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First integrals and gradient flow for a generalized
Darboux-Halphen system

S. Chakravarty and R.G. Halburd

Abstract. First integrals are explicitly constructed for a third-order system
of ODEs that arises as a reduction of the self-dual Yang-Mills equations and in
the theory of hypercomplex manifolds. These first integrals are branched func-
tions of the phase space variables, even in cases for which the general solution
is single-valued. This branching is characterized in terms of the monodromy of
the hypergeometric equations. The first integrals are then used to formulate
a Nambu-Poisson structure of the system. A representation of the generalized
Darboux-Halphen system as a gradient flow is also given.

1. Introduction

The system

ω̇1 = ω2ω3 − ω1(ω2 + ω3) + τ2,

ω̇2 = ω3ω1 − ω2(ω3 + ω1) + τ2,(1.1)
ω̇3 = ω1ω2 − ω3(ω1 + ω2) + τ2,

where

τ2 = α2(ω1 − ω2)(ω3 − ω1) + β2(ω2 − ω3)(ω1 − ω2) + γ2(ω3 − ω1)(ω2 − ω3),

was first studied by Halphen [14] as a natural generalization of the classical Darboux-
Halphen (DH) system, which corresponds to setting τ = 0 in equation (1.1). The
classical Darboux-Halphen system first arose in Darboux’s study of triply orthog-
onal surfaces [11] and was later solved by Halphen [15]. The classical DH system
has also appeared in studies of self-dual Bianchi-IX metrics with Euclidean signa-
ture [4, 13] and in reductions of the associativity equations on a three-dimensional
Frobenius manifold [12]. Furthermore, if (ω1, ω2, ω3) is a solution of the classical
Darboux-Halphen system, then

(1.2) y := −2(ω1 + ω2 + ω3)
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satisfies the Chazy equation,

(1.3)
d3y

dt3
= 2y

d2y

dt2
−

(
dy

dt

)2

.

In [3] it was shown that y defined by equation (1.2) solves the generalized Chazy
equation,

(1.4)
d3y

dt3
− 2y

d2y

dt2
+

(
dy

dt

)2

=
4

36− n2

(
6
dy

dt
− y2

)2

,

where the ωi’s solve the generalized Darboux-Halphen system for the special choices
of parameters (α, β, γ) given by (2/n, 2/n, 2/n) and (1/3, 1/3, 2/n), et cyc. Note
that equation (1.3) corresponds to the limit n → ∞ in equation (1.4). Equations
(1.3) and (1.4) were first studied by Chazy in [8, 9, 10].

The system (1.1) arises in the study of the equation

(1.5) Ṁ = (adjM)T + MT M − (TrM)M,

for a 3× 3 matrix valued function M(t) where adjM is the adjoint of M satisfying
(adjM)M = (detM)I, MT is the transpose of M and the dot denotes differenti-
ation with respect to t. Equation (1.5) was obtained in [6] as a reduction of the
self-dual Yang-Mills equations with an infinite dimensional gauge group of diffeo-
morphisms Diff(S3) of the three-sphere. Equation (1.5) also describes a class of
self-dual Weyl Bianchi IX space-times with Euclidean signature [5]. More recently,
equation (1.5) was used to describe SU(2) invariant hypercomplex 4-manifolds [16].

In section 2 we will review the reduction of equation (1.5) to the generalized
DH system (1.1). The general solution will be constructed and a special case will
be studied. In section 3, first integrals and “action-angle” variables are given for
equation (1.1). The first integrals involve hypergeometric functions and are non-
meromorphic, even in cases where the general solution is single-valued.

2. The solution of the generalized Darboux-Halphen system

In this section the solution of equation (1.5) is given by a factorization method
which first appeared in [1]. The solution can also be obtained via associated linear
problems. In [2], the solution was obtained via an evolving monodromy problem
that arises as a reduction of the isospectral problem for the self-dual Yang-Mills
equations. In [16], the solution was obtained via an isomonodromy problem which
describes the Riccati solutions of the sixth Painlevé equation. Degenerate cases
were discussed in [3].

We begin by decomposing the matrix M into its symmetric (Ms) and antisym-
metric (Ma) parts. Furthermore, the eigenvalues of Ms are assumed to be distinct,
so that it can be diagonalized using a complex orthogonal matrix. Thus we have

(2.1) M = Ms + Ma = P (d + a)P−1,

where P ∈ SO(3,C), d = diag(ω1, ω2, ω3) with ωi �= ωj , i �= j, and the elements

of the skew-symmetric matrix a are given by aij =
3∑

k=1

εijkτk, where εijk is totally

skew-symmetric in its indices and ε123 = 1. Using the transformation (2.1), the
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diagonal part of equation (1.5) yields the system (1.1), where τ2 = τ2
1 + τ2

2 + τ2
3 .

The skew-symmetric part gives

(2.2) τ̇1 = −τ1(ω2 + ω3), τ̇2 = −τ2(ω3 + ω1), τ̇3 = −τ3(ω1 + ω2) ,

and the off-diagonal symmetric part gives

(2.3) Ṗ = −Pa,

which is a linear equation for P .
Taking differences of equations in system (1.1) gives

(2.4)
d

dt
(ω1 − ω2) = −2ω3(ω1 − ω2), et cyc.

Using equations (2.2) and (2.4), we can solve the τi’s in terms of the ωi’s as

(2.5) τ2
1 = α2(ω1 − ω2)(ω3 − ω1),

τ2
2 = β2(ω2 − ω3)(ω1 − ω2), τ2

3 = γ2(ω3 − ω1)(ω2 − ω3) ,

where α, β, and γ are integration constants.
In terms of the cross ratio

(2.6) s :=
ω1 − ω3

ω2 − ω3
,

it follows from equation (1.1) that the ωi’s can be parameterized as

(2.7) ω1 = −1
2

d

dt
ln

ṡ

s(s− 1)
, ω2 = −1

2
d

dt
ln

ṡ

s− 1
, ω3 = −1

2
d

dt
ln

ṡ

s
.

where s satisfies

(2.8)
d

dt

(
s̈

ṡ

)
− 1

2

(
s̈

ṡ

)2

+
ṡ2

2
V (s) = 0 ,

with

{s, t} :=
d

dt

(
s̈

ṡ

)
− 1

2

(
s̈

ṡ

)2

being the Schwarzian derivative and V is given by

(2.9) V (s) =
1− β2

s2
+

1− γ2

(s− 1)2
+

β2 + γ2 − α2 − 1
s(s− 1)

.

Equation (2.8) is the Schwarzian equation, which describes the conformal map-
pings of the upper-half s-plane to the interior of a region of the complex sphere
bounded by three regular circular arcs. If α, β, and γ are non-negative real num-
bers such that α+β+γ < 1, then the angles subtended at the vertices s = 0, s = 1,
and s = ∞ of this triangle are απ, βπ, and γπ. Furthermore, if α, β, and γ are
chosen to be either reciprocals of integers or zero, then s is analytic on the interior
of a circle on the complex sphere and cannot be analytically extended across this
circle, which is a natural barrier [19].

The general solution of equation (2.8) is given implicitly by

(2.10) t(s) =
u1(s)
u2(s)

,

where u1(s) and u2(s) are independent solutions to the Fuchsian equation

(2.11)
d2u

ds2
+

1
4
V (s)u = 0.
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Equation (2.11) is equivalent to the hypergeometric equation,

(2.12) s(1− s)
d2χ

ds2
+ [c− (a + b + 1)s]

dχ

ds
− abχ = 0,

where a = (1 + α− β − γ)/2, b = (1− α− β − γ)/2, c = 1− β, and

(2.13) u(s) = sc/2(1− s)(a+b−c+1)/2χ(s).

A fifth order reduction
We will now consider the case in which M has the special form

(2.14) M =


M11 M12 0

M21 M22 0
0 0 M33


 .

This special form of M was considered in [5, 2], where equation (1.5) was analyzed
using an associated evolving monodromy problem. Here we will show that quantities
that arise naturally from this monodromy analysis can be obtained in a straight-
forward manner from the factorization method described above.

Consider the factorization of M given by equation (2.1) where M is given by
equation (2.14). Due to special block structure of M, its symmetric part can be
diagonalized by an orthogonal matrix of the form

(2.15) P =


 cos ψ sinψ 0
− sinψ cos ψ 0

0 0 1


 ,

where ψ is a (generally complex) function of t to be determined. That is, Ms =
PdP−1, where d = diag(ω1, ω2, ω3). Furthermore, the skew-symmetric part of M
is unchanged by the adjoint action of P. So

(2.16) a = P−1MaP = Ma =
1
2
(M −MT ) =


 0 τ3(t) 0
−τ3(t) 0 0

0 0 0


 ,

where τ3(t) = 1
2 (M12 −M21). Since τ1 = τ2 = 0 in this case, the ωi’s are given by

equation (2.7) where s solves equation (2.8) with α = β = 0. From equation (2.5)
and equation (2.7), we have

τ3(t) =
iγ

2
ṡ√

s(s− 1)
,

where γ is a constant. With the τ3(t) given above, equation (2.3) can be readily
integrated to give

ψ =
iγ

2
log

(√
s− 1√
s + 1

)
+ ψ0,

where ψ0 is a constant. Finally, the matrix M in (2.14) is reconstructed from the
various components P , d and a according to equation (2.1). Note that in order to
obtain any solution of equation (1.5) where M is given by (2.14) we must fix the
two constants γ and ψ0 and choose a solution to equation (2.8) with α = β = 0
and the fixed value of γ.

In [5] the general solution of equation (1.5) with M of the form (2.14) was found
via a different method which involved the analysis of a certain evolving monodromy
problem. This led to the following combination of the matrix elements of M

α± = (M11 −M22)∓ i(M12 + M21), R2 = α+α−,
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β± = ω ± i(M21 −M12), ω = M11 + M22 − 2M33,

together with the conserved quantity

a2 =
(M12 −M21)2

R2 − ω2
.

In the factorization method outlined above, these variables arise naturally from the
component matrices P , d and a as follows

R = ω1 − ω2, α± = Re∓2iψ, ω = (ω1 − ω3) + (ω2 − ω3), M12 −M21 = 2τ3,

and a = γ.

3. First Integrals

In this section, following [7], we will use the method of solution given in section
2 to construct first integrals for equation (1.1). We begin by constructing explicit
first integrals for the Schwarzian equation (2.8), as the formulas are much simpler
in this case. Let u1 and u2 be two linearly independent solutions of equation (2.11)
satisfying the Wronskian condition W (u1, u2) = u1u

′
2−u2u

′
1 = 1. Then any solution

to equation (2.8) is given implicitly by

(3.1) t(s) =
J2u1(s)− J1u2(s)
I2u1(s)− I1u2(s)

,

where Ik and Jk, k = 1, 2, are constants satisfying

(3.2) I1J2 − I2J1 = 1.

Hence any three of the constants I1, I2, J1, J2 can be taken as independent first
integrals.

Differentiating equation (3.1) with respect to t gives

(3.3) I2u1 − I1u2 = ṡ1/2.

Differentiation of equation (3.3) gives

(3.4) I2u
′
2 − I1u

′
2 =

1
2
ṡ−3/2s̈.

Solving the system (3.3–3.4) for I1 and I2 gives

(3.5) Ik =
dφk

dt
, φk = ṡ−1/2uk(s), k = 1, 2.

The constants J1 and J2 are given by the solution of equations (3.1), (3.5) and the
normalization condition (3.2). This yields Jk = tIk − φk, k = 1, 2.

In terms of the gDH variables, we have

φk =
√

2
(

(ω2 − ω3)
(ω1 − ω2)(ω1 − ω3)

)1/2

uk

(
ω1 − ω3

ω2 − ω3

)
,

Ik =
√

2
(

(ω1 − ω3)(ω1 − ω2)
(ω2 − ω3)

)1/2

u′k

(
ω1 − ω3

ω2 − ω3

)
(3.6)

−(ω1 − ω2 − ω3)
(

(ω2 − ω3)
2(ω1 − ω3)(ω1 − ω2)

)1/2

uk

(
ω1 − ω3

ω2 − ω3

)
.
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Using the new variables φk and Ik instead of the gDH variables ωi’s, equation (1.1)
can be formulated as a Hamiltonian system

(3.7) φ̇k =
∂H

∂Ik
= Ik , İk = − ∂H

∂φk
= 0 , H =

I2
1 + I2

2

2
, k = 1, 2,

together with the constraint

(3.8) φ1I2 − φ2I1 = W (u1, u2) = 1.

Although I1 and I2 are constant functions of t, they are multivalued functions
of {ω1, ω2, ω3} and of the Schwarzian variables {s, ṡ, s̈}. In terms of the solutions
χ1, χ2 of the hypergeometric equation (2.12), the first integrals are given by

[
I1 I2

]
= σ [λ 1]

[
χ1(s) χ2(s)
χ′1(s) χ′2(s)

]
,(3.9)

where

σ (s, ṡ) = sc/2(1− s)(a+b−c+1)/2ṡ1/2, and λ(s, ṡ, s̈) =
a + b + 1− cs

2s(1− s)
− s̈

2ṡ2
.

Next we will discuss the dependence of I1 and I2 on s, ṡ, and s̈. Clearly Ik, k = 1, 2,
is single-valued as a function of s̈ and has square-root branch points as a function
of ṡ about ṡ = 0 and ṡ =∞. In fact, the conserved quantities I2

1 and I2
2 are single-

valued as functions of ṡ. Holding ṡ and s̈ fixed, Iµ can only admit branch points at
s = 0, s = 1, and s =∞. Let γ0 and γ1 be two closed curves with a common base
point in the finite complex s-plane enclosing the points s = 0 and s = 1 respectively,
and traversed once in the positive direction. Analytic continuation of σ along γ0

and γ1 gives
γ0 : σ �→ eiπcσ, γ1 : σ �→ eiπ(a+b−c)σ.

Analytic continuation along γ0 and γ1 transforms the fundamental matrix of solu-
tions of equation (2.12) according to

γµ :
(

χ1(s) χ2(s)
χ′1(s) χ′2(s)

)
�→

(
χ1(s) χ2(s)
χ′1(s) χ′2(s)

)
Mµ, µ = 0, 1.

For generic values of a, b, c, and for the choice of basis solutions: χ1 = F (a, b, c; s),
χ2 = F (a, b, a + b − c + 1; 1 − s) of the hypergeometric equation, the monodromy
matrices Mµ are given by [20]

M0 =
(

1 e−2πib − e−2πic

0 e−2πic

)
and M1 =

(
e−2πi(a+b−c) 0

1− e−2πi(a−c) 1

)
.

So under analytic continuation, the first integrals I1, I2 transform as

γ0 :
[
I1 I2

]
�→

[
I1 I2

]
M0eiπc, γ1 :

[
I1 I2

]
�→

[
I1 I2

]
M1eiπ(a+b−c) .

Analyic continuation around s =∞ is equivalent to a loop around s = 0 and s = 1.
Hence the branching of the first integrals I1 and I2 is characterized in terms of the
monodromy group for the hypergeometric equation.

The first integrals in equation (3.9) for the classical DH system (α = β =
γ = 0) are expressed in terms of the special hypergeometric equation (2.12) with
a = b = 1/2, c = 1. In this case, the monodromy matrices are given by

M0 =
(

1 −2
0 1

)
and M1 =

(
1 0
2 1

)
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relative to the choice of basis χ1 = F (1/2, 1/2, 1; s) and χ2 = iF (1/2, 1/2, 1; 1− s).
Note that in this case, I1 and I2 are still branched, even though the solution itself
is single-valued. The non-existence of meromorphic first integrals for the classical
Darboux-Halphen system was proved in [17]. We show by explicit construction
that the first integrals do indeed exist but they are non-algebraic and multi-valued.

4. Nambu-Poisson Structure and Gradient flow

The gDH system (1.1) can also be viewed as a complex dynamical system given
by (ω̇1, ω̇2, ω̇3) = X where the vector field

X =
(
ω2ω3 − ω1ω2 − ω3ω1 + τ2, ω3ω1 − ω2ω3 − ω1ω2 + τ2, ω1ω2 − ω3ω1 − ω2ω3 + τ2

)
.

The generalized DH flow given by the integral curves of X lie on the intersection
of the level sets of the first integrals (I1 = constant and I2 = constant) in a three-
dimensional complex manifold M3 := C \ {ωi �= ωj , i �= j}. Since the Ik’s are
conserved under the gDH flow,

dIk

dt
= X · ∇Ik = 0, k = 1, 2,

it follows that the vector field X is proportional to ∇I1×∇I2. Explicit calculation
shows that,

X =
1

4∆
∇I1 ×∇I2

where
∆ = (ω2 − ω3)(ω3 − ω1)(ω1 − ω2).

The gDH equations can be expressed as

ω̇j = X · ∇ωj =

{
(4∆)−1∇I2 · (∇ωj ×∇I1) =: {ωj , I1}1,
−(4∆)−1∇I1 · (∇ωj ×∇I2) =: {ωj , I2}2.

It can be verified that the brackets

B1(g, h) = {g, h}1 = (4∆)−1∇I2 · (∇g ×∇h),
B2(g, h) = {g, h}2 = −(4∆)−1∇I1 · (∇g ×∇h),

are Poisson (i.e., they are bi-linear, anti-symmetric and satisfy the Jacobi identity).
So X is a Hamiltonian vector field with respect to the two Poisson strucures B1

and B2 with Hamiltonians I1 and I2 respectively.
The Poisson structures B1 and B2 are degenerate (rank 2) and admit Casimir

functions I2 and I1 respectively. This is easily verified by using the vector triple
product identity

{I2, g}1 = (4∆)−1∇I2 · (∇I2 ×∇g) = (4∆)−1∇g · (∇I2 ×∇I2) = 0,

{I1, g}2 = (4∆)−1∇I2 · (∇I1 ×∇g) = (4∆)−1∇g · (∇I1 ×∇I1) = 0,

for any smooth function g on M . Furthermore, since {I1, I2}1 = {I1, I2}2 = 0, the
integrals of the gDH system are in involution. The Poisson structures B1 and B2

are compatible in the sense that

B := λ1B1 + λ2B2, λi = λi(I1, I2)

is also a Poisson structure for gDH with a Hamiltonian H(I1, I2) satisfying

λ1
∂H

∂I1
+ λ2

∂H

∂I2
= 0.
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Thus the gDH system is bi-Hamiltonian.
The symmetric representation of the gDH system using both Hamiltonians I1,

I2 is

ω̇j = (4∆)−1∇ωj · (∇I1 ×∇I2) = (4∆)−1 ∂(ωi, I1, I2)
∂(ω1, ω2, ω3)

=: {ωj , I1, I2}.

This is an example of a Nambu-Poisson bracket similar to rigid body dynamics in
three dimensions [18, 21].

The Darboux-Halphen system (1.1) is also a gradient flow. In terms of local
coordinates ωi, it can be written as

ω̇i =
3∑

j=1

gij ∂Φ
∂ωj

,

where gij is a constant contravariant metric and Φ is a potential function. The
metric is given by

(gij) =


m(α, β, γ) κ + 4γ2 κ + 4β2

κ + 4γ2 m(β, γ, α) κ + 4α2

κ + 4β2 κ + 4α2 m(γ, α, β)


 ,

where
κ = (α + β + γ)(α + β − γ)(α− β + γ)(α− β − γ)− 1,

and
m(α, β, γ) = (1− α2 + (β + γ)2)(1− α2 + (β − γ)2).

The potential Φ is a homogeneous polynomial of degree 3 in the ωi’s and is invariant
under the simultaneous cyclic permutation of {ω1, ω2, ω3} and {α, β, γ}. In terms
of the function

F (ω1, ω2, ω3;α, β, γ) =
[
(1− α2)(3α2 − 2β2 − 2γ2 + 1) + (β2 − γ2)2

]
×

ω1

[
α2ω2

1 + 3β2ω2
2 + 3γ2ω2

3 + (1− α2 − 3β2 − 3γ2)ω2ω3

]
,

the potential is expressed as

Φ = − 4
3 det(gij)

[F (ω1, ω2, ω3;α, β, γ) + F (ω2, ω3, ω1;β, γ, α) + F (ω3, ω1, ω2; γ, α, β)] .

With respect to the metric gij , the constant Φ surfaces are orthogonal to the curves
obtained by the intersection of the constant I1 and I2 surfaces.

In the classical Darboux-Halphen case (α = β = γ = 0), we have

gij =


 1 −1 −1
−1 1 −1
−1 −1 1


 and Φ = ω1ω2ω3.

For the fifth order reduction (α = β = 0) discussed in section 2,

gij =


 (1 + γ2)2 γ4 + 4γ2 − 1 γ4 − 1

γ4 + 4γ2 − 1 (1 + γ2)2 γ4 − 1
γ4 − 1 γ4 − 1 (1− γ2)2




and the corresponding potential function is given by

Φ =
γ2ω2

3 [3(1− γ2)(ω1 + ω2) + (1 + 3γ2)ω3] + 3(1− γ2)2ω1ω2ω3

3(1− γ2)3
.
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générale à ses points critiques fixés, Acta Math. 34 (1911), 317–385.
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