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A third-order system of nonlinear, ordinary differential equations depending on
three arbitrary parameters is analyzed. The system arises in the study(@f SU
invariant hypercomplex manifolds and is a dimensional reduction of the self-dual
Yang—Mills equation. The general solution, first integrals, and the Nambu—Poisson
structure of the system are explicitly derived. It is shown that the first integrals are
multi-valued on the phase space even though the general solution of the system is
single-valued for special choices of parameters. 2@3 American Institute of
Physics. [DOI: 10.1063/1.1556194

I. INTRODUCTION

The study of integrable or solvable nonlinear systems dates back to the fundamental works of
Euler, Liouville, Riemann, Poincareand many others. Surprisinglperhapy, there is still no
single adequate definition of “integrability.” Certainly, nonlinear systems which can be explicitly
solved by quadratures in the real domain should be considered as integrable, as should the Hamil-
tonian systems with action-angle variabl@stegrability in the Liouville sense In contrast, the
notion of integrability in the complex plane is still in its early stages of development. For example,
if the general solution of a nonlinear ordinary differential equation is everywhere single-valued in
its domain of existence, then we consider the equation to be integrable in the complex plane.
Fundamental contributions of KovalevskayaRainleve?* and more recent wotk? have led to
some progress toward the understanding of complex integrakiditynonintegrability. But the
complex behavior of large classes of physically important nonlinear equations still remains to be
completely understood. Some of these equations can be “solved” in terms of linear equations but
are not single-valued in the complex plane.

In this article we consider the system of nonlinear ordinary differential equations

M=(adj M)T+M™™M —(Tr M)M, (1)

for a 3X3 matrix valued functionM(t) where adjM is the adjoint matrix ofM satisfying
(adj M)M = (detM)I, MT is the transpose dfl and the dot denotes differentiation with respect to
t. The system1) was obtained as a dimensional reduction of the self-dual Yang—MilsY M)
equations corresponding to an infinite-dimensional gauge group of diffeomorphisms®pidf{ a
three-spheré These equations were also derived in Ref. 16 where they were shown to represent
an SU2) invariant hypercomplex four-manifold. Since the Weyl curvature of a hypercomplex
four-manifold is self-dual, Eq.1) describes a class of self-dual Weyl Bianchi IX space—times with
Euclidean signatur®.

In the next section we will review the fact that Eq) reduces to the system

(:!)1:(1)2(1)3_(1)1((1)24' (1)3)+ 7'2,
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(:02:(1)3(1)1_(1)2((1)3"‘ w1)+ 7'2,

2

W3=w1wy— wz(w+ wy) + 72,

7= ai(01— 0;) (03— w1) + a5(w— 03) (01— ;) + a5( w3~ w1) (w2~ w3),

for the functionsw;(t), i=1,2,3, and wherer;, a,, andas are constants. We will refer to system
(2) as the generalized Darboux—Halph®H) system, which will be the subject of our discussion
for the remainder of this article. Equatié®) with =0, becomes the classical DH system which
first appeared in Darboux’s work on triply orthogonal surfieesl was later solved by Halphéh.

In subsequent studies, the classical DH system has arisen as the vacuum Einstein equations for
hyperkanler Bianchi-IX metric"° and in the similarity reductions of associativity equations on a
three-dimensional Frobenius manifdl#ialphen showed that the general sysi@ncan be solved

in terms of hypergeometric functiod$ Special solutions have also been given in terms of theta
functions and automorphic form{€3! Special cases of Eq2) arise in the study of solvable
models of spherically symmetric shear-free fluids in general relativity well.

As mentioned earlier, it was shown in Ref. 7 that ED. arises as a reduction of the SDYM
equations. From the Lax pair for SDYM, it is possible to derive a linear prolitas, e.g., Ref.

2) which can be employed to solve the initial value problem for @&g. This linear problem is
related to the monodromy preserving deformations corresponding to the Riccati reduction of the
PainleveVI equation. Analysis of Eq(1) using the associated linear problem was given in Refs.

6 and 16.

In Sec. Il we outline the reduction of E€L) to the generalized DH syste(®) and derive its
general solution. In Sec. Il we discuss the first integrals and a set of “action-angle” variables for
the DH system in terms of hypergeometric functions. We then analyze the behavior of the first
integrals as functions of the dependent variables. In particular we find that the first integrals are
transcendental and nonmeromorphic even though in certain cases, the general solution is single-
valued in the complex-plane. Indeed, the nonexistence of meromorphic first integrals for the
classical DH equations was proved in Ref. 19. Finally, in Sec. IV we consider the dynamics of the
DH system as a Nambu—Poisson flow in a three-dimensional manifold and investigate the alge-
braic properties of the underlying Nambu—Poisson structures.

II. SOLUTION OF THE DH SYSTEM

In this section we outline the procedure of constructing the general solution dfLEfpl-
lowing the method discussed in Ref. 3. The maivixn Eq. (1) is a complex-valued function of
the (complex independent variable In this article, we study the case where the symmetric part
M, of M hasdistincteigenvalues. The degenerate cases corresponding to eigenvalues with higher
multiplicities have been studied in Ref. 3.

The matrixM is first decomposed into symmetric and skew-symmetric parts and then the
symmetric partM; is diagonalized by a complex orthogonal matiikhis is possible because of
our assumption that the eigenvalueshdf are distinct. Thus we have

M=M¢+M,=P(d+a)P %,

PeSO(3C), d:=diag(w;,w,,w3) Where thew;, i=1,2,3, are distinct, and the elements of the
skew-symmetric matriba are denoted aa;,:=73, a3:=71, andas:=7,. Using the above fac-
torization of M, Eq. (1) can be transformed into EQR) with 72:=75+ 75+ 73, together with the

linear equationP= — Pa for the matrixP. The equations for the skew-symmetric part,
1= —r(wytws), 7= 7m(oztoy), 3= - T3(0;twy),

can be integrated to obtain
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2 2 2 2 2 2
1= aj(w1—wy)(w3—wy), To=as(w—w3)(w1—wy), 73=a3(w;—wy)(w— wy),

wherea;, a,, andas are arbitrary constants. This defingsin terms of thew; in Eq. (2). Once
a solution of the DH syster(?) has been found, the matri¥ can be reconstructed after solving

the linear equationR=— Pa) for P.
In order to solve Eq(2), we set

1d s 1d s 1d

S
w1:—§&|nm, w2=———ln— w3=———lng, (3)

where the functiors(t) is given by the cross-ratio

w1 W3

S:

(4)

Wy — W3 ’
w;# wj wheni#j. Then it follows from Eq.(2) thats(t) satisfies the Schwarzian equation

2'52

+ EV(S):O' (5

g

d(s 1
dtls] 21s

with

2 2 2, 2 2
l-a5 1-a3 ajtaz—ai—1

Vio=—g +(S_1)2+ s(s—1)

The solutions(t) of Eq. (5) is obtained implicitly by setting

uy(s)

Hs)= us(s)’

(6)

whereu,(s) andu,(s) are two independent solutions of the Fuchsian differential equation

du 1
E—’_ZV(S)UIO (7)

with three regular singular points at 0, 1, andThe transformation
u(s):SC/Z(l_S)(a+b7C+1)/2X(S) (8)

maps Eq(7) to the Gauss hypergeometric equation

d?x dx
s(l—s)@+[c—(a+b+1)s]&—abx=0, 9

wherea=(1+ a1~ ar,— a3)/2, b=(1—a;— ay,—a3)/2, andc=1—a,. Thus we have the fol-
lowing.

Proposition 1: The general solution of the DH system (2) is given by Eq. (3) where the
function t) is defined by the inverse of the ratitsj= y1(S)/x»(s) of two linearly independent
solutions of the hypergeometric equation.(9)

Equation(6) describes the conformal mapping of the upf@rlowen half s-plane onto the
interior of a triangular region T bounded by three circular arcs in the compiane(see, e.g.,

Ref. 22. When the parameters,, «,, @3 are non-negative real numbers satisfyiag+ a,
+ a3<1, the circular arcs of T form anglesa,, ma,, mwas at the vertices which are the images
of the singular points=0, s=1, ands= of Eq. (7). The inverse map(t), which solves Eq(5),
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is analytic in the interior of T and can be analytically extended by inversions across its boundary.
If the parameters assume the values=1/p;, a,=1/p,, a3=1lp3, wherep,, p,, p; are
positive integers ore, thens(t) can be extended to a single-valued, meromorphic function in a
region D which is the uniform covering of an infinite number of nonoverlapping circular triangles
obtained by inversions across the boundaries of T and its images. The bodBdafryp contains

a dense set of essential singularities and forms a movable natural boundary. However, for general
values of the parameters,, a,, a3 the functions(t) is densely branched about the movable
singularities at the vertices of T. The solutiongt) to the DH system given by E@3) inherit the

same singularity structure aét) and are also branched in the compteane for generic choices

Of a1, 0y, 3.

lll. FIRST INTEGRALS AND ACTION-ANGLE VARIABLES

In the previous section we outlined a mechanism for expressing the general solution of the DH
system via the solutions of a second-order, linear equéTipIThis linearization scheme given by
Egs. (3)—(7) is implicit since the Schwarzian functiog(t) is the inverse of the ratio of the
solutions of the linear equation. The first integrals of the DH system are determined by the
arbitrary constants parametrizing the space of general solutions for the linear eqéatidow-
ever, these integrals do not have a simple dependence on the DH vatiglilas to the implicit
nature of the linearization process. In this section, we will discuss the properties of the first
integrals as functions of the DH variables.

Let u; and u, be any two linearly independent solutions of E) with Wronskian
W(uq,u,)=u,us5—u,u; =1, where prime denotes differentiation with respecstd@he general
solution of the Schwarzian equatidb) is given implicitly by [cf. Eq. (6)]

H(s) = JoUs(S) = J1Ux(s)
()= loui(s)—luy(s)’

(10

wherel , andJ,,, «=1,2, are constants satisfyihgd,—1,J;# 0. Only three of the four constants
can be chosen independently because it is evident fron{1Bythat only their ratios are related
to s(t) and its first twot-derivatives. Therefore, without loss of generality we take them to satisfy
I,J,—1,J,=1. Differentiating Eq(10) twice with respect t® we obtain two linear equations for

I, andl,:
|2U1_|1U2:.Sl/2, |2u1_|1Ué:%.573/2§,
whose solutions are
do,
_ _a—12 _
IQ_T, ¢a—S Ua(S), a=1,2. (11)

The remaining two constants are then obtained from Et®. and (11) and the normalization
I,J,—1,J,=1. They are given by

J=tly—,, a=1,2.

Viewed as functions of, s, s ands, thel, andJ, are first integrals for the Schwarzian equation.
This fact can be verified directly by differentiating the expressions fandJ,, with respect td,
and using Eq(5). Moreover, by solving the functiors s ands from Egs.(3) and(4), thel , and

J, can be expressed in terms of the DH varialkdeandt. Hence, they are also integrals of motion
for the DH system. The explicit expressions oy, andl, in terms of the DH variables are as
follows:
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— [ 2 M (o
¢a= 2r(wi)ua(s(wi))v Ia= r(w) ué(s(wi))_(wl_wZ_wS) @ua(s(wi))l

12

where r (o) = J(w,— w3)/ (01— 0,) (w;— wz) and s(w;) is given by Eq.(4). Equation (12)
[equivalently, Eq.(11)] represents a nonalgebraic, transcendental transformation defined via the
solutionu,, of the Fuchsian equatiafY), between thew; (or s, 5, 8) and the variable§g, ,1,}. In

terms of these new variables, the nonlinear DH syst@necan be reformulated as a linear Hamil-
tonian systenjcf. Eq. (11)]

oH : oH 12413
o= =lar la=—5—=0, H= . a=12, (13

together with the algebraic constraint

b1l— ol 1=W(uy,up)=1 (14

among the coordinateg, and the canonically conjugate “momenth. Since the latter system
(13) can be integrated by quadratures, the canonical coordifbieg,} can be regarded as
playing the role of the action-angle variables for the DH system. The dynamics in the four-
dimensional phase space is restricted to the constraint subspace defined(l) E€his repre-
sents an indefinite quadric which is a connected but noncompact, three-dimensional submanifold
of the phase space. The flow is determined by a one-dimensional linear subspacec,d,
=1, obtained as the intersection of the constraint submanifold with the level sets of the first
integralsl;=c4, 1,=c,, wherec;, c, are constants determined by the initial conditiongZn

The above results lead to the next proposition.

Proposition 2: Letw; , i =1,2,3,be a solution of the generalized DH system (2) and letw,
be any two solutions of Eq. (7) with unit Wronskian. Therahd J,=tl ,— ¢,, «=1,2, are first
integrals of the DH system, wheuk, and |, are given by Eq. (12). Furthermore, the DH system
are equivalent to a constrained Hamiltonian system given by Eqgs. (13) and (14)dwjth,} as
the canonical variables. The associated Hamilton's equations (13) are linear and can be solved by
gquadratures

The first integrald ,, «=1,2, are constant functions bdfin the domain of analyticity of the
w;(t), and their values are determined by the initial conditions. Howeverl jtege not single-
valued as functions ob; (or equivalently of the Schwarzian variablgss, §). The nonanalytic
behavior is essentially due to the fact that in the competane, continuation along closed
circuits around the branch poings=0, s=1, ands=c transforms any two independent solutions
of the Fuchsian equatiaiT) by the corresponding monodromy matrix. The branching properties of
the I, can be characterized explicitly by expressing them as functiors &f ands and the
fundamental matrix of solutions of the hypergeometric equat®n If the u, in Eq. (11) are
replaced by the solutions of the hypergeometric equa®by using the transformatiof8), then
this yields

X1(8)  x2(s)

R VST

: (19

where

atb+1-cs &
&) — <C/20 1 _ o\ (atb—c+1)/251/2 & B — _
g(s,5)=s"(1—ys) S and \(s,5,5) 25(1=9) 252
It is clear from Eq.(15) thatl, are not branched as functions®&nd that they have square-root
branch points as a function &fat 5=0 ands=< (in fact, Ii are single-valued as functions of
both s ands). Whens and$ are held fixed, the only places where thecan be branched are at
s=0,s=1, ands=». Let y, andy, be two closed curves with a common base point in the finite
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complex s-plane enclosing the points=0 ands=1, respectively, and traversed once in the
positive direction. Analytic continuation along, and y,; transforms the fundamental matrix of
solutions of Eq.(9) according to

Xx1(s)  xa(s)
x1(s)  xa(s)

X1(8)  x2(s)

XS xxs))”

n=0,1.

Vu! o

For generic values ofy, b, ¢ and for the choice of basis solutiong,=F(a,b,c;s), x»
=F(a,b,a+b—c+1;s) of the hypergeometric equation, the monodromy matriesare given

by?®
1 e*Zﬂ'ib_e*ZWiC
M 0= (

0 e—2'n'ic

e72ﬂ-i(a+bfc) 0
and M;= 1—e 2mi(a—c) 1/°
The only other source of branching in E@5) arises from the analytic continuation efalongy,,
which yields

imc

Yo: o€, y;: gr>eT@Tb=C 4

The branching as=« can be determined from the branchingsatO ands= 1. A closed circuit
(defined in a similar way as foy, and y,; above around the poins=o e CP' is homotopic to
Yo L y[l. The corresponding monodromy matrix is giveniy, = (M;M,) ~*. The monodromy
matrix M for any closed circuity can be expressed in terms of the fundamental monodromy
matricesMy and M, associated withy, and y;, respectively. Finally, taking all the sources of
branching into account ifil5), we obtain the following result.

Proposition 3: The first integrals of the DH system given by (15) are multi-valued functions of
s with branch points at 50, s=1, and s=. The multi-valued behavior can be expressed in
terms of the fundamental determinations:

Yo: [l 12]—[l |2]Moeim: yi: [l l=[l |2]M19i7(a+b_c):

where My and M; are the monodromy associated with a fundamental matrix solution of the
hypergeometric equation (9) around the closed curygsnd vy, , respectively

Remark 1:The multi-valued behavior of the first integrdls may also be described in terms
of the DH variablesw; . It follows from Eg. (4) that the branch points=0, s=1, ands=
correspond to the complex diagonal hyperplangs w;, i # j. The monodromy group generated
by My and M, determines dcomplex representation of the fundamental growp(,M3) on the
complement/\/l3=Cs\U{wi=wj ,i#]j} of the arrangement of the diagonal hyperplane€
Arnold,% in his study of pure braid groups, discussed the cohomology of the complewtgraif
the diagonal hyperplane arrangemencit In particular, he proved that the integral cohomology
ring H*(M,,,Z) is isomorphic to the algebra generated by the closed differential one-forms:
)= (1/2mi)d In(w;—wy), j #k which satisfy wyUwm+ ojnHognt omdde=0. Note that for
n=3, there is only one independent relatien,Uw,3+ wo3l0ws+ w310w1,=0, which is indeed
satisfied by the parametrization of thg in Eq. (3).

Remark 2:The first integrals in Eq(15) for the classical DH systemaf = @, = a3=0) are

expressed in terms of the special hypergeometric(Bgwith a=b=3, c=1. In this case, the

monodromy matrices with respect to the bagjs=F(3,3,1;s) andy,=iF(3,3,1;1—s), are given

by
1 q 1 0
Mqy= 01 and M= o 1)

The corresponding monodromy group is the subgB® (principal congruent subgroup of level
2) of the modular group SL(Z), defined ad’(2):={ge SL(2Z)|g=Id(mod 2)}. Whena=b
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=24, c=1in Eq.(9), the associated monodromy group is the full modular group S)(&hich is

isomorphic to the pure braid grou; of three colored strands. Similar representations of pure
braid groupB, are given by the monodromy group associated with particular Picard—Fuchs
equations witm regular singular points which arise in the theory of Frobenius manifoldss is
related to Arnold’s work (see Remark Ylon the presentation of pure braid group as the funda-
mental group of the complementt, under the action of the Coxeter grosy .

It is important to note that the first integrdls, J, remain multi-valued independent of the
choice of parameters, even in the particular cases where the general solution is single-valued in its
domain of existence. For instance, the classical DH sy$feqn(2) with 7=0] can be solved in
terms of the elliptic modular function and the general solution is analytic inside a circle D in the
complext-plane(see, e.g., Refs. 7 and.1t was shown in Ref. 19 that the classical DH system
does not possess a meromorphic first integral. This is consistent with our results that first integrals
do indeed exist, but they are nonalgebraic and multi-valued functions @$;th&hus there is no
natural connection between the analyticity properties of the solution and the first integrals for the
DH system. To establish such connection for nonlinear differential equations is a very delicate
issue. For specific cases of Hamiltonian dynamical systems, it was proved under certain assump-
tions that if the system admits solutions that are branched, then the system can not possess analytic
first integrals independent of the HamiltonighFurthermore, Ziglin’s work’?8 reveals that
branching of solutions and the absence of single-valued first integrals in certain Hamiltonian
systems arédoth consequences of the same complex singularity structure of the soly&bns
though one does not necessarily imply the othidowever, it should be noted that these results do
not rule out the possibility that multi-valued first integrals may exist. Indeed this is the case for the
DH system which serves as an important example of equations that are integrable in the sense that
the general solutions can be expressed in terms of linear equations, yet the constants of integra-
tions are not single-valued functions of the dependent variables.

IV. POISSON STRUCTURES

The DH equationg2) may be viewed as a complex dynamical system on a manifdlaf
(comple® dimension 3 where the DH variables, i =1,2,3, are local holomorphic coordinates on
M. (Note:In this section the standard notation for coordinate functiohis used instead ab; to
denote the DH variablesSolutions of Eq(2) determine a flow given by the integral curves of a
holomorphic vector fieldX e 7M expressed in local coordinates' as X=X'g,, X':=w v*

— o' (o' + o)+ 72, i#]#Kk, and cyclic. Here),:=d/dw', and summation over repeated indices is
implied. Denote byAP(M) and A4(M) the respective spaces @fiolomorphig p-forms and
g-vectors(contravariant, skew-symmetrigtensor fields on M. Let ve A3(M) be a nondegen-
erate three-form given in terms of local coordinates by

v= do'0dew’0dw?, (16)

A(wl,wz,ws)
for some functiom e C*(M), A+ 0, which is to be determined later. Using the three-forme
define the dual ma:A4(M)—A% 9 M) and its inversed " AP(M)—Az_,(M) by the
inner products

D(A):=ipr, D YPB):=i58,

whereAe Ay(M), Be AP(M), andv:=Ad,0d,005 € A3(M) is the inverse of the three-form
In particular, note that fop;, B, A(M), the vectorv=d 1(B,08,) satisfiesi,B,=i,8,
=0.

Since the first integral$; and |, of Eq. (2) are constant along the integral curvesXgfit
follows thatiazix(dla)=0, a=1,2. The one-formsll; anddl, span a two-dimensional, inte-
grable (in the Frobenius sense&o-distribution of 7 M, dual to the vector fieldX. Hence the
vector field can be expressed ¥s=Gd (dl,0dl,)=Gi-(dl,0dl,) for some functionG
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e C*(M). Without any loss of generality, we can $&t1 and thus determine the functidnin
Eq. (16). A straightforward calculation using the explicit forms of thgin Eqg. (12) yields

Aot 0%, 0%) =4(0’— 0%)(0®— o) (0'— v?). (17

Therefore we have the following characterization of the DH vector field

Proposition 4: The DH system (2) defines a flow in a three-dimensional, complex mawifold
equipped with a nondegenerate three-farrgiven in terms of local coordinates by Egs. (16) and
(17). The flow is an integral submanifold @8ff generated by the vector fieldeXZM which is
dual to the integrable codistribution spanned by the one-formsasd dl,. That is

X=®"1(dl,0dl,)=7(-,dl,,dl,). (18

Let H denote the union of the complex hyperplanes givemby !, i #j. It is evident from
Egs.(17) and(12) that the three-formv and the one-formdl,, dl, are singular on H. Hence the
manifold M is prescribed byM =C*H on which Eq.(18) is valid and defines the holomorphic
vector field X. The flow defined by Eq(18) on M corresponds to the functions'(t) which
remain distinct for allt in the domain of analyticity of the DH solutions. It should be noted,
however, that the DH flow itselfgiven by Eq.(2)] is not singular on H, but the corresponding
vector field can no longer be defined via Ef8). In fact, the complex planes'=w!, i#j, are
invariant manifolds of the DH flow. The flow restricted to these planes corresponds to the special
cases of Eq(2) which are solved either by quadratures or in terms of Bessel's equfation.

It follows from Proposition 4 that the intersection of the two-dimensional level sets of the first
integralsl,; andl, defines(locally) a unique solution curve for E¢2) on M. We will next show
that M is a Poisson manifold with a pair of Poisson structures defined in a natural way via the first
integrals!,. Furthermore, the DH vector fielX is locally Hamiltonian with respect to both
Poisson structures.

A Poisson structure oM is specified by a bi-vectds e A ,(M) whose Nijenhuis—Schouten
bracket with itself, defined by the three-vecf@,B]s=0. In terms of the coordinatas',

B=B'9,0d;, [B,B]:=4(B1)B"+g(B*)B"+4 (B )B=0.
The Poisson bracket of functioisg e C*(M) is the pairing defined by

{f,g}+=B(df,dg),

which is skew-symmetric and satisfies the Leibniz r{ilg,h}=f{g,h}+g{f,h} and the Jacobi
identity {{f,g},h}+{{g,h},f}+{{h,f},g}=[B,B](df,dg,dh)=0, for all f,g,he C*(M). A
Hamiltonian vector fieldX,; with respect to a Poisson structuBeis defined asX:=B(-,dH)
whereH(w') is the Hamiltonian function on\l. The Hamiltonian flow given by the integral
curves ofXy corresponds to the solution of the system

o' =Xy(o")={o' H}, i=12.3.

In three dimensions it is convenient to introduce the Poisson one-farih}(M) (see, e.g.,
Ref. 12 by 6= ®(B) =igv, which is the dual of the Poisson bi-vector. The Jacobi identity can be
reformulated as the Frobenius integrability condition for the Poisson one-#o8pecifically, we
have the following.

Lemma 1 Be A,(M) is a Poisson bi-vector if and only if the dual one-fodn(B):=6
e AY(M) satisfiesgd 6= 0.

Proof: If Be A,(M) andve A3(M), then we have the contraction formulsee, e.g., Ref.

20)

V([B,B]s):2iniBV_iBinV.
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Since v is a top-degree holomorphic forna,y=0. Furthermore, we havB=® ~1(8)=7(6).
Hence

v([B,B]o) =2igdf=2%(60d6)

and the result follows.
In terms of the function$, andl,, define the bi-vectors

B,:=® Xdl)=7(-,-,dl,), a=12, (19

on M. The corresponding dual one-forrdyB,)=dl, are exact. Therefore it follows immedi-
ately from Lemma 1 that thB, are Poisson bi-vectors. The DH vector fiddn Eq. (18) can be
expressed as

X=—By(+,dlp)=By(-.,dly), (20

which is a Hamiltonian vector field with respect to both Poisson strucBige#s a result, the DH
equationg2) satisfy the Poisson bracket formulations

o'=X(o")={o' 1 },={0',— 15},

where{g,h},=B,(dg,dh), a=1, 2. Moreover,B, and B, are compatible Poisson structures,
namely, there exist functions;, \, such that the linear combinatidd=\ 1B+ \,B, is also a
Poisson bi-vector. It is easy to verify that the corresponding dual one-tos (B)=\qdl,
+\,dl, satisfies Lemma 1 whexy, \, are arbitrary differentiable functions of andl,. For a
given Poisson structur®, it is also possible to find a corresponding Hamiltonian function
H(l,,1,) such thatX=B(-,dH)= " *(dHO#) gives the DH vector field as in E¢18). This is
equivalent to the first-order, linear partial differential equatiog(dH/dl1) —N(dH/d1,) =1,
which can be solved by the method of characteristics. Phdses not have a unique representa-
tion as a Hamiltonian vector field; the simplest forms are the ones given ii2Bg.A Hamil-
tonian system with compatible Poisson structures is called a bi-Hamiltonian system. The DH
vector field X in Eq. (20) is therefore a bi-Hamiltonian vector field with respect to the pair of
compatible Hamiltonian structurd¢éB,,—15,),(B,,l1)}.

Remark 3:Since M is odd-dimensiona]dim(M)=3], the B, are degenerat&ank 2 bi-
vector fields onM. It follows from Eq.(19) thatB,(-,dl;)=B,(-,dl,)=0. Therefore], andl,
are the Casimir functions for the Poisson structBesand B, respectively, and satisfig,| .},
=0, «=1,2, for anyge C*(M). Furthermore, sinc®,(dl,,dl,)={l,,l,},=0, the first inte-
gralsl, andl, are in involution.

Remark 4:The flow associated with the vector fieil preserves the three-form on M.
Indeed we have

Lyv=d®(X)=d[PP (dl,Odl,)]=d(dl,Odl,)=0.

Note that on a three-dimensionadal phase spacey would be phase volume element that is
invariant along the flow ofX. Thus the conditionCy»=0 on the DH phase spac&t can be
regarded as the holomorphic extension of the Liouville theorem on an odd-dimensiomgllex
phase space.

We summarize the results discussed above.

Proposition 5: The DH system (2) represents a bi-Hamiltonian flow\drcorresponding to
the Poisson structures B-®~*(dl,), B,=® *(dl,); and Hamiltonians—1,, |, respectively.
The DH vector field X is Hamiltonian with respect to both Poisson structures as given by Eq. (20).
Furthermore, the first integrals;land I, are in involution with respect to both Poisson structures

The local expressions for the Poisson structlBgsare considerably simple in terms of the
“action-angle” variables{l , , ¢, ,«=1,2} introduced via Eqs(13) and(14) in Sec. Il. Any three
of the four variables can be taken to form a natural set of local coordinatestomhile the
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remaining variable is solved algebraically using the constraint equét®nFor example, if we
take{¢1,l1,1,} as new local coordinates ol and use the relations between theand{l ., ®,}
from Eq.(12), then in the new coordinates the three-vedtdinverse ofv in Eq. (16)] takes the
form

F=1,—-0-2 2
VTG4, o, aly

Furthermore, from Eq$19) and(20) we have the following expressions for the Poisson bi-vectors
and the DH vector field:

I i O i

d

B :IlﬁTﬁl'

B X

I i O

Both Hamiltonian structuresB(;,—1,) or (B,,l,) yield the same dynamical equatioraﬁi:Il,
I,=1,=0 which together with the algebraic constrajifi. (14)] are then equivalent to the DH
dynamics given by Eqg13).

Note that the two sets of fundamental Poisson brackets,

{¢1.1141=0, {l5,¢1}1=11, {l1,15}:=0,
{b1.l12=11, {l2,¢1}2=0, {l1,l15},=0,

with respect to the respective Poisson structi&eandB,, arelinear in the coordinate ;. Each

set corresponds to a Lie—Poisson brackei\drinduced by certain three-dimensional Lie algebra

g. The Lie—Poisson structure can be defined by identifyirdgvith the dualg* of g, and the linear
coordinate functiongy, ,k=1,2,3} ong* with the coordinate$¢,,l,l,}. Then the fundamental
Lie—Poisson brackets induced loyon M are defined agy; ,yj}::cijkyk, where c:j- are the
structure constants associated with the Lie algebra br@ekﬁej]zc!‘j e, with respect to a basis
{e;,i=1,2,3 of g. Letg, andg, denote the Lie algebras corresponding to the first and second set
of fundamental Poisson brackets, respectively. Then it is evident fronfEqgthat bothg; andg,

are solvable Lie algebras with one-dimensional centers corresponding to the respective Casimir
functionsl ; andl,. However,g; is nilpotent of degree 2, wheregs contains a one-dimensional
ideal generated by the element correspondinlg twhose normalizer ig, itself. In fact, it is easy

to verify that choosingany three of the four “action-angle” variables as local coordinatesAdn

yields two distinct, canonical Lie—Poisson structures which correspond to solvable Lie algebras,
moreover, one of the Lie algebras is nilpotent.

The volume formy together with the Hamiltoniank; and —1, induce a Nambu—Poisson
structure on the manifold1. Namb@#* proposed a generalization of the Poisson bracket to study
the dynamics of a “canonical triplet” of variables in a three-dimensional real phase space. In its
simplest form, the canonical Nambu bracket of functigns C*(R®), i=1,2,3, is given by the

(21)

Jacobian
3(91,92,93) _
{91,92,03}= m=6(d91,d92,d93),
where x', i=1,2,3, are local coordinates and € is the inverse of the standard volume form e

=dx'Adx’Adx® on R*®. The Nambu dynamics is prescribed as &' ={x',H,H,} in terms of two
“Hamiltonian” functions H, and H,. Takhtajan® extended the Nambu formalism to higher di-
mensions and introduced the analog of the Jacobi identity for Nambu brackets—the so-called
“fundamental identity.” An example of a Nambu—Poisson structure (of order n) on an
n-dimensional manifold N with a volume form wyeA"(N) is the n-linear map {-,...,-}:
C°°(./\/‘)®...®C°°(./\/}l—>C°°(./\/‘) defined as

n factors
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dg,0dg,0--0dgn:={91.,92,.--.Gn} Vs

for functions g;e C*(N), j=1,2,..n. It can be shown that the bracket defined above is a
Nambu—Poisson brack&,namely, it is skew-symmetric, a derivation, and satisfies the “funda-
mental identity”

{fla'"vfnfli{gla"'!gn}}:izl {gla"'vgifl!{flv"'1fnflvgi}1gi+l!"'vgn}'

The Nambu formulation of the DH system arises as a special cas8) of the above example
with a Nambu—Poisson structure @vi prescribed by

{01.92.93}:=® *(dg,0dg,0dgs) =7(dg; ,dg,,dgs). (22

Then from Eq.(18), the vector fieldX is the generator of a Nambu—Hamilton flow on the DH
phase spac# given by the actiory=X(g)={g,!,l,} on functionsg e C*(M). Therefore, we
have the following.

Proposition 6: The DH system (2) is equivalent to the Nanatbamilton equation of motions
w'={w' 11,15}, i=1,2,3,with respect to the Namb#Poisson bracket defined by Eq. (22) together
with the “Hamiltonians” I; and |,. The vector field X in Eq. (18) is a Nambidamiltonian vector
field.

Remark 5The essential difference between the DH bracket and the canonical Nambu bracket
is the “discriminant” functionA(wq,w,,w3). In the DH caseA is given by Eq.(17), whereas
A=1 for the canonical Nambu bracket.

Remark 6:It is possible to construct an infinite family of Poisson brackets characterized by
functions| e C*(M) as {f,g},={f,q,1}, from the Nambu—Poisson bracket in E&2). The
brackets defined by the Poisson bi-vectBrsin Eq. (19) are in fact induced in this way from Eq.
(22) with I=1,, «=1,2. In general, a Nambu bracket of orager2 on a manifold of dimension
k=n can induce infinite families of lower order Nambu structures, including families of Poisson
brackets

Remark 7:The “fundamental identity” for the bracket defined by E&2) is equivalent to the
statement that any Nambu—Hamiltonian vector field is a derivation of the Nambu bracket. Indeed,
consider the vector fieldY="7(-,df,,df,) where f;, f,e C*(M) are the “Hamiltonians.”
Clearly from Eq.(22), Y(g)={g,f,,f,} for all ge C*(M). Y also preserves the volume form
(and its invers®), sinceLyv=diyr=d(df,0df,)=0. Now taking the Lie derivative of Eq22)
with respect toY and using the Leibniz rule to expand the right-hand side gives the “fundamental
identity” for the bracket in Eq(22).

V. CONCLUSION

In this article, we studied the general solution and first integrals of the generalized DH system
(2). We showed that the integral curves of the solution are locally defined by the intersection of the
level sets of the first integrals in a three-dimensional phase spéeehich is a Nambu—Poisson
manifold. In order to study the global dynamics, it is necessary to consider the phase flow on the
covering manifolds associated with the multi-valued first integrals. The covering manifolds are
generally densely branched for the DH system, although it is possible to obtain finite or denumer-
able infinite sheeted covering @#f corresponding to particular choices of the DH parameters. In
these latter cases, there may be several interesting avenues of investigation including the topo-
logical properties of the DH phase space as well as the conformal class(®fi@lariant hyper-
complex manifolds which correspond to these special DH solutions.

It is also worth mentioning that the DH system can be regarded as a gradienttew:
(-,dV) for some flat, indefinite metrigy~ . The potential functiorV is a homogeneous polyno-
mial of degree 3 in thev;, invariant under cyclic permutation ofv( ,w,,w3). It is conceivable
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that further insights into the complex dynamics of the DH system may be gained by considering
it as a gradient flow with a polynomial potential rather than a Nambu—Poisson flow with multi-
valued Hamiltonians.
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