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Abstract

The Lemma on the Logarithmic Derivative of a meromorphic function has many

applications in the study of meromorphic functions and ordinary differential equa-

tions. In this paper, a difference analogue of the Logarithmic Derivative Lemma is

presented, and then applied to prove a number of results on meromorphic solutions

of complex difference equations. These results include a difference analogue of the

Clunie Lemma, as well as other results on the value distribution of solutions.
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1 Introduction

The Lemma on the Logarithmic Derivative states that outside of a possible

small exceptional set

m

(
r,

f ′

f

)
= O(log T (r, f) + log r), (1)

where m(r, f) denotes the Nevanlinna proximity function and T (r, f) is the

characteristic of a meromorphic function f [7]. This is undoubtedly one of the

most useful results of Nevanlinna theory, having a vast number of applica-

tions in the theory of meromorphic functions and in the theory of ordinary

differential equations. For instance, the proofs of the Second Main Theorem

of Nevanlinna theory [12] and Yosida’s generalization [18] of the Malmquist

theorem [9] both rely heavily on the Lemma on the Logarithmic Derivative.

One major problem in the study of complex difference equations has so far

been the lack of efficient tools, which can play roles similar to that played by

relation (1) for differential equations. This has meant that most results have

had to be proved separately for each difference equation. This slows down the

efforts to construct a coherent theory, and it may be one of the reasons why

the theory of complex difference equations is not as developed as the theory

of differential equations.

The foundations of the theory of complex difference equations was laid by

Nörlund, Julia, Birkhoff, Batchelder and others in the early part of the twen-

tieth century. Later on, Shimomura [14] and Yanagihara [16,17] studied non-

? The research reported in this paper was supported in part by EPSRC grant

number GR/R92141/01 and by the Finnish Academy grant number 204819.
∗ Corresponding author.
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linear complex difference equations from the viewpoint of Nevanlinna theory.

Recently, there has been a renewed interested in the complex analytic prop-

erties of solutions of difference equations. In differential equations, Painlevé

and his colleagues identified all equations, out of a large class of second or-

der ordinary differential equations, that possess the Painlevé property [4,5,13].

Those equations which could not be integrated in terms of known functions

or through solutions of linear equations are now known as the Painlevé differ-

ential equations. Similarly, Ablowitz, Halburd and Herbst [1] suggested that

the growth of meromorphic solutions of difference equations could be used to

identify those equations which are of “Painlevé type”. In [6] the existence of

one finite order non-rational meromorphic solution was shown to be sufficient

to reduce a general class of second-order difference equations to one of dif-

ference Painlevé equations or to a linear difference equation, provided that

the solution does not satisfy a certain first-order difference Riccati equation.

The proof of this fact relies on a difference analogue of the Lemma on the

Logarithmic Derivative, Theorem 2.1 below, as well as on its consequences,

Theorems 3.1 and 3.2, which were used in [6] without proving them. Findings

in [6] suggest that finite order meromorphic solutions of difference equations

have a similar role as meromorphic solutions of differential equations.

The purpose of this paper is to prove a difference analogue of the Lemma on

the Logarithmic Derivative, and to apply it to study meromorphic solutions of

large classes of difference equations. The difference analogue appears to be in

its most useful form when applied to study finite order meromorphic solutions

of difference equations, which is in agreement with the findings in [6]. Applica-

tions include, for instance, a difference analogue of the Clunie Lemma [3]. The

original lemma has proved to be an invaluable tool in the study of non-linear
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differential equations. The difference analogue gives similar information about

the finite order meromorphic solutions of non-linear difference equations.

2 Difference analogue of the Lemma on the Logarithmic Derivative

Theorem 2.1 Let f be a non-constant meromorphic function, c ∈ C, δ < 1

and ε > 0. Then

m

(
r,

f(z + c)

f(z)

)
= o

(
T (r + |c|, f)1+ε

rδ

)
(2)

for all r outside of a possible exceptional set E with finite logarithmic measure∫
E

dr
r

< ∞.

Proof. Let ξ(x) and φ(r) be positive, nondecreasing, continuous functions de-

fined for e ≤ x < ∞ and r0 ≤ r < ∞, respectively, where r0 is such that

T (r + |c|, f) ≥ e for all r ≥ r0. Then by Borel’s Lemma [2, Lemma 3.3.1]

T

(
r + |c|+ φ(r)

ξ(T (r + |c|, f))
, f

)
≤ 2T (r + |c|, f)

for all r outside of a set E satisfying

∫
E∩[r0,R]

dr

φ(r)
≤ 1

ξ(e)
+

1

log 2

∫ T (R+|c|,f)

e

dx

xξ(x)

where R < ∞. Therefore, by choosing φ(r) = r and ξ(x) = xε/2 with ε > 0,

and defining

α = 1 +
r

(r + |c|)T (r + |c|, f)
ε
2
, (3)

we have

T (α(r + |c|), f) = T

(
r + |c|+ φ(r)

ξ(T (r + |c|, f))
, f

)
≤ 2T (r + |c|, f) (4)
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for all r outside of a set E with finite logarithmic measure. Hence, if f(0) 6=

0,∞, the assertion follows by combining (3) and (4) with Lemma 2.3 below.

Otherwise we apply Lemma 2.3 with the function g(z) = zpf(z), where p ∈ Z

is chosen such that g(0) 6= 0,∞. 2

When f is of finite order, the right side of (2) is small compared to T (r, f),

and therefore relation (2) is a natural analogue of the Lemma on the Logarith-

mic Derivative (1). Concerning the sharpness of Theorem 2.1, the finite order

functions Γ(z), exp(zn) and tan(z) show that δ in (2) cannot be replaced by

any number strictly greater than one.

If f is of infinite order, the quantity T (r + |c|, f)r−δ may be comparable to

T (r, f). For instance, by choosing f(z) = exp(exp(z)), we have

m

(
r,

f(z + 1)

f(z)

)
= (e− 1)T (r, f).

Therefore Theorem 2.1 is mostly useful when applied to functions with finite

order, although the assertion remains valid for all meromorphic functions. In

the finite-order case we can also remove the ε in Theorem 2.1.

Corollary 2.2 Let f be a non-constant meromorphic function of finite order,

c ∈ C and δ < 1. Then

m

(
r,

f(z + c)

f(z)

)
= o

(
T (r + |c|, f)

rδ

)
(5)

for all r outside of a possible exceptional set with finite logarithmic measure.

Proof. Choose any δ < 1 and denote δ′ = (1 + δ)/2. Since f is of finite order,

we have T (r + |c|, f) ≤ rρ for some ρ > 0 and for all r sufficiently large.
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Therefore, by Theorem 2.1

m

(
r,

f(z + c)

f(z)

)
= o

(
T (r + |c|, f)

rδ′−ερ

)
,

where ε > 0. The assertion follows by choosing ε = (δ′ − δ)/ρ. 2

Note that by replacing z by z + h, where h ∈ C, and c by c − h in (5), and

using the inequality

T (r, f(z + h)) ≤ (1 + ε)T (r + |h|, f(z)), ε > 0, r > r0,

see [16] or [1], we immediately have

m

(
r,

f(z + c)

f(z + h)

)
= o

(
T (r + |c− h|+ |h|, f)

rδ

)
(6)

for all δ < 1 outside of a possible exceptional set with finite logarithmic

measure.

Lemma 2.3 Let f be a meromorphic function such that f(0) 6= 0,∞ and let

c ∈ C. Then for all α > 1, δ < 1 and r ≥ 1,

m

(
r,

f(z + c)

f(z)

)
≤ K(α, δ, c)

rδ

(
T
(
α(r + |c|), f

)
+ log+ 1

|f(0)|

)
,

where

K(α, δ, c) =
8|c|(3α + 1) + 8α(α− 1)|c|δ

δ(1− δ)(α− 1)2rδ
.

Proof. Let {an} denote the sequence of all zeros of f , and similarly let {bm}

be the pole sequence of f , where {an} and {bm} are listed according to their

multiplicities and ordered by increasing modulus. By applying Poisson-Jensen
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formula with s = α+1
2

(r + |c|), see, for instance, [7, Theorem 1.1], we obtain

log

∣∣∣∣∣f(z + c)

f(z)

∣∣∣∣∣ =
∫ 2π

0
log |f(seiθ)|Re

(
seiθ + z + c

seiθ − z − c
− seiθ + z

seiθ − z

)
dθ

2π

+
∑
|an|<s

log

∣∣∣∣∣ s(z + c− an)

s2 − ān(z + c)

s2 − ānz)

s(z − an)

∣∣∣∣∣
−

∑
|bm|<s

log

∣∣∣∣∣ s(z + c− bm)

s2 − b̄m(z + c)

s2 − b̄mz)

s(z − bm)

∣∣∣∣∣
=: S1(z) + S2(z)− S3(z).

(7)

Therefore, by denoting E := {ϕ ∈ [0, 2π) :
∣∣∣f(reiϕ+c)

f(reiϕ)

∣∣∣ ≥ 1}, we have

m

(
r,

f(z + c)

f(z)

)
=
∫

E
log

∣∣∣∣∣f(reiϕ + c)

f(reiϕ)

∣∣∣∣∣ dϕ

2π

≤
∫ 2π

0
|S1(re

iϕ)|+ |S2(re
iϕ)|+ |S3(re

iϕ)| dϕ

2π
.

We will now proceed to estimate each
∫ 2π
0 |Sj(re

iϕ)| dϕ
2π

separately. Since

|S1| =
∣∣∣∣∣
∫ 2π

0
log |f(seiθ)|Re

(
2cseiθ

(seiθ − z − c)(seiθ − z)

)
dθ

2π

∣∣∣∣∣
≤ 2|c|s

(s− r − |c|)2

∫ 2π

0

∣∣∣log |f(seiθ)|
∣∣∣ dθ

2π

=
2|c|s

(s− r − |c|)2

(
m(s, f) + m

(
s,

1

f

))
,

we have

∫ 2π

0
|S1(re

iϕ)| dϕ

2π
≤ 4|c|s

(s− r − |c|)2

(
T (s, f) + log+ 1

|f(0)|

)
. (8)

Next we consider the cases j = 2, 3 combined together. First, by denoting

{qk} := {an} ∪ {bm} and using the fact that | log x| = log+ x + log+(1/x) for
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all x > 0, we have

∫ 2π

0
|S2(re

iϕ)|+ |S3(re
iϕ)| dϕ

2π
≤

∑
|qk|<s

∫ 2π

0
log+

∣∣∣∣∣1 +
c

reiθ − qk

∣∣∣∣∣ dθ

2π

+
∑
|qk|<s

∫ 2π

0
log+

∣∣∣∣∣1− c

reiθ + c− qk

∣∣∣∣∣ dθ

2π

+
∑
|qk|<s

∫ 2π

0
log+

∣∣∣∣∣1 +
q̄kc

s2 − q̄k(z + c)

∣∣∣∣∣ dθ

2π

+
∑
|qk|<s

∫ 2π

0
log+

∣∣∣∣∣1− q̄kc

s2 − q̄kz

∣∣∣∣∣ dθ

2π
.

(9)

Second, for any a ∈ C, and for all δ < 1,

∫ 2π

0

dθ

|reiθ − a|δ
≤ 4

∫ π
2

0

dθ

|reiθ − |a||δ
≤ 2π

1− δ

1

rδ

since |reiθ − |a|| ≥ rθ 2
π

for all 0 ≤ θ ≤ π
2
. Therefore

∫ 2π

0
log+

∣∣∣∣1 +
c

reiθ − a

∣∣∣∣ dθ

2π
≤ 1

δ

∫ 2π

0
log+

(
1 +

∣∣∣∣ c

reiθ − a

∣∣∣∣δ
)

dθ

2π

≤ 1

δ

∫ 2π

0

∣∣∣∣ c

reiθ − a

∣∣∣∣δ dθ

2π

≤ |c|δ

δ(1− δ)

1

rδ
,

(10)

and similarly

∫ 2π

0
log+

∣∣∣∣1− c

reiθ + c− a

∣∣∣∣ dθ

2π
≤ |c|δ

δ(1− δ)

1

rδ
. (11)

Third, since for all a such that |a| < s,

∣∣∣∣ a

s2 − āz

∣∣∣∣ ≤ 1

s− r
,

we have ∫ 2π

0
log+

∣∣∣∣∣1 +
āc

s2 − ā(z + c)

∣∣∣∣∣ dθ

2π
≤ |c|

s− r − |c|
(12)

and ∫ 2π

0
log+

∣∣∣∣1− āc

s2 − āz

∣∣∣∣ dθ

2π
≤ |c|

s− r
. (13)
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Finally, by combining inequalities (8) – (13), we obtain

m

(
r,

f(z + c)

f(z)

)
≤
(

2|c|
s− r − |c|

+
2|c|δ

δ(1− δ)

1

rδ

)(
n(s, f) + n

(
s,

1

f

))

+
4|c|s

(s− r − |c|)2

(
T (s, f) + log+ 1

|f(0)|

)
.

Therefore, using the fact that

n(s, f) + n

(
s,

1

f

)
≤ 4α

α− 1

(
T (α(r + |c|), f) + log+ 1

|f(0)|

)
,

see [7, p. 37], and s = α+1
2

(r + |c|), we conclude

m

(
r,

f(z + c)

f(z)

)

≤
(

8|c|(3α + 1)

(α− 1)2(r + |c|)
+

8α|c|δ

δ(1− δ)(α− 1)rδ

)(
T (α(r + |c|), f) + log+ 1

|f(0)|

)

≤ 8|c|(3α + 1) + 8α(α− 1)|c|δ

δ(1− δ)(α− 1)2rδ

(
T (α(r + |c|), f) + log+ 1

|f(0)|

)
.

2

3 Difference analogues of the Clunie and Mohon’ko lemmas

The Lemma on the Logarithmic Derivative is an integral part of the proof

of the Second Main Theorem, one of the deepest results of Nevanlinna the-

ory. In addition, logarithmic derivative estimates are crucial for applications

to complex differential equations. Similarly, Theorem 2.1 enables an efficient

study of complex analytic properties of finite order meromorphic solutions of

difference equations. We are concerned with functions which are polynomials

in f(z + cj), where cj ∈ C, with coefficients aλ(z) such that

T (r, aλ) = o(T (r, f))

9



except possibly for a set of r having finite logarithmic measure. Such functions

will be called difference polynomials in f(z). We also denote

|c| := max{|cj|}.

The following theorem is analogous to the Clunie Lemma [3], which has numer-

ous applications in the study of complex differential equations, and beyond.

Theorem 3.1 Let f(z) be a non-constant meromorphic solution of

f(z)nP (z, f) = Q(z, f),

where P (z, f) and Q(z, f) are difference polynomials in f(z), and let δ < 1

and ε > 0. If the degree of Q(z, f) as a polynomial in f(z) and its shifts is at

most n, then

m
(
r, P (z, f)

)
= o

(
T (r + |c|, f)1+ε

rδ

)
+ o(T (r, f))

for all r outside of a possible exceptional set with finite logarithmic measure.

Proof. We follow the reasoning behind the original Clunie Lemma, see, for

instance, [7,8], just replacing the Lemma on the Logarithmic Derivative with

Theorem 2.1. First of all,

m(r, P ) =
∫

E1

log+ |P (reiθ, f)| dθ

2π
+
∫

E2

log+ |P (reiθ, f)| dθ

2π
, (14)

where E1 = {θ ∈ [0, 2π] : |f(reiθ)| < 1}, and E2 is the complement of E1.

Now, by denoting P (z, f) =
∑

λ aλ(z)Fλ(z, f), we have

|aλ(re
iθ)Fλ(re

iθ, f)| ≤ |aλ(re
iθ)|

∣∣∣∣∣f(reiθ + c1)

f(reiθ)

∣∣∣∣∣
l1

· · ·
∣∣∣∣∣f(reiθ + cν)

f(reiθ)

∣∣∣∣∣
lν

whenever θ ∈ E1. Therefore for each λ we obtain

∫
E1

log+ |aλ(re
iθ)Fλ(re

iθ, f)| dθ

2π
≤ m(r, aλ) + O

 ν∑
j=1

m

(
r,

f(z + cj)

f(z)

) ,

10



and so, by Theorem 2.1,

∫
E1

log+ |P (reiθ, f)| dθ

2π
= o

(
T (r + |c|, f)1+ε

rδ

)
+ o(T (r, f)) (15)

outside of an exceptional set with finite logarithmic measure.

Similarly on E2, by denoting Q(z, f) =
∑

γ bγ(z)Gγ(z, f), we obtain

|P (z, f)| =
∣∣∣∣∣ 1

f(z)n

∑
γ

bγ(z)f(z)l0f(z + c1)
l1 · · · f(z + cµ)lµ

∣∣∣∣∣
≤
∑
γ

|bγ(z)|
∣∣∣∣∣f(reiθ + c1)

f(reiθ)

∣∣∣∣∣
l1

· · ·
∣∣∣∣∣f(reiθ + cµ)

f(reiθ)

∣∣∣∣∣
lµ

since
∑µ

j=0 lj ≤ n by assumption. Therefore by Theorem 2.1 again,

∫
E2

log+ |P (reiθ, f)| dθ

2π
= o

(
T (r + |c|, f)1+ε

rδ

)
+ o(T (r, f)). (16)

The assertion follows by combining (14), (15) and (16). 2

Similarly as Theorem 3.1 can be used to obtain information about the pole

distribution of meromorphic solutions of difference equations, the next result

is concerned with distribution of slowly moving targets a such that T (r, a) =

o(T (r, f)) outside of a possible exceptional set of finite logarithmic measure.

In particular, constant functions are always slowly moving. The following the-

orem is an analogue of a result due to A. Z. Mohon’ko and V. D. Mohon’ko

[11] on differential equations.

Theorem 3.2 Let f(z) be a non-constant meromorphic solution of

P (z, f) = 0 (17)

where P (z, f) is difference polynomial in f(z), and let δ < 1 and ε > 0. If

11



P (z, a) 6≡ 0 for a slowly moving target a, then

m

(
r,

1

f − a

)
= o

(
T (r + |c|, f)1+ε

rδ

)
+ o(T (r, f))

for all r outside of a possible exceptional set with finite logarithmic measure.

Proof. By substituting f = g + a into (17) we obtain

Q(z, g) + D(z) = 0, (18)

where Q(z, g) =
∑

γ bγ(z)Gγ(z, f) is a difference polynomial in g such that all

of its terms are at least of degree one, and T (r, D) = o(T (r, g)) outside a set of

finite logarithmic measure. Also D 6≡ 0, since a does not satisfy (17). Next we

compute m(r, 1/g). To this end, note that the integral to be evaluated vanishes

on the part of |z| = r where |g| > 1. It is therefore sufficient to consider only

the case |g| ≤ 1. But then,∣∣∣∣∣Q(z, g)

g

∣∣∣∣∣ = 1

|g|

∣∣∣∣∣∑
γ

bγ(z)g(z)l0g(z + c1)
l1 · · · g(z + cν)

lν

∣∣∣∣∣
≤
∑
γ

|bγ(z)|
∣∣∣∣∣g(z + c1)

g(z)

∣∣∣∣∣
l1

· · ·
∣∣∣∣∣g(z + cν)

g(z)

lν
∣∣∣∣∣

since
∑ν

j=0 lj ≥ 1 for all γ. Therefore, by equation (18) and Theorem 2.1,

m

(
r,

1

g

)
≤ m

(
r,

D

g

)
+ m

(
r,

1

D

)

= m

(
r,

Q(z, g)

g

)
+ m

(
r,

1

D

)

= o

(
T (r + |c|, g)1+ε

rδ

)
+ o(T (r, g))

outside of a set of r-values with at most finite logarithmic measure. Since

g = f − a the assertion follows. 2

Theorems 3.1 and 3.2, like Theorem 2.1, are particularly useful when applied to

functions having finite order. The following two corollaries on the Nevanlinna

12



deficiency illustrate this fact.

Corollary 3.3 Let f(z) be a non-constant finite-order meromorphic solution

of

f(z)nP (z, f) = Q(z, f),

where P (z, f) and Q(z, f) are difference polynomials in f(z), and let δ < 1. If

the degree of Q(z, f) as a polynomial in f(z) and its shifts is at most n, then

m
(
r, P (z, f)

)
= o

(
T (r + |c|, f)

rδ

)
+ o(T (r, f)) (19)

for all r outside of a possible exceptional set with finite logarithmic measure.

Moreover, the Nevanlinna deficiency satisfies

δ(∞, P ) := lim inf
r→∞

m(r, P )

T (r, P )
= 0. (20)

Proof. Equation (19) follows by combining the proof of Theorem 3.1 with

Corollary 2.2, and so we are left with equation (20). By a well known result

due to Valiron [15] and A. Z. Mohon’ko [10], we have

T (r, P ) = deg(P )T (r, f) + o(T (r, f)) (21)

outside of a possible exceptional set of finite logarithmic measure. In addition

[8, Lemma 1.1.2] yields that if T (r, g) = o(T (r, f)) outside of an exceptional

set of finite logarithmic measure, then T (r, g) = o(T (r1+ε, f)) for any ε > 0

and for all r sufficiently large. Thus, by applying (19) together with (21) and

[8, Lemma 1.1.2], we have

m(r, P ) = o

(
T (r1+ε, P )

rδ

)
+ o(T (r1+ε, P ))

for all sufficiently large r. Therefore, since P is of finite order,

m(r, P ) ≤ rρ(1+2ε)−δ, (22)

13



where ρ is the order of P and δ < 1. Also, there is a sequence rn → ∞ as

n →∞, such that

T (rn, P ) ≥ rρ−ε
n (23)

for all rn large enough. The assertion follows by combining (22) and (23) where

ε and δ are chosen such that ε(2ρ + 1) < δ < 1, and by letting n →∞. 2

Corollary 3.4 Let f(z) be a non-constant finite-order meromorphic solution

of

P (z, f) = 0

where P (z, f) is difference polynomial in f(z), and let δ < 1. If P (z, a) 6≡ 0

for a slowly moving target a, then

m

(
r,

1

f − a

)
= o

(
T (r + |c|, f)

rδ

)
+ o(T (r, f))

for all r outside of a possible exceptional set with finite logarithmic measure.

Moreover, the Nevanlinna deficiency satisfies

δ(a, f) := lim inf
r→∞

m
(
r, 1

f−a

)
T (r, f)

= 0.

We omit the proof since it would be almost identical to that of Corollary 3.3.

4 Conclusion

In this paper we have presented a difference analogue of the Lemma on the

Logarithmic Derivative. This result has potentially a large number of appli-

cations in the study of difference equations. Many ideas and methods from

the theory of differential equations may now be utilized together with Theo-

rem 2.1 to obtain information about meromorphic solutions of difference equa-
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tions. Section 3 provides a number of examples in this direction. The analogue

of the Clunie Lemma, Theorem 3.1, may be used to ensure that finite order

meromorphic solutions of certain non-linear difference equations have a large

number of poles. Similarly, Theorem 3.2 provides an easy way of telling when

a finite order meromorphic solution of a difference equation does not have any

deficient values.
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