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Abstract

The existence of sufficiently many finite-order (in the sense of Nevanlinna) meromorphic solutions of a difference equation appears to be
a good indicator of integrability. It is shown that, out of a large class of second-order difference equations, the only equation that can admit
a sufficiently general finite-order meromorphic solution is the difference Painlevé II equation. The proof given relies on estimates obtained by
arguments related to singularity confinement. The existence of meromorphic solutions of a general class of first-order difference equations is also

proven by a simple method based on Banach’s fixed point theorem.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

An ordinary differential equation is said to possess the
Painlevé property if all of its solutions are single-valued about
all movable singularities (see, e.g., [1]). This property is a
powerful indicator of integrability of a differential equation.
In the early twentieth century, Painlevé [2,3], Fuchs [4] and
Gambier [5] showed that, out of a general class of second-
order ordinary differential equations, there were six equations
possessing the Painlevé property which could not be integrated
in terms of known functions. These equations are now known
as the six Painlevé equations. The proof that these equations are
indeed integrable had to wait until the latter part of the twentieth
century when they were solved by inverse scattering techniques
based on an associated isomonodromy problem; see, €.g., [6].

Several analogues of the Painlevé property for discrete
equations have been discussed in the literature. In particular,
Ablowitz et al. [7] considered discrete equations as delay
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equations in the complex plane which enabled them to utilize
complex analytic methods. The equations they consider to be
of “Painlevé type” (i) are of finite order in Nevanlinna theoretic
sense, and (ii) have no digamma functions in their series
expansions. They looked at, for instance, difference equations
of the type

Yy+y=RzYy), (1.1

where R is rational in both of its arguments and we have
suppressed the z-dependence by writing y = y(z),y = y(z+1)
and y = y(z — 1). Ablowitz, Halburd and Herbst showed that
if (1.1) has at least one non-rational finite-order meromorphic
solution, then deg,(R) < 2. Indeed, the difference Painlevé
II (dPj;) equation (3.21) lies within this class of equations.
The assumption is considerably weaker than the continuous
Painlevé property where all solutions are required to be single-
valued about movable singularities. On the other hand, the class
(1.1) with deg, (R) < 2 also includes many equations generally
considered to be non-integrable.

We will show that the existence of a sufficiently general
finite-order meromorphic solution is enough to single out the
difference Painlevé II equation from a general class (1.1) of
difference equations; see Theorem 3.1 below. We will also
give examples of non-Painlevé type difference equations having
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special finite-order Riccati solutions. Therefore demanding the
existence of a finite number (or even a one-parameter family)
of finite-order solutions is not always enough to single out the
dP;; from (1.1).

Costin and Kruskal [8] also applied complex analytic
methods to detect integrability in discrete equations. Their
approach is based on embedding solutions of a discrete
equation into analyzable functions and is quite different from
the property described in the present paper.

The most widely used detector of integrable discrete
analogues of the Painlevé equations is the singularity
confinement test of Grammaticos et al. [9]. The basic idea is
to consider finite initial conditions leading to iterates which
become infinite at a certain point. Such a singularity is said to be
confined if the iterates are all finite after a finite number of steps
and contain sufficient information about the initial conditions.
The singularity confinement test has been successfully applied
to discover many important discrete equations, which are
widely believed to be integrable [10].

We will illustrate singularity confinement using the standard
example [10]

anyn + by
-y}
where (a,) and (b,) are given sequences. To go from finite
values of y, forn < k to yx+1 = 00, we must have y, = +£1.
In order to analyze future iterates we let y;_; have an arbitrary

finite value ¢ and we set yy = 1 + € and then take the limit
€ — 0. The next few iterates are

Yn+l + Yn—1 = , (1.2)

1
Viert = 5 (—ax F be !t + 0(1),
2ar41 — ax F by
ar £ by
n (ax £ bi){(brt2 — br) F (42 — 2ax41 + ak)}(l
2Q2aj+1 — ak F br)

Yit2 = Fl + e+ 0(),

Vi3 =
+ 0(1).

In order for y43 to be finite (i.e., if the singularity is confined)
we must have (bgyz — by) F (ar+2 — 2ak4+1 + ax) = 0. If
all singularities are confined then this condition must be true
with both the “4” and “—" signs and for all k, in which case
ay = an+ B and b, = y +8§(—1)" and Eq. (1.2) is the discrete
Painlevé I equation.

Despite the demonstrated power and apparent simplicity
of the singularity confinement test, its implementation is
not without difficulty. In general the iterates of a difference
equation oscillate between finite and infinite values. Therefore
it is not always clear when the iterates truly leave the
singularity. To be absolutely sure that the singularity is confined
we would need to know information about infinitely many
iterates. Another difficulty is that there exists a discrete equation
discovered by Hietarinta and Viallet [11], which passes the
singularity confinement test, but numerical studies suggest that
it is chaotic. Their suggestion to avoid this problem is to
demand that the iteration sequence has zero algebraic entropy.
This approach is related to a number of techniques which use

the slow growth of the degree of the nth iterate of the considered
map (as a rational function of the initial conditions) to detect
integrability [12—15].

In this paper we consider Eq. (1.1) using the notion of
singularity confinement involving only five iterates. Nevanlinna
theory is used to demonstrate that generic non-confinement of
poles implies that the order of any corresponding meromorphic
solution is infinite. This helps to clarify a link between the
complex analytic approach [7] and the singularity confinement
test [9]. The latter is used as a tool in the proof of
Theorem 3.1 to show that the only difference equation of the
type (1.1) having a sufficiently general finite-order solution is
the difference Painlevé II equation.

The autonomous form of the difference Painlevé II equation,
known as the McMillan map (3.25), admits a two-parameter
family of finite-order meromorphic solutions. In the non-
autonomous case, however, the question of existence of
meromorphic solutions remains open.

In general, very little is known about the singularity structure
of solutions of difference equations in the complex domain. We
conclude this paper by bringing together a number of existence
results for meromorphic solutions of first-order autonomous
difference equations. We prove these results using Banach’s
fixed point theorem.

2. Nevanlinna theory

The Nevanlinna theory of meromorphic functions studies
the density of the points in the complex plane at which a
meromorphic function takes a prescribed value. It also provides
a natural way to describe the growth of a meromorphic function.
In this section we will first present some of the basic definitions
and elementary facts from Nevanlinna theory. Then we will
go on to prove a technical lemma, which will be applied in
Section 3 to single out the difference Painlevé II equation from
a general class of nonlinear second-order equations.

2.1. A brief review of value distribution theory

The Nevanlinna characteristic
T(r,y) =N(@,y)+m,y)

of a non-constant meromorphic function y is the sum of the
counting function N (r, y) and the proximity function m(r, y).
The counting function is defined by

N(r.00) = N(r.y) = / AURIELRY

dt 4+ n(0, y) logr,
where n(r, y) is the number of poles (counting multiplicities)
of y in the disc {z : |z| < r}. It is a measure of the number of
poles in the disc of radius r centered at the origin. Similarly,

/r ﬁ(tv y) —71(0, y)
0 t

N(r,00) = N(r, y) = dr +7(0, y) logr,

where 71(r, y) counts each pole only once, ignoring multiplicity.
The proximity function

_ _ o + i0
m(r,00) = m(r,y) == T A log™ |y(re™)|do,
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where
log+ x = max(0, log x),

describes the average “closeness” of y to oo on a circle of radius
r. Similarly we define

1 1 1
m(r,a) =m|r, = — log" | ———df,
y—a 27 Jo y(rel?) —a
and
1
N(r,a) =N (r, )
y—a

/’ n(t,a) —n(0, a)
t

0

dr +n(0, a)logr,

where n(r, a) counts the number of a-points (i.e., the points
z € Csuch that f(z) = a) of y in the disc of radius r centered
in the origin.

The characteristic function 7'(r, y) has many properties
which make it very useful in the analysis of meromorphic
functions. First, given meromorphic functions f and g,

T(r,f+g) <T(r, f)+T(r,g) +log2 (2.1)
and
T@r, fe) <T@ H+T(r,8) (2.2)

by the definition of T (r, y). These inequalities hold also for the
proximity function m (r, -) and for the counting function N (r, -),
and they are applied frequently below. Second, the function
T (r, y) is an increasing function of r and a convex increasing
function of log r. This fact is crucial when analyzing the growth
of a meromorphic function y in a neighborhood of infinity. This
is described by the order of growth defined by

. log T(r, y)
p(y) = limsup ————,

r—oo  logr
which, in the case when y is entire, is equivalent to the classical
growth order

loglog M (r, y)

o(y) = limsup logr

r—>00
where M (r, y) is the maximum modulus of y in the disc of
radius r.
Another useful fact is that the characteristic function 7 (r, y)
offers a way of classifying some of the natural subfields of the
field of meromorphic functions. For instance,

rational

A meromorphic function y is
phic fi Y {consmnt

if and only if T (r,y) = {ggll(;gr)

as r — o0o. These classifications are convenient when
distinguishing between constant, rational and non-rational
functions, for example, when they appear as coefficients in
differential or difference equations.

The First Main Theorem of Nevanlinna theory states that

T(r,y)=T <r, ) + 0(1) 2.3)

y—a
for all complex numbers a. This implies that if y takes the
value a less often than average, i.e., N(r, a) is relatively small,
there must be a compensation in m(r, a). For instance, if a
meromorphic function has few poles, then, loosely speaking,
the values of that function must stay relatively “close” to
infinity. To quote Rolf Nevanlinna himself, the toral affinity of
a meromorphic function y towards each value a is the same,
independent of a [16]. In a sense this behavior is analogous to
rational functions. If a rational function R is understood as a
self-mapping of the extended plane, then the equation

R() =a

always has the same number of roots, counting multiplicities,
independently of a. We will now consider the exponential
function in the context of the First Main Theorem. Since e* #
0, oo for all z € C, the counting functions N (r, 0) and N (r, 00)
are identically zero. Therefore, by the First Main Theorem,
m(r, 0) and m(r, oo) are large for r > 1, which means that
on a large part of the circle |z] = r the exponential function
must be close to 0 and on another large part it must be close to
oo. This is reflected in the fact that the exponential function
is small in the negative half plane PR(z) < 0, and large in
the positive half plane 23(z) > 0. The fact that the proximity
functions for 0 and oo are indeed large can be verified by a
direct computation, which results in m(r, 0) = m(r, c0) =r/m.
On the other hand, by solving the equation e* = a for z, we
have N(r,a) = r/m + O(1) for all a # 0, co. The First Main
Theorem then implies that m(r, a) = O(1) for all finite non-
zero a, which means that e? is mostly far from any such values.

Finally, the Second Main Theorem of Nevanlinna theory
addresses the question of the relative size of the components

m(r,a) and N(r,a) in the sum (2.3). If ay,az,...,a, are
distinct complex numbers, g > 2, then
_ 4. __ 1
(q—DT@.y) <NEy)+Y N (r, ; _a,) + 8@, y)
j=1 J
2.4)
where
S(r,y) = O (log(rT(r,y))), (2.5)

except possibly for a finite length of r-values. In particular,
if y is of finite order, the error term S(r, y) grows at most
like O (logr) without an exceptional set. Inequality (2.4) holds
also when y is a non-constant rational function, with the error
term S(r, y) replaced by O (1), but since there are other more
efficient methods to deal with rational functions it is often
assumed in applications that y is non-rational. In general we
will use the notation S(r, f) to denote any quantity which is
o(T (r, f)) outside of a set of finite linear measure.

The importance of the Second Main Theorem arises from
the fact that it is a profound generalization of Picard’s theorem.
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In fact, Picard’s theorem follows easily from (2.4). If a non-
constant meromorphic function g does not assume three values
ay, ay and oo, it follows by (2.4) that T'(r, g) < S(r, g), which
is an obvious contradiction. Therefore g must be constant.
Choosing three finite values does not affect the reasoning
significantly.

A number of generalizations of inequality (2.4) have
been proposed (see, e.g., [17-19]). Nevanlinna himself gave
an extension of (2.4) to three small target functions. A
meromorphic function a(z) is said to be small with respect to
y when T'(r,a) = S(r,y). The following theorem is a slight
refinement of Nevanlinna’s original result; see [20, p. 47].

Theorem 2.1. Suppose that y is a non-rational meromorphic
function. If a and b are small meromorphic functions with
respect to y such that a*> # 4b, then

T(,y) < Ny + N (r, i

—_— S, y). 2.6
y +ay+b>+ (r,y) (2.6)

Obviously, simply factorizing y> + ay + b takes the right-
hand side of (2.6) in the same form as in Nevanlinna’s theorem,
except that then the target functions may have some square
root type branching instead of being meromorphic. To deal with
this we use Nevanlinna theory for algebroid functions. Roughly
speaking an algebroid function is a v-valued function in the
complex plane, which is single-valued and meromorphic on
a v-sheeted covering surface of the complex plane. In other
words, algebroid functions may have some isolated vth root
type branch points, but otherwise they are meromorphic on a
suitable domain. For a more precise definition, and elementary
results in algebroid Nevanlinna theory, we refer to the original
papers due to Selberg [21-23], Ullrich [24] and Valiron [25],
who created the algebroid version of Nevanlinna theory in the
late 1920’s and early 1930’s. Otherwise the proof is just a slight
modification of Nevanlinna’s original proof.

Proof of Theorem 2.1. Let
(@) — a4 (2)
$(2) = *

= LTy 2.7
a_(z) —ai(z) @7)

where

1 1
s (z) = _EG(Z) + Ex/a(z)2 —4b(2)

are algebroid functions. Then by the algebroid version of the
Second Main Theorem (2.4), we have

_ — 1 — 1
T(r,¢) < N(r,¢)+N<r, 5)+N(r, ¢_1)

+ Ne(r, ) + S(r, @),

where N¢ (7, ¢) is a measure of the branch points of ¢. However,

from (2.7) it follows that Ng(r,¢) = S, ¢) = S, ).
Therefore,
T(r,y) =T(r,¢)+S(r,y)

< N, $) +ﬁ(r, %) +N<r, p 1_ 1) + 8. y)

IA

_ — 1 — 1
N(r,y)+N<r, )—l—N(r, )
y— oy y—a-

— 1
)
o_ — oy
+N(rv a+) +N(r7 a—) +S(rv y)

=Ny +N|(r, 5—— )+ S0 y),
(r,y) ( y2+ay+b) (r,y)

which completes the proof. [
2.2. Applications to difference equations

Consider the equation

Yy =R(zY), (2.8)

where R is rational in both arguments. Yanagihara [26] showed
that if Eq. (2.8) admits a finite-order non-rational meromorphic
solution, then the degree of R as a function of y, deg,(R),
is at most one. In this case, Eq. (2.8) is either linear or a
linearizable discrete analogue of the Riccati equation. Using
similar arguments it was shown in [7] that if Eq. (1.1)
admits a finite-order non-rational meromorphic solution then
deg,(R) = 2. In both cases the proof relies heavily on the
Valiron—Mohon’ko identity; see, e.g., [27], which states that

T(r, R(z; y)) = deg, (R)T (r, y) + O(logr) (2.9)

assuming that y is non-rational. In our study of Eq. (1.1), we
will seek more precise information by considering the pole
distribution of y. In the following lemma, we will find a lower
bound for the number of poles of y which is enough to imply,
for most equations of the type (1.1), that y has infinite order
of growth. If we additionally assume that the denominator of
R(z; y) has two distinct roots, and that certain two types of
singularity appear generically, then the only remaining equation
will be the dPy;.

Lemma 2.2. Let y be a non-rational meromorphic solution of
the equation

2y + c1y + <o

=: R(z; y),
y2+ay+b (@)

y+y= (2.10)
where R(z; y) has degree two as a function of y and where a, b
and c;’s are rational functions such that a® = 4b. If there exist

ro > 0and a < 2 such that
N(r.y+y) <aN(r+3,y) (2.11)
forall v > ry, then y has infinite order.

We will see in Section 3 that inequality (2.11) is closely
related to singularity confinement.

Proof of Lemma 2.2. Assuming that y is of finite order,
Theorem 2.1 implies

T(r,y)—N(r,y) <N (r ) + 0(logr). (2.12)

"y2+ay+b
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Hence, by (2.10) and (2.11),

2

— cy“+c1y+co

N|lr,——— )+ O(ogr
( y2+ay+b ) (log”)

Ny + y) + O(logr)
aN@r +3,y)+ O0(logr).
Also, defining Ni(r, y) .= N(r,y) — N, y), we have

T(r,y)— N(,y)

IA

IA

(2.13)

Tr.y+y)—Nr.y+y) =m@r.y+y) + Ny +y)
< m(r,y) +m(r, y) + Ni(r,y)
+ Ni(r, y) + O(1)
=Try)—N©Y) +TT)
—N@y) +0Q).
Thus, by the Valiron-Mo’honko theorem (see, e.g., [27]) and
Eq. (2.13), we have
2T(r,y) =T(r,y+y)+ O(logr)
=N+ +TrY+y) - NE.y+Y)
+ O(logr)
<aNr+3,0+TE)-NE)+Try)
—N(r,y) + O(logr)
aN(r+3,y)+aN(r +3,9) +aN@r +3,y)
+ O(logr)
< 3aN(r+4,y) + O(ogr),

IA

and so
_ 3o — _
T(r,y)— N, y) < 7N(r +4,y) — N, y)+ O(ogr).

Now assume that

_ i +2) o — .
76,0 - Ney = TE2ING 42542,y
— jN(r, y) + O(logr) (2.14)
forall j = 1,...,n. Then we have
_ 2) o —
2T(ry) < aN(r +3, ) + wzw F2n42,7)
n+2)a—

—nN(r,y) + N(r+2n+2,y)
—nN(r, y) + O(logr)
(n+3)aNr+2n+3,y)—2nN@r —1,y)

+ O(logr).

IA

Hence,

T(r,y) =Ny < MN(r +2n+4,y)
—(n+ DN, y)+ O(logr)

and so (2.14) holds for all j € N by the induction principle.
Thus,

N(r’ y) S M
2n

N +2n+2,y)+ O(logr) (2.15)

for all n € N. Now, since ¢ < 2, we can choose n, € N such
that

(ng +2)a
2ng

< 1.

Therefore, by Eq. (2.15), N(r, y) has exponential growth, and
so y is of infinite order.

Note that N (r, y) cannot grow like the error term O (logr)
since y has infinitely many poles. To see this, combine Eq.
(2.10) and the Second Main Theorem to obtain

T(r.y) <N(r,y) + N(r. 3 +y) + O(logr).

Therefore, assuming that y has finitely many poles leads to a
contradiction, since then 7' (r, y) = O(logr), which is only
possible when y is a rational function.

3. Singularity confinement and value distribution

The aim of this section is to prove Theorem 3.1, which
uses value distribution theory to single out the difference
Painlevé II equation from a large class of difference equations.
The main idea is to re-interpret singularity confinement in
terms of the value distribution of meromorphic solutions of
difference equations. Solutions with sufficiently many non-
confined singularities are shown to satisfy an inequality of the
form Lemma 2.2 and hence they have infinite order.

3.1. Reduction to the difference Painlevé Il equation

We will now study the second-order difference equation

Yy+y=R(z)y), (3.1

where R is rational in both arguments, and the denominator
of R has at least two distinct roots as a polynomial in y.
In particular, we will show that if the difference Eq. (3.1)
has a sufficiently general finite-order meromorphic solution,
then it must reduce to the difference Painlevé II equation.
For our purpose, it is sufficient to use a notion of singularity
confinement involving only five iterates. More precisely, we say
that for Eq. (3.1) the singularity at a point z = zq is confined if
y(zp) = oo but y(zg £ 1) and y(zo % 2) are finite.

Assume that y is a non-rational meromorphic solution
of (3.1). Using the argument by Ablowitz et al. [7], which
combines the Valiron-Mohon’ko identity (2.9) and the fact that

T(r,yzx1)<(A+e)Tr+1,y)+0(Q)
holds for all € > 0, when r is sufficiently large, we have

o +19 2 2B 5 4 otogn
r V) = ——T(r, r).
Y 2(1+¢) Y s
This implies that y is of infinite order unless the degree of
R(z; y) is at most two. Therefore (3.1) reduces into

2
- K2y® + K1y + Ko
== - 3.2
yT2 y2+ay+b 3-2)
where the coefficients of the right-hand side are rational
functions, and a> =# 4b since we demanded that the
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denominator of R(z;y) has at least two distinct roots. The
transformation y — y — a/2 transforms (3.2) into

oy’ +cy+c | Py
y:—p? 0(z;y)

where c;’s are rational functions and pr=d%/4—b=£0.

Suppose that Q(zo—1; y(zo—1)) = 0and P(z0—1; y(zo—
1)) # 0 for some zg € C, which is not a pole or zero of any of
the coefficients of R. Then y has a pole at either zg or zo—2. We
assume, without loss of generality, that y(zo) = oo. Eq. (3.3)
now shows that
Yo+ 1)+ y(zo — 1) = c2(z0).
Next, we determine the condition for y(zg + 2) to be finite. If
y(z0) = oo and y(zp + 2) is finite, then by (3.3),
Qo+ L y(zo+ 1) =0.

Therefore, by (3.4),

y+y= (3.3)

(3.4)

(c2(z0) — y(z0 — 1))* = p(zo + D* = 0. (3.5)
Since also
O(zo— 1;y(z0 — 1)) = y(z0 — D* = p(zo — D* =0, (3.6)

we have

2¢2(20)y(z0 — 1) + p(zo + D — p(z0 — 1)* — ¢2(20)* = 0.
3.7

We will now divide our consideration into different
cases depending on how many confined and non-confined
singularities a meromorphic solution of (3.3) has. In general,
there are some singularities that arise from the poles of
the coefficients. A single pole of a coefficient may force
the solutions to have an infinite string of poles regardless
of the initial conditions. We divide these fixed singularities
similarly into confined and non-confined singularities, with the
exception of poles which are next to a pole of a coefficient.
These exceptional singularities, which we call adjoining, are
problematic because they may appear to be confined but they do
not give sufficient information about the coefficients. However,
since there are only finitely many adjoining singularities, their
existence does not affect our reasoning significantly. Also, there
can only be finitely many points zo such that Q(zo; y(zo)) =
P(z0; ¥(z0)) = 0, since otherwise it would follow that ¢, p* +
c1p + co = 0, which is impossible due to the fact that R(z; y)
has degree 2 as a rational function of y.

We begin by assuming that there are infinitely many confined
singularities. In particular, suppose first that there are infinitely
many confined singularities such that ¢, vanishes. Then c>(z) =
0 and we arrive at the equation

p(z =17 = pz+ 1> =0, (3.8)
which can be integrated to obtain
p() = A, (3.9

where, since p is a polynomial, A # 0 is an arbitrary complex
constant. Therefore, making the transformation y = Aw,

Eq. (3.3) takes the form

(3.10)

where ag, a; are certain rational functions depending on A and
cj’s.

Suppose now that there are infinitely many confined
singularities where ¢> does not vanish. Then by (3.6) and (3.7),
we have

2@ = 2(pz+ D? + piz — DHe2 (@) + (p(z + 1)?
—pz—1DH? =0,

which can be solved for ¢; to obtain

2(2) =x(pz+ 1) £ pz— 1)), (3.11)

where p(z) is meromorphic on a suitable Riemann surface.
Since c; is rational by assumption, the right-hand side of (3.11)
cannot have any branching. But because p has at most finitely
many branch points by definition, they cannot all cancel each
other in =(p(z + 1) & p(z — 1)) unless there are none to begin
with. Hence p must be a rational function. So, finally, Eq. (3.3)
becomes

(1P + n2p)y* +c1y +co
V2 — 2

y+y= , (3.12)
where ,u? =l1forj=1,2.

Now consider the case in which y has only finitely
many confined singularities but infinitely many non-confined
singularities. Since Eq. (3.3) is of the form (2.10), we will
see below that Lemma 2.2 may be applied to show that such
solutions are of infinite order. This will be done by obtaining an
inequality of the type (2.11). Since y + y has a pole if and only
if the denominator of the right-hand side of (3.2) vanishes, we
need to look at singularity sequences of y containing as many
zeros of y> — p? compared to the number of 00’s as possible.
Assume therefore that y = +p =: ¢ for some zo € C. Then
either y(zo+1) = o0, or y(zo—1) = oo. Strictly speaking there
is also a third possibility, namely that ¢,y + 1y + ¢o vanishes
at zo. However, since we have already shown that there can be
only finitely many points where both the denominator and the
numerator of right-hand side of (3.3) have zeros, and therefore
these points cannot affect the order of the considered solution,
we do not consider this case any further.

Suppose now that y(zo £ 1) = oo for both choices of
the sign. Then y(zg &+ 2) = c2(z0 = 1) — €(z0). This is a
finite value which, in general, is not equal to e(zg & 2). If
this is indeed the case, y(zo £ 3) = oo, which implies that
y(zo £4) = c2(z0 £3) — c2(zo £ 1) + €(z0). By continuing in
this manner we have a sequence of poles propagating to infinity
in both directions, unless at some point the sequence returns to
a zero of y? — p?. This type of sequence looks like

y:‘..., o© , ko, o0 ,e, o0, k , o0 ,...
z:

3,20—2,z0—1l,z0,20+ 1,20 +2,20+3, ...,
(3.13)

|20
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where k17 # e(zo £ 2) are finite values. It is also possible that
no zeros of y> — p? appear in (3.13) at all, in which case we
have a sequence of the type

...,00,k_p,00,ky, 00,k 00,.... (3.14)

In sequence (3.13) there is only one pole of y 4+ y, while in
(3.14) there is none. On the other hand, both sequences have
infinitely many poles of y, and so, for these sequences, (2.11)
holds with any o > 0. It is therefore clear that if most poles
of a meromorphic solution of (3.3) appear as part of sequences
(3.13) or (3.14), then the solution must be of infinite order.

It may happen, however, that after a pole the sequence
returns to a zero of y> — p?. For instance, we may have
y(z0) = &(z0), y(zo £ 1) = oo, and y(z0 £+ 2) = e(z9 £ 2).
Then, depending on multiplicities, either y(zg9 & 3) = oo, or
v(z0£3) = k13 € C. Therefore it is possible to have a sequence
which looks like (3.13), except that some or all finite values k;
have been replaced by zeros of the denominator y2 — p2. For
instance,

..., 00, k_4,00,€(z0 — 2), 00, £(20), 00, k2, 00, (20 + 4),
ks, ....

In any case, for unconfined singularities, a sequence of the form

.. 8(zo — 2), 00, €(20), 00, £(z0 + 2), . .. (3.15)

contains the most poles of y + y compared to the number of
poles of y. Note that y + y might have two adjacent poles, but
they always arise from a sequence of the type

o, 00,8(zo+ 1), e(zo+2),00,....

Hence for any meromorphic solution of Eq. (3.3) with infinitely
many unconfined singularities and no confined or adjoining
singularities, we have the estimate (2.11) with « = 3/2. Taking
the possible finitely many adjoining and confined singularities
into account, inequality (2.11) still holds with

3
== 2,
o 2—i—e<

where € > 0 may be chosen arbitrarily small. Therefore, by
Lemma 2.2, y is of infinite order. Note also that, at least in
principle, the sequence

.., E,8,00,8,800,8,8,...

may appear in a finite-order solution of Eq. (3.3). These poles,
however, are confined since we defined confinement using five
iterates.

Finally, if there are only finitely many points at which
y2 — p? vanishes, then by Theorem 2.1 and (3.3),

T(r,y) <N@Y+y) + N y) + S, y). (3.16)

But if y has only finitely many poles, then so has y + y, which
means by (3.16) that T'(r, y) = S(r, y). Thisis a contradiction,
since obviously for non-rational function y the error term (2.5)
cannot be as big as the characteristic function 7 (r, y).

It follows that if y is a non-rational meromorphic solution
of Eq. (3.3) then either y has infinite order or y has infinitely

many confined singularities. We have already shown that in
the latter case Eq. (3.3) reduces to either (3.10) or (3.12). We
will now explore further equations (3.10) and (3.12) under
the assumption that they admit meromorphic solutions with
infinitely many confined singularities.

We will first look at Eq. (3.10). Note that in order to achieve
confinement it is necessary to reduce Eq. (3.1) into (3.10),
but this reduction alone is not sufficient. Namely, after some
manipulation, Eq. (3.10) implies

(1 =)@ —w) =qQ + a1 W —ay — a;w

2
—(w+w) [2w(a0+a21w) B <ao+a12w> i| (3.17)

1—w 1—w

If w is of finite order then it must have infinitely many confined
singularities. All confined singularities of Eq. (3.10) appear as
a part of the sequence

...,1_2,8, oo, —€&, 12,... (3.18)

where ¢ = +£1 and /1, are finite values, which may or may not
be equal to £¢. In other words, at least for one choice of ¢ there
must be infinitely many points z¢ such that when z — zg, we
have w — &, w — 00, W — —¢& and w and w have finite
limits. In this limit, Eq. (3.17) becomes o

ai(zo+ 1) —2a1(z0) + a1(zo — 1) — elaop(zo + 1)

—ap(zo — D] = 0. (3.19)

Since Eq. (3.19) holds at infinitely many points and ag and a
are rational functions, it follows that (3.19) holds for all zg.
Integrating Eq. (3.19), we obtain

a1(z+1) —ai(z) = ¢lao(z + 1) + ap(z)] + ke, (3.20)

where «; is a constant.
Note that, if Eq. (3.20) holds for both choices of ¢ = =1,
then Eq. (3.3) is precisely the difference Painlevé /I equation,

Az+pww+v
1 —w?
where A, @, and v are constant parameters. However, the

existence of a non-rational meromorphic solution of finite order
is not sufficient to show that (3.20) holds for both ¢ = 1 and

WHw= , (3.21)

& = —1. In fact, any solution of the Riccati equation
. A+H4ew
w =

E—w

satisfies Eq. (3.3) withayp = ¢(A — A)anda; = A+ A+
2. In this case, Eq. (3.20) is satisfied with x, = 0. Also,
the singularity sequences of meromorphic solutions of such
equation are like (3.18), but with only one fixed value of ¢.

To eliminate these Riccati solutions we distinguish between
two types of singularity. If w has a pole at z = zg, we will
say the singularity at zg is of type I if w(zg = 1) = %+¢ and of
type II if w(zp = 1) = Fe. Note that even though there may
be poles which are neither type I nor type II, for instance those
of the type (3.14), nevertheless all points where w is £1 will
occur as part of one of these two types. We denote by nj(r, w)
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the number of type I poles (ignoring multiplicities) in the disc
{z : |z| < r}. Similarly, the function 7y (r, w) counts poles of
type II.

The finite-order Riccati solutions described above are
degenerate in that they possess only type I singularities and no
type II singularities. In order to avoid these solutions we further
demand that there is a non-rational finite-order meromorphic
solution with “comparably many” poles of both types I and II.
In particular, we assume that there is a finite real constant ¢ > 1,
such that

i, w) < an@r, w) < cn(r, w), (3.22)

for sufficiently large r. Note that the (differential) Painlevé I7
equation also has infinitely many poles of two types, namely the
ones with residue 1 and —1. Let us assume that all but finitely
many of the type II singularities of a meromorphic solution of
(3.10) are unconfined. Now, since confined type I singularities
look like (3.18), and the “worst” non-confined sequence, i.e.
singularity sequence with most +1-points compared to the
number of poles, is

., E,00,—E,00,8, ...

we can exhaust all the £1’s by associating at most two of them
with each type I singularity and at most one with each type
II singularity, with only finitely many exceptions. Hence for
sufficiently large r,

. - 1 _ 1
nr,bw4+w)=n <r, I 1) +n (r, —u)+ 1) + O(logr)
204+ e)ni(r + 3, w) + (1 4+ e)np(r + 3, w)
(1 +¢) (2—(c+1)_1)71(r+3,w),

IA

IA

which implies the inequality (2.11) with ¢ < 2 when we
choose small enough € > 0. Thus w has infinite order by
Lemma 2.2. Hence, if a solution w has finite order then it must
have infinitely many confined singularities of both types and so
Eq. (3.3) is dPy, Eq. (3.21).

Finally, we will deal with the Eq. (3.12). Writing it in the
form

(1P + 12p)y* + 1y + co

O-pPO+p

where all coefficients are rational, we may again distinguish
between two types of singularity. The sequence

y+y= (3.23)

.., pzo—1),00, £p(zo+ 1), ...

is associated with type I singularities, while singularities
appearing in

ey —=pzo—1),00,£p(zo+ 1), ...

are called type II singularities. The assumption (3.22)
once again implies that if y is a non-rational finite-order
meromorphic solution then there must be infinitely many
singularities of both types which are confined. But then u1p +
w2 p = 0, which contradicts the assumption ¢; 3 0.

‘We conclude that the only type of equation admitting a finite-
order meromorphic solution in which both kinds of singularities

are present in comparable numbers is (3.21), the difference
Painlevé II equation. We summarize our findings with the
following theorem.

Theorem 3.1. Let R(z; y) be rational in both of its arguments
such that its denominator has at least two distinct roots. If the
second-order difference equation

y+y=R@zy),

admits a non-rational meromorphic solution of finite order
such that (3.22) holds, then (3.24) is the difference Painlevé I1
equation

_ Az+py+v

yry=—71_17 Z

where A, ;L and v are constants.

(3.24)

3.2. Existence of meromorphic solutions

We will conclude this section by considering the existence
of meromorphic solutions of a class of second-order difference
equations. The autonomous form of the difference Painlevé IT
equation,

(3.25)

is equivalent to a map introduced by McMillan in his analysis
of the stability of periodic systems. In particular, the McMillan
map gives rise to a family of closed invariant curves within the
periodic system [28]. We will follow a known procedure for
solving Eq. (3.25) in terms of elliptic functions. From the form
of the solutions obtained it will be evident that they are finite-
order meromorphic functions. The existence of these solutions
shows that the reduction procedure used earlier in this section
to single out the difference Painlevé II equation is non-vacuous,
at least in the autonomous case.
Eq. (3.25) can be written as

YAy =Py — (65— D)
=pn(yy—y»+v@+y—G+y)

which may be integrated once to obtain

VA =3y = uy = v + ) + €1 =0, (3.26)

where C| € C is the first of the two required free parameters.
Following Baxter [29], we will now use a suitable Mobius
transformation to remove the y + y term from (3.26). To this
end, let

_aw+b
T wHc’

(3.27)

where a is a root of

—2va® + (401 L4 du+ ,ﬂ) a® + (v — 10v) a*
+10v%a® — 10C va?
+ (4c1 F4C2 —4uCy + Cpt — 22 + vz,u) a

+vC1M—|—v3 —2vC
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such that
Cy +2a2—a4—2va—ua2 #0,
and the constants b and c satisfy

b —ua* —3va +2C; + 24>

c ua +v —2a+2a3

and
—ub*c® — 2vbe® + Cic* 4 202 — b*

=C; +2d*> —a* —2va — /Laz.
Substituting (3.27) into Eq. (3.26) reduces the latter equation
mnto
ww? + AW + w?) + 2Bww + 1 =0, (3.28)
where
A = Cic? — b*a® — vbe — uabc + a’c® —vac* + b*
and
2B = —,udazc2 - ,ub2 — 4vac? — 4b*a* + 8abc

+4C162 — 2unabc — 4vbc.

In what follows we concentrate only on the generic Eq. (3.25),
and ignore special cases which can arise, for instance, when
one of the constants A or B vanishes. Regarding Eq. (3.28) as a
quadratic equation for w, we obtain

—Bw+/—Aw*+ (B2 —A2—DHu2 - A
w2+ A '

(3.29)

w =

In order to express the argument of the square root as a perfect
square, we define the parameters k and n by the equations

_ 1
© ksnp’
and

__cnndnp

ksnZn ’

where sn, cn and dn are the standard Jacobi elliptic functions
with modulus k. These choices of A and B imply that

k+k'=(B>—A>— DA™,
and so, using the transformation

1
w=k2snu,

where snu denotes the Jacobian elliptic sn function with
argument # and modulus k, Eq. (3.29) becomes

_ cnndnpysnu xsnpcnudnu
snu =

1 — k2 sn2n snu
This is solved by u = nz 4+ C», where C, € C is the second
required free parameter. Summarizing the above reasoning,
_ak?sn(nz+Co) + b
- 1
k2sn(nz + C2) +¢

(3.30)

is a meromorphic solution of (3.25), where C; € C, and
a,b,c,n and k depend on the coefficients of (3.25) and on
the free parameter C; € C. Clearly (3.30) has finite order of
growth.

4. First-order difference equations

The existence of nontrivial meromorphic solutions of the
first-order nonlinear difference equation

Y = R(y),

where R is a rational function with constant coefficients,
is well established. However, the complete treatment of Eq.
(4.1) is scattered in a number of papers; see, for instance
Kimura [30], Shimomura [31] and Yanagihara [26]. Here we
present a straightforward proof of the existence of meromorphic
solutions of (4.1) by introducing suitable contraction mappings
in appropriate Banach spaces.

Since the Riccati case deg, (R) = 1 can be solved explicitly,
the existence of meromorphic solutions is guaranteed for this
type of difference equation. When deg, (R) > 2, Julia showed
[32] that there is always a fixed point y of R such that either

4.1

IR'(y)] > 1 4.2)
or
R(y) =1 4.3)

In the case (4.2), Eq. (4.1) can be mapped into a Schroder
functional equation, which is known to have meromorphic
solutions. The asymptotic properties of such solutions are also
well known. This case has been studied by Shimomura in the
case when R is a polynomial [31], and by Yanagihara for
rational R [26].

A treatment of the more complicated case (4.3) can be found
in a paper due to Kimura [30]. His main focus, however, is in the
iteration of analytic functions, and the existence result follows
as a corollary from his other work. He solves the case (4.3)
by applying a fixed point theorem from the theory of normal
families due to Hukuhara, but the uniqueness of the solution
is not immediately guaranteed, and must be proved separately.
We will now present a simple proof based on Banach’s fixed
point theorem. This approach has a number of advantages.
First, the basic idea is very direct and simple, although some
technical calculations cannot be avoided. Second, our argument
still works even if we allow some of the coefficients of (4.1) to
have a certain type of z-dependence. In what follows we will,
however, concentrate only on the autonomous equation for the
sake of simplicity. Finally, the same idea can be used to deal
with both cases (4.2) and (4.3). We start with case (4.2).

Theorem 4.1. Choose a € C and let v be a fixed point of R(y)
such that . = R'(y) satisfies |A| > 1. Then Eq. (4.1) has a
unique meromorphic solution in the complex plane such that

@) —py)A P — a, asR(iz) — —oo. “4.4)
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We will find a contraction mapping which will have a unique
fixed point in a suitable Banach space consisting of a certain
class of analytic functions. This fixed point will then turn out to
be the desired solution of the difference Eq. (4.1). We begin by
expanding the right-hand side of (4.1) as a Taylor series,

00

| :
Y+ =) FR(”(V) @ —p). (4.5)
=0/
Substituting y(z) = A*w(z) + y, we then have
X1 , ,
wi+ 1) —wi) =Y =R (). (4.6)
— J!
J_

To motivate the definition of the appropriate operator, we write

o0

| . .
wz) —wiz—1) = § f‘R(‘/)()/))L(j_l)(z_l)_lw(z — 1)/
— jl
j=2
wiz—1)—w(z—2)
o
— 1 p() (j—D@E-2)-1 —_ 2
= TRV (y)A w(z —2)
.Ez s 4.7)

.w(z—m+1)—w(z—m)

oo . . .
=Y %R(/)(y)k(/_l)(z_m)_lw(z —m)/.
j=2

By summing Egs. (4.7), we obtain

w(z) —w(z — m)

_ZZ R(])()/))»(] D(z—k)— lw(z k)]

=2 k=1

and letting m — o0, assumption (4.4) yields the formal
identity

w(z)=a+zz R(/)(V)K(/ D(z—k)— lw(z k)j. (4.8)
Jj=2k=1

Now define an operator T by

T[w](z>—a+22 RW(y)W Ve — k).

i=2k=17
4.9)

Let X be the set of all functions z —> g(z), analytic and
bounded in

D(s,t) ={z:R@ < —s5, s >0, I() >—t, t >0} 4.10)

for which g(z) — o asR(z) — —oo and ||g — «f| < b,
where

lg —all= sup |g(z)—cl. (4.11)

z€D(s,t)
Now, choosing s sufficiently large, T is a contraction mapping
in the Banach space X. Banach’s fixed point theorem implies
that 7 has a unique fixed point g in X. This fixed point is
the sought after solution of (4.1) satisfying (4.4), analytic in

D (s, t). By analytic continuation the solution g is meromorphic
in D(4o00, t). Since ¢t is arbitrary, g is in fact meromorphic in
the whole complex plane.

We will now deal with the remaining case R’(y) = 1. The
basic idea is the same as before.

Theorem 4.2. Choose o« € C and § € (0,1) and let y be
a fixed point of R satisfying R'(y) = 1. Moreover, let m €
N be the smallest number such that RtV (y) # 0. Then
there exists a constant s > 0, and a unique solution y(z)
of (4.1), meromorphic in the complex plane, such that for all

z€ D(s) :={z:R@ < —s},
@ =y- c
YR =v z+a+ Blogz+ W(z)
if m=1, and
Cn
y@) =y — e

(z + o+ ﬂzmﬁl + W(z))m

if m > 2. Here B is a fixed constant,

Cn = (( + 1! Wl)W))

form € N, and

1
W ()| < |z~ mt?
forall z € D(s).

Once again we begin by expanding the right-hand side of
(4.1) as a Taylor series,

wiz+ 1) =w@) + Z R“)(y)w(z)f
j= 2

4.12)

where w(z) = y(z) — y. By applying the transformation
w(z) = 1/g(2) to Eq. (4.12), we have

g(2)

1+ > LRO()gE) T+
_2

giz+1) =

1
8@ (1 - ER"(J/)g(Z)_l + ) . (4.13)

We suppose first that R” (y) # 0, which implies that m = 1. By
denoting

2g(z)
R"(y)’

Eq. (4.13) takes the form

h(z) = —

hz+ 1) =h@+1+ ) cjh(),
j=1

where ¢; € C for all j € N. To summarize, we have
transformed Eq. (4.1) into

y(z+1) = F(y@), (4.14)
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where

o0
F@)=z+1+4) cjz7/. (4.15)
j=1
Therefore, if ¥(z) is a solution of (4.14),

2 1
R"(y) ¥(2)
is a solution of the original Eq. (4.1).

We will next prove that Eq. (4.14) has an analytic solution
in the set D(s). This will be done by showing that there exists
a function W(z) such that the following three conditions are
satisfied:

y@) =y —

(1) W(z) is analytic in the domain D(s), where s is a
sufficiently large number.

(2) |W(2)| < |z|7'*? for all z € D(s), where 8 € (0,1) is a
fixed constant.

(3) Y@ =z4+a+ Blogz + W(z), where o € C is arbitrary
and B is a fixed constant, is a solution of (4.14).

We will use Banach’s fixed point theorem to find such a
function. For this purpose we define a family X of analytic

functions W such that
W) < |z~ (4.16)

holds in D(s). Itis easy to see that X is a complete metric space.
We will now find a suitable operator in the Banach space X.
Condition (3) yields

Wiz+1)—W()
= —flog (1 +

1 C1l
-+
z) Z+oa+ Blogz+ W(z)
Cj
+ -,
/Z:; (z+a+ Blogz+ W(z))/

4.17)

We want our operator also to satisfy condition (2). For this
purpose we need the right-hand side of (4.17) to tend to zero
sufficiently fast as |z| tends to infinity. Therefore we fix § = ¢
to cancel out the z~! term, which gives

Wiz+1)—W()

i -1 ] &
=By (- —+— <—
= jz/ ot

o+ Blogz + W(z))"
z

4.1
+Z(z+a+,310gz+W(Z))f (4.18)

Next we consider
W(z) —

=i(W(z+l—k)—

k=1

Wz —m)

W(z—k))jz—k),

and formally take the limit m — oo. Then, by (4.18) and
using the fact that limeg;)—, oo W(z) = 0, we have

W(z) =T[W](2),

where
T[W](2)
o (et Blogc b+ W=k
_,;z—k’;< z—k )

o0 o0 C]
+ ZZ(z—k—i—a—l—ﬂlog(z—k)—i—W(z—k))J

k=1 j=2
o 1
+;6’k2=;j2=;(—1)f](Z o (4.19)
A straightforward yet tedious calculation shows that
ITIWI@)I < |21~ (4.20)

for all z € D(s), where & is the constant introduced in the
requirement (2). Therefore, the right-hand side of (4.19) is
absolutely and uniformly convergent, and hence T[W](z) is
analytic in D(s).

A similar calculation will show that T[W] is also a
contraction. Thus, by Banach’s fixed point theorem, the
mapping 7 : X — X has a unique fixed point. Hence
the existence of a function W (z) satisfying (1), (2) and (3) is
proved. In particular,

Y@)=z4+a+Blogz+ W(z)

is a solution of (4.14). The final step is to continue the
analytic solution Y (z) into a meromorphic solution in the whole
complex plane by using Eq. (4.1).

We will finally outline the proof in the case R”(y) = O.
Full details are not presented, since the reasoning is very similar
to that of the case R”(y) # 0. We will write down a suitable
operator and specify an appropriate Banach space on which it
acts.

Assume that

RO (y)=0

for all j = 2,...,
transformation

(m+ D!g()™
mR(m‘H)(y)

m, and that R"*tD(y) £ 0. The

h(z) = —

maps Eq. (4.13) into

Yz +1) = F(y(2)), 4.21)
where
F@)=z+1+ chz‘*%. (4.22)

j=m

Let § € (0, %). The required Banach space X is the family of
analytic functions W such that

W ()| < |zt 4.23)

holds in D(s). By applying Banach’s fixed point theorem with
a similar reasoning as in the case R”(y) # 0, but, instead of
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(4.19), using the operator

e8]

Cm
T[Wl(2) = Z 1
k=1 (z —k)m
= 2 a+Be—kF Wk
X Zaj Z - 77—k
j=l1 n=1
o0 o
Cj
+ A m—1 M_l
k=1 j=m+1 (Z —k+a+BEz -k +W(— k)) !
- B —
DS e-n
where
()
a — — —n
/ j!rg) m
and

for all j € N, we have that for any « € C there exists a constant
s > 0, and a unique solution y(z) of (4.21), meromorphic in the
complex plane, such that

~ m—1
y@)=z4+a+Bzm +W(2),
where

1
W ()| < |z~ mt?

forall z € D(s), and g = 2,

5. Discussion

In this paper we have shown that all non-rational
meromorphic solutions of a class of difference equations are of
infinite order. Out of the remaining equations within the class
(1.1) the only one which may have finite-order meromorphic
solutions having comparably many singularities of two types
is the difference Painlevé II equation. This is in some way
analogous to what happens with the (differential) Painlevé
II equation, which also has meromorphic solutions with two
types of singularities depending on whether the residue of each
pole of the solution is either 1 or —1. The generic solution
of the continuous Py equation has infinitely many poles of
both types, which is analogous to the assumption (3.22) we
made concerning the singularities of the difference Painlevé 11
equation.

When applying singularity confinement to investigate the
integrability of an equation there are infinitely many points in
the iteration sequence where the confinement may occur. It may
therefore be unclear at which stage the singularity confinement
should be imposed. Hietarinta and Viallet [11] suggested, while
studying the discrete Painlevé [ equation, that it is crucial
that the confinement occurs in the first possible instance. Our

findings indicate that is indeed the case for the difference
Painlevé II equation. If the singularity sequence is generically
cut on some later point, this will still be enough to force any
corresponding meromorphic solution to have infinite order of
growth, which indicates the non-integrability of the considered
equation. On the other hand, confining all poles of the solution
from both sides with two finite values is just sufficient to break
the singularity pattern leading to infinite order.

The existence of a finite-order meromorphic solution with
two types of singularity appears to be a strong indicator of
integrability. Indeed, this condition was sufficient to single out
dP;; from a general class of difference equations. To finalize
this claim it is important to know whether or not integrable
difference equations do have meromorphic solutions. For the
McMillan map, as well as the autonomous Riccati difference
equation, the existence of such solutions is well known, but for
the non-autonomous dPy; the question remains still open.
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Note added in proof

Laine, Rieppo and Silvennoinen [33] have generalized
Lemma 2.2 to a class of higher-order equations. Their proof
avoids the use of algebroid functions.
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