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The problem of determining the metric for a nonstatic shear-free spherically sym-
metric fluid (either charged or neutpateduces to the problem of determining a
one-parameter family of solutions to a second-order ordinary differential equation
(ODE) containing two arbitrary functions andg. Choices forf andg are deter-
mined such that this ODE admits a one-parameter family of solutions that have
poles as their only movable singularities. This property is strictly weaker than the
Painleveproperty and it is used to identify classes of solvable models. It is shown
that this procedure systematically generates many exact solutions including the
Vaidya metric, which does not arise from the standard Painadysis of the
second-order ODE. Interior solutions are matched to exterior Reissner—Nordstrgm
metrics. Some solutions given in terms of second Painlesascendents are
described. ©2002 American Institute of Physic§DOI: 10.1063/1.1455688

I. INTRODUCTION

Several authors have shown that the problem of finding a nonstatic solution of the Einstein—
Maxwell equations for a shear-free spherically symmetric charged fluid is equivalent to the prob-
lem of finding at-dependent solution to the equation

Py (x,t)

o2 = fYA (0 +g00y*(x.), (1)

wheref andg are arbitrary functions ok only>? (see also Ref. 3 and the references thérein
Given a solutiory of Eq. (1), definer =X, Y(r,t)=1//(x,t), and

T(r,t):h(t)%ln y(r2t), 2)

whereh is an arbitrary nonvanishing function of In terms of these variables, the metric for the
fluid is given by

ds?=T?(r,t)dt?— Y?(r,t){dr?+r2dQ?%, 3

wheredQ?=d#?+ sirféd¢? is the standard metric on the two-sphere. The densiipd pressure
p are given by

8mp=3h"2—12xy>+12yy,+ 8xfy*+ 6xgy*, (4)

8mp=4y(y—2xy,) % +12xyi—8yy,+2xgy*— 2h*3ht% —-3h72 (5)
t t
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The only nonvanishing components of the electromagnetic field are
Iy
Fo1= —F10= —h(DE(r) o

whereE?(r) =2xg(x).

Althoughy is a function of two variables andt, Eq. (1) is essentially an ODE foy as a
function of x. As an ODE, the general solution of E(.) contains two arbitrary constants. The
general solution of Eq1) viewed as a partial differential equatiORDE) is obtained by replacing
these arbitrary constants with arbitrary functiong.o8inceT is a metric coefficient, it cannot be
identically zero, so from EgZ2) we see thay must have a nonconstaiidependence. This leads
us to the problem of finding families of solutions to Eij) viewed as an ODE which depend on
(at least one parameter.

The connection between integrable systderpuations that are solvable, either explicitly or
via a related linear problenwas first used by Kowlevskaya in her work on spinning tbpShe
considered the equations of motion for a spinning top which depend on six parafttetecenter
of mass and the moments of inejti&owalevskaya noticed that in the known cases for which the
equations could be integrated, the general solution was a meromorphic function of time when
extended to the complex plane. She used local series analysis to determine all choices of the
parameters for which the general solution was a meromorphic function of time and found a new
set of values for the parameters for which she was then able to solve the equations in terms of
ratios of hyper-elliptic functions.

The requirement that all solutions are meromorphic throughout the complex plane may be
replaced with the requirement that all solutions be meromorphic on the covering spaceithf
a discrete set of points removed. In this way, branching of solutions is allowed at fixed singulari-
ties (singularities of the solutions that cannot occur at arbitrary locations in the complex plane but
only at locations at which the equation itself is in some sense singARIODE is said to possess
the Painleveproperty if all movable singularities of all solutions are poles. This property is closely
connected with the integrabilitisolvability) of the ODE. All ODEs that are known to possess the
Painleveproperty are integrable, either explicitly in terms of classically known functions, or via an
associated linear problem. In particular, Painle@ambier, and Fuchs classified all equations of
the form

d?y
s=F

v (6)

dy
x;y,& )

where F is rational iny and dy/dx and analytic inx, that have the Painlévproperty. They
showed that each such equation could be transformed via a change of independent variable and an
x-dependent Mbius transformation of to 1 of 50 canonical equations. With the exception of six
equationgthe PainleveequationsP,—P,,,) each of these canonical equations were solved in terms

of classically known functionésee, e.g., Refs. 6 and.7The first two Painlevequations are

d2

d—;=6n2+ Z @
d2
d—;=2773+§77+a, (8

where « is an arbitrary complex constant. It was later shown that each Paislgvation is the
compatibility condition for alinear spectral problem. The Painleeguations are considered to

be integrable because of the underlying structure that emerges from these isomonodromy
problems’®
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It is important to note that the transformation of one the equations of the {6ynthat
possesses the Painlepmperty to one of the canonical forms is itself determined by the solutions
of a system of differential equations. A weaker definition of the Painjenaperty is that all
solutions are single-valued about all movable singularities. However, for equations of thésjorm
this definition yields the same class of equations.

Shah and VaidyaWyman?1° Chatterjeé’! Maharaj, Leach, and Maartésand Srivastava
have studied Eq(1) to determine choices of and g for which the general solution has no
movable critical points. In particular, Wymaxetermined all choices df in the unchargedd
=0) case. In Ref. 14 the author found all choicesfaind g such that Eq(1) possesses the
Painleveproperty. In particular, we have the following.

Proposition 1.1: Equation (1) possesses the Painlaoperty (as an ODE in x ) if and only
if either

(1)
f(x)=6w>(z), g(x)=0, ©)

where w#0 andv are any solutions of

d%v

E=6v2+ az+b/2, (10
d’w
d?-zlsz, (11)

where g b are constants and z is given by

X= f w2(z)dz, (12

or

(2
f(x)=6v(z)W>(2), g(x)=2wbz), (13

where w0 andv are any solutions of

d%v 3

d_22:2U +(az+b)v+c/2, (14
d?w )
WZ(GU +az+b)w, (15

where g b, ¢ are constants and z is given by Eq. (12)
Furthermore, in both the above cases, the general solution of Eq. (1) is given by

u(z,t)—uv(z)

O (16)

y(x,t)=

where u (in which t is treated as a parameter) is the general solution of the same second-order
equation asv [i.e., in case 1u(ztgy), where § is a constant, solves Eq. (10) and in case 2 it
solves Eq. (14)]

Note that Eq.(11) [resp. (15)] is the linearization of Eq(10) [resp. (14)]. So if v(2)
=V(z;€) is a one-parameter family of solutions to Ef0) [resp.(14)], thenw(z):=V (z;¢) is a
solution to Eq.(11) [resp.(15)]. A second independent solution to EdJ1) [resp. (15)] then
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follows by reduction of order. Equatiofl2) shows thatx=w(z)/w(z), wherew is a second
solution of Eq.(11) [resp.(15)] satisfying the Wronskian conditiot/(w, W) =wWw,—Www,=1.

If a=0, then the general solution to EQ.0) [resp.(14)] can be given explicitly in terms of
elliptic functions. In particular, the case in whiel=0 and the fixed solution of Eq. (14) is a
constant corresponds to the large class of solutions found by Sus3rirafact, most of the
solutions that have appeared in the literature to date are special cases of Sussman’s solutions. The
case in whichv is not constant is solved explicitly in Ref. 14.d## 0, then Eq.(10) [resp.(14)]
can be mapped to Eq7) [resp.(8)]. A class of solutions to Eq.) corresponding to the Airy
function solutions to Eq(8) is also described in Ref. 14,

Recall that we wish to find one-parameter families of solutions to(BqWhenf andg are
chosen so that Eq1) possesses the Painlepeoperty then the equation is integrable and we can
find a two-parameter family of solutions. In the present article a property, weaker than the Pain-
leve property but still complex-analytic in nature, is considered. Namely, we wish to find all
one-parameter families of solutiorfsto Eq. (1) such that all movable singularities of all solutions
in F are poles. In Sec. Il we will find all solutions to E@.) that are simultaneously solutions of
a Riccati equation. This class of solutions contains the well-known solutions due to Shah and
VaidyaZ® which does not arise in a regular Painlemsalysis of Eq(1). A class of solutions that
generalizes that due to Shah and Vaidya which is given in terms of solutions to linear equations is
also derived.

Sections lll and IV address the question of whether the solutions found in Sec. Il exhaust the
set of all one-parameter families of solutiofisdescribed above. In Sec. V, boundary conditions
are determined such that the Riccati solutions can be matched to the Reissner—Nordstrgm external
solution. In Sec. VI we find solutions to E¢l) corresponding t@+# 0 butv=0 in Eq.(14). In
this case the general solution to Ed5) is given in terms of Airy functions. From this solution,
families of solutions are obtained using thécRland transformation of the second Painleve
equation.

Il. RICCATI SOLUTIONS

One way of finding a one-parameter family of solutions to @¢such that the only movable
singularities are poles is to find a family of solutions that are also solutions of a first-order
equation of Painlevéype. In this section, solutions to E¢L) are found that are also solutions to
a first-order differential equation of the form

dy
&:R(X!y)v (17)

whereR is rational iny and locally analytic inx. Fuchs’ showed that the only equation of the
form (17) with the Painleveproperty is the Riccati equation,

dy )
I = @0YP+ BOOY+ ¥(x), (18)

wherea, B, andy are (locally) analytic functions of. The general solution of Eq18) is given
by

3 1 d
y(x)=— m&m d(x),

where® is the general solution of the linear equation

d?d ade 19
o BTy ax tar®=0 (19
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Differentiating Eq.(18) with respect tox and again using Eq18) to eliminatedy/dx in the
resulting expression gives

dzy 2,,3 2 2
532 =20+ (at BaB)y+ (Bt B+ 2am)y + (vt BY). (20

It follows that every solution of Eq(18) is a solution of Eq(1) if and only if the equations

Yxt+By=0, (22)
Bx+ B*+2ay=0, (22
at+3ap="1, (23
2a%=q, (24)

are satisfied.
Solving Eqgs.(21)—(24) gives three classes of Riccati equations.
Case 1:8=0, y=0. The Riccati equatiofl8) becomes

dy_
dx ays

which has the general solution

y(x,t)= (25

H(x)+G(t)’

whereH’ (x)=— a(x) andG is an arbitrary function of.
Case 2:8#0, y=0. The Riccati equatiofl8) becomes

dy ) 1
ax YT

ya

whereC is an arbitrary constant, which has the general solution

X

H(x)+G(t)’
1+kx/4

H(x)+G(t)’

H'(x)=—xa(x), if C=0,
y(x,t)= (26)

H'(x)= —(1+ kx4 a(x), if C=4k+0,

whereG is an arbitrary function of.
Case 3:y#0. The Riccati equatio(l8) becomes

dy 1 Y

L R [ S A
dX+2(y ) ,yy v=0. (27)

In Sec. V, these Riccati solutions will be matched to an external Reissner—Nordstrgm metric.
Note that Eq.25) corresponds to setting=0 in Eq.(26b). Under the transformation

.
T =1 kA

(recallx=r?) the solutions corresponding to E@6b) give rise to the metric
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ds’=[F(F)+G(t)] 2dt>—[F(F)+ G(1)]?

dTZ =2 2
mz‘f—r dQe|, (28)

whereF(F)=H(r?) and we have set(t)=1/G(t). The metric(28) was obtained by Shah and
Vaidyal® This metric does not arise from the standard Painkvalysis of Eq(1).
Solutions found in this section will be referred to as Riccati solutions.

lll. LOCAL SERIES ANALYSIS

In this section we will analyze Eq1) as an ODE in the complex domain. In particular, we
will determine necessary conditions that Ed) possesses a one-parameter family of Laurent
series solutions. We begin by considering the case in wiield. Under the transformatiof16)
in which w is given by Eq.9), v is given by Eq.(11), andz is given implicitly by Eq.(12), Eq.

(1) becomes
d?u )
d—zz=6u +A(2), (29

where

d% 5
A(Z)Z g—6v .

We will only consider a one-parameter family of solutiofissuch that there exists an open
connected bounded s8te C such that at each poii e Q) there is a functioru e G with a pole
at z=z,. We will now find a necessary condition on the functidrsuch that Eq(29) admits a
formal Laurent series solution with a pole at a pdpt (), whereA is analytic. Substituting the
Laurent series

u(z)= 2 ay(z-29)"", (30)
n=0
wherep is a positive integer andy+ 0, into Eq.(29) gives, to leading order,
p(p+1)ag(z—zo) PP +...=6a3(z—zy) *P+....
Equating the powers and coefficients of these leading-order terms gives

p=2, ap=1 (31

Using Egs.(30) and(31) in Eqg. (29) and equating coefficients of like powers of z; gives

(n+1)(n—6)a,=P,(ag,a1,.--,8n_1), (32
where
n—-1
Pn(aOvalv---aan—l)zsmE:l aman—m+an(zo),
and
0, n<4,
an(zo)=1 A""(zg) 4
(n—4) 7
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is polynomial in its arguments and we have expandeds a power series aboat2z,. The
recurrence relatiof82) shows thag,, is uniquely determined in terms ¢&g,...,a,_1}, exceptin

the case when=6. In this case, the left side of E32) vanishes while the right side is a known
function of (ag,...,as). If the right side does not vanish, then there is no solution to(Z%).with

a pole of any order a=z,. If the right side of Eq(32) does vanish, then a formal Laurent series
solution exists in whiclzy andag are arbitrary constants. A direct calculation shows that the right
side of Eq.(32) vanishes if and only if

A"(z0)=0. (33

Now since Eq.(33) must be satisfied for alty in the open sef), this implies thatA(z)=az
+b/2, for some constants andb. So, we reproduce precisely those solutions given in case 1 of
Proposition 1.1.

Now we consider the local series analysis of Et). when g is not identically zero. In
particular,g does not vanish identically ofl. From Sec. 2 we see that the requirement that there
is a one-parameter family of solutions such that all movable singularities are poles yields more
solutions than requiring that E¢l) possesses the Painlepeoperty.

Let v andw be defined by Eq(13) wherez is given by Eq.(12). [Note that we are not
assuming that Eq$14) and (15) hold.] The transformatior{16) gives

du
W—Zu +B(z)u+C(2), (34

where
WZZ 2 3
B(z)=-,"—6v" C(2)=v,,vB(2)-2v°

We now look for a local Laurent series solution to Eg4) with a pole atz=z,e (). Leading
order analysis shows that any such solutiomust have a simple pole at z, with residuex 1.
Hence we substitute the series

©

u(z)=2 az-z)" %, ap=e==1,
n=0

into Eq. (34) and equate coefficients of like powers of z, to obtain the recurrence relation

(n+1)(n_4)an:Qn(a01---’an—l)r (35
where
n n-m
Qn(ag,...,ap-1)=2 mEO 2 Am@m'@n—m-m’ — 3n | T Bn(Zo) + ¥n(Zo),
=Ym’'=0
and
0, n<2, 0, n<3,
n—2 —m— _
Z0)= B(n~m=2)(z z,)=4 C("3)(z
Bn(Zo) 2 (20) n=2, Y(2o) (20) n=3.

m=o (Nn—m-2)1 ~™ (n=3)! ~’

Note that Q is polynomial in its arguments. The left side of B%) shows that a necessary and

sufficient condition for the existence of a formal Laurent series solution with a pde 2§ is
Qu(ag,a1,a,,a3) =0, which is equivalent t®”(zy) = —2eC’(zy), wheree==*1=a,.
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Now the general solution of Eq34) will have movable singularities with leading order
behaviors that include both 1 and—1 residue polesalthough, in general, these solutions will
not be meromorphic and the Laurent series will have to be augmented by logarithnh t8onifs
we demand that all movable singularities of all solutions are daolkes if we demand that E¢34)
possess the Painley@operty], thenB”(z,) =2'C(z,) and B"(zg)=—2C'(z,), for all zye Q,
leading toB(z)=az+b, andC(z)=c/2, wherea, b, andc are arbitrary constants. Sosatisfies
Eq. (14).

Rather than demand that all movable singularities of all solutions of &.are poles, we
restrict our consideration to a subset of solutignsuch that given anyy e ), there is a solution
in G with a pole atz=z,. The above analysis shows that either we are left with(E4). or we
must consider the class of solutions where all movable singularities are poles and all but a finite
number of these poles i have the same residue= + 1. A necessary condition in this case is the
differential equatiorB”(z)= —2¢C’'(2). In terms ofq(z):=B(z)/2, we now restrict ourselves to
the study of the subset of solutions to the equation

2
u
W:2u3+2qu+(x—sqz), e==+1, (36)

wherek is an arbitrary constant, that admit only poles with residue ().

IV. THE UNIQUENESS OF THE RICCATI SOLUTIONS
The only Riccati equation for which all solutionsare also solutions of Eq36) is

du

2 — —
5 Te(W+a)=0, «=0. (37)

e—1In , (3 )

where® is the general solution of the linear equation

d2

We will show that these Riccati type solutions are identical to those found in Sec. Il. All movable
singularities of any solution to E¢37) are simple poles with residue So the general solution to
Eq. (37) is a one-parameter family of solutions to Eg6) of the kind considered at the end of the
previous section. The perturbation argument described below suggests that this is the only such
one-parameter family. We will then provide a proof based on Wiman—\Valiron theory for the case
in which q is a polynomial. Wiman—Valiron theory is particularly useful for finding entire solu-
tions of analytic differential equatiori§.

We will now show how the Riccati equations derived in Sec. Il are related to the solutions of
Eq. (36) described at the end of Sec. Ill. It may be verified that the identity

w(u,+ e[u?+q]) =y, + ewdy2+w(w,+ 2eow)y + W(v,+e[v?+q]) (40
follows from Egs.(12) and (16). Furthermore, given Eq$12) and(13), wherev andw satisfy
v,=203+2qu—¢q, (41)

and
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w,,= (6v2+2q)w, (42)

respectively, it can be shown that Eq21)—(24) are equivalent to

a=—ewW3, (43
B=—w(w,+2svwW), (44)
y=—w(v,+e[v?+q]). (45)

Equationg40) and(43)-(45) show that the Riccati solutions found in Sec. Il are the same as those
constructed usingl6) whereu is the general solution of E437) andv, w satisfy Eqs(41) and
(42), respectively. It is interesting to note that the solution by Shah and Vaidya discussed in Sec.
Il corresponds to the case in whiohalso satisfies the Ricatti equati¢d7). The y#0 case(case
3in Sec. I) corresponds to a non-Ricatti solutiorof Eq. (41) (althoughu still satisfies a Riccati
equation.

Next we address the question of whether the cldssonsists only of Riccati solutions.
Consider Eq.(36) with q(z)=q,+hQ(z), whereq, is a complex constant anld is a small
complex parameter. To leading orderhin Eq. (36) is

dzu—z 3+ 2qu+
W_ u Jou—T K.

If uis not constant, then

du ? 4 2
FEi +2qou-+2xu+C, (46)

whereC is an integration constant. The nonconstant solutions of(&#g). are elliptic functions
with simple poles of residue: 1. The only solutions with poles of residge= +1 but no poles of
residue—e =1 correspond to the case in whielx0 andC= q(z) in which case Eq(46) factors
into two Riccati equations and satisfies

du )
The arguments given above assume that the one-parameter family of so{utiame poles in
an open sef). In the following we show rigorously that we have found all one-parameter families
of solutions that have only poles as their movable singularities under the assumptignisheat
polynomial.
Consider the system of first-order equations

du _ )

E=u—su —&q, (47
du
E= k+2eUl. (48)

Differentiating Eq.(47) with respect t@ and using Eq(48) to eliminatedt/dz gives Eq.(36). We
wish to show that if there is a one-parameter family of solutioihgving only movable poles with
residuee, thent is identically zero. Note that i is identically zero, then Eq47) becomes Eq.
(37) and Eq.(48) implies thatk=0. If T does not vanish identically, then we can solve &®)
for u and substitute it into Eq47) to give
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2
+4TU%(eU—Qq) — k2. (49

o &
LrEa¥

We will prove the following.
Proposition 4.1: If g is a polynomial, then either any entire solution of Eq. (49) is a constant

or
q=0o+ 012+ o7’
where
03— 4qe0p= K (50)
and
TU=¢eq. (51

Note that ifti is one of the solutions given in Proposition 4.1 Bt 0, then sinc& contains
no free parameter§.e., no parameters other than those in the equation)itse¥ given by Eg.
(48) and so does not represent a one-parameter family of solutions 3&g.

Proof: We will begin by showing that any polynomial solution of Eg9) is either a constant
or the solution(51). We will then use the central index from Wiman-Valiron theory to show that
there are no transcendentak., nonpolynomial solutions.

Let g andl be polynomials of degre®l andN, respectively. Furthermore, we assume that
is not constanti.e., N=1 anday#0). Theng andU have expansions of the form

M N
q<z>=m20 qmz"™, u<z>=n§0 a,2". (52)

Substituting the expansiori§2) into Eq.(49) and balancing the dominant terms for lamgives
M =N. Equation(49) then becomes

N N
> i(2i—j-2)aFZ I 2 kP= D 483 (sB—q0Z K (53)
ij=0 i,j,k=0

Now the polynomial on the left side of E¢GJ) is of degree at mosti®— 2 while the degree of
the polynomial on the right side is of degree at maist Bincedy+ 0, then the coefficient af*M
in Eq. (49 gives ay=eqy. Arguing by induction, equating the coefficients of
M- M2 22N* L o zero give@iy_n=&0n_n, N=1,...N. Henceli=¢q and the right side
of Eq. (563) vanishes identically. On equating all coefficients of powers @f zero on the left side
of Eq. (49 we find thatN=2 andqq, q;, andq, satisfy Eq.(50).

Now we will use Wiman—Valiron theory to show that all entire solutions to &9) are
polynomials. Sincéi is entire it has an expansion of the form

TU(2)= >, a,2"
n=0

The central indexy(r,1) is the greatest non-negative integersuch that

|am|r™=maxa,|r".
n=0

If T is nonpolynomial, then/(r,T) is increasing, piecewise constant, right-continuous, and tends
to +oo asr— +oo,
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In terms of the central index we have the following lem(sae, e.g., Ref. 19
Lemma 4.2: LeT be a nonpolynomial entire function, and= v(r,U) be its central index. Let
0<é<1/4 and z be such thdi|=r and

[T(2)|>v(r,0)” ¥ *°maxti(z)| (54)
|z|=r

holds. Then there exists a setlR of finite logarithmic measure, i.ef gdt/t<+co such that

ﬁ(m)(z):(v(rT,T])

m

(1+0(1))tU(z) (55

holds for all m=0 and re F.

Lemma 4.2 says that for all positive outside of the seF (which has finite logarithmic
measurg the estimateé55) holds near the maximum di| on the circle|z|=r [where “near the
maximum” means the set of satisfying Eq.(54)].

Assume that there is a nonpolynomial solufioof Eq. (49). Applying the estimaté55) to Eq.
(49) gives

v(r,0)
z

2
) U?~4s0°. (56)

Since(r,U) grows much slower thai,?° it follows that Eq.(56) cannot be balanced. Thus the
only entire solutions to Eq49) are polynomials. |

V. BOUNDARY CONDITIONS FOR THE RICCATI SOLUTIONS

In this section we will match the Riccati solutions introduced in Sec. Il to an external
Reissner—Nordstrgm metric

ds?=Tdt?— I ~1di2—2d0?, (57)
wheredQ? is the standard metric on the two-sphere and

~ 2m  4me?
F=1—T+f—2,

andm and e are constants. Let, be the interface =r, between the two solutions. The two
metrics(3) and(57) can be matched acro3g, provided

p(rq,t)=0, (58)
e 2
g(r3)=2w<r—g) : (59)
0
2 Ame? + r° +2r2 ~ 2} (60)
m=|—vVy+ —5=+2—>y,— — ,
r y h2y3 yz)’r y3yr -
for all t.2
Equation(59) is equivalent to
e 2
az(rg)=w(—3> . (61)
o

Using Eq.(18) to eliminatey, andy,;=(2ay+ B)y; from Eq. (5) gives
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8mp=4{(B%+2ay)x—B)y>+2y(2Bx—1)y+ SXyz}—3h‘2—2h‘3ht;//

t

(62

Using Eg.(18) to eliminatey,=2ry, from Eg. (60) and using Eq(62) in Eqg. (58), we see that
Egs.(58) and (60) are equivalent to

. (63

r=rg

h™2(t)=4|r2y+ y(2r?—1)y+{(B*+2ay)r’- ply*+ y?

m 2
F"‘Zr a,B—a

A. Dust solutions

Settingp identically zero in Eq(62) and solving forh~2 gives

h™2=4[xy+ y(2x—1)y+{(B*+2ay)x— Bly*+ oy°], (64)

wheredis a function ofx only. Recall thah is a function oft only. Differentiating Eq.(64) with
respect tax and using Egs(21) and (22) gives

3ady?+{6,+3B5+2a[(B%+2ay)x— By + y{2xay+3[a+ 6]} =0, (65)

for all t. Sincey must have nonconstatidependence, the coefficients of different powery of

Eqg. (65 must vanish identically. Itx=0, theng=0 and there are no Riccati solutions. Therefore
the coefficient ofy? in Eq. (65) shows thats is identically zero. The constant term in EG5)
shows that eithey=0 or (x) = kx>, wherex is a constant.

If y=0, then the coefficient of in Eq. (65) shows that eitheB=0 or B=1/x. These
solutions correspond to the solutiof®5) and(26), respectively. Finally, ify=0 anda#0, then
recall from Sec. ll(case 3 that for any Riccati solution we must have=—(y 1), and B
=— v,/ vy. It follows that the coefficient of and the constant term in E(65) cannot both vanish
identically.

VI. BACKLUND TRANSFORMATIONS AND SPECIAL SOLUTIONS

In this section we will construct what is perhaps the simplest solution of BEgnvolving a
genuine transcendent of the second Painkyeation. It is simple in the sense that we have an
explicit formula for the dependence of on z. We will then use the well-known B&lund
transformation of the second Painlesguation to construct a countable family of equations of the
form (1) together with their general solutions in terms of second Pairierescendents.

If a#0, then, after rescaling andv, Eqgs.(14) and (15) become

d%v 3

d_T7:2U +2zv+a, (66)
d’w )

F:(GU +2z)w, (67)

where « is an arbitrary constant. Equatiai®6) is the standard form of the second Painleve
equation. We will denote the general solution of E&p) by v(z) =P,,(z;«;c4,C5), wherec, and
c, are independent parametdesg.,c;=v(0) andc,=v'(0)).

Recall that, apart from the solution due to Shah and Vaj¢g. (28)], many of the solutions
that appear in the literature are special cases of the solutions of SuSSmlaich correspond to
the special case of Proposition 1.1 in whiz& 0 andv is a constant. Note that &+ 0, then Eq.
(66) [which is a rescaled version of E({.4)] admits a constant solution if and onlydf=0. In this
case the constant solutionds=0, which is equivalent to the cage=0.

If v=0, then Eq.67) has the general solution
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w(z)= pAi(z)+ vBi(z2),

where Ai and Bi are the Airy functions andandv are arbitrary constants which are not both zero.
From Eq.(12) we have

__pAi(2)+0oBi(2)
X= T A+ 1Bi2)
where p and ¢ are arbitrary constants satisfyings—vp=1. [Note the identity Aig)Bi’(z)

—Bi(2)Ai’(z)=7"1.] In particular, choosingu=0=1 and v=p=0, we see that the general
solution ofy,,=Bi%(z2)y® is

_ Pu(z;0;cq,¢))
B Bi(z) ’
wherec; andc, are arbitrary constani{®r functions oft, viewing the equation as a PDEndz
is given by
Bi(z) X
Ai(z) =

Now we will see how to generate other solutions from#l0 case just described. Letbe
a solution of Eq(66) wherea# — 3. Then it is well knowA! that

1+ 2«

- 2v,+2v°+2 (68)

Di=—v
satisfies Eq(66) with a replaced by + 1. Equation(68) is the standard Bzklund transformation
of Eq. (66). Let V(z;€) be a one-parametéire., €) family of solutions to Eq(66). Since Eq(67)
is the linearization of Eq(66), it follows thatW(z;€):=V (z;€) is a solution to Eq(67). Substi-
tuting v =V(z; €) into Eq. (68) and differentiating with respect te shows that

wW,+20W

\7V==—W+2(1+2a’)m
z

(69

satisfies Eq(67) with v replaced bys, whenevew satisfies Eq(67).
Applying the Baklund transformationg68) and (69) to v(z) =0, w(z) =Ai(z), described
above, yield$ (z) = —z~ ! andW(z) =2z 2Ai’ (z) — Ai( 2). It follows that

_ 2P (z;1;¢1,C0) +2
Y= A (2= 2Ai(D)

is the general solution of Eq1) with f(x)=67(2)W°(z) andg(x)=2W®(z), where

2Bi'(z2)-2°Bi(z) _ x
2Ai' (z2)-Z2Ai(z) =

Repeated application of the 8dund transformationg68) and (69) will generate a countable
family of equations of the fornil) and solutions in whicly is a rational function oz andw is
a rational function ofz, the Airy functions Ai and Bi and their first derivatives.

VIl. DISCUSSION

The search for metrics modeling nonstatic shear-free spherically symmetric charged fluids
naturally leads to the problem of finding one-parameter families of solutions tq1EqThe
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Painleveproperty is a very powerful detector of the integrability of ODEs. Indeed, most of the
solutions to Eq(1) that have appeared in the literature to date arise naturally from the Painleve
analysis of Eq(1) (see Ref. 14 However, since EqJ) is second-order while we only require a
one-parameter family of solutions, it is not necessary for us to describe the general solution. From
this point of view, requiring the Painlévaroperty is too restrictive.

In this article we have considered the problem of determining one-parameter families of
solutions to Eq(1) whose only movable singularities are poles. Besides the solutions covered by
Proposition 1.1[which corresponds to the cases in which Eb). possesses the full Painleve
property] we found one-parameter families of solutions that satisfy Riccati equations. In particular,
this class of solutions contains those of Shah and Vaidya, which do not arise in the standard
Painleveanalysis of Eq.(1). The procedure for matching the Riccati solutions to an external
Reissner—Nordstrgm metric was also described.

Finally, a special subclass of solutions that arise in Proposition 1.1 were described. In general,
whena#0, the transformation betweenandz involves derivatives of a second Painlewan-
scendent. In the class of solutions described in Secv My, andx are given explicitly in terms
of Airy functions and there first derivatives—onlyis a genuine Painléveanscendent. Presum-
ably this is the simplest class of solutions characterized by Proposition 2 that contains a genuine
Painlevetranscendent.
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