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A third-order system of nonlinear, ordinary differential equations depending on
three arbitrary parameters is analyzed. The system arises in the study of SU~2!-
invariant hypercomplex manifolds and is a dimensional reduction of the self-dual
Yang–Mills equation. The general solution, first integrals, and the Nambu–Poisson
structure of the system are explicitly derived. It is shown that the first integrals are
multi-valued on the phase space even though the general solution of the system is
single-valued for special choices of parameters. ©2003 American Institute of
Physics. @DOI: 10.1063/1.1556194#

I. INTRODUCTION

The study of integrable or solvable nonlinear systems dates back to the fundamental wo
Euler, Liouville, Riemann, Poincare´, and many others. Surprisingly~perhaps!, there is still no
single adequate definition of ‘‘integrability.’’ Certainly, nonlinear systems which can be expli
solved by quadratures in the real domain should be considered as integrable, as should the
tonian systems with action-angle variables~integrability in the Liouville sense!. In contrast, the
notion of integrability in the complex plane is still in its early stages of development. For exam
if the general solution of a nonlinear ordinary differential equation is everywhere single-valu
its domain of existence, then we consider the equation to be integrable in the complex
Fundamental contributions of Kovalevskaya,17 Painlevé,24 and more recent work27,28 have led to
some progress toward the understanding of complex integrability~or nonintegrability!. But the
complex behavior of large classes of physically important nonlinear equations still remains
completely understood. Some of these equations can be ‘‘solved’’ in terms of linear equatio
are not single-valued in the complex plane.

In this article we consider the system of nonlinear ordinary differential equations

Ṁ5~adj M !T1MTM2~Tr M !M , ~1!

for a 333 matrix valued functionM (t) where adjM is the adjoint matrix ofM satisfying
(adj M )M5(detM)I, MT is the transpose ofM and the dot denotes differentiation with respect
t. The system~1! was obtained as a dimensional reduction of the self-dual Yang–Mills~SDYM!
equations corresponding to an infinite-dimensional gauge group of diffeomorphisms Diff(S3) of a
three-sphere.7 These equations were also derived in Ref. 16 where they were shown to rep
an SU~2! invariant hypercomplex four-manifold. Since the Weyl curvature of a hypercom
four-manifold is self-dual, Eq.~1! describes a class of self-dual Weyl Bianchi IX space–times w
Euclidean signature.6

In the next section we will review the fact that Eq.~1! reduces to the system

v̇15v2v32v1~v21v3!1t2,

a!Electronic mail: chuck@math.uccs.edu
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v̇25v3v12v2~v31v1!1t2,
~2!

v̇35v1v22v3~v11v2!1t2,

t25a1
2~v12v2!~v32v1!1a2

2~v22v3!~v12v2!1a3
2~v32v1!~v22v3!,

for the functionsv i(t), i 51,2,3, and wherea1 , a2 , anda3 are constants. We will refer to system
~2! as the generalized Darboux–Halphen~DH! system, which will be the subject of our discussio
for the remainder of this article. Equation~2! with t[0, becomes the classical DH system whi
first appeared in Darboux’s work on triply orthogonal surfaces8 and was later solved by Halphen.15

In subsequent studies, the classical DH system has arisen as the vacuum Einstein equa
hyperkähler Bianchi-IX metrics11,5 and in the similarity reductions of associativity equations o
three-dimensional Frobenius manifold.9 Halphen showed that the general system~2! can be solved
in terms of hypergeometric functions.14 Special solutions have also been given in terms of th
functions and automorphic forms.7,23,1 Special cases of Eq.~2! arise in the study of solvable
models of spherically symmetric shear-free fluids in general relativity13 as well.

As mentioned earlier, it was shown in Ref. 7 that Eq.~1! arises as a reduction of the SDYM
equations. From the Lax pair for SDYM, it is possible to derive a linear problem~see, e.g., Ref.
2! which can be employed to solve the initial value problem for Eq.~1!. This linear problem is
related to the monodromy preserving deformations corresponding to the Riccati reduction
PainlevéVI equation. Analysis of Eq.~1! using the associated linear problem was given in R
6 and 16.

In Sec. II we outline the reduction of Eq.~1! to the generalized DH system~2! and derive its
general solution. In Sec. III we discuss the first integrals and a set of ‘‘action-angle’’ variable
the DH system in terms of hypergeometric functions. We then analyze the behavior of th
integrals as functions of the dependent variables. In particular we find that the first integra
transcendental and nonmeromorphic even though in certain cases, the general solution is
valued in the complext-plane. Indeed, the nonexistence of meromorphic first integrals for
classical DH equations was proved in Ref. 19. Finally, in Sec. IV we consider the dynamics
DH system as a Nambu–Poisson flow in a three-dimensional manifold and investigate the
braic properties of the underlying Nambu–Poisson structures.

II. SOLUTION OF THE DH SYSTEM

In this section we outline the procedure of constructing the general solution of Eq.~1! fol-
lowing the method discussed in Ref. 3. The matrixM in Eq. ~1! is a complex-valued function o
the ~complex! independent variablet. In this article, we study the case where the symmetric p
Ms of M hasdistincteigenvalues. The degenerate cases corresponding to eigenvalues with
multiplicities have been studied in Ref. 3.

The matrix M is first decomposed into symmetric and skew-symmetric parts and then
symmetric partMs is diagonalized by a complex orthogonal matrix.~This is possible because o
our assumption that the eigenvalues ofMs are distinct.! Thus we have

M5Ms1Ma5P~d1a!P21,

PPSO(3,C), dª diag(v1,v2,v3) where thev i , i 51,2,3, are distinct, and the elements of t
skew-symmetric matrixa are denoted asa12ªt3 , a23ªt1 , anda31ªt2 . Using the above fac-
torization ofM, Eq. ~1! can be transformed into Eq.~2! with t2

ªt1
21t2

21t3
2, together with the

linear equation:Ṗ52Pa for the matrixP. The equations for the skew-symmetric part,

ṫ152t1~v21v3!, ṫ252t2~v31v1!, ṫ352t3~v11v2!,

can be integrated to obtain
d 27 Apr 2003 to 158.125.1.23. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp



g

the
t

s

1753J. Math. Phys., Vol. 44, No. 4, April 2003 Integrals of a generalized Darboux–Halphen system

Downloade
t1
25a1

2~v12v2!~v32v1!, t2
25a2

2~v22v3!~v12v2!, t3
25a3

2~v32v1!~v22v3!,

wherea1 , a2 , anda3 are arbitrary constants. This definest2 in terms of thev i in Eq. ~2!. Once
a solution of the DH system~2! has been found, the matrixM can be reconstructed after solvin
the linear equation (Ṗ52Pa) for P.

In order to solve Eq.~2!, we set

v152
1

2

d

dt
ln

ṡ

s~s21!
, v252

1

2

d

dt
ln

ṡ

s21
, v352

1

2

d

dt
ln

ṡ

s
, ~3!

where the functions(t) is given by the cross-ratio

s5
v12v3

v22v3
, ~4!

v iÞv j when iÞ j . Then it follows from Eq.~2! that s(t) satisfies the Schwarzian equation

d

dt S s̈

ṡD2
1

2 S s̈

ṡD
2

1
ṡ2

2
V~s!50, ~5!

with

V~s!5
12a2

2

s2 1
12a3

2

~s21!2 1
a2

21a3
22a1

221

s~s21!
.

The solutions(t) of Eq. ~5! is obtained implicitly by setting

t~s!5
u1~s!

u2~s!
, ~6!

whereu1(s) andu2(s) are two independent solutions of the Fuchsian differential equation

d2u

ds2 1
1

4
V~s!u50 ~7!

with three regular singular points at 0, 1, and`. The transformation

u~s!5sc/2~12s!~a1b2c11!/2x~s! ~8!

maps Eq.~7! to the Gauss hypergeometric equation

s~12s!
d2x

ds2 1@c2~a1b11!s#
dx

ds
2abx50, ~9!

wherea5(11a12a22a3)/2, b5(12a12a22a3)/2, andc512a2 . Thus we have the fol-
lowing.

Proposition 1: The general solution of the DH system (2) is given by Eq. (3) where
function s(t) is defined by the inverse of the ratio t(s)5x1(s)/x2(s) of two linearly independen
solutions of the hypergeometric equation (9).

Equation~6! describes the conformal mapping of the upper~or lower! half s-plane onto the
interior of a triangular region T bounded by three circular arcs in the complext-plane~see, e.g.,
Ref. 22!. When the parametersa1 , a2 , a3 are non-negative real numbers satisfyinga11a2

1a3,1, the circular arcs of T form anglespa1 , pa2 , pa3 at the vertices which are the image
of the singular pointss50, s51, ands5` of Eq. ~7!. The inverse maps(t), which solves Eq.~5!,
d 27 Apr 2003 to 158.125.1.23. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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is analytic in the interior of T and can be analytically extended by inversions across its bou
If the parameters assume the valuesa151/p1 , a251/p2 , a351/p3 , where p1 , p2 , p3 are
positive integers or̀ , thens(t) can be extended to a single-valued, meromorphic function
region D which is the uniform covering of an infinite number of nonoverlapping circular trian
obtained by inversions across the boundaries of T and its images. The boundary]D of D contains
a dense set of essential singularities and forms a movable natural boundary. However, for
values of the parametersa1 , a2 , a3 the functions(t) is densely branched about the movab
singularities at the vertices of T. The solutionsv i(t) to the DH system given by Eq.~3! inherit the
same singularity structure ass(t) and are also branched in the complext-plane for generic choices
of a1 , a2 , a3 .

III. FIRST INTEGRALS AND ACTION-ANGLE VARIABLES

In the previous section we outlined a mechanism for expressing the general solution of t
system via the solutions of a second-order, linear equation~7!. This linearization scheme given b
Eqs. ~3!–~7! is implicit since the Schwarzian functions(t) is the inverse of the ratio of the
solutions of the linear equation. The first integrals of the DH system are determined b
arbitrary constants parametrizing the space of general solutions for the linear equation~7!. How-
ever, these integrals do not have a simple dependence on the DH variablesv i due to the implicit
nature of the linearization process. In this section, we will discuss the properties of the
integrals as functions of the DH variables.

Let u1 and u2 be any two linearly independent solutions of Eq.~7! with Wronskian
W(u1 ,u2)5u1u282u2u1851, where prime denotes differentiation with respect tos. The general
solution of the Schwarzian equation~5! is given implicitly by @cf. Eq. ~6!#

t~s!5
J2u1~s!2J1u2~s!

I 2u1~s!2I 1u2~s!
, ~10!

whereI a andJa , a51,2, are constants satisfyingI 1J22I 2J1Þ0. Only three of the four constant
can be chosen independently because it is evident from Eq.~10! that only their ratios are relate
to s(t) and its first twot-derivatives. Therefore, without loss of generality we take them to sa
I 1J22I 2J151. Differentiating Eq.~10! twice with respect tos we obtain two linear equations fo
I 1 and I 2 :

I 2u12I 1u25 ṡ1/2, I 2u182I 1u285 1
2ṡ

23/2s̈,

whose solutions are

I a5
dfa

dt
, fa5 ṡ21/2ua~s!, a51,2. ~11!

The remaining two constants are then obtained from Eqs.~10! and ~11! and the normalization
I 1J22I 2J151. They are given by

Ja5tI a2fa , a51,2.

Viewed as functions oft, s, ṡ and s̈, the I a andJa are first integrals for the Schwarzian equatio
This fact can be verified directly by differentiating the expressions forI a andJa with respect tot,
and using Eq.~5!. Moreover, by solving the functionss, ṡ ands̈ from Eqs.~3! and~4!, the I a and
Ja can be expressed in terms of the DH variablesv i andt. Hence, they are also integrals of motio
for the DH system. The explicit expressions forfa and I a in terms of the DH variables are a
follows:
d 27 Apr 2003 to 158.125.1.23. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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fa5A2r ~v i !ua~s~v i !!, I a5A 2

r ~v i !
ua8 ~s~v i !!2~v12v22v3!Ar ~v i !

2
ua~s~v i !!,

~12!

where r (v i)5A(v22v3)/(v12v2)(v12v3) and s(v i) is given by Eq.~4!. Equation ~12!
@equivalently, Eq.~11!# represents a nonalgebraic, transcendental transformation defined v
solutionua of the Fuchsian equation~7!, between thev i ~or s, ṡ, s̈) and the variables$fa ,I a%. In
terms of these new variables, the nonlinear DH system~2! can be reformulated as a linear Ham
tonian system@cf. Eq. ~11!#

ḟa5
]H

]I a
5I a , İ a52

]H

]fa
50, H5

I 1
21I 2

2

2
, a51,2, ~13!

together with the algebraic constraint

f1I 22f2I 15W~u1 ,u2!51 ~14!

among the coordinatesfa and the canonically conjugate ‘‘momenta’’I a . Since the latter system
~13! can be integrated by quadratures, the canonical coordinates$I a ,fa% can be regarded a
playing the role of the action-angle variables for the DH system. The dynamics in the
dimensional phase space is restricted to the constraint subspace defined by Eq.~14!. This repre-
sents an indefinite quadric which is a connected but noncompact, three-dimensional subm
of the phase space. The flow is determined by a one-dimensional linear subspace:c1f12c2f2

51, obtained as the intersection of the constraint submanifold with the level sets of the
integralsI 15c1 , I 25c2 , wherec1 , c2 are constants determined by the initial conditions in~2!.

The above results lead to the next proposition.
Proposition 2: Letv i , i 51,2,3,be a solution of the generalized DH system (2) and let u1 , u2

be any two solutions of Eq. (7) with unit Wronskian. Then Ia and Ja5tI a2fa , a51,2, are first
integrals of the DH system, wherefa and Ia are given by Eq. (12). Furthermore, the DH syste
are equivalent to a constrained Hamiltonian system given by Eqs. (13) and (14) with$fa ,I a% as
the canonical variables. The associated Hamilton’s equations (13) are linear and can be solv
quadratures.

The first integralsI a , a51,2, are constant functions oft in the domain of analyticity of the
v i(t), and their values are determined by the initial conditions. However, theI a are not single-
valued as functions ofv i ~or equivalently of the Schwarzian variabless, ṡ, s̈). The nonanalytic
behavior is essentially due to the fact that in the complexs-plane, continuation along close
circuits around the branch pointss50, s51, ands5` transforms any two independent solutio
of the Fuchsian equation~7! by the corresponding monodromy matrix. The branching propertie
the I a can be characterized explicitly by expressing them as functions ofs, ṡ, and s̈ and the
fundamental matrix of solutions of the hypergeometric equation~9!. If the ua in Eq. ~11! are
replaced by the solutions of the hypergeometric equation~9! by using the transformation~8!, then
this yields

@ I 1 I 2#5s@l 1#Fx1~s! x2~s!

x18~s! x28~s!
G , ~15!

where

s~s,ṡ!5sc/2~12s!~a1b2c11!/2ṡ1/2 and l~s,ṡ,s̈!5
a1b112cs

2s~12s!
2

s̈

2ṡ2 .

It is clear from Eq.~15! that I a are not branched as functions ofs̈ and that they have square-ro
branch points as a function ofṡ at ṡ50 and ṡ5` ~in fact, I a

2 are single-valued as functions o
both ṡ and s̈). Whenṡ and s̈ are held fixed, the only places where theI a can be branched are a
s50, s51, ands5`. Let g0 andg1 be two closed curves with a common base point in the fin
d 27 Apr 2003 to 158.125.1.23. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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complex s-plane enclosing the pointss50 and s51, respectively, and traversed once in t
positive direction. Analytic continuation alongg0 and g1 transforms the fundamental matrix o
solutions of Eq.~9! according to

gm : S x1~s! x2~s!

x18~s! x28~s!
D °S x1~s! x2~s!

x18~s! x28~s!
D Mm , m50,1.

For generic values ofa, b, c and for the choice of basis solutions,x15F(a,b,c;s), x2

5F(a,b,a1b2c11;s) of the hypergeometric equation, the monodromy matricesMm are given
by25

M05S 1 e22p ib2e22p ic

0 e22p ic D and M15S e22p i ~a1b2c! 0

12e22p i ~a2c! 1D .

The only other source of branching in Eq.~15! arises from the analytic continuation ofs alonggm

which yields

g0 : s°eipcs, g1 : s°eip~a1b2c!s.

The branching ats5` can be determined from the branching ats50 ands51. A closed circuit
~defined in a similar way as forg0 andg1 above! around the points5`PCP1 is homotopic to
g0

21+g1
21. The corresponding monodromy matrix is given byM`5(M1M0)21. The monodromy

matrix M for any closed circuitg can be expressed in terms of the fundamental monodro
matricesM0 and M1 associated withg0 and g1 , respectively. Finally, taking all the sources
branching into account in~15!, we obtain the following result.

Proposition 3: The first integrals of the DH system given by (15) are multi-valued functio
s with branch points at s50, s51, and s5`. The multi-valued behavior can be expressed
terms of the fundamental determinations:

g0 : @ I 1 I 2#°@ I 1 I 2#M0eipc, g1 : @ I 1 I 2#°@ I 1 I 2#M1eip~a1b2c!,

where M0 and M1 are the monodromy associated with a fundamental matrix solution of
hypergeometric equation (9) around the closed curvesg0 and g1 , respectively.

Remark 1:The multi-valued behavior of the first integralsI a may also be described in term
of the DH variablesv i . It follows from Eq. ~4! that the branch pointss50, s51, ands5`
correspond to the complex diagonal hyperplanesv i5v j , iÞ j . The monodromy group generate
by M0 andM1 determines a~complex! representation of the fundamental groupp1(M3) on the
complementM35C3\ø$v i5v j ,iÞ j % of the arrangement of the diagonal hyperplanes inC3.
Arnold,4 in his study of pure braid groups, discussed the cohomology of the complementMn of
the diagonal hyperplane arrangement inCn. In particular, he proved that the integral cohomolo
ring H* (Mn ,Z) is isomorphic to the algebra generated by the closed differential one-fo
v jk5(1/2p i )d ln(vj2vk), j Þk which satisfyvkl∧v lm1v lm∧vmk1vmk∧vkl[0. Note that for
n53, there is only one independent relation:v12∧v231v23∧v311v31∧v12[0, which is indeed
satisfied by the parametrization of thev i in Eq. ~3!.

Remark 2:The first integrals in Eq.~15! for the classical DH system (a15a25a350) are
expressed in terms of the special hypergeometric Eq.~9! with a5b5 1

2, c51. In this case, the

monodromy matrices with respect to the basisx15F( 1
2,

1
2,1;s) andx25 iF ( 1

2,
1
2,1;12s), are given

by

M05S 1 2

0 1D and M15S 1 0

22 1D .

The corresponding monodromy group is the subgroupG~2! ~principal congruent subgroup of leve
2! of the modular group SL(2,Z), defined asG(2)ª$gPSL(2,Z)ug[Id(mod 2)%. Whena5b
d 27 Apr 2003 to 158.125.1.23. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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5 1
12, c5 1

2 in Eq. ~9!, the associated monodromy group is the full modular group SL(2,Z) which is
isomorphic to the pure braid groupB3 of three colored strands. Similar representations of p
braid groupBn are given by the monodromy group associated with particular Picard–F
equations withn regular singular points which arise in the theory of Frobenius manifolds.9 This is
related to Arnold’s work4 ~see Remark 1! on the presentation of pure braid group as the fun
mental group of the complementMn under the action of the Coxeter groupAn .

It is important to note that the first integralsI a , Ja remain multi-valued independent of th
choice of parameters, even in the particular cases where the general solution is single-value
domain of existence. For instance, the classical DH system@Eq. ~2! with t[0] can be solved in
terms of the elliptic modular function and the general solution is analytic inside a circle D in
complext-plane~see, e.g., Refs. 7 and 1!. It was shown in Ref. 19 that the classical DH syste
does not possess a meromorphic first integral. This is consistent with our results that first in
do indeed exist, but they are nonalgebraic and multi-valued functions of thev i . Thus there is no
natural connection between the analyticity properties of the solution and the first integrals f
DH system. To establish such connection for nonlinear differential equations is a very de
issue. For specific cases of Hamiltonian dynamical systems, it was proved under certain a
tions that if the system admits solutions that are branched, then the system can not possess
first integrals independent of the Hamiltonian.18 Furthermore, Ziglin’s work27,28 reveals that
branching of solutions and the absence of single-valued first integrals in certain Hamilt
systems areboth consequences of the same complex singularity structure of the solution~al-
though one does not necessarily imply the other!. However, it should be noted that these results
not rule out the possibility that multi-valued first integrals may exist. Indeed this is the case f
DH system which serves as an important example of equations that are integrable in the se
the general solutions can be expressed in terms of linear equations, yet the constants of
tions are not single-valued functions of the dependent variables.

IV. POISSON STRUCTURES

The DH equations~2! may be viewed as a complex dynamical system on a manifoldM of
~complex! dimension 3 where the DH variablesv i , i 51,2,3, are local holomorphic coordinates o
M. ~Note: In this section the standard notation for coordinate functionsv i is used instead ofv i to
denote the DH variables.! Solutions of Eq.~2! determine a flow given by the integral curves of
holomorphic vector fieldXPTM expressed in local coordinatesv i as X5Xi] i , Xi

ªv jvk

2v i(v j1vk)1t2, iÞ j Þk, and cyclic. Here] iª]/]v i , and summation over repeated indices
implied. Denote byLp(M) and Lq(M) the respective spaces of~holomorphic! p-forms and
q-vectors~contravariant, skew-symmetricq-tensor fields! on M. Let nPL3(M) be a nondegen-
erate three-form given in terms of local coordinates by

n5
1

D~v1,v2,v3!
dv1∧dv2∧dv3, ~16!

for some functionDPC`(M), DÞ0, which is to be determined later. Using the three-formn we
define the dual mapF:Lq(M)→L32q(M) and its inverseF21:Lp(M)→L32p(M) by the
inner products

F~A!ª i An, F21~b!ª i ñb,

whereAPLq(M), bPLp(M), andñªD]1∧]2∧]3PL3(M) is the inverse of the three-formn.
In particular, note that forb1 , b2PL1(M), the vectorv5F21(b1∧b2) satisfiesi vb15 i vb2

50.
Since the first integralsI 1 and I 2 of Eq. ~2! are constant along the integral curves ofX, it

follows that İ a5 i X(dIa)50, a51,2. The one-formsdI1 and dI2 span a two-dimensional, inte
grable ~in the Frobenius sense! co-distribution ofT* M, dual to the vector fieldX. Hence the
vector field can be expressed asX5GF21(dI1∧dI2)5Gi ñ(dI1∧dI2) for some functionG
d 27 Apr 2003 to 158.125.1.23. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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PC`(M). Without any loss of generality, we can setG51 and thus determine the functionD in
Eq. ~16!. A straightforward calculation using the explicit forms of theI a in Eq. ~12! yields

D~v1,v2,v3!54~v22v3!~v32v1!~v12v2!. ~17!

Therefore we have the following characterization of the DH vector fieldX.
Proposition 4: The DH system (2) defines a flow in a three-dimensional, complex manifoM

equipped with a nondegenerate three-formn given in terms of local coordinates by Eqs. (16) a
(17). The flow is an integral submanifold ofM generated by the vector field XPTM which is
dual to the integrable codistribution spanned by the one-forms dI1 and dI2 . That is,

X5F21~dI1∧dI2!5 ñ~•,dI1 ,dI2!. ~18!

Let H denote the union of the complex hyperplanes given byv i5v j , iÞ j . It is evident from
Eqs.~17! and~12! that the three-formn and the one-formsdI1 , dI2 are singular on H. Hence th
manifoldM is prescribed byM5C3\H on which Eq.~18! is valid and defines the holomorphi
vector field X. The flow defined by Eq.~18! on M corresponds to the functionsv i(t) which
remain distinct for allt in the domain of analyticity of the DH solutions. It should be note
however, that the DH flow itself@given by Eq.~2!# is not singular on H, but the correspondin
vector field can no longer be defined via Eq.~18!. In fact, the complex planesv i5v j , iÞ j , are
invariant manifolds of the DH flow. The flow restricted to these planes corresponds to the s
cases of Eq.~2! which are solved either by quadratures or in terms of Bessel’s equation.3

It follows from Proposition 4 that the intersection of the two-dimensional level sets of the
integralsI 1 andI 2 defines~locally! a unique solution curve for Eq.~2! on M. We will next show
thatM is a Poisson manifold with a pair of Poisson structures defined in a natural way via th
integrals I a . Furthermore, the DH vector fieldX is locally Hamiltonian with respect to both
Poisson structures.

A Poisson structure onM is specified by a bi-vectorBPL2(M) whose Nijenhuis–Schoute
bracket with itself, defined by the three-vector@B,B#S50. In terms of the coordinatesv i ,

B5Bi j ] i∧] j , @B,B#S
i jk
ª] l~Bi j !Blk1] l~Bjk!Bli 1] l~Bki!Bl j 50.

The Poisson bracket of functionsf, gPC`(M) is the pairing defined by

$ f ,g%ªB~d f ,dg!,

which is skew-symmetric and satisfies the Leibniz rule$ f g,h%5 f $g,h%1g$ f ,h% and the Jacobi
identity $$ f ,g%,h%1$$g,h%, f %1$$h, f %,g%5@B,B#s(d f ,dg,dh)50, for all f ,g,hPC`(M). A
Hamiltonian vector fieldXH with respect to a Poisson structureB is defined asXHªB(•,dH)
where H(v i) is the Hamiltonian function onM. The Hamiltonian flow given by the integra
curves ofXH corresponds to the solution of the system

v̇ i5XH~v i !5$v i ,H%, i 51,2,3.

In three dimensions it is convenient to introduce the Poisson one-formuPL1(M) ~see, e.g.,
Ref. 12! by u5F(B)5 i Bn, which is the dual of the Poisson bi-vector. The Jacobi identity can
reformulated as the Frobenius integrability condition for the Poisson one-formu. Specifically, we
have the following.

Lemma 1. BPL2(M) is a Poisson bi-vector if and only if the dual one-formF(B)ªu
PL1(M) satisfiesu∧du50.

Proof: If BPL2(M) andnPL3(M), then we have the contraction formula~see, e.g., Ref.
20!

n~@B,B#s!52i BdiBn2 i Bi Bdn.
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Since n is a top-degree holomorphic form,dn50. Furthermore, we haveB5F21(u)5 ñ(u).
Hence

n~@B,B#s!52i Bdu52ñ~u∧du!

and the result follows.
In terms of the functionsI 1 and I 2 , define the bi-vectors

BaªF21~dIa!5 ñ~•,•,dIa!, a51,2, ~19!

on M. The corresponding dual one-formsF(Ba)5dIa are exact. Therefore it follows immedi
ately from Lemma 1 that theBa are Poisson bi-vectors. The DH vector fieldX in Eq. ~18! can be
expressed as

X52B1~•,dI2!5B2~•,dI1!, ~20!

which is a Hamiltonian vector field with respect to both Poisson structuresBa . As a result, the DH
equations~2! satisfy the Poisson bracket formulations

v̇ i5X~v i !5$v i ,I 1%25$v i ,2I 2%1 ,

where $g,h%a5Ba(dg,dh), a51, 2. Moreover,B1 and B2 are compatible Poisson structure
namely, there exist functionsl1 , l2 such that the linear combinationB5l1B11l2B2 is also a
Poisson bi-vector. It is easy to verify that the corresponding dual one-formu5F(B)5l1dI1

1l2dI2 satisfies Lemma 1 whenl1 , l2 are arbitrary differentiable functions ofI 1 andI 2 . For a
given Poisson structureB, it is also possible to find a corresponding Hamiltonian funct
H(I 1 ,I 2) such thatX5B(•,dH)5m21(dH∧u) gives the DH vector field as in Eq.~18!. This is
equivalent to the first-order, linear partial differential equationl2(]H/]I 1)2l1(]H/]I 2)51,
which can be solved by the method of characteristics. ThusX does not have a unique represen
tion as a Hamiltonian vector field; the simplest forms are the ones given in Eq.~20!. A Hamil-
tonian system with compatible Poisson structures is called a bi-Hamiltonian system. Th
vector fieldX in Eq. ~20! is therefore a bi-Hamiltonian vector field with respect to the pair
compatible Hamiltonian structures$(B1 ,2I 2),(B2 ,I 1)%.

Remark 3:SinceM is odd-dimensional@dim(M)53#, the Ba are degenerate~rank 2! bi-
vector fields onM. It follows from Eq.~19! thatB1(•,dI1)5B2(•,dI2)50. Therefore,I 1 andI 2

are the Casimir functions for the Poisson structuresB1 andB2 respectively, and satisfy$g,I a%a

50, a51,2, for anygPC`(M). Furthermore, sinceBa(dI1 ,dI2)5$I 1 ,I 2%a50, the first inte-
grals I 1 and I 2 are in involution.

Remark 4:The flow associated with the vector fieldX preserves the three-formn on M.
Indeed we have

LXn5dF~X!5d@F+F21~dI1∧dI2!#5d~dI1∧dI2!50.

Note that on a three-dimensionalreal phase space,n would be phase volume element that
invariant along the flow ofX. Thus the conditionLXn50 on the DH phase spaceM can be
regarded as the holomorphic extension of the Liouville theorem on an odd-dimensional~complex!
phase space.

We summarize the results discussed above.
Proposition 5: The DH system (2) represents a bi-Hamiltonian flow onM corresponding to

the Poisson structures B15F21(dI1), B25F21(dI2); and Hamiltonians2I 2 , I 1 respectively.
The DH vector field X is Hamiltonian with respect to both Poisson structures as given by Eq.
Furthermore, the first integrals I1 and I2 are in involution with respect to both Poisson structure.

The local expressions for the Poisson structuresBk are considerably simple in terms of th
‘‘action-angle’’ variables$I a ,fa ,a51,2% introduced via Eqs.~13! and~14! in Sec. II. Any three
of the four variables can be taken to form a natural set of local coordinates onM while the
d 27 Apr 2003 to 158.125.1.23. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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remaining variable is solved algebraically using the constraint equation~14!. For example, if we
take$f1 ,I 1 ,I 2% as new local coordinates onM and use the relations between thev i and$I a ,fa%
from Eq. ~12!, then in the new coordinates the three-vectorñ @inverse ofn in Eq. ~16!# takes the
form

ñ5I 1

]

]f1
∧

]

]I 1
∧

]

]I 2
.

Furthermore, from Eqs.~19! and~20! we have the following expressions for the Poisson bi-vect
and the DH vector field:

B152I 1

]

]f1
∧

]

]I 2
, B25I 1

]

]f1
∧

]

]I 1
, X5I 1

]

]f1
.

Both Hamiltonian structures (B1 ,2I 2) or (B2 ,I 1) yield the same dynamical equations:ḟ15I 1 ,
İ 15 İ 250 which together with the algebraic constraint@Eq. ~14!# are then equivalent to the DH
dynamics given by Eqs.~13!.

Note that the two sets of fundamental Poisson brackets,

$f1 ,I 1%150, $I 2 ,f1%15I 1 , $I 1 ,I 2%150,
~21!

$f1 ,I 1%25I 1 , $I 2 ,f1%250, $I 1 ,I 2%250,

with respect to the respective Poisson structuresB1 andB2 , arelinear in the coordinateI 1 . Each
set corresponds to a Lie–Poisson bracket onM induced by certain three-dimensional Lie algeb
g. The Lie–Poisson structure can be defined by identifyingM with the dualg* of g, and the linear
coordinate functions$yk ,k51,2,3% on g* with the coordinates$f1 ,I 1 ,I 2%. Then the fundamenta
Lie–Poisson brackets induced byg on M are defined as$yi ,yj%ªci j

kyk , where ci j
k are the

structure constants associated with the Lie algebra bracket@ei ,ej #5ci j
k ek with respect to a basis

$ei ,i 51,2,3% of g. Let g1 andg2 denote the Lie algebras corresponding to the first and secon
of fundamental Poisson brackets, respectively. Then it is evident from Eq.~21! that bothg1 andg2
are solvable Lie algebras with one-dimensional centers corresponding to the respective C
functionsI 1 andI 2 . However,g1 is nilpotent of degree 2, whereasg2 contains a one-dimensiona
ideal generated by the element corresponding toI 1 whose normalizer isg2 itself. In fact, it is easy
to verify that choosingany three of the four ‘‘action-angle’’ variables as local coordinates onM
yields two distinct, canonical Lie–Poisson structures which correspond to solvable Lie alg
moreover, one of the Lie algebras is nilpotent.

The volume formn together with the HamiltoniansI 1 and 2I 2 induce a Nambu–Poisso
structure on the manifoldM. Nambu21 proposed a generalization of the Poisson bracket to st
the dynamics of a ‘‘canonical triplet’’ of variables in a three-dimensional real phase space.
simplest form, the canonical Nambu bracket of functionsgiPC`(R3), i 51,2,3, is given by the
Jacobian

$g1 ,g2 ,g3%5
]~g1 ,g2 ,g3!

]~x1,x2,x3!
5 ẽ~dg1 ,dg2 ,dg3!,
d 27 Apr 2003 to 158.125.1.23. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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dg1∧dg2∧¯∧dgnª$g1 ,g2 ,...,gn%nN ,

for functions gjPC`(N), j 51,2,...,n. It can be shown that the bracket defined above i
Nambu–Poisson bracket,10 namely, it is skew-symmetric, a derivation, and satisfies the ‘‘fun
mental identity’’

$ f 1 ,...,f n21 ,$g1 ,...,gn%%5(
i 51

n

$g1 ,...,gi 21 ,$ f 1 ,...,f n21 ,gi%,gi 11 ,...,gn%.

The Nambu formulation of the DH system arises as a special case (n53) of the above example
with a Nambu–Poisson structure onM prescribed by

$g1 ,g2 ,g3%ªF21~dg1∧dg2∧dg3!5 ñ~dg1 ,dg2 ,dg3!. ~22!

Then from Eq.~18!, the vector fieldX is the generator of a Nambu–Hamilton flow on the D
phase spaceM given by the actionġ5X(g)5$g,I 1 ,I 2% on functionsgPC`(M). Therefore, we
have the following.

Proposition 6: The DH system (2) is equivalent to the Nambu–Hamilton equation of motions
v̇ i5$v i ,I 1 ,I 2%, i 51,2,3,with respect to the Nambu–Poisson bracket defined by Eq. (22) togeth
with the ‘‘Hamiltonians’’ I1 and I2 . The vector field X in Eq. (18) is a Nambu–Hamiltonian vector
field.

Remark 5:The essential difference between the DH bracket and the canonical Nambu b
is the ‘‘discriminant’’ functionD(v1 ,v2 ,v3). In the DH case,D is given by Eq.~17!, whereas
D[1 for the canonical Nambu bracket.

Remark 6:It is possible to construct an infinite family of Poisson brackets characterize
functions I PC`(M) as $ f ,g% I5$ f ,g,I %, from the Nambu–Poisson bracket in Eq.~22!. The
brackets defined by the Poisson bi-vectorsBa in Eq. ~19! are in fact induced in this way from Eq
~22! with I 5I a , a51,2. In general, a Nambu bracket of ordern.2 on a manifold of dimension
k>n can induce infinite families of lower order Nambu structures, including families of Poi
brackets.26

Remark 7:The ‘‘fundamental identity’’ for the bracket defined by Eq.~22! is equivalent to the
statement that any Nambu–Hamiltonian vector field is a derivation of the Nambu bracket. In
consider the vector fieldY5 ñ(•,d f1 ,d f2) where f 1 , f 2PC`(M) are the ‘‘Hamiltonians.’’
Clearly from Eq.~22!, Y(g)5$g, f 1 , f 2% for all gPC`(M). Y also preserves the volume form
~and its inverseñ), sinceLYn5diYn5d(d f1∧d f2)50. Now taking the Lie derivative of Eq.~22!
with respect toY and using the Leibniz rule to expand the right-hand side gives the ‘‘fundame
identity’’ for the bracket in Eq.~22!.

V. CONCLUSION

In this article, we studied the general solution and first integrals of the generalized DH s
~2!. We showed that the integral curves of the solution are locally defined by the intersection
level sets of the first integrals in a three-dimensional phase spaceM which is a Nambu–Poisson
manifold. In order to study the global dynamics, it is necessary to consider the phase flow
covering manifolds associated with the multi-valued first integrals. The covering manifold
generally densely branched for the DH system, although it is possible to obtain finite or den
able infinite sheeted covering ofM corresponding to particular choices of the DH parameters
these latter cases, there may be several interesting avenues of investigation including th
logical properties of the DH phase space as well as the conformal class of SU~2!-invariant hyper-
complex manifolds which correspond to these special DH solutions.

It is also worth mentioning that the DH system can be regarded as a gradient flow:X5h
(•,dV) for some flat, indefinite metrich21. The potential functionV is a homogeneous polyno
mial of degree 3 in thev i , invariant under cyclic permutation of (v1 ,v2 ,v3). It is conceivable
d 27 Apr 2003 to 158.125.1.23. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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that further insights into the complex dynamics of the DH system may be gained by consid
it as a gradient flow with a polynomial potential rather than a Nambu–Poisson flow with m
valued Hamiltonians.
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Halphen, G., ‘‘Sur un syste`me d’équations différentielles,’’ C. R. Acad. Sci. Paris92, 1101–1103~1881!.
Hitchin, N., ‘‘Hypercomplex manifolds and the space of framings,’’ inThe Geometric Universe. Proceedings, Oxford 199,

edited by S. A. Hugget, L. J. Mason, K. P. Tod, S. T. Tsou, and N. M. J. Woodhouse~Oxford University Press, Oxford,
1998!, pp. 9–30.
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