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First integrals and gradient flow for a generalized
Darboux-Halphen system

S. Chakravarty and R.G. Halburd

ABSTRACT. First integrals are explicitly constructed for a third-order system
of ODEs that arises as a reduction of the self-dual Yang-Mills equations and in
the theory of hypercomplex manifolds. These first integrals are branched func-
tions of the phase space variables, even in cases for which the general solution
is single-valued. This branching is characterized in terms of the monodromy of
the hypergeometric equations. The first integrals are then used to formulate
a Nambu-Poisson structure of the system. A representation of the generalized
Darboux-Halphen system as a gradient flow is also given.

1. Introduction

The system
W1 = wows — wi(wy + ws) + 72,
(1.1) Wy = wawr —wa(wz +wi) + 77
W3 = wiws —ws(wr +wz) + 77,
where

72 = (w1 — wa) (w3 — w1) + B (w2 — w3) (w1 — wa) + 72 (ws — w1 )(wa — w3),

was first studied by Halphen [14] as a natural generalization of the classical Darboux-
Halphen (DH) system, which corresponds to setting 7 = 0 in equation (1.1). The
classical Darboux-Halphen system first arose in Darboux’s study of triply orthog-
onal surfaces [11] and was later solved by Halphen [15]. The classical DH system
has also appeared in studies of self-dual Bianchi-IX metrics with Euclidean signa-
ture [4, 13] and in reductions of the associativity equations on a three-dimensional
Frobenius manifold [12]. Furthermore, if (w1, w2, ws) is a solution of the classical
Darboux-Halphen system, then

(1.2) Y= —2(0.)1 + wo + u)g)
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satisfies the Chazy equation,

d’y Py (dy\?
1. L =oy—= (=] .
(13) a5~ Ve (dt)

In [3] it was shown that y defined by equation (1.2) solves the generalized Chazy
equation,

dy Py (dy\® 4 dy )\’
(14) i~ Wap <dt> = 36— n2 (Gdt Y ) ’
where the w;’s solve the generalized Darboux-Halphen system for the special choices
of parameters (o, 3,7) given by (2/n,2/n,2/n) and (1/3,1/3,2/n), et cyc. Note
that equation (1.3) corresponds to the limit n — oo in equation (1.4). Equations
(1.3) and (1.4) were first studied by Chazy in [8, 9, 10].
The system (1.1) arises in the study of the equation

(1.5) M = (adj M)" + MTM — (Tr M) M,

for a 3 x 3 matrix valued function M (t) where adj M is the adjoint of M satisfying
(adj M) M = (det M)I, M7 is the transpose of M and the dot denotes differenti-
ation with respect to ¢t. Equation (1.5) was obtained in [6] as a reduction of the
self-dual Yang-Mills equations with an infinite dimensional gauge group of diffeo-
morphisms Diff(S3) of the three-sphere. Equation (1.5) also describes a class of
self-dual Weyl Bianchi IX space-times with Euclidean signature [5]. More recently,
equation (1.5) was used to describe SU(2) invariant hypercomplex 4-manifolds [16].
In section 2 we will review the reduction of equation (1.5) to the generalized
DH system (1.1). The general solution will be constructed and a special case will
be studied. In section 3, first integrals and “action-angle” variables are given for
equation (1.1). The first integrals involve hypergeometric functions and are non-
meromorphic, even in cases where the general solution is single-valued.

2. The solution of the generalized Darboux-Halphen system

In this section the solution of equation (1.5) is given by a factorization method
which first appeared in [1]. The solution can also be obtained via associated linear
problems. In [2], the solution was obtained via an evolving monodromy problem
that arises as a reduction of the isospectral problem for the self-dual Yang-Mills
equations. In [16], the solution was obtained via an isomonodromy problem which
describes the Riccati solutions of the sixth Painlevé equation. Degenerate cases
were discussed in [3].

We begin by decomposing the matrix M into its symmetric (M) and antisym-
metric (M,) parts. Furthermore, the eigenvalues of M are assumed to be distinct,
so that it can be diagonalized using a complex orthogonal matrix. Thus we have

(2.1) M = M, + M, = P(d+a)P ",

where P € SO(3,C), d = diag(wi,ws,ws) with w; # wj, i # j, and the elements
3

of the skew-symmetric matrix a are given by a;; = Z €ijkTk, Where €51, is totally

k=1
skew-symmetric in its indices and €123 = 1. Using the transformation (2.1), the
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diagonal part of equation (1.5) yields the system (1.1), where 72 = 72 + 72 + 72.
The skew-symmetric part gives

(2.2) 71 =-7i(w2 +w3), To=-Te(wstwr), T3=-T3(w1t+uwa),

and the off-diagonal symmetric part gives

(2.3) P = —Pa,

which is a linear equation for P.
Taking differences of equations in system (1.1) gives

(2.4) %(wl — ws) = —2w3(w1 — wa), et cyc.

Using equations (2.2) and (2.4), we can solve the 7;’s in terms of the w;’s as

(2.5) 7'12 = ag(wl — wo) (w3 —w1),

73 = (w2 — ws) (w1 — wa), 73 =7 (w3 — w1)(w2 — ws),

where «, 3, and y are integration constants.
In terms of the cross ratio

(2.6) gi= AW
W2 — W3
it follows from equation (1.1) that the w;’s can be parameterized as
1d 3 1d 5 1d | §
2.7 :———1 _— = —— — _— [ —.
@D wi=—suphinT T g i 8T oty

where s satisfies

29 21 (E) +Eve-o

with )
d (8 1/5%
th==—1(2)=-=(2
sth=3 <s> 2 <s>
being the Schwarzian derivative and V' is given by

1_ﬁ2 1_,}/2 ﬁ2+,}/2_a2_1
82 +(3—1)2 s(s—1)

Equation (2.8) is the Schwarzian equation, which describes the conformal map-
pings of the upper-half s-plane to the interior of a region of the complex sphere
bounded by three regular circular arcs. If «, 3, and 7 are non-negative real num-
bers such that a+ (4 < 1, then the angles subtended at the vertices s =0, s = 1,
and s = oo of this triangle are am, G7, and y7. Furthermore, if «, 8, and « are
chosen to be either reciprocals of integers or zero, then s is analytic on the interior
of a circle on the complex sphere and cannot be analytically extended across this
circle, which is a natural barrier [19].

The general solution of equation (2.8) is given implicitly by

(2.9) V(s)

1 (s)
2.10 t(s) = 7
(210) (=25
where u;(s) and us(s) are independent solutions to the Fuchsian equation
d>u 1
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Equation (2.11) is equivalent to the hypergeometric equation,

d? dx
(2.12) s(L=5)=5 +[e— (a+b+1)s] = —aby =0,
wherea=(14+a—-03-7)/2,b=1—-a—-5-7)/2,c=1— 4, and
(213) u(s) — 80/2(1 _ S)(a+b_c+1)/2x(8).

A fifth order reduction
We will now consider the case in which M has the special form

My My 0
(2.14) M= My Mgy 0
0 0 Ms3s

This special form of M was considered in [5, 2], where equation (1.5) was analyzed
using an associated evolving monodromy problem. Here we will show that quantities
that arise naturally from this monodromy analysis can be obtained in a straight-
forward manner from the factorization method described above.

Consider the factorization of M given by equation (2.1) where M is given by
equation (2.14). Due to special block structure of M, its symmetric part can be
diagonalized by an orthogonal matrix of the form

costy siny 0
(2.15) P=|—-siny cosy 0],
0 0 1
where 1 is a (generally complex) function of ¢ to be determined. That is, M, =

PdP~!, where d = diag(wi,ws,ws). Furthermore, the skew-symmetric part of M
is unchanged by the adjoint action of P. So

0 T3(t) 0
1
(2.16) a=P'M,P=M,= 5(M MY =|-m@t) 0 0},
0 0 0

where 73(¢t) = %(Mlg — Mo;). Since 71 = 75 = 0 in this case, the w;’s are given by
equation (2.7) where s solves equation (2.8) with & = § = 0. From equation (2.5)
and equation (2.7), we have

&y S

PRVl

where v is a constant. With the 73(t) given above, equation (2.3) can be readily

integrated to give
Vs—1
Y= ( 5T 1) + o,

where g is a constant. Finally, the matrix M in (2.14) is reconstructed from the
various components P, d and a according to equation (2.1). Note that in order to
obtain any solution of equation (1.5) where M is given by (2.14) we must fix the
two constants v and ¢y and choose a solution to equation (2.8) with « = 8 =0
and the fixed value of ~.

In [5] the general solution of equation (1.5) with M of the form (2.14) was found
via a different method which involved the analysis of a certain evolving monodromy
problem. This led to the following combination of the matrix elements of M

at = (M1 — May) F (Mg + May), R? = apo_,

m3(t) =
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Br = w £ i(Mz — Mi2), w = My + Moo — 2M33,
together with the conserved quantity
o (Mg — My)?
@ =
In the factorization method outlined above, these variables arise naturally from the
component matrices P, d and a as follows
R=w; —wy, ax=ReT w=(w;—ws)+(ws—ws), M- My =2,

and a = 1.

3. First Integrals

In this section, following [7], we will use the method of solution given in section
2 to construct first integrals for equation (1.1). We begin by constructing explicit
first integrals for the Schwarzian equation (2.8), as the formulas are much simpler
in this case. Let u; and wus be two linearly independent solutions of equation (2.11)
satisfying the Wronskian condition W (u1, us) = ujuy—usu) = 1. Then any solution
to equation (2.8) is given implicitly by

_ Jgul(s) — JﬂLQ(S)
Igul(s) — 1111,2(5) ’
where I, and Ji, k = 1,2, are constants satisfying

(3.2) LiJs — Iy = 1.

(3.1) t(s)

Hence any three of the constants I, Is, Ji, Jo can be taken as independent first
integrals.
Differentiating equation (3.1) with respect to ¢ gives

(33) IQU] — Il’u,g = 51/2.

Differentiation of equation (3.3) gives
1
(3.4) L — T = 55—3/25.

Solving the system (3.3-3.4) for I; and Iy gives

_ dog

The constants J; and Jy are given by the solution of equations (3.1), (3.5) and the
normalization condition (3.2). This yields Jy = tIy — ¢, k =1, 2.
In terms of the gDH variables, we have

o = ﬁ( (w2 = ws) )>1/2uk(w),

(wl - wz)(w1 — w3 W2 — W3

(3.6) I = \/§<(W1—w3)(w1—wz)>l/zu% (w1—w3>

(wz - w3) W2 — W3

1= (i) (222)

bk Zé_l/Quk(S), k=1,2.
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Using the new variables ¢y and Iy instead of the gDH variables w;’s, equation (1.1)
can be formulated as a Hamiltonian system

. OH . OH I?+ 13
3.7 =_—— =] Ii=——-=0 H=-"1_""2 [=1,2
( ) ¢k alk k5 k 8¢k ) 2 ) ) &y
together with the constraint
(3.8) 11z — ¢poIy = W(uy,uz) = 1.

Although I; and Iy are constant functions of ¢, they are multivalued functions
of {w1,ws,ws} and of the Schwarzian variables {s, $,§}. In terms of the solutions
X1, X2 of the hypergeometric equation (2.12), the first integrals are given by

X1(s) X2(3)}
3.9 I I = oA 1 ,
o R IR s
where

: . - b+1— §
o(s,8) = 86/2(1 _ S)(a+b—c+1)/281/27 and  A(s, $,5) = % _ % .

Next we will discuss the dependence of I and Is on s, §, and §. Clearly Iy, k = 1,2,
is single-valued as a function of § and has square-root branch points as a function
of § about § = 0 and § = oo. In fact, the conserved quantities I? and I3 are single-
valued as functions of 5. Holding $ and 5 fixed, I,, can only admit branch points at
s=0,s=1,and s = c0. Let 79 and v; be two closed curves with a common base
point in the finite complex s-plane enclosing the points s = 0 and s = 1 respectively,
and traversed once in the positive direction. Analytic continuation of o along ~q
and ~; gives

Yo 0 enrco_7 Yoo ezw(a+b—c)

o.
Analytic continuation along 7y and 7 transforms the fundamental matrix of solu-

tions of equation (2.12) according to

e (80 M0~ GO M) e

For generic values of a, b, ¢, and for the choice of basis solutions: y; = F(a,b,c; s),
X2 = F(a,b,a+b—c+1;1— s) of the hypergeometric equation, the monodromy
matrices M,, are given by [20]

1 e—27rib _ e~ 2mic e—27ri(a+b—c) 0
My = (O e—2mic and M; = 1— e—27'ri(a—c) 1)

So under analytic continuation, the first integrals Iy, I, transform as
Yo : [Il IQ} — [Il IQ] Moeiﬂc, Y1t [Il IQ] — [[1 ]2} Mleiﬂ—(aeric) .

Analyic continuation around s = oo is equivalent to a loop around s = 0 and s = 1.
Hence the branching of the first integrals I; and I5 is characterized in terms of the
monodromy group for the hypergeometric equation.

The first integrals in equation (3.9) for the classical DH system (o = § =
v = 0) are expressed in terms of the special hypergeometric equation (2.12) with
a=b=1/2, c=1. In this case, the monodromy matrices are given by

1 -2 1 0
M0<0 1> and M1(2 1>
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relative to the choice of basis x1 = F(1/2,1/2,1;s) and x2 = iF(1/2,1/2,1;1—s).
Note that in this case, I1 and I, are still branched, even though the solution itself
is single-valued. The non-existence of meromorphic first integrals for the classical
Darboux-Halphen system was proved in [17]. We show by explicit construction
that the first integrals do indeed exist but they are non-algebraic and multi-valued.

4. Nambu-Poisson Structure and Gradient flow

The gDH system (1.1) can also be viewed as a complex dynamical system given
by (w1, ws,ws) = X where the vector field

X = (a)gw;), — Wiwy — wW3w1 + 72, W3wW1 — Waw3 — Wiwg + 7'2, Wiw2 — W3w1 — wWaws + 7'2) .
The generalized DH flow given by the integral curves of X lie on the intersection
of the level sets of the first integrals (I; = constant and I> = constant) in a three-
dimensional complex manifold M3 := C\ {w; # w;,i # j}. Since the I}’s are
conserved under the gDH flow,

dIy,
— =X VI, =0, k=1,2,
dt F
it follows that the vector field X is proportional to VI; x VI,. Explicit calculation

shows that,

1
X = Evjl X VIQ

where
A= (WQ — W3)(W3 — wl)(wl — u}g).
The gDH equations can be expressed as
AA)TIV I, - ; L) = {w;, I
Gy = X Vi — (44) 1V 2 (Vw; x VI) = {w;, i},
—(4A)_ VI - (ij X VIQ) =: {Wj,lg}g.
It can be verified that the brackets
Bi(g,h) ={g,h}1 = (48)7'VIz- (Vg x Vh),
Ba(g,h) = {g.h}2 = —(4A)7'VIi- (Vg x Vh),
are Poisson (i.e., they are bi-linear, anti-symmetric and satisfy the Jacobi identity).
So X is a Hamiltonian vector field with respect to the two Poisson strucures Bj
and By with Hamiltonians I; and I respectively.

The Poisson structures By and By are degenerate (rank 2) and admit Casimir
functions I and I; respectively. This is easily verified by using the vector triple
product identity

{I, g} = (4A)7'VI- (VI x Vg) = (4A)7'Vg - (VIy x VI3) =0,

{hL,9}> = (“A)'VI- (VI x Vg) = (4A)"'Vg- (VI x V1) =0,
for any smooth function g on M. Furthermore, since {I1,lo}1 = {I1,l2}2 = 0, the
integrals of the gDH system are in involution. The Poisson structures B; and Bs
are compatible in the sense that

B := X\ B1 + A2Bo, i = Ni(11, 1)
is also a Poisson structure for gDH with a Hamiltonian H (I3, I) satisfying
oH OH

A0
var, T e, =Y
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Thus the gDH system is bi-Hamiltonian.
The symmetric representation of the gDH system using both Hamiltonians I,

12 is

a(wi, Il, IQ)

Lo 1, - = -
w; (4A) Vw] (VI1 X VIQ) (4A) a(wth,wg)

= {cuj,fl,fz}.

This is an example of a Nambu-Poisson bracket similar to rigid body dynamics in
three dimensions [18, 21].

The Darboux-Halphen system (1.1) is also a gradient flow. In terms of local
coordinates w;, it can be written as

3
;0P
oo ij
=2 05
Jj=1

where ¢% is a constant contravariant metric and ® is a potential function. The
metric is given by
m(a, B,7) K+ 4y2 K+ 432
(G = r+49> mB,7v,0) r+4a? |,
K+ 432 k+4a®  m(y,a,pB)
where
E=(a+B+y)(at+B—y)(a=B+y)(a=B-7) -1,
and
m(a, B,7) = (1 = + (B+7))(1 - a®+ (8- 7)%).
The potential @ is a homogeneous polynomial of degree 3 in the w;’s and is invariant
under the simultaneous cyclic permutation of {w;,ws,ws} and {a, 8,7}. In terms
of the function

Flwr,wz,wsia, f,7) = [(1 - a®)(3a® = 267 — 29 + 1) + (67 — 7*)?] x
wi [@?w? + 30%w3 + 37%w]; + (1 — a® — 387 — 3% waws]
the potential is expressed as
4

= _?)dT(gij) [F(WI;WQaWS;O‘aﬁv’Y) +F<w27w37w1;ﬁ7’77a)+F(w3awlvw2;7aa7ﬁ)]‘

With respect to the metric g¥/, the constant ® surfaces are orthogonal to the curves
obtained by the intersection of the constant I; and I surfaces.
In the classical Darboux-Halphen case (o« = = v = 0), we have
N 1 -1 -1
gU = -1 1 -1 and & = Wi1Wows.
-1 -1 1
For the fifth order reduction (o = = 0) discussed in section 2,
3 (1+92)? 2 +4° -1 -1
g7 =7 +42 -1  (1+42)? A -1
vt -1 -1 (1-97)?
and the corresponding potential function is given by
_ Pw3B(1 = 9?) (Wi + we) + (1 + 39 )ws] + 3(1 — *)*wiwows

P
3(1-9%)°




10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

A GENERALIZED DARBOUX-HALPHEN SYSTEM 9

References

. M.J. Ablowitz, S. Chakravarty, and R. Halburd, Darbouz-Halphen systems and the singularity

structure of its solutions, Proc. Fourth Int. Conf. on Mathematical and Numerical Aspects of
Wave Propagation (Philadelphia) (J.A. DeSanto, ed.), STAM, 1998, pp. 408-412.

, On Painlevé and Darboux-Halphen type equations, The Painlevé Property, One Cen-
tury Later (Berlin) (R. Conte, ed.), CRM Series in Mathematical Physics, Springer, 1998.

, The generalized Chazy equation from the self-duality equations, Stud. Appl. Math.
103 (1999), 75-88.

. ML.F. Atiyah and N.J. Hitchin, The geometry and dynamics of magnetic monopoles, Princeton

University Press, Princeton, New Jersey, 1988.

. S. Chakravarty and M.J. Ablowitz, Integrability, monodromy, evolving deformations, and

self-dual Bianchi IX systems, Phys. Rev. Lett. 76 (1996), 857-860.

. S. Chakravarty, M.J. Ablowitz, and L.A. Takhtajan, Self-dual Yang-Mills equation and new

special functions in integrable systems, Nonlinear Evolution Equations and Dynamical Sys-
tems (Singapore) (M. Boiti, L. Martina, and F. Pempinelli, eds.), World Scientific, 1992.

. S. Chakravarty and R. Halburd, First integrals of a generalized Darbouz-Halphen system,

Loughborough University Preprint (2002).

. J. Chazy, Sur les équations différentielles dont l’intégrale générale est uniforme et admet des

singularities essentielles mobiles, C.R. Acad. Sc. Paris 149 (1909), 563-565.

, Sur les équations différentielles dont ’intégrale générale posséde une coupure essen-
tielle mobile, C.R. Acad. Sc. Paris 150 (1910), 456-458.

, Sur les équations différentielles du troisiéme et d’ordre supérieur dont l’intégrale
générale & ses points critiques fizés, Acta Math. 34 (1911), 317-385.

G. Darboux, Sur la théorie des coordonnées curvilignes et les systémes orthogonaux, Ann.
Ec. Normale Supér. 7 (1878), 101-150.

B. Dubrovin, Geometry of 2D topological field theories, Integrable systems and quantum
groups (Montecatini Terme, 1993), Springer, Berlin, 1996, pp. 120-348.

G.W. Gibbons and C.N. Pope, The positive action conjecture and asymptotically Euclidean
metrics in quantum gravity, Commun. Math. Phys. 66 (1979), 267-290.

G. Halphen, Sur certains systémes d’équations différentielles, C. R. Acad. Sci. Paris 92 (1881),
1404-1406.

, Sur un systéme d’équations différentielles, C. R. Acad. Sci. Paris 92 (1881), 1101-

1103.

N. Hitchin, Hypercomplex manifolds and the space of framings, The geometric universe (Ox-
ford, 1996), Oxford Univ. Press, Oxford, 1998, pp. 9-30.

A.J. Maciejewski and J. Strelcyn, On the algebraic non-integrability of the Halphen system,
Phys. Lett. A 201 (1995), 161-166.

Y. Nambu, Generalized Hamiltonian dynamics, Phys. Rev. D (3) 7 (1973), 2405-2412.

Z. Nehari, Conformal mapping, McGraw-Hill, New York (1952).

J. Plemelj, Problems in the sense of Riemann and Klein, Interscience Publishers John Wiley
& Sons Inc. New York-London-Sydney, 1964.

L. Takhtajan, On foundation of the generalized Nambu mechanics, Comm. Math. Phys. 160
(1994), 295-315.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF COLORADO, COLORADO SPRINGS, CO 80933-

7150, USA

E-mail address: chuck@math.uccs.edu

DEPARTMENT OF MATHEMATICAL SCIENCES, LOUGHBOROUGH UNIVERSITY, LOUGHBOROUGH,

LEICESTERSHIRE, LE11 3TU, UK

E-mail address: R.G.Halburd@lboro.ac.uk



