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Abstract

The Lemma on the Logarithmic Derivative of a meromorphic function has many
applications in the study of meromorphic functions and ordinary differential equa-
tions. In this paper, a difference analogue of the Logarithmic Derivative Lemma is
presented, and then applied to prove a number of results on meromorphic solutions
of complex difference equations. These results include a difference analogue of the

Clunie Lemma, as well as other results on the value distribution of solutions.
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1 Introduction

The Lemma on the Logarithmic Derivative states that outside of a possible

small exceptional set

m (r, J}) = O(log T(r, f) + log ), (1)

where m(r, f) denotes the Nevanlinna proximity function and 7'(r, f) is the
characteristic of a meromorphic function f [7]. This is undoubtedly one of the
most useful results of Nevanlinna theory, having a vast number of applica-
tions in the theory of meromorphic functions and in the theory of ordinary
differential equations. For instance, the proofs of the Second Main Theorem
of Nevanlinna theory [12] and Yosida’s generalization [18] of the Malmquist
theorem [9] both rely heavily on the Lemma on the Logarithmic Derivative.
One major problem in the study of complex difference equations has so far
been the lack of efficient tools, which can play roles similar to that played by
relation (1) for differential equations. This has meant that most results have
had to be proved separately for each difference equation. This slows down the
efforts to construct a coherent theory, and it may be one of the reasons why
the theory of complex difference equations is not as developed as the theory

of differential equations.

The foundations of the theory of complex difference equations was laid by
Norlund, Julia, Birkhoff, Batchelder and others in the early part of the twen-

tieth century. Later on, Shimomura [14] and Yanagihara [16,17] studied non-
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linear complex difference equations from the viewpoint of Nevanlinna theory.
Recently, there has been a renewed interested in the complex analytic prop-
erties of solutions of difference equations. In differential equations, Painlevé
and his colleagues identified all equations, out of a large class of second or-
der ordinary differential equations, that possess the Painlevé property [4,5,13].
Those equations which could not be integrated in terms of known functions
or through solutions of linear equations are now known as the Painlevé differ-
ential equations. Similarly, Ablowitz, Halburd and Herbst [1] suggested that
the growth of meromorphic solutions of difference equations could be used to
identify those equations which are of “Painlevé type”. In [6] the existence of
one finite order non-rational meromorphic solution was shown to be sufficient
to reduce a general class of second-order difference equations to one of dif-
ference Painlevé equations or to a linear difference equation, provided that
the solution does not satisfy a certain first-order difference Riccati equation.
The proof of this fact relies on a difference analogue of the Lemma on the
Logarithmic Derivative, Theorem 2.1 below, as well as on its consequences,
Theorems 3.1 and 3.2, which were used in [6] without proving them. Findings
in [6] suggest that finite order meromorphic solutions of difference equations

have a similar role as meromorphic solutions of differential equations.

The purpose of this paper is to prove a difference analogue of the Lemma on
the Logarithmic Derivative, and to apply it to study meromorphic solutions of
large classes of difference equations. The difference analogue appears to be in
its most useful form when applied to study finite order meromorphic solutions
of difference equations, which is in agreement with the findings in [6]. Applica-
tions include, for instance, a difference analogue of the Clunie Lemma [3]. The

original lemma has proved to be an invaluable tool in the study of non-linear



differential equations. The difference analogue gives similar information about

the finite order meromorphic solutions of non-linear difference equations.

2 Difference analogue of the Lemma on the Logarithmic Derivative

Theorem 2.1 Let f be a non-constant meromorphic function, ¢ € C, § < 1

and € > 0. Then

fE+0Y _ (T +1d 0
m( i) )‘ ( 5 ) @

for all r outside of a possible exceptional set E with finite logarithmic measure

Jp & < oo

Proof. Let £(x) and ¢(r) be positive, nondecreasing, continuous functions de-
fined for e < z < oo and rp < r < oo, respectively, where ry is such that
T(r +|c|, f) > e for all > rq. Then by Borel’s Lemma (2, Lemma 3.3.1]

(r)
§(T(r+lel, f))’

T(de+ f>§2T0+kMﬂ

for all r outside of a set E satisfying

/ dr < 1 N 1 /T(R+c,f) dx
Enfro.R) O(1) — &(e)  log2 Je x&(x)

where R < oco. Therefore, by choosing ¢(r) = r and &(x) = 25/2 with £ > 0,

and defining
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for all r outside of a set E with finite logarithmic measure. Hence, if f(0) #
0, 00, the assertion follows by combining (3) and (4) with Lemma 2.3 below.
Otherwise we apply Lemma 2.3 with the function g(z) = 2P f(z), where p € Z

is chosen such that g(0) # 0, co. O

When f is of finite order, the right side of (2) is small compared to T'(r, f),
and therefore relation (2) is a natural analogue of the Lemma on the Logarith-
mic Derivative (1). Concerning the sharpness of Theorem 2.1, the finite order
functions I'(z), exp(2™) and tan(z) show that § in (2) cannot be replaced by

any number strictly greater than one.

If f is of infinite order, the quantity T'(r + |c|, f)r~° may be comparable to

T(r, f). For instance, by choosing f(z) = exp(exp(z)), we have

. <T’ f(;”é)l)) — (e~ DT(r. f).

Therefore Theorem 2.1 is mostly useful when applied to functions with finite
order, although the assertion remains valid for all meromorphic functions. In

the finite-order case we can also remove the € in Theorem 2.1.

Corollary 2.2 Let f be a non-constant meromorphic function of finite order,

ceCandd < 1. Then

N R B

for all r outside of a possible exceptional set with finite logarithmic measure.

Proof. Choose any 0 < 1 and denote ¢’ = (1 + d)/2. Since f is of finite order,

we have T'(r + |c|, f) < r? for some p > 0 and for all r sufficiently large.



Therefore, by Theorem 2.1

(5.

where € > 0. The assertion follows by choosing € = (6" — §)/p. O

Note that by replacing z by z + h, where h € C, and ¢ by ¢ — h in (5), and

using the inequality
T(r, f(z+h) <A +e)T(r+|n[, f(2), >0, r>nr,

see [16] or [1], we immediately have

m(r,@):0<T(T+|C_h|+|h|’f)> (©)

ro

for all & < 1 outside of a possible exceptional set with finite logarithmic

measure.

Lemma 2.3 Let f be a meromorphic function such that f(0) # 0,00 and let

ceC. Then foralla>1,0 <1 andr >1,

- (r’ f(;(;c)) < K(O;& ) (T(a(r +e]), f) +log* !f(lO)\> ,

where

8lc|(3ar + 1) + 8a(a — 1)]¢|°
K(a0.0) = =0 5= 0o

Proof. Let {a,} denote the sequence of all zeros of f, and similarly let {b,,}
be the pole sequence of f, where {a,} and {b,,} are listed according to their

multiplicities and ordered by increasing modulus. By applying Poisson-Jensen



formula with s = &£t

a—(r +|c|), see, for instance, [7, Theorem 1.1], we obtain
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Therefore, by denoting E := {¢ € [0, 27) : ‘f(reiﬂc) > 1}, we have
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We will now proceed to estimate each [ |S;(re)| g—f separately. Since

21 ) i0 d9
|S1| = |/0 log | f(s€™)|Re <( : 2ese , z)) -
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we have

2r i dﬁ 4|c|s 5 1
[seengs < o (re o g ).

Next we consider the cases j = 2,3 combined together. First, by denoting

{gr} := {a,} U {b,} and using the fact that |logz| = log™ z + log™(1/x) for



all z > 0, we have
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Second, for any a € C, and for all § < 1,
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since |re” — |a|| > r62 for all 0 < 6 < 5. Therefore
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and similarly
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Finally, by combining inequalities (8) — (13), we obtain

m (. £E+0) 2|c] 2|ef? 1) (ns n(s 1))
(’ f(z)>§<s—r—\c|+5(1—a)r6 (s: f)+n{s 7

4|c|s 1
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Therefore, using the fact that

%"
a—1

(T(a(r +|e]), f) + log™

1 1
n(s, f)+n <8, f) < |f(0)|> ,

see [7, p. 37], and s = “F*(r + |¢|), we conclude

- (r flz+ c))
G
8|c|(3ar + 1) 8alc|’
= ((a 1Pt 1) T o)1

8lc|(3a + 1) + 8a(a — 1)|c|®

- (1 —=08)(a—1)%r9

1

) (et + i)+ ot

(T(a(r Flel), £) + log* |f(10)|> .

3 Difference analogues of the Clunie and Mohon’ko lemmas

The Lemma on the Logarithmic Derivative is an integral part of the proof
of the Second Main Theorem, one of the deepest results of Nevanlinna the-
ory. In addition, logarithmic derivative estimates are crucial for applications
to complex differential equations. Similarly, Theorem 2.1 enables an efficient
study of complex analytic properties of finite order meromorphic solutions of
difference equations. We are concerned with functions which are polynomials

in f(z + ¢;), where ¢; € C, with coefficients a,(z) such that

T(r,ax) = o(T(r, f))



except possibly for a set of r having finite logarithmic measure. Such functions

will be called difference polynomials in f(z). We also denote

e == max{le,]}.

The following theorem is analogous to the Clunie Lemma [3], which has numer-

ous applications in the study of complex differential equations, and beyond.

Theorem 3.1 Let f(z) be a non-constant meromorphic solution of

f)"P(z, f) = Q(z, f),

where P(z, f) and Q(z, f) are difference polynomials in f(z), and let 6 < 1
and € > 0. If the degree of Q(z, f) as a polynomial in f(z) and its shifts is at

most n, then

(P ) = o (TEHIDE o )

7o

for all r outside of a possible exceptional set with finite logarithmic measure.

Proof. We follow the reasoning behind the original Clunie Lemma, see, for
instance, [7,8], just replacing the Lemma on the Logarithmic Derivative with

Theorem 2.1. First of all,

. do , do
m(r,P) = [ log" [P(re”. )l g+ [ log" [PGre?. PG (14)

where E; = {6 € [0,27] : |f(re??)| < 1}, and E, is the complement of F;.

Now, by denoting P(z, f) = X\ ax(2)Fi(z, f), we have

f(re? +¢,) g

f(re?)

lax(re®)Fa(re”, )] < |ax(re’

| f re? +c;) h
610

whenever 0 € E,. Therefore for each A we obtain

j=1

10



and so, by Theorem 2.1,

[ o Pt g = o (TS ooy a9

ro

outside of an exceptional set with finite logarithmic measure.

Similarly on Ej, by denoting Q(z, f) = >, b,(2)G,(z, f), we obtain

P f)] = \jﬁlszz)ﬂzw(z b £zt e
flre? +¢;) f(re +c)“
< Z|b |’ (re) ’me

since }.5_ l; < n by assumption. Therefore by Theorem 2.1 again,

e 1P, 1 7 = o (T oy o

ro

The assertion follows by combining (14), (15) and (16). O

Similarly as Theorem 3.1 can be used to obtain information about the pole
distribution of meromorphic solutions of difference equations, the next result
is concerned with distribution of slowly moving targets a such that T'(r,a) =
o(T(r, f)) outside of a possible exceptional set of finite logarithmic measure.
In particular, constant functions are always slowly moving. The following the-
orem is an analogue of a result due to A. Z. Mohon’ko and V. D. Mohon’ko

[11] on differential equations.

Theorem 3.2 Let f(z) be a non-constant meromorphic solution of
Pz, f) =0 (17)
where P(z, f) is difference polynomial in f(z), and let § < 1 and € > 0. If

11



P(z,a) £ 0 for a slowly moving target a, then

m( 1 ):0<T(T+|c|’f)l+€>+0(T(r,f))

-
"f—a 7o

for all r outside of a possible exceptional set with finite logarithmic measure.

Proof. By substituting f = g + a into (17) we obtain

Q(z,9) + D(z) = 0, (18)

where Q(z,9) = >, b,(2)G, (2, f) is a difference polynomial in g such that all
of its terms are at least of degree one, and T'(r, D) = o(T'(r, g)) outside a set of
finite logarithmic measure. Also D # 0, since a does not satisfy (17). Next we
compute m(r, 1/g). To this end, note that the integral to be evaluated vanishes
on the part of |z| = r where |g| > 1. It is therefore sufficient to consider only

the case |g| < 1. But then,

Q(Zyg) _i z Zl() ~ c ll_” P c 1,
| g ‘_ ] ;bv( )9(2)°g(z + 1) g9(z+c)
L L
§;|b7(z)\|g(z(t)cl> |9(2(4;)C>

since 3._,l; > 1 for all 4. Therefore, by equation (18) and Theorem 2.1,

)enf ) ontd
. (T’ Q(z,g)> o (73 11))

. (T(r + l«(:j g)“E) +o(T(r, g))

outside of a set of r-values with at most finite logarithmic measure. Since

g = f — a the assertion follows. .

Theorems 3.1 and 3.2, like Theorem 2.1, are particularly useful when applied to

functions having finite order. The following two corollaries on the Nevanlinna

12



deficiency illustrate this fact.

Corollary 3.3 Let f(z) be a non-constant finite-order meromorphic solution
of

f)"P(z, f) = Q(z, f),
where P(z, f) and Q(z, f) are difference polynomials in f(z), and let § < 1. If

the degree of Q(z, ) as a polynomial in f(z) and its shifts is at most n, then

T(r+lel, f)

7o

m(r, Pz f)) = o ( ) +o(T(r, f)) (19)

for all r outside of a possible exceptional set with finite logarithmic measure.

Moreover, the Nevanlinna deficiency satisfies

d(oco, P) := lim inf m(r, P)

minf 7 =0, (20)

Proof. Equation (19) follows by combining the proof of Theorem 3.1 with
Corollary 2.2, and so we are left with equation (20). By a well known result

due to Valiron [15] and A. Z. Mohon’ko [10], we have
T(r, P) = deg(P)T(r, f) + o(T(r, [)) (21)

outside of a possible exceptional set of finite logarithmic measure. In addition
[8, Lemma 1.1.2] yields that if T'(r, g) = o(T'(r, f)) outside of an exceptional
set of finite logarithmic measure, then T'(r, g) = o(T(r'*¢, f)) for any € > 0
and for all r sufficiently large. Thus, by applying (19) together with (21) and

[8, Lemma 1.1.2], we have

T(rite, P)
>

(e P) = 0 ( ) T o(T(r, P))

for all sufficiently large r. Therefore, since P is of finite order,

m(r, P) < pp+2e)=3 (22)

13



where p is the order of P and 6 < 1. Also, there is a sequence r,, — oo as
n — oo, such that

T(rn, P) 2" (23)
for all 1, large enough. The assertion follows by combining (22) and (23) where

e and § are chosen such that e(2p + 1) < § < 1, and by letting n — oc. a

Corollary 3.4 Let f(z) be a non-constant finite-order meromorphic solution
of

Pz, f) =0
where P(z, f) is difference polynomial in f(2), and let § < 1. If P(z,a) Z 0

for a slowly moving target a, then

. ( ! ) Y (T“"f)) +o(T(r, £)

f—a ro

for all r outside of a possible exceptional set with finite logarithmic measure.

Moreover, the Nevanlinna deficiency satisfies

1
§(a, f) == h;giong = 0.

We omit the proof since it would be almost identical to that of Corollary 3.3.

4 Conclusion

In this paper we have presented a difference analogue of the Lemma on the
Logarithmic Derivative. This result has potentially a large number of appli-
cations in the study of difference equations. Many ideas and methods from
the theory of differential equations may now be utilized together with Theo-

rem 2.1 to obtain information about meromorphic solutions of difference equa-

14



tions. Section 3 provides a number of examples in this direction. The analogue

of the Clunie Lemma, Theorem 3.1, may be used to ensure that finite order

meromorphic solutions of certain non-linear difference equations have a large

number of poles. Similarly, Theorem 3.2 provides an easy way of telling when

a finite order meromorphic solution of a difference equation does not have any

deficient values.

References

1]

M. J. Ablowitz, R. G. Halburd, B. Herbst, On the extension of the Painlevé

property to difference equations, Nonlinearity 13 (2000) 889-905.

W. Cherry, Z. Ye, Nevanlinna’s theory of value distribution, Springer-Verlag,

Berlin, 2001.

J. Clunie, On integral and meromorphic functions, J. London Math. Soc. 37

(1962) 17-27.

L. Fuchs, Sur quelques équations différentielles linéares du second ordre, C. R.

Acad. Sci., Paris 141 (1905) 555-558.

B. Gambier, Sur les équations différentielles du second ordre et du premier degré

dont l'intégrale générale est & points critiques fixes, Acta Math. 33 (1910) 1-55.

R. G. Halburd, R. J. Korhonen, Finite-order meromorphic solutions and the

discrete Painlevé equations, Preprint.

W. K. Hayman, Meromorphic functions, Clarendon Press, Oxford, 1964.

I. Laine, Nevanlinna theory and complex differential equations, Walter de

Gruyter, Berlin, 1993.

15



[9] J. Malmquist, Sur les fonctions & un nombre fini des branches définies par les

équations différentielles du premier ordre, Acta Math. 36 (1913) 297-343.

[10] A. Z. Mohon’ko, The Nevanlinna characteristics of certain meromorphic
functions, Teor. Funktsii Funktsional. Anal. i Prilozhen 14 (1971) 83-87,

(Russian).

[11] A. Z. Mohon’ko, V. D. Mohon’ko, Estimates of the Nevanlinna characteristics of
certain classes of meromorphic functions, and their applications to differential

equations, Sibirsk. Mat. Zh. 15 (1974) 1305-1322, (Russian).

[12] R. Nevanlinna, Zur Theorie der meromorphen Funktionen, Acta Math. 46

(1925) 1-99.

[13] P. Painlevé, Sur les équations différentielles du second ordre et d’ordre supérieur

dont l'intégrale générale est uniforme, Acta Math. 25 (1902) 1-85.

[14] S. Shimomura, Entire solutions of a polynomial difference equation, J. Fac. Sci.

Univ. Tokyo Sect. IA Math. 28 (1981) 253-266.

[15] G. Valiron, Sur la dérivée des fonctions algébroides, Bull. Soc. Math. France 59

(1931) 17-39.

[16] N. Yanagihara, Meromorphic solutions of some difference equations, Funkcialaj

Ekvacioj 23 (1980) 309-326.

[17] N. Yanagihara, Meromorphic solutions of some difference equations of the nth

order, Arch. Ration. Mech. Anal. 91 (1985) 169-192.

[18] K. Yosida, A generalization of Malmquist’s theorem, J. Math. 9 (1933) 253-256.

16



