

First integrals and gradient flow for a generalized Darboux-Halphen system

S. Chakravarty and R.G. Halburd

ABSTRACT. First integrals are explicitly constructed for a third-order system of ODEs that arises as a reduction of the self-dual Yang-Mills equations and in the theory of hypercomplex manifolds. These first integrals are branched functions of the phase space variables, even in cases for which the general solution is single-valued. This branching is characterized in terms of the monodromy of the hypergeometric equations. The first integrals are then used to formulate a Nambu-Poisson structure of the system. A representation of the generalized Darboux-Halphen system as a gradient flow is also given.

1. Introduction

The system

$$(1.1) \quad \begin{aligned} \dot{\omega}_1 &= \omega_2\omega_3 - \omega_1(\omega_2 + \omega_3) + \tau^2, \\ \dot{\omega}_2 &= \omega_3\omega_1 - \omega_2(\omega_3 + \omega_1) + \tau^2, \\ \dot{\omega}_3 &= \omega_1\omega_2 - \omega_3(\omega_1 + \omega_2) + \tau^2, \end{aligned}$$

where

$$\tau^2 = \alpha^2(\omega_1 - \omega_2)(\omega_3 - \omega_1) + \beta^2(\omega_2 - \omega_3)(\omega_1 - \omega_2) + \gamma^2(\omega_3 - \omega_1)(\omega_2 - \omega_3),$$

was first studied by Halphen [14] as a natural generalization of the classical Darboux-Halphen (DH) system, which corresponds to setting $\tau = 0$ in equation (1.1). The classical Darboux-Halphen system first arose in Darboux's study of triply orthogonal surfaces [11] and was later solved by Halphen [15]. The classical DH system has also appeared in studies of self-dual Bianchi-IX metrics with Euclidean signature [4, 13] and in reductions of the associativity equations on a three-dimensional Frobenius manifold [12]. Furthermore, if $(\omega_1, \omega_2, \omega_3)$ is a solution of the classical Darboux-Halphen system, then

$$(1.2) \quad y := -2(\omega_1 + \omega_2 + \omega_3)$$

1991 *Mathematics Subject Classification.* Primary 34A34, 34A05; Secondary 37K10.

Key words and phrases. Darboux-Halphen, Schwarzian.

The first author was partially supported by a Grigsby-Sensenbaugh Foundation grant from the University of Colorado.

The second author was partially supported by grant number NAL/00344/G from the Nuffield Foundation.

satisfies the Chazy equation,

$$(1.3) \quad \frac{d^3y}{dt^3} = 2y \frac{d^2y}{dt^2} - \left(\frac{dy}{dt} \right)^2.$$

In [3] it was shown that y defined by equation (1.2) solves the generalized Chazy equation,

$$(1.4) \quad \frac{d^3y}{dt^3} - 2y \frac{d^2y}{dt^2} + \left(\frac{dy}{dt} \right)^2 = \frac{4}{36 - n^2} \left(6 \frac{dy}{dt} - y^2 \right)^2,$$

where the ω_i 's solve the generalized Darboux-Halphen system for the special choices of parameters (α, β, γ) given by $(2/n, 2/n, 2/n)$ and $(1/3, 1/3, 2/n)$, et cyc. Note that equation (1.3) corresponds to the limit $n \rightarrow \infty$ in equation (1.4). Equations (1.3) and (1.4) were first studied by Chazy in [8, 9, 10].

The system (1.1) arises in the study of the equation

$$(1.5) \quad \dot{M} = (\text{adj } M)^T + M^T M - (\text{Tr } M)M,$$

for a 3×3 matrix valued function $M(t)$ where $\text{adj } M$ is the adjoint of M satisfying $(\text{adj } M)M = (\det M)I$, M^T is the transpose of M and the dot denotes differentiation with respect to t . Equation (1.5) was obtained in [6] as a reduction of the self-dual Yang-Mills equations with an infinite dimensional gauge group of diffeomorphisms $\text{Diff}(S^3)$ of the three-sphere. Equation (1.5) also describes a class of self-dual Weyl Bianchi IX space-times with Euclidean signature [5]. More recently, equation (1.5) was used to describe $\text{SU}(2)$ invariant hypercomplex 4-manifolds [16].

In section 2 we will review the reduction of equation (1.5) to the generalized DH system (1.1). The general solution will be constructed and a special case will be studied. In section 3, first integrals and “action-angle” variables are given for equation (1.1). The first integrals involve hypergeometric functions and are non-meromorphic, even in cases where the general solution is single-valued.

2. The solution of the generalized Darboux-Halphen system

In this section the solution of equation (1.5) is given by a factorization method which first appeared in [1]. The solution can also be obtained via associated linear problems. In [2], the solution was obtained via an evolving monodromy problem that arises as a reduction of the isospectral problem for the self-dual Yang-Mills equations. In [16], the solution was obtained via an isomonodromy problem which describes the Riccati solutions of the sixth Painlevé equation. Degenerate cases were discussed in [3].

We begin by decomposing the matrix M into its symmetric (M_s) and antisymmetric (M_a) parts. Furthermore, the eigenvalues of M_s are assumed to be distinct, so that it can be diagonalized using a complex orthogonal matrix. Thus we have

$$(2.1) \quad M = M_s + M_a = P(d + a)P^{-1},$$

where $P \in \text{SO}(3, \mathbf{C})$, $d = \text{diag}(\omega_1, \omega_2, \omega_3)$ with $\omega_i \neq \omega_j$, $i \neq j$, and the elements of the skew-symmetric matrix a are given by $a_{ij} = \sum_{k=1}^3 \varepsilon_{ijk} \tau_k$, where ε_{ijk} is totally skew-symmetric in its indices and $\varepsilon_{123} = 1$. Using the transformation (2.1), the

diagonal part of equation (1.5) yields the system (1.1), where $\tau^2 = \tau_1^2 + \tau_2^2 + \tau_3^2$. The skew-symmetric part gives

$$(2.2) \quad \dot{\tau}_1 = -\tau_1(\omega_2 + \omega_3), \quad \dot{\tau}_2 = -\tau_2(\omega_3 + \omega_1), \quad \dot{\tau}_3 = -\tau_3(\omega_1 + \omega_2),$$

and the off-diagonal symmetric part gives

$$(2.3) \quad \dot{P} = -Pa,$$

which is a linear equation for P .

Taking differences of equations in system (1.1) gives

$$(2.4) \quad \frac{d}{dt}(\omega_1 - \omega_2) = -2\omega_3(\omega_1 - \omega_2), \quad \text{et cyc.}$$

Using equations (2.2) and (2.4), we can solve the τ_i 's in terms of the ω_i 's as

$$(2.5) \quad \begin{aligned} \tau_1^2 &= \alpha^2(\omega_1 - \omega_2)(\omega_3 - \omega_1), \\ \tau_2^2 &= \beta^2(\omega_2 - \omega_3)(\omega_1 - \omega_2), \quad \tau_3^2 = \gamma^2(\omega_3 - \omega_1)(\omega_2 - \omega_3), \end{aligned}$$

where α , β , and γ are integration constants.

In terms of the cross ratio

$$(2.6) \quad s := \frac{\omega_1 - \omega_3}{\omega_2 - \omega_3},$$

it follows from equation (1.1) that the ω_i 's can be parameterized as

$$(2.7) \quad \omega_1 = -\frac{1}{2} \frac{d}{dt} \ln \frac{\dot{s}}{s(s-1)}, \quad \omega_2 = -\frac{1}{2} \frac{d}{dt} \ln \frac{\dot{s}}{s-1}, \quad \omega_3 = -\frac{1}{2} \frac{d}{dt} \ln \frac{\dot{s}}{s}.$$

where s satisfies

$$(2.8) \quad \frac{d}{dt} \left(\frac{\ddot{s}}{\dot{s}} \right) - \frac{1}{2} \left(\frac{\ddot{s}}{\dot{s}} \right)^2 + \frac{\dot{s}^2}{2} V(s) = 0,$$

with

$$\{s, t\} := \frac{d}{dt} \left(\frac{\ddot{s}}{\dot{s}} \right) - \frac{1}{2} \left(\frac{\ddot{s}}{\dot{s}} \right)^2$$

being the Schwarzian derivative and V is given by

$$(2.9) \quad V(s) = \frac{1 - \beta^2}{s^2} + \frac{1 - \gamma^2}{(s-1)^2} + \frac{\beta^2 + \gamma^2 - \alpha^2 - 1}{s(s-1)}.$$

Equation (2.8) is the Schwarzian equation, which describes the conformal mappings of the upper-half s -plane to the interior of a region of the complex sphere bounded by three regular circular arcs. If α , β , and γ are non-negative real numbers such that $\alpha + \beta + \gamma < 1$, then the angles subtended at the vertices $s = 0$, $s = 1$, and $s = \infty$ of this triangle are $\alpha\pi$, $\beta\pi$, and $\gamma\pi$. Furthermore, if α , β , and γ are chosen to be either reciprocals of integers or zero, then s is analytic on the interior of a circle on the complex sphere and cannot be analytically extended across this circle, which is a natural barrier [19].

The general solution of equation (2.8) is given implicitly by

$$(2.10) \quad t(s) = \frac{u_1(s)}{u_2(s)},$$

where $u_1(s)$ and $u_2(s)$ are independent solutions to the Fuchsian equation

$$(2.11) \quad \frac{d^2u}{ds^2} + \frac{1}{4}V(s)u = 0.$$

Equation (2.11) is equivalent to the hypergeometric equation,

$$(2.12) \quad s(1-s) \frac{d^2\chi}{ds^2} + [c - (a+b+1)s] \frac{d\chi}{ds} - ab\chi = 0,$$

where $a = (1 + \alpha - \beta - \gamma)/2$, $b = (1 - \alpha - \beta - \gamma)/2$, $c = 1 - \beta$, and

$$(2.13) \quad u(s) = s^{c/2} (1-s)^{(a+b-c+1)/2} \chi(s).$$

A fifth order reduction

We will now consider the case in which M has the special form

$$(2.14) \quad M = \begin{pmatrix} M_{11} & M_{12} & 0 \\ M_{21} & M_{22} & 0 \\ 0 & 0 & M_{33} \end{pmatrix}.$$

This special form of M was considered in [5, 2], where equation (1.5) was analyzed using an associated evolving monodromy problem. Here we will show that quantities that arise naturally from this monodromy analysis can be obtained in a straightforward manner from the factorization method described above.

Consider the factorization of M given by equation (2.1) where M is given by equation (2.14). Due to special block structure of M , its symmetric part can be diagonalized by an orthogonal matrix of the form

$$(2.15) \quad P = \begin{pmatrix} \cos \psi & \sin \psi & 0 \\ -\sin \psi & \cos \psi & 0 \\ 0 & 0 & 1 \end{pmatrix},$$

where ψ is a (generally complex) function of t to be determined. That is, $M_s = PdP^{-1}$, where $d = \text{diag}(\omega_1, \omega_2, \omega_3)$. Furthermore, the skew-symmetric part of M is unchanged by the adjoint action of P . So

$$(2.16) \quad a = P^{-1} M_a P = M_a = \frac{1}{2}(M - M^T) = \begin{pmatrix} 0 & \tau_3(t) & 0 \\ -\tau_3(t) & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix},$$

where $\tau_3(t) = \frac{1}{2}(M_{12} - M_{21})$. Since $\tau_1 = \tau_2 = 0$ in this case, the ω_i 's are given by equation (2.7) where s solves equation (2.8) with $\alpha = \beta = 0$. From equation (2.5) and equation (2.7), we have

$$\tau_3(t) = \frac{i\gamma}{2} \frac{\dot{s}}{\sqrt{s(s-1)}},$$

where γ is a constant. With the $\tau_3(t)$ given above, equation (2.3) can be readily integrated to give

$$\psi = \frac{i\gamma}{2} \log \left(\frac{\sqrt{s-1}}{\sqrt{s+1}} \right) + \psi_0,$$

where ψ_0 is a constant. Finally, the matrix M in (2.14) is reconstructed from the various components P , d and a according to equation (2.1). Note that in order to obtain any solution of equation (1.5) where M is given by (2.14) we must fix the two constants γ and ψ_0 and choose a solution to equation (2.8) with $\alpha = \beta = 0$ and the fixed value of γ .

In [5] the general solution of equation (1.5) with M of the form (2.14) was found via a different method which involved the analysis of a certain evolving monodromy problem. This led to the following combination of the matrix elements of M

$$\alpha_{\pm} = (M_{11} - M_{22}) \mp i(M_{12} + M_{21}), \quad R^2 = \alpha_+ \alpha_-,$$

$$\beta_{\pm} = \omega \pm i(M_{21} - M_{12}), \quad \omega = M_{11} + M_{22} - 2M_{33},$$

together with the conserved quantity

$$a^2 = \frac{(M_{12} - M_{21})^2}{R^2 - \omega^2}.$$

In the factorization method outlined above, these variables arise naturally from the component matrices P , d and a as follows

$$R = \omega_1 - \omega_2, \quad \alpha_{\pm} = R e^{\mp 2i\psi}, \quad \omega = (\omega_1 - \omega_3) + (\omega_2 - \omega_3), \quad M_{12} - M_{21} = 2\tau_3,$$

and $a = \gamma$.

3. First Integrals

In this section, following [7], we will use the method of solution given in section 2 to construct first integrals for equation (1.1). We begin by constructing explicit first integrals for the Schwarzian equation (2.8), as the formulas are much simpler in this case. Let u_1 and u_2 be two linearly independent solutions of equation (2.11) satisfying the Wronskian condition $W(u_1, u_2) = u_1 u_2' - u_2 u_1' = 1$. Then any solution to equation (2.8) is given implicitly by

$$(3.1) \quad t(s) = \frac{J_2 u_1(s) - J_1 u_2(s)}{I_2 u_1(s) - I_1 u_2(s)},$$

where I_k and J_k , $k = 1, 2$, are constants satisfying

$$(3.2) \quad I_1 J_2 - I_2 J_1 = 1.$$

Hence any three of the constants I_1 , I_2 , J_1 , J_2 can be taken as independent first integrals.

Differentiating equation (3.1) with respect to t gives

$$(3.3) \quad I_2 u_1 - I_1 u_2 = \dot{s}^{1/2}.$$

Differentiation of equation (3.3) gives

$$(3.4) \quad I_2 u_2' - I_1 u_1' = \frac{1}{2} \dot{s}^{-3/2} \ddot{s}.$$

Solving the system (3.3–3.4) for I_1 and I_2 gives

$$(3.5) \quad I_k = \frac{d\phi_k}{dt}, \quad \phi_k = \dot{s}^{-1/2} u_k(s), \quad k = 1, 2.$$

The constants J_1 and J_2 are given by the solution of equations (3.1), (3.5) and the normalization condition (3.2). This yields $J_k = t I_k - \phi_k$, $k = 1, 2$.

In terms of the gDH variables, we have

$$(3.6) \quad \begin{aligned} \phi_k &= \sqrt{2} \left(\frac{(\omega_2 - \omega_3)}{(\omega_1 - \omega_2)(\omega_1 - \omega_3)} \right)^{1/2} u_k \left(\frac{\omega_1 - \omega_3}{\omega_2 - \omega_3} \right), \\ I_k &= \sqrt{2} \left(\frac{(\omega_1 - \omega_3)(\omega_1 - \omega_2)}{(\omega_2 - \omega_3)} \right)^{1/2} u_k' \left(\frac{\omega_1 - \omega_3}{\omega_2 - \omega_3} \right) \\ &\quad - (\omega_1 - \omega_2 - \omega_3) \left(\frac{(\omega_2 - \omega_3)}{2(\omega_1 - \omega_3)(\omega_1 - \omega_2)} \right)^{1/2} u_k \left(\frac{\omega_1 - \omega_3}{\omega_2 - \omega_3} \right). \end{aligned}$$

Using the new variables ϕ_k and I_k instead of the gDH variables ω_i 's, equation (1.1) can be formulated as a Hamiltonian system

$$(3.7) \quad \dot{\phi}_k = \frac{\partial H}{\partial I_k} = I_k, \quad \dot{I}_k = -\frac{\partial H}{\partial \phi_k} = 0, \quad H = \frac{I_1^2 + I_2^2}{2}, \quad k = 1, 2,$$

together with the constraint

$$(3.8) \quad \phi_1 I_2 - \phi_2 I_1 = W(u_1, u_2) = 1.$$

Although I_1 and I_2 are constant functions of t , they are multivalued functions of $\{\omega_1, \omega_2, \omega_3\}$ and of the Schwarzian variables $\{s, \dot{s}, \ddot{s}\}$. In terms of the solutions χ_1, χ_2 of the hypergeometric equation (2.12), the first integrals are given by

$$(3.9) \quad [I_1 \quad I_2] = \sigma [\lambda \quad 1] \begin{pmatrix} \chi_1(s) & \chi_2(s) \\ \chi'_1(s) & \chi'_2(s) \end{pmatrix},$$

where

$$\sigma(s, \dot{s}) = s^{c/2} (1-s)^{(a+b-c+1)/2} \dot{s}^{1/2}, \quad \text{and} \quad \lambda(s, \dot{s}, \ddot{s}) = \frac{a+b+1-cs}{2s(1-s)} - \frac{\ddot{s}}{2\dot{s}^2}.$$

Next we will discuss the dependence of I_1 and I_2 on s, \dot{s} , and \ddot{s} . Clearly $I_k, k = 1, 2$, is single-valued as a function of \ddot{s} and has square-root branch points as a function of \dot{s} about $\dot{s} = 0$ and $\dot{s} = \infty$. In fact, the conserved quantities I_1^2 and I_2^2 are single-valued as functions of \dot{s} . Holding \dot{s} and \ddot{s} fixed, I_μ can only admit branch points at $s = 0, s = 1$, and $s = \infty$. Let γ_0 and γ_1 be two closed curves with a common base point in the finite complex s -plane enclosing the points $s = 0$ and $s = 1$ respectively, and traversed once in the positive direction. Analytic continuation of σ along γ_0 and γ_1 gives

$$\gamma_0 : \sigma \mapsto e^{i\pi c} \sigma, \quad \gamma_1 : \sigma \mapsto e^{i\pi(a+b-c)} \sigma.$$

Analytic continuation along γ_0 and γ_1 transforms the fundamental matrix of solutions of equation (2.12) according to

$$\gamma_\mu : \begin{pmatrix} \chi_1(s) & \chi_2(s) \\ \chi'_1(s) & \chi'_2(s) \end{pmatrix} \mapsto \begin{pmatrix} \chi_1(s) & \chi_2(s) \\ \chi'_1(s) & \chi'_2(s) \end{pmatrix} M_\mu, \quad \mu = 0, 1.$$

For generic values of a, b, c , and for the choice of basis solutions: $\chi_1 = F(a, b, c; s)$, $\chi_2 = F(a, b, a+b-c+1; 1-s)$ of the hypergeometric equation, the monodromy matrices M_μ are given by [20]

$$M_0 = \begin{pmatrix} 1 & e^{-2\pi i b} - e^{-2\pi i c} \\ 0 & e^{-2\pi i c} \end{pmatrix} \quad \text{and} \quad M_1 = \begin{pmatrix} e^{-2\pi i(a+b-c)} & 0 \\ 1 - e^{-2\pi i(a-c)} & 1 \end{pmatrix}.$$

So under analytic continuation, the first integrals I_1, I_2 transform as

$$\gamma_0 : [I_1 \quad I_2] \mapsto [I_1 \quad I_2] M_0 e^{i\pi c}, \quad \gamma_1 : [I_1 \quad I_2] \mapsto [I_1 \quad I_2] M_1 e^{i\pi(a+b-c)}.$$

Analytic continuation around $s = \infty$ is equivalent to a loop around $s = 0$ and $s = 1$. Hence the branching of the first integrals I_1 and I_2 is characterized in terms of the monodromy group for the hypergeometric equation.

The first integrals in equation (3.9) for the classical DH system ($\alpha = \beta = \gamma = 0$) are expressed in terms of the special hypergeometric equation (2.12) with $a = b = 1/2, c = 1$. In this case, the monodromy matrices are given by

$$M_0 = \begin{pmatrix} 1 & -2 \\ 0 & 1 \end{pmatrix} \quad \text{and} \quad M_1 = \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix}$$

relative to the choice of basis $\chi_1 = F(1/2, 1/2, 1; s)$ and $\chi_2 = iF(1/2, 1/2, 1; 1-s)$. Note that in this case, I_1 and I_2 are still branched, even though the solution itself is single-valued. The non-existence of meromorphic first integrals for the classical Darboux-Halphen system was proved in [17]. We show by explicit construction that the first integrals do indeed exist but they are non-algebraic and multi-valued.

4. Nambu-Poisson Structure and Gradient flow

The gDH system (1.1) can also be viewed as a complex dynamical system given by $(\dot{\omega}_1, \dot{\omega}_2, \dot{\omega}_3) = \mathbf{X}$ where the vector field

$$\mathbf{X} = (\omega_2\omega_3 - \omega_1\omega_2 - \omega_3\omega_1 + \tau^2, \omega_3\omega_1 - \omega_2\omega_3 - \omega_1\omega_2 + \tau^2, \omega_1\omega_2 - \omega_3\omega_1 - \omega_2\omega_3 + \tau^2).$$

The generalized DH flow given by the integral curves of \mathbf{X} lie on the intersection of the level sets of the first integrals ($I_1 = \text{constant}$ and $I_2 = \text{constant}$) in a three-dimensional complex manifold $M^3 := \mathbf{C} \setminus \{\omega_i \neq \omega_j, i \neq j\}$. Since the I_k 's are conserved under the gDH flow,

$$\frac{dI_k}{dt} = \mathbf{X} \cdot \nabla I_k = 0, \quad k = 1, 2,$$

it follows that the vector field \mathbf{X} is proportional to $\nabla I_1 \times \nabla I_2$. Explicit calculation shows that,

$$\mathbf{X} = \frac{1}{4\Delta} \nabla I_1 \times \nabla I_2$$

where

$$\Delta = (\omega_2 - \omega_3)(\omega_3 - \omega_1)(\omega_1 - \omega_2).$$

The gDH equations can be expressed as

$$\dot{\omega}_j = \mathbf{X} \cdot \nabla \omega_j = \begin{cases} (4\Delta)^{-1} \nabla I_2 \cdot (\nabla \omega_j \times \nabla I_1) =: \{\omega_j, I_1\}_1, \\ -(4\Delta)^{-1} \nabla I_1 \cdot (\nabla \omega_j \times \nabla I_2) =: \{\omega_j, I_2\}_2. \end{cases}$$

It can be verified that the brackets

$$\begin{aligned} B_1(g, h) &= \{g, h\}_1 = (4\Delta)^{-1} \nabla I_2 \cdot (\nabla g \times \nabla h), \\ B_2(g, h) &= \{g, h\}_2 = -(4\Delta)^{-1} \nabla I_1 \cdot (\nabla g \times \nabla h), \end{aligned}$$

are Poisson (i.e., they are bi-linear, anti-symmetric and satisfy the Jacobi identity). So \mathbf{X} is a Hamiltonian vector field with respect to the two Poisson structures B_1 and B_2 with Hamiltonians I_1 and I_2 respectively.

The Poisson structures B_1 and B_2 are degenerate (rank 2) and admit Casimir functions I_2 and I_1 respectively. This is easily verified by using the vector triple product identity

$$\begin{aligned} \{I_2, g\}_1 &= (4\Delta)^{-1} \nabla I_2 \cdot (\nabla I_2 \times \nabla g) = (4\Delta)^{-1} \nabla g \cdot (\nabla I_2 \times \nabla I_2) = 0, \\ \{I_1, g\}_2 &= (4\Delta)^{-1} \nabla I_1 \cdot (\nabla I_1 \times \nabla g) = (4\Delta)^{-1} \nabla g \cdot (\nabla I_1 \times \nabla I_1) = 0, \end{aligned}$$

for any smooth function g on M . Furthermore, since $\{I_1, I_2\}_1 = \{I_1, I_2\}_2 = 0$, the integrals of the gDH system are in involution. The Poisson structures B_1 and B_2 are compatible in the sense that

$$B := \lambda_1 B_1 + \lambda_2 B_2, \quad \lambda_i = \lambda_i(I_1, I_2)$$

is also a Poisson structure for gDH with a Hamiltonian $H(I_1, I_2)$ satisfying

$$\lambda_1 \frac{\partial H}{\partial I_1} + \lambda_2 \frac{\partial H}{\partial I_2} = 0.$$

Thus the gDH system is *bi-Hamiltonian*.

The symmetric representation of the gDH system using *both* Hamiltonians I_1 , I_2 is

$$\dot{\omega}_j = (4\Delta)^{-1} \nabla \omega_j \cdot (\nabla I_1 \times \nabla I_2) = (4\Delta)^{-1} \frac{\partial(\omega_j, I_1, I_2)}{\partial(\omega_1, \omega_2, \omega_3)} =: \{\omega_j, I_1, I_2\}.$$

This is an example of a Nambu-Poisson bracket similar to rigid body dynamics in three dimensions [18, 21].

The Darboux-Halphen system (1.1) is also a gradient flow. In terms of local coordinates ω_i , it can be written as

$$\dot{\omega}_i = \sum_{j=1}^3 g^{ij} \frac{\partial \Phi}{\partial \omega_j},$$

where g^{ij} is a constant contravariant metric and Φ is a potential function. The metric is given by

$$(g^{ij}) = \begin{pmatrix} m(\alpha, \beta, \gamma) & \kappa + 4\gamma^2 & \kappa + 4\beta^2 \\ \kappa + 4\gamma^2 & m(\beta, \gamma, \alpha) & \kappa + 4\alpha^2 \\ \kappa + 4\beta^2 & \kappa + 4\alpha^2 & m(\gamma, \alpha, \beta) \end{pmatrix},$$

where

$$\kappa = (\alpha + \beta + \gamma)(\alpha + \beta - \gamma)(\alpha - \beta + \gamma)(\alpha - \beta - \gamma) - 1,$$

and

$$m(\alpha, \beta, \gamma) = (1 - \alpha^2 + (\beta + \gamma)^2)(1 - \alpha^2 + (\beta - \gamma)^2).$$

The potential Φ is a homogeneous polynomial of degree 3 in the ω_i 's and is invariant under the *simultaneous* cyclic permutation of $\{\omega_1, \omega_2, \omega_3\}$ and $\{\alpha, \beta, \gamma\}$. In terms of the function

$$F(\omega_1, \omega_2, \omega_3; \alpha, \beta, \gamma) = [(1 - \alpha^2)(3\alpha^2 - 2\beta^2 - 2\gamma^2 + 1) + (\beta^2 - \gamma^2)^2] \times \omega_1 [\alpha^2 \omega_1^2 + 3\beta^2 \omega_2^2 + 3\gamma^2 \omega_3^2 + (1 - \alpha^2 - 3\beta^2 - 3\gamma^2)\omega_2 \omega_3],$$

the potential is expressed as

$$\Phi = -\frac{4}{3 \det(g^{ij})} [F(\omega_1, \omega_2, \omega_3; \alpha, \beta, \gamma) + F(\omega_2, \omega_3, \omega_1; \beta, \gamma, \alpha) + F(\omega_3, \omega_1, \omega_2; \gamma, \alpha, \beta)].$$

With respect to the metric g^{ij} , the constant Φ surfaces are orthogonal to the curves obtained by the intersection of the constant I_1 and I_2 surfaces.

In the classical Darboux-Halphen case ($\alpha = \beta = \gamma = 0$), we have

$$g^{ij} = \begin{pmatrix} 1 & -1 & -1 \\ -1 & 1 & -1 \\ -1 & -1 & 1 \end{pmatrix} \quad \text{and} \quad \Phi = \omega_1 \omega_2 \omega_3.$$

For the fifth order reduction ($\alpha = \beta = 0$) discussed in section 2,

$$g^{ij} = \begin{pmatrix} (1 + \gamma^2)^2 & \gamma^4 + 4\gamma^2 - 1 & \gamma^4 - 1 \\ \gamma^4 + 4\gamma^2 - 1 & (1 + \gamma^2)^2 & \gamma^4 - 1 \\ \gamma^4 - 1 & \gamma^4 - 1 & (1 - \gamma^2)^2 \end{pmatrix}$$

and the corresponding potential function is given by

$$\Phi = \frac{\gamma^2 \omega_3^2 [3(1 - \gamma^2)(\omega_1 + \omega_2) + (1 + 3\gamma^2)\omega_3] + 3(1 - \gamma^2)^2 \omega_1 \omega_2 \omega_3}{3(1 - \gamma^2)^3}.$$

References

1. M.J. Ablowitz, S. Chakravarty, and R. Halburd, *Darboux-Halphen systems and the singularity structure of its solutions*, Proc. Fourth Int. Conf. on Mathematical and Numerical Aspects of Wave Propagation (Philadelphia) (J.A. DeSanto, ed.), SIAM, 1998, pp. 408–412.
2. ———, *On Painlevé and Darboux-Halphen type equations*, The Painlevé Property, One Century Later (Berlin) (R. Conte, ed.), CRM Series in Mathematical Physics, Springer, 1998.
3. ———, *The generalized Chazy equation from the self-duality equations*, Stud. Appl. Math. **103** (1999), 75–88.
4. M.F. Atiyah and N.J. Hitchin, *The geometry and dynamics of magnetic monopoles*, Princeton University Press, Princeton, New Jersey, 1988.
5. S. Chakravarty and M.J. Ablowitz, *Integrability, monodromy, evolving deformations, and self-dual Bianchi IX systems*, Phys. Rev. Lett. **76** (1996), 857–860.
6. S. Chakravarty, M.J. Ablowitz, and L.A. Takhtajan, *Self-dual Yang-Mills equation and new special functions in integrable systems*, Nonlinear Evolution Equations and Dynamical Systems (Singapore) (M. Boiti, L. Martina, and F. Pempinelli, eds.), World Scientific, 1992.
7. S. Chakravarty and R. Halburd, *First integrals of a generalized Darboux-Halphen system*, Loughborough University Preprint (2002).
8. J. Chazy, *Sur les équations différentielles dont l'intégrale générale est uniforme et admet des singularités essentielles mobiles*, C.R. Acad. Sc. Paris **149** (1909), 563–565.
9. ———, *Sur les équations différentielles dont l'intégrale générale possède une coupure essentielle mobile*, C.R. Acad. Sc. Paris **150** (1910), 456–458.
10. ———, *Sur les équations différentielles du troisième et d'ordre supérieur dont l'intégrale générale à ses points critiques fixés*, Acta Math. **34** (1911), 317–385.
11. G. Darboux, *Sur la théorie des coordonnées curvilignes et les systèmes orthogonaux*, Ann. Ec. Normale Supér. **7** (1878), 101–150.
12. B. Dubrovin, *Geometry of 2D topological field theories*, Integrable systems and quantum groups (Montecatini Terme, 1993), Springer, Berlin, 1996, pp. 120–348.
13. G.W. Gibbons and C.N. Pope, *The positive action conjecture and asymptotically Euclidean metrics in quantum gravity*, Commun. Math. Phys. **66** (1979), 267–290.
14. G. Halphen, *Sur certains systèmes d'équations différentielles*, C. R. Acad. Sci. Paris **92** (1881), 1404–1406.
15. ———, *Sur un système d'équations différentielles*, C. R. Acad. Sci. Paris **92** (1881), 1101–1103.
16. N. Hitchin, *Hypercomplex manifolds and the space of framings*, The geometric universe (Oxford, 1996), Oxford Univ. Press, Oxford, 1998, pp. 9–30.
17. A.J. Maciejewski and J. Strelcyn, *On the algebraic non-integrability of the Halphen system*, Phys. Lett. A **201** (1995), 161–166.
18. Y. Nambu, *Generalized Hamiltonian dynamics*, Phys. Rev. D (3) **7** (1973), 2405–2412.
19. Z. Nehari, *Conformal mapping*, McGraw-Hill, New York (1952).
20. J. Plemelj, *Problems in the sense of Riemann and Klein*, Interscience Publishers John Wiley & Sons Inc. New York-London-Sydney, 1964.
21. L. Takhtajan, *On foundation of the generalized Nambu mechanics*, Comm. Math. Phys. **160** (1994), 295–315.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF COLORADO, COLORADO SPRINGS, CO 80933-7150, USA

E-mail address: chuck@math.uccs.edu

DEPARTMENT OF MATHEMATICAL SCIENCES, LOUGHBOROUGH UNIVERSITY, LOUGHBOROUGH, LEICESTERSHIRE, LE11 3TU, UK

E-mail address: R.G.Halburd@lboro.ac.uk