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The problem of determining the metric for a nonstatic shear-free spherically sym-
metric fluid ~either charged or neutral! reduces to the problem of determining a
one-parameter family of solutions to a second-order ordinary differential equation
~ODE! containing two arbitrary functionsf andg. Choices forf andg are deter-
mined such that this ODE admits a one-parameter family of solutions that have
poles as their only movable singularities. This property is strictly weaker than the
Painlevéproperty and it is used to identify classes of solvable models. It is shown
that this procedure systematically generates many exact solutions including the
Vaidya metric, which does not arise from the standard Painleve´ analysis of the
second-order ODE. Interior solutions are matched to exterior Reissner–Nordstrøm
metrics. Some solutions given in terms of second Painleve´ transcendents are
described. ©2002 American Institute of Physics.@DOI: 10.1063/1.1455688#

I. INTRODUCTION

Several authors have shown that the problem of finding a nonstatic solution of the Eins
Maxwell equations for a shear-free spherically symmetric charged fluid is equivalent to the
lem of finding at-dependent solution to the equation

]2y~x,t !

]x2 5 f ~x!y2~x,t !1g~x!y3~x,t !, ~1!

where f and g are arbitrary functions ofx only1,2 ~see also Ref. 3 and the references there!.
Given a solutiony of Eq. ~1!, definer 5Ax, Y(r ,t)51/y(x,t), and

T~r ,t !5h~ t !
]

]t
ln y~r 2,t !, ~2!

whereh is an arbitrary nonvanishing function oft. In terms of these variables, the metric for th
fluid is given by

ds25T2~r ,t !dt22Y2~r ,t !$dr21r 2dV2%, ~3!

wheredV25du21sin2udf2 is the standard metric on the two-sphere. The densityr and pressure
p are given by

8pr53h22212xyx
2112yyx18x f y316xgy4, ~4!

8pp54y~y22xyx!
yxt

yt
112xyx

228yyx12xgy422h23ht

y

yt
23h22. ~5!

a!Electronic mail: r.g.halburd@lboro.ac.uk
19660022-2488/2002/43(4)/1966/14/$19.00 © 2002 American Institute of Physics
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The only nonvanishing components of the electromagnetic field are

F0152F1052h~ t !E~r !
]y

]t
,

whereE2(r )52xg(x).
Although y is a function of two variablesx and t, Eq. ~1! is essentially an ODE fory as a

function of x. As an ODE, the general solution of Eq.~1! contains two arbitrary constants. Th
general solution of Eq.~1! viewed as a partial differential equation~PDE! is obtained by replacing
these arbitrary constants with arbitrary functions oft. SinceT is a metric coefficient, it cannot be
identically zero, so from Eq.~2! we see thaty must have a nonconstantt-dependence. This lead
us to the problem of finding families of solutions to Eq.~1! viewed as an ODE which depend o
~at least! one parameter.

The connection between integrable systems~equations that are solvable, either explicitly
via a related linear problem! was first used by Kowlevskaya in her work on spinning tops.4,5 She
considered the equations of motion for a spinning top which depend on six parameters~the center
of mass and the moments of inertia!. Kowalevskaya noticed that in the known cases for which
equations could be integrated, the general solution was a meromorphic function of time
extended to the complex plane. She used local series analysis to determine all choices
parameters for which the general solution was a meromorphic function of time and found
set of values for the parameters for which she was then able to solve the equations in te
ratios of hyper-elliptic functions.

The requirement that all solutions are meromorphic throughout the complex plane m
replaced with the requirement that all solutions be meromorphic on the covering space ofC with
a discrete set of points removed. In this way, branching of solutions is allowed at fixed sing
ties ~singularities of the solutions that cannot occur at arbitrary locations in the complex plan
only at locations at which the equation itself is in some sense singular!. An ODE is said to posses
the Painleve´ property if all movable singularities of all solutions are poles. This property is clo
connected with the integrability~solvability! of the ODE. All ODEs that are known to possess t
Painlevéproperty are integrable, either explicitly in terms of classically known functions, or vi
associated linear problem. In particular, Painleve´, Gambier, and Fuchs classified all equations
the form

d2y

dx2 5FS x;y,
dy

dxD , ~6!

where F is rational in y and dy/dx and analytic inx, that have the Painleve´ property. They
showed that each such equation could be transformed via a change of independent variable
x-dependent Mo¨bius transformation ofy to 1 of 50 canonical equations. With the exception of
equations~the Painleve´ equationsPI –PVI! each of these canonical equations were solved in te
of classically known functions~see, e.g., Refs. 6 and 7!. The first two Painleve´ equations are

d2h

dz2 56h21z, ~7!

d2h

dz2 52h31zh1a, ~8!

wherea is an arbitrary complex constant. It was later shown that each Painleve´ equation is the
compatibility condition for a~linear! spectral problem. The Painleve´ equations are considered t
be integrable because of the underlying structure that emerges from these isomono
problems.7,8
d 25 Sep 2002 to 158.125.1.22. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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It is important to note that the transformation of one the equations of the form~6! that
possesses the Painleve´ property to one of the canonical forms is itself determined by the solut
of a system of differential equations. A weaker definition of the Painleve´ property is that all
solutions are single-valued about all movable singularities. However, for equations of the for~6!
this definition yields the same class of equations.

Shah and Vaidya,1 Wyman,9,10 Chatterjee,11 Maharaj, Leach, and Maartens12 and Srivastava13

have studied Eq.~1! to determine choices off and g for which the general solution has n
movable critical points. In particular, Wyman9 determined all choices off in the uncharged (g
50) case. In Ref. 14 the author found all choices off and g such that Eq.~1! possesses the
Painlevéproperty. In particular, we have the following.

Proposition 1.1: Equation (1) possesses the Painleve´ property (as an ODE in x ) if and only
if either

(1)

f ~x!56w5~z!, g~x!50, ~9!

where wÞ0 and v are any solutions of

d2v
dz2 56v21az1b/2, ~10!

d2w

dz2 512vw, ~11!

where a, b are constants and z is given by

x5E w22~z!dz, ~12!

or
(2)

f ~x!56v~z!w5~z!, g~x!52w6~z!, ~13!

where wÞ0 and v are any solutions of

d2v
dz2 52v31~az1b!v1c/2, ~14!

d2w

dz2 5~6v21az1b!w, ~15!

where a, b, c are constants and z is given by Eq. (12).
Furthermore, in both the above cases, the general solution of Eq. (1) is given by

y~x,t !5
u~z,t !2v~z!

w~z!
, ~16!

where u (in which t is treated as a parameter) is the general solution of the same second
equation asv [i.e., in case 1, u(z,t0), where t0 is a constant, solves Eq. (10) and in case 2
solves Eq. (14)].

Note that Eq.~11! @resp. ~15!# is the linearization of Eq.~10! @resp. ~14!#. So if v(z)
5V(z;e) is a one-parameter family of solutions to Eq.~10! @resp.~14!#, thenw(z)ªVe(z;e) is a
solution to Eq.~11! @resp. ~15!#. A second independent solution to Eq.~11! @resp. ~15!# then
d 25 Sep 2002 to 158.125.1.22. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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follows by reduction of order. Equation~12! shows thatx5ŵ(z)/w(z), where ŵ is a second
solution of Eq.~11! @resp.~15!# satisfying the Wronskian conditionW(w,ŵ)5wŵz2ŵwz51.

If a50, then the general solution to Eq.~10! @resp.~14!# can be given explicitly in terms o
elliptic functions. In particular, the case in whicha50 and the fixed solutionv of Eq. ~14! is a
constant corresponds to the large class of solutions found by Sussman.15 In fact, most of the
solutions that have appeared in the literature to date are special cases of Sussman’s solutio
case in whichv is not constant is solved explicitly in Ref. 14. IfaÞ0, then Eq.~10! @resp.~14!#
can be mapped to Eq.~7! @resp.~8!#. A class of solutions to Eq.~1! corresponding to the Airy
function solutions to Eq.~8! is also described in Ref. 14.

Recall that we wish to find one-parameter families of solutions to Eq.~1!. When f andg are
chosen so that Eq.~1! possesses the Painleve´ property then the equation is integrable and we c
find a two-parameter family of solutions. In the present article a property, weaker than the
levé property but still complex-analytic in nature, is considered. Namely, we wish to find
one-parameter families of solutionsF to Eq.~1! such that all movable singularities of all solution
in F are poles. In Sec. II we will find all solutions to Eq.~1! that are simultaneously solutions o
a Riccati equation. This class of solutions contains the well-known solutions due to Sha
Vaidya,16 which does not arise in a regular Painleve´ analysis of Eq.~1!. A class of solutions that
generalizes that due to Shah and Vaidya which is given in terms of solutions to linear equat
also derived.

Sections III and IV address the question of whether the solutions found in Sec. II exhau
set of all one-parameter families of solutionsF described above. In Sec. V, boundary conditio
are determined such that the Riccati solutions can be matched to the Reissner–Nordstrøm
solution. In Sec. VI we find solutions to Eq.~1! corresponding toaÞ0 but v[0 in Eq. ~14!. In
this case the general solution to Eq.~15! is given in terms of Airy functions. From this solution
families of solutions are obtained using the Ba¨cklund transformation of the second Painle´
equation.

II. RICCATI SOLUTIONS

One way of finding a one-parameter family of solutions to Eq.~1! such that the only movable
singularities are poles is to find a family of solutions that are also solutions of a first-o
equation of Painleve´ type. In this section, solutions to Eq.~1! are found that are also solutions
a first-order differential equation of the form

dy

dx
5R~x,y!, ~17!

whereR is rational iny and locally analytic inx. Fuchs17 showed that the only equation of th
form ~17! with the Painleve´ property is the Riccati equation,

dy

dx
5a~x!y21b~x!y1g~x!, ~18!

wherea, b, andg are~locally! analytic functions ofx. The general solution of Eq.~18! is given
by

y~x!52
1

a~x!

d

dx
ln F~x!,

whereF is the general solution of the linear equation

d2F

dx2 2S b1
ax

a D dF

dx
1ag F50. ~19!
d 25 Sep 2002 to 158.125.1.22. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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Differentiating Eq.~18! with respect tox and again using Eq.~18! to eliminatedy/dx in the
resulting expression gives

d2y

dx2 52a2y31~ax13ab!y21~bx1b212ag!y1~gx1bg!. ~20!

It follows that every solution of Eq.~18! is a solution of Eq.~1! if and only if the equations

gx1bg50, ~21!

bx1b212ag50, ~22!

ax13ab5 f , ~23!

2a25g, ~24!

are satisfied.
Solving Eqs.~21!–~24! gives three classes of Riccati equations.
Case 1:b[0, g[0. The Riccati equation~18! becomes

dy

dx
5ay2,

which has the general solution

y~x,t !5
1

H~x!1G~ t !
, ~25!

whereH8(x)52a(x) andG is an arbitrary function oft.
Case 2:bÓ0, g[0. The Riccati equation~18! becomes

dy

dx
5ay21

1

x1C
y,

whereC is an arbitrary constant, which has the general solution

y~x,t !5H x

H~x!1G~ t !
, H8~x!52xa~x!, if C50,

11kx/4

H~x!1G~ t !
, H8~x!52~11kx/4!a~x!, if C54/kÞ0,

~26!

whereG is an arbitrary function oft.
Case 3:gÓ0. The Riccati equation~18! becomes

dy

dx
1

1

2
~g21!xxy

21
g8

g
y2g50. ~27!

In Sec. V, these Riccati solutions will be matched to an external Reissner–Nordstrøm met
Note that Eq.~25! corresponds to settingk50 in Eq. ~26b!. Under the transformation

r̃ 5
r

11kr2/4

~recall x5r 2! the solutions corresponding to Eq.~26b! give rise to the metric
d 25 Sep 2002 to 158.125.1.22. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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ds25@F~ r̃ !1G~ t !#22dt22@F~ r̃ !1G~ t !#2F dr̃2

12kr̃2 1 r̃ 2dV2G , ~28!

whereF( r̃ )5H(r 2) and we have seth(t)51/Ġ(t). The metric~28! was obtained by Shah an
Vaidya.16 This metric does not arise from the standard Painleve´ analysis of Eq.~1!.

Solutions found in this section will be referred to as Riccati solutions.

III. LOCAL SERIES ANALYSIS

In this section we will analyze Eq.~1! as an ODE in the complex domain. In particular, w
will determine necessary conditions that Eq.~1! possesses a one-parameter family of Laur
series solutions. We begin by considering the case in whichg50. Under the transformation~16!
in which w is given by Eq.~9!, v is given by Eq.~11!, andz is given implicitly by Eq.~12!, Eq.
~1! becomes

d2u

dz2 56u21A~z!, ~29!

where

A~z!5
d2v
dz2 26v2.

We will only consider a one-parameter family of solutionsG such that there exists an ope
connected bounded setVPC such that at each pointz0PV there is a functionuPG with a pole
at z5z0 . We will now find a necessary condition on the functionA such that Eq.~29! admits a
formal Laurent series solution with a pole at a pointz0PV, whereA is analytic. Substituting the
Laurent series

u~z!5 (
n50

`

an~z2z0!n2p, ~30!

wherep is a positive integer anda0Þ0, into Eq.~29! gives, to leading order,

p~p11!a0~z2z0!2(p12)1...56a0
2~z2z0!22p1... .

Equating the powers and coefficients of these leading-order terms gives

p52, a051. ~31!

Using Eqs.~30! and ~31! in Eq. ~29! and equating coefficients of like powers ofz2z0 gives

~n11!~n26!an5Pn~a0 ,a1 ,...,an21!, ~32!

where

Pn~a0 ,a1 ,...,an21!56 (
m51

n21

aman2m1an~z0!,

and

an~z0!5H 0, n,4,

A(n24)~z0!

~n24!!
, n>4,
d 25 Sep 2002 to 158.125.1.22. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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is polynomial in its arguments and we have expandedA as a power series aboutz5z0 . The
recurrence relation~32! shows thatan is uniquely determined in terms of$a0 ,...,an21%, except in
the case whenn56. In this case, the left side of Eq.~32! vanishes while the right side is a know
function of (a0 ,...,a5). If the right side does not vanish, then there is no solution to Eq.~29! with
a pole of any order atz5z0 . If the right side of Eq.~32! does vanish, then a formal Laurent seri
solution exists in whichz0 anda6 are arbitrary constants. A direct calculation shows that the r
side of Eq.~32! vanishes if and only if

A9~z0!50. ~33!

Now since Eq.~33! must be satisfied for allz0 in the open setV, this implies thatA(z)5az
1b/2, for some constantsa andb. So, we reproduce precisely those solutions given in case
Proposition 1.1.

Now we consider the local series analysis of Eq.~1! when g is not identically zero. In
particular,g does not vanish identically onV. From Sec. 2 we see that the requirement that th
is a one-parameter family of solutions such that all movable singularities are poles yields
solutions than requiring that Eq.~1! possesses the Painleve´ property.

Let v and w be defined by Eq.~13! wherez is given by Eq.~12!. @Note that we are not
assuming that Eqs.~14! and ~15! hold.# The transformation~16! gives

d2u

dz2 52u31B~z!u1C~z!, ~34!

where

B~z!5
wzz

w
26v2, C~z!5vzz2vB~z!22v3.

We now look for a local Laurent series solution to Eq.~34! with a pole atz5z0PV. Leading
order analysis shows that any such solutionu must have a simple pole atz5z0 with residue61.
Hence we substitute the series

u~z!5 (
n50

`

an~z2z0!n21, a05«561,

into Eq. ~34! and equate coefficients of like powers ofz2z0 to obtain the recurrence relation

~n11!~n24!an5Qn~a0 ,...,an21!, ~35!

where

Qn~a0 ,...,an21!52F (
m50

n

(
m850

n2m

amam8an2m2m823anG1bn~z0!1gn~z0!,

and

bn~z0!5H 0, n,2,

(
m50

n22
B(n2m22)~z0!

~n2m22!!
am , n>2,

g~z0!5H 0, n,3,

C(n23)~z0!

~n23!!
, n>3.

Note that Q is polynomial in its arguments. The left side of Eq.~35! shows that a necessary an
sufficient condition for the existence of a formal Laurent series solution with a pole atz5z0 is
Q4(a0 ,a1 ,a2 ,a3)50, which is equivalent toB9(z0)522«C8(z0), where«5615a0 .
d 25 Sep 2002 to 158.125.1.22. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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Now the general solution of Eq.~34! will have movable singularities with leading orde
behaviors that include both11 and21 residue poles~although, in general, these solutions w
not be meromorphic and the Laurent series will have to be augmented by logarithm terms!. So if
we demand that all movable singularities of all solutions are poles@i.e., if we demand that Eq.~34!
possess the Painleve´ property#, then B9(z0)528C(z0) and B9(z0)522C8(z0), for all z0PV,
leading toB(z)5az1b, andC(z)5c/2, wherea, b, andc are arbitrary constants. Sou satisfies
Eq. ~14!.

Rather than demand that all movable singularities of all solutions of Eq.~34! are poles, we
restrict our consideration to a subset of solutionsG such that given anyz0PV, there is a solution
in G with a pole atz5z0 . The above analysis shows that either we are left with Eq.~14! or we
must consider the class of solutions where all movable singularities are poles and all but a
number of these poles inv have the same residue«561. A necessary condition in this case is th
differential equationB9(z)522«C8(z). In terms ofq(z)ªB(z)/2, we now restrict ourselves to
the study of the subset of solutions to the equation

d2u

dz2 52u312qu1~k2«qz!, «561, ~36!

wherek is an arbitrary constant, that admit only poles with residue« in V.

IV. THE UNIQUENESS OF THE RICCATI SOLUTIONS

The only Riccati equation for which all solutionsu are also solutions of Eq.~36! is

du

dz
1«~u21q!50, k50. ~37!

The general solution of equation~37! is given by

u5«
d

dz
ln F, ~38!

whereF is the general solution of the linear equation

d2 F

dz2 1q F50. ~39!

We will show that these Riccati type solutions are identical to those found in Sec. II. All mov
singularities of any solution to Eq.~37! are simple poles with residue«. So the general solution to
Eq. ~37! is a one-parameter family of solutions to Eq.~36! of the kind considered at the end of th
previous section. The perturbation argument described below suggests that this is the on
one-parameter family. We will then provide a proof based on Wiman–Valiron theory for the
in which q is a polynomial. Wiman–Valiron theory is particularly useful for finding entire so
tions of analytic differential equations.18

We will now show how the Riccati equations derived in Sec. II are related to the solutio
Eq. ~36! described at the end of Sec. III. It may be verified that the identity

w~uz1«@u21q# !5yx1«w3y21w~wz12«vw!y1w~vz1«@v21q# ! ~40!

follows from Eqs.~12! and ~16!. Furthermore, given Eqs.~12! and ~13!, wherev andw satisfy

vzz52v312qv2«qz ~41!

and
d 25 Sep 2002 to 158.125.1.22. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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wzz5~6v212q!w, ~42!

respectively, it can be shown that Eqs.~21!–~24! are equivalent to

a52«w3, ~43!

b52w~wz12«vw!, ~44!

g52w~vz1«@v21q# !. ~45!

Equations~40! and~43!-~45! show that the Riccati solutions found in Sec. II are the same as t
constructed using~16! whereu is the general solution of Eq.~37! andv, w satisfy Eqs.~41! and
~42!, respectively. It is interesting to note that the solution by Shah and Vaidya discussed i
II corresponds to the case in whichv also satisfies the Ricatti equation~37!. ThegÞ0 case~case
3 in Sec. II! corresponds to a non-Ricatti solutionv of Eq. ~41! ~althoughu still satisfies a Riccati
equation!.

Next we address the question of whether the classG consists only of Riccati solutions
Consider Eq.~36! with q(z)5q01hQ(z), where q0 is a complex constant andh is a small
complex parameter. To leading order inh, Eq. ~36! is

d2u

dz2 52u312q0u1k.

If u is not constant, then

S du

dzD
2

5u412q0u212ku1C, ~46!

whereC is an integration constant. The nonconstant solutions of Eq.~46! are elliptic functions
with simple poles of residue61. The only solutions with poles of residue«561 but no poles of
residue2«571 correspond to the case in whichk50 andC5q0

2 in which case Eq.~46! factors
into two Riccati equations andu satisfies

du

dz
1«~u21q0!50.

The arguments given above assume that the one-parameter family of solutionsG have poles in
an open setV. In the following we show rigorously that we have found all one-parameter fam
of solutions that have only poles as their movable singularities under the assumption thatq is a
polynomial.

Consider the system of first-order equations

du

dz
5ũ2«u22«q, ~47!

dũ

dz
5k12«uũ. ~48!

Differentiating Eq.~47! with respect toz and using Eq.~48! to eliminatedũ/dz gives Eq.~36!. We
wish to show that if there is a one-parameter family of solutionsu having only movable poles with
residue«, thenũ is identically zero. Note that ifũ is identically zero, then Eq.~47! becomes Eq.
~37! and Eq.~48! implies thatk50. If ũ does not vanish identically, then we can solve Eq.~48!
for u and substitute it into Eq.~47! to give
d 25 Sep 2002 to 158.125.1.22. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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2ũ
d2ũ

dz2 5S dũ

dzD
2

14ũ2~«ũ2q!2k2. ~49!

We will prove the following.
Proposition 4.1: If q is a polynomial, then either any entire solution of Eq. (49) is a cons

or

q5q01q1z1q2z2,

where

q1
224q0q25k2 ~50!

and

ũ5«q. ~51!

Note that ifũ is one of the solutions given in Proposition 4.1 butũÓ0, then sinceũ contains
no free parameters~i.e., no parameters other than those in the equation itself! u is given by Eq.
~48! and so does not represent a one-parameter family of solutions to Eq.~36!.

Proof: We will begin by showing that any polynomial solution of Eq.~49! is either a constan
or the solution~51!. We will then use the central index from Wiman–Valiron theory to show t
there are no transcendental~i.e., nonpolynomial! solutions.

Let q andũ be polynomials of degreeM andN, respectively. Furthermore, we assume thaũ
is not constant~i.e., N>1 andãNÞ0!. Thenq and ũ have expansions of the form

q~z!5 (
m50

M

qmzm, ũ~z!5 (
n50

N

ãnzn. ~52!

Substituting the expansions~52! into Eq. ~49! and balancing the dominant terms for largez gives
M5N. Equation~49! then becomes

(
i , j 50

N

i ~2i 2 j 22!ãi ã jz
i 1 j 221k25 (

i , j ,k50

N

4ãi ã j~«ãk2qk!z
i 1 j 1k. ~53!

Now the polynomial on the left side of Eq.~53! is of degree at most 2N22 while the degree of
the polynomial on the right side is of degree at most 3N. SinceãNÞ0, then the coefficient ofz3N

in Eq. ~49! gives ãN5«qN . Arguing by induction, equating the coefficients
z3M21,z3M22,...,z2N11 to zero givesãN2n5«qN2n , n51,...,N. Henceũ5«q and the right side
of Eq. ~53! vanishes identically. On equating all coefficients of powers ofz to zero on the left side
of Eq. ~49! we find thatN52 andq0 , q1 , andq2 satisfy Eq.~50!.

Now we will use Wiman–Valiron theory to show that all entire solutions to Eq.~49! are
polynomials. Sinceũ is entire it has an expansion of the form

ũ~z!5 (
n50

`

ãnzn.

The central indexn(r ,ũ) is the greatest non-negative integerm such that

uãmur m5max
n>0

uãnur n.

If ũ is nonpolynomial, thenn(r ,ũ) is increasing, piecewise constant, right-continuous, and te
to 1` as r→1`.
d 25 Sep 2002 to 158.125.1.22. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp



e

rnal

o

1976 J. Math. Phys., Vol. 43, No. 4, April 2002 R. G. Halburd

Downloade
In terms of the central index we have the following lemma~see, e.g., Ref. 19!.
Lemma 4.2: Let u˜ be a nonpolynomial entire function, andn5n(r ,ũ) be its central index. Let

0,d,1/4 and z be such thatuzu5r and

uũ~z!u.n~r ,ũ!2 ~1/4! 1dmax
uzu5r

uũ~z!u ~54!

holds. Then there exists a set F,R of finite logarithmic measure, i.e., *Fdt/t,1` such that

ũ(m)~z!5S n~r ,ũ!

z D m

~11o~1!!ũ~z! ~55!

holds for all m>0 and r¹F.
Lemma 4.2 says that for all positiver outside of the setF ~which has finite logarithmic

measure!, the estimate~55! holds near the maximum ofuũu on the circleuzu5r @where ‘‘near the
maximum’’ means the set ofz satisfying Eq.~54!#.

Assume that there is a nonpolynomial solutionũ of Eq. ~49!. Applying the estimate~55! to Eq.
~49! gives

S n~r ,ũ!

z D 2

ũ2;4«ũ3. ~56!

Sincen(r ,ũ) grows much slower thanũ,20 it follows that Eq.~56! cannot be balanced. Thus th
only entire solutions to Eq.~49! are polynomials. j

V. BOUNDARY CONDITIONS FOR THE RICCATI SOLUTIONS

In this section we will match the Riccati solutions introduced in Sec. II to an exte
Reissner–Nordstrøm metric

ds25Ĝd t̂22Ĝ21dr̂22 r̂ 2dV2, ~57!

wheredV2 is the standard metric on the two-sphere and

Ĝ512
2m

r̂
1

4pe2

r̂ 2 ,

and m and e are constants. LetS0 be the interfacer 5r 0 between the two solutions. The tw
metrics~3! and ~57! can be matched acrossS0 provided

p~r 0 ,t !50, ~58!

g~r 0
2!52pS e

r 0
3D 2

, ~59!

2m5F4pe2

r
y1

r 3

h2y3 12
r 2

y2 yr2
r 3

y3 yr
2G

r 5r 0

, ~60!

for all t.2

Equation~59! is equivalent to

a2~r 0
2!5pS e

r 0
3D 2

. ~61!

Using Eq.~18! to eliminateyx andyxt5(2ay1b)yt from Eq. ~5! gives
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8pp54$~b212ag!x2b!y212g~2bx21!y13xg2%23h2222h23ht

y

yt
. ~62!

Using Eq.~18! to eliminateyr52ryx from Eq. ~60! and using Eq.~62! in Eq. ~58!, we see that
Eqs.~58! and ~60! are equivalent to

h22~ t !54F r 2g1g~2r 2b21!y1$~b212ag!r 22b%y21S m

2r 3 12r 2ab2a D y3G
r 5r 0

. ~63!

A. Dust solutions

Settingp identically zero in Eq.~62! and solving forh22 gives

h2254@xg1g~2xb21!y1$~b212ag!x2b%y21dy3#, ~64!

whered is a function ofx only. Recall thath is a function oft only. Differentiating Eq.~64! with
respect tox and using Eqs.~21! and ~22! gives

3ady21$dx13bd12a@~b212ag!x2b#%y1g$2xax13@a1d#%50, ~65!

for all t. Sincey must have nonconstantt-dependence, the coefficients of different powers ofy in
Eq. ~65! must vanish identically. Ifa50, theng50 and there are no Riccati solutions. Therefo
the coefficient ofy2 in Eq. ~65! shows thatd is identically zero. The constant term in Eq.~65!
shows that eitherg[0 or a(x)5kx23/2, wherek is a constant.

If g50, then the coefficient ofy in Eq. ~65! shows that eitherb50 or b51/x. These
solutions correspond to the solutions~25! and ~26!, respectively. Finally, ifgÓ0 andaÓ0, then
recall from Sec. II~case 3! that for any Riccati solution we must havea52(g21)xx and b
52gx /g. It follows that the coefficient ofy and the constant term in Eq.~65! cannot both vanish
identically.

VI. BÄCKLUND TRANSFORMATIONS AND SPECIAL SOLUTIONS

In this section we will construct what is perhaps the simplest solution of Eq.~1! involving a
genuine transcendent of the second Painleve´ equation. It is simple in the sense that we have
explicit formula for the dependence ofx on z. We will then use the well-known Ba¨cklund
transformation of the second Painleve´ equation to construct a countable family of equations of
form ~1! together with their general solutions in terms of second Painleve´ transcendents.

If aÞ0, then, after rescalingz andv, Eqs.~14! and ~15! become

d2v
dz2 52v31zv1a, ~66!

d2w

dz2 5~6v21z!w, ~67!

where a is an arbitrary constant. Equation~66! is the standard form of the second Painle´
equation. We will denote the general solution of Eq.~66! by v(z)5PII (z;a;c1 ,c2), wherec1 and
c2 are independent parameters~e.g.,c15v(0) andc25v8(0)).

Recall that, apart from the solution due to Shah and Vaidya@~Eq. ~28!#, many of the solutions
that appear in the literature are special cases of the solutions of Sussman,15 which correspond to
the special case of Proposition 1.1 in whicha50 andv is a constant. Note that ifaÞ0, then Eq.
~66! @which is a rescaled version of Eq.~14!# admits a constant solution if and only ifa50. In this
case the constant solution isv[0, which is equivalent to the casef [0.

If v[0, then Eq.~67! has the general solution
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w~z!5mAi ~z!1nBi~z!,

where Ai and Bi are the Airy functions andm andn are arbitrary constants which are not both ze
From Eq.~12! we have

x5p
rAi ~z!1sBi~z!

mAi ~z!1nBi~z!
,

where r and s are arbitrary constants satisfyingms2nr51. @Note the identity Ai(z)Bi8(z)
2Bi(z)Ai 8(z)5p21.# In particular, choosingm5s51 and n5r50, we see that the genera
solution ofyxx5Bi6(z)y3 is

y~x!5
PII ~z;0;c1 ,c2!

Bi~z!
,

wherec1 andc2 are arbitrary constants~or functions oft, viewing the equation as a PDE! andz
is given by

Bi~z!

Ai ~z!
5

x

p
.

Now we will see how to generate other solutions from thev50 case just described. Letv be
a solution of Eq.~66! whereaÞ2 1

2. Then it is well known21 that

ṽª2v2
112a

2vz12v21z
~68!

satisfies Eq.~66! with a replaced bya11. Equation~68! is the standard Ba¨cklund transformation
of Eq. ~66!. Let V(z;e) be a one-parameter~i.e., e! family of solutions to Eq.~66!. Since Eq.~67!
is the linearization of Eq.~66!, it follows thatW(z;e)ªVe(z;e) is a solution to Eq.~67!. Substi-
tuting v5V(z;e) into Eq. ~68! and differentiating with respect toe shows that

w̃ª2w12~112a!
wz12vw

~2vz12v21z!2 ~69!

satisfies Eq.~67! with v replaced byṽ, wheneverw satisfies Eq.~67!.
Applying the Bäcklund transformations~68! and ~69! to v(z)50, w(z)5Ai( z), described

above, yieldsṽ(z)52z21 and w̃(z)52z22Ai 8(z)2Ai( z). It follows that

y~x!5
z2PII ~z;1;c1 ,c2!1z

2Ai8~z!2z2Ai ~z!

is the general solution of Eq.~1! with f (x)56ṽ(z)w̃5(z) andg(x)52w̃6(z), where

2Bi8~z!2z2Bi~z!

2Ai8~z!2z2Ai ~z!
5

x

p
.

Repeated application of the Ba¨cklund transformations~68! and ~69! will generate a countable
family of equations of the form~1! and solutions in whichv is a rational function ofz andw is
a rational function ofz, the Airy functions Ai and Bi and their first derivatives.

VII. DISCUSSION

The search for metrics modeling nonstatic shear-free spherically symmetric charged
naturally leads to the problem of finding one-parameter families of solutions to Eq.~1!. The
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Painlevéproperty is a very powerful detector of the integrability of ODEs. Indeed, most of
solutions to Eq.~1! that have appeared in the literature to date arise naturally from the Pai´
analysis of Eq.~1! ~see Ref. 14!. However, since Eq.~1! is second-order while we only require
one-parameter family of solutions, it is not necessary for us to describe the general solution
this point of view, requiring the Painleve´ property is too restrictive.

In this article we have considered the problem of determining one-parameter famili
solutions to Eq.~1! whose only movable singularities are poles. Besides the solutions cover
Proposition 1.1@which corresponds to the cases in which Eq.~1! possesses the full Painlev´
property# we found one-parameter families of solutions that satisfy Riccati equations. In parti
this class of solutions contains those of Shah and Vaidya, which do not arise in the sta
Painlevéanalysis of Eq.~1!. The procedure for matching the Riccati solutions to an exte
Reissner–Nordstrøm metric was also described.

Finally, a special subclass of solutions that arise in Proposition 1.1 were described. In ge
when aÞ0, the transformation betweenx and z involves derivatives of a second Painleve´ tran-
scendent. In the class of solutions described in Sec. VI,v, w, andx are given explicitly in terms
of Airy functions and there first derivatives—onlyu is a genuine Painleve´ transcendent. Presum
ably this is the simplest class of solutions characterized by Proposition 2 that contains a g
Painlevétranscendent.
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