as

Ng (7’, 1> = Ny(r,a) == / na(t,a) ~nq(0, @) dt + n4(0,a) logr
f —a 0 t

and

" nq(tv OO) — nq(07 OO)
t

Nq(r, f) = Ng(r,00) 1:/0 dt + ny (0, 00) log r.

Then, a natural g-difference analogue of N(r,a) is

Ny(r,a) :== N(r,a) — Ny(r,a)
which counts the number of those a-points (or poles) of f which are not g-separated

pairs. Note that, unlike N(r,a), it is at least in principle possible that N,(r,a) is
negative for all r. The following theorem is a generalization of Corollary 3.2.

Theorem 3.3. Let f be a non-constant meromorphic function of zero order, let
q € C\{0,1}, and let a1,...,ap, p > 2, be distinct constants. Then
»
~ ~ 1
0= DT 1) < ol )+ 38y (ro 52 ) + 8400

k=1

The definition of ]\qu(r7 a) alone gives no obvious lower bound for Nq(r, a). How-
ever, Theorem 3.3 implies that the inequality N, (r,a) > —T(r, f)+o(T(r, f)) holds,
for any a € CU {oc} and for all r outside of a possible exceptional set E with zero
logarithmic density.

A difference analogue of the index of multiplicity 6(a, f) is called the g-separated
pair index, and it is defined as follows:

N,(r,a)

my(a, f) := liminf —Z

oo T(r,f)’
where a € CU {oo}. Similarly, we define

N, (r,a)
,(a, f) :==1—limsup —L—~,
! roo T(r, f)
which is an analogue of ©(a, f), see [16]. Now we have the necessary notation to
write down the following consequence of Theorem 3.3.



10 D. C. Barnett, R. G. Halburd, R. J. Korhonen and W. Morgan
Corollary 3.4. Let ¢ € C\ {0,1}, and let f be a non-constant meromorphic
function of zero order. Then I1,(a, f) = 0 except for at most countably many values
a, and

> (0(a, f) +mgla, £)) <Y Myla, f) < 2. (3.4)

a

In the next section we will give an explicit example of a zero-order meromorphic
function g having a large number of zeros and poles, but nevertheless satisfying

(00, g) +114(0, g) = 2.

Analogously to complete ramification, we say that a point a is completely paired
with the separation q if whenever f(z) = a then either f(gz) = a or f(¢71'z) = a,
with the same multiplicity. Then a non-constant meromorphic function of zero order
can have at most four values which only appear in pairs.

Corollary 3.5. Let ¢ € C\ {0,1}, and let f be a non-constant meromorphic
function of zero order. Then f has at most four completely paired points with sep-
aration q.

Another consequence of Nevanlinna’s Second Main Theorem is the five value
theorem, which says that if two non-constant meromorphic functions share five
values ignoring multiplicity then these functions must be identical. We say that
two meromorphic functions f and ¢ share a point a, ignoring g-separated pairs,
when f(z) = a if and only if g(z) = @ with the same multiplicity, unless a is
a g-separated pair of f or g. In other words, all paired points are ignored when
determining whether or not f and g share a.

Theorem 3.6. Let ¢ € C\ {0,1}, and let f and g be meromorphic functions of
zero order. If there are five distinct points ar, € CU {oo} such that f and g share
ay, ignoring q-separated pairs, for all k = 1,...,5 then either f(z) = g(z) or both
f and g are constants.

4. The g-Gamma Function and g-Difference Equations

In this section we illustrate some of the results obtained in previous sections with
some examples of g-difference equations which are explicitly solvable in terms of
known zero-order meromorphic functions. Let ¢ € C be such that 0 < |¢| < 1. Then
the g-Gamma function I'y(x) is defined by

_ @G 1 i
Fole) = (q“;q)oo(l 2

where (a;¢)oo = I (1 — ag®). It is a meromorphic function with poles at z =
—n + 2wtk / log q, where k and n are non-negative integers [1]. By defining

Y(2) == (1=a)" 'Ty(x),  z=4g",

and v4(0) := (¢; ¢)oo, we have that 7,(z) is a meromorphic function of zero order
with no zeros, having its poles at {g=*}%2,. Therefore poles and zeros of v,(z)
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are g-Picard exceptional, and v,(z) cannot have any other exceptional values by
Corollary 3.2. Similarly, for zg € C, the zeros and poles of the function

94(2) := 74(2)/74(2 = 20),

are at {z0+q *}22, and {g7*}22,, respectively. Hence, if 2o is chosen such that 2 &
{q7*}%2,, then g,(2) is a non-rational meromorphic function of zero order having
the maximal two ¢-Picard exceptional values, but no (ordinary) Picard exceptional
values (by Corollary 3.2). Moreover,

I1,4(0, gq) + Ty(00, g4) = 2

which shows that upper bound in (3.4) may be attained with two non-deficient
values in the usual sense.
The first-order linear g-difference equation

flgz) = (1 =2)f(2) (4.1)

is satisfied by the function «,(z). The fact that the only ¢-Picard exceptional values
of v4(z) are zero and infinity also follows from equation (4.1). Now consider the
general first-order linear g-difference equation

flaz) = a(2)f(2), (4.2)

where the coefficient a(z) is a rational function. If a(z) = a is constant, equation
(4.2) is solvable in terms of rational functions if and only if log, a is an integer. If
a(z) is non-constant, let o;, ¢ = 1,...,n, and §;, j = 1,...,m, be the zeros and
poles of a(z), respectively, repeated according to their multiplicity. Then a(z) can
be written in the form

a(z) = c(l—z/ay) (1 —2z/ay)
(L=2/B1) (L =2/Bp)’

where ¢ # 0 is a complex number depending on a(z). Therefore, equation (4.2) is
solved by

_ Zlogq CFYQ(Z/al) e 'Yq(z/an)
f&) = e I3 0l B)

which is meromorphic if and only if log, ¢ is an integer.
Now consider the second order linear ¢-difference equation

F(a%2) + a1(2) f(g2) + ao(2)f(2) = 0, (4.3)

where a;(z) and ag(z) # 0 are rational functions. By [3] all meromorphic solutions
f(2) of (4.3) satisfy T'(r, f) = O((logr)?). Also, if equation (4.3) has a meromor-
phic solution f(z), then g(z) = f(gz)/f(2) is a solution of the ¢-difference Riccati
equation

P L)

g(z
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Since f(z) is of order zero, so is g(z), and hence we may apply Theorem 2.1 with
P(2,9) = g(2) and Q(z,g) = —(a1(2)g(2) + ao(2)) to obtain

m(r,g) = o(T(r,g(q~"2))) = o(T(lg" |, 9))

for all 7 on a set with logarithmic density 1. Therefore, m(r, g) = o(T'(r, g)) by [17,
Lemma 4] (see also Lemma B below), and so if g(z) is non-rational, its poles are
non-deficient in the sense that the Nevanlinna deficiency satisfies §(o0, g) = 0. In
particular, it follows that g(z) has infinitely many poles.

5. Proof of Theorem 1.1

As the proof of the Lemma on the Logarithmic Derivative [6, 16, 22] the proof of
the following lemma relies on the Poisson-Jensen Formula.

Lemma 5.1. Let [ be a meromorphic function such that f(0) # 0,00 and let
q € C\ {0}. Then,

(- 55) = (onen(e3)) (=t + S+ =)

4lg —1|rp + 1
(o~ a) (T(p’ P +loe™ | 5753 D ’

where z = re'®, p > max{r, |q|r} and 0 < 4§ < 1.

Proof. Using the identity

2,2 i0 ,
5 pF-r —Re (P T2 Rk , z=re'?,
p? —2prcos(p — 0) + 1?2 ped — z

and the Poisson-Jensen formula [16] with R = p we see
f(qz) ‘ / o ” 2pz¢’(q — 1) df
log ‘ = log | f (pe")| Re . - —
f(2) 0 17 (el (e’ — 2)(pe® —qz) ) 27
(92 — an)(p® — Gn2)
+ log —
P e

B bm 2 — l_)m
-y 1og’(qz g )(2) ' z)
=: S1(2) + Sa(z) — S3(2),
where {a,} and {b,,} are the zeros and poles of f respectively. Integration on the

i
set F := {1 € [0, 2n] : ‘f;‘(q[;w))

> 1} gives us the proximity function,

(565 = Ll 5
= /E (Si(re™) + Sa(re™) — S5(re™?)) %

27 ) ) ]
< / (151 (r™)] + | Sa(re®)| + 1S3 (™))

0

¥
2’
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We will now proceed to estimate each fo% |S; (re“‘ﬂ% separately. Since

2m ) _ i0
%/0 logf(pew)Re<( _2(q 1)zp¢ z)) d@‘

pei? — qz)(pe? —
1 2p(g—1)r

%W/o ’10g|f(P€w)|’d9

2p(q = Dr (m(@ £ +m (pa })) ;
we have

(p—lalr)(p—1)
2m ’I"eiw % 4p|q - 1|T o
J A e e T (T( D+ log” 1 >|)

By denoting {¢,} = {an} U {b,} we may consider the integrals of Sz and Ss
simultaneously. Using the identity |log |z|| = log™ |z| + log™ |z~!], it follows that

/0 (1S (re™)] + | S5 (rei®) 7< Z/

lenl<p
(g — 1)e,ret? ’ dw

151(2)]

IN

IN

(qre’¥ — c,)(p? — epret?)
(re? — cp)(p? — Cpqre?)

Z /27r log™

(g — D)e,ret? dy

2 i & W
‘C P — Cpqre o p? — épre 2T
(g — D)re™ 2 — Dre™| dy
1 — 1 | .
+ Z / og” ret — e, Z / og” qrew —cp | 27
lenl<p lenl<p
Using the fact that log(1 + |z|) < |z| for all x we have
27 1 27
— Dre™| dy (g — 1)7"6“” dz/)
log™ |1 (117 — < / 1 1 —
/o °8 * re —c, | 27 = 8 og" {1+ re¥ — ¢, 27
< /%1@wq—n v
o) eV —c, 2

_ g1 5/ dy
276 o |ret —|e||®

Then using |7"e“l’ — |cn|} > %rw for all 0 <9 < § we get

2m — Dret? | dy 4|q — 1|‘57"‘S 3 dip
log |14 A= Dre™ ) dv / |
/0 g |1+ re¥ —ec, | 2r — 2 o |re® —lca|?
<4m—u%5/5 dip
e
lg—1)°
= .].
51=0)’ 5.1)
. 2 (g— Dret g1
4 —1)re dz/J qg—1
log*t 1M Jre 14w 97 2
Lo | | 5 < ey 52
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Also, we have

/27r log™ |1 + (612— 1_)cnre'“¢" dy < /277 log*+ <1+ (¢ — l}énrefw > dip
0 p? — Epqre™ | 27 o p? —epqre |) 2w
< /2” (g — 1)é,ret? dy
~ Jo | p?—cCpqre” | 2w
o |

2m
= \q—l\r/
0

Using the fact that for all a such that |a| < p,

p? — Epqre | 27’

a 1
p2 —are®| = p—1r’
we obtain ) ”
1 -1 7n 2 d —1
g [+ =)ol v il (53)
0 p* = Caqre? | 2m — p—|q|r
and ) ”
™ — 1)egre | d —1
/ log™ |1 — % i/) < u (5.4)
0 p? — Cp2 2w p—r
Combining (5.1), (5.2), (5.3) and (5.4) gives
2
di
| s+ 1siGe
1 lq—11°(lgl° +1)  lg—1r  |g—1Jr
< (o on () cate -ty
(e (0 7)) (a2 + o=+ =
The assertion follows by combining the obtained bounds for the S; terms. O

If f(2) has either a zero or a pole at the origin, then, for a suitable p € Z, we
may write f(z) = 2Pg(z) where g(z) is finite and non-zero at the origin. Hence, by
taking K > Ky > max{|q|,1} and applying Lemma 5.1 with p = Kr, we have, for
all r sufficiently large,

m <r, J;((q;))> < D (n(Kr, f)+n <Kr, ;)) + %T(KT, 5 (55

where D1 and Dy are constants independent of  and K.
In order to deal with the T'(Kr, f) term we use the following result which is a
special case of [17, Lemma 4].

Lemma B. If T : RT — R* is an increasing function such that

logT
e L) _ (5.6)
r—oo logr

then the set
E:={r:T(Cyr) > CyT(r)}

has logarithmic density 0 for all C; > 1 and Cy > 1.
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To show that the n(Kr, f) term in equation (5.5) is small we first prove the
following lemma.

Lemma 5.2. If f is a non-constant meromorphic function of zero order, then the

o )

En::{rzlzn(r,f)< on

has logarithmic density 1 for all m € N.

Proof. Since, by Lemma B, N(Kr, f) < 2N(r, f) on a set of logarithmic density 1
for any K > 1, and N(Kr, f) > n(r, f)log K for all » > 1, it follows that

1

2
n(ﬁf) < @N(Kﬁf) < @N(ﬁf) < logK

T(r, f)

on a set of logarithmic density 1. By choosing K > exp 2"*! we have that the set

T(;f) }

E, = {7’2 1:n(r f) <

has logarithmic density 1 for all n € N, as required. O

The following lemma, together with Lemma 5.2, implies that n(r, f) = o(T(r, f))
on a set of logarithmic density 1, whenever f is a meromorphic function with zero
order.

Lemma 5.3. Let T : Rt — R" be an increasing function, and let U : RT — R™T.
If there exists a decreasing sequence {cp tnen such that ¢, — 0 as n — oo, and, for
alln € N, the set

Foi={r>1:U(r) <ec,T(r)}

has logarithmic density 1, then

on a set of logarithmic density 1.

Proof. Since each set F), has logarithmic density 1 we have

- 1 dt
lim — =1,
r—oolog” Ji1 4nF, t

which implies that for all n, there exists r,,, such that

1 dt 1
/ —>1—-— for all ¥ > ry,.
logr Ji1vnr, ¢ n

We set F to be the union of the sets [r,,, 7,41) N F,, where n runs through all positive
integers. Then for all » € F' we have that

U(r) < ¢, T(r),
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where n, — 0o as r — oo. Since ¢, — 0 as n — 00, this implies that U(r) = o(T'(r))
on F'. Therefore if we can show that F' has logarithmic density 1 we are done.
Since for all sufficiently large r there is n so that r, < r <r,11, we have

/ ﬁ>/ dt>(1—1)10gr
Lrne U JinE, ¢ n '

Dividing through by logr and taking the limit as n — oo gives us that F' has
logarithmic density 1, as required. O

The following corollary is an immediate consequence of Lemmas 5.2 and 5.3.

Corollary 5.4. If f is a non-constant meromorphic function of zero order, then

on a set of logarithmic density 1.

Now we are ready to complete the proof of Theorem 1.1. By Lemma B we have
that T(Kr, f) < 2T(r, f) and n(Kr, f) + n(Kr,1/f) < 2(n(r, f) + n(r,1/f)) on a
set of logarithmic density 1, and so, by (5.5),

m (r, J;((q;))) <2D, (n(r, fl+n (r, ;)) + %T(m‘)

for all 7 on a set with logarithmic density 1. Therefore, by choosing K = 2™, and
by applying Lemma 5.2, we have

4Dy 4+ 2D
m <7‘7 f(qz)) < s 2
f(2) n
on a set with logarithmic density 1 for all n € N. By taking

-n(:45)

T(r, f)

in Lemma 5.3, we obtain

f (qZ))
m | r, =o(T(r, f
(55 =ere
on a set of logarithmic density 1, as required. O

6. Conclusion

In this paper we have extended some of the main results of Nevanlinna theory to the
g-difference operator acting on zero-order meromorphic functions. In particular, we
have found g-difference analogues of the Lemma on the Logarithmic Derivative (see
Theorem 1.1) and the Second Main Theorem (see Theorem 3.1). The g¢-difference
analogue of the Second Main Theorem implies, for instance, that if a zero-order
meromorphic function f assumes three distinct values a, b and ¢ only in infinite
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point sets {q"zj}neNU{O}, then f must be constant. This is a ¢-shift analogue of Pi-
card’s theorem. Our findings are an analogue of the results concerning the difference
operator by Halburd and Korhonen in [14, 15].

Historically ¢-difference equations are one of the most natural classes of equa-
tions to look at after differential equations and difference equations, and the study
of meromorphic solutions of g-difference equations has been ongoing since the nine-
teenth century. As seen in Section 2, the g¢-shift analogue of the Lemma on the
Logarithmic Derivative enables an efficient study of the value distribution of zero-
order meromorphic solutions of large classes of g-difference equations. Theorem 2.1
is a powerful tool when analyzing densities of poles of solutions, while Theorem 2.2
can be used to obtain information on the value distribution of almost any finite
value. The restriction to zero-order meromorphic solutions is natural in the sense
that all meromorphic solutions of linear g-difference equations and g-difference Ric-
cati equations have zero order [3, 11].
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no: 204819), the European Commission’s Framework 6 ENIGMA network and the
Leverhulme Trust.
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