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Abstract. The equationy” = f(x)y? arises in the study of a class of fluid models in relativity
and possesses the Pairdgaroperty (closely connected with integrability) if and only iatisfies

a certain sixth-order ODE which admitsL (2, C) as its symmetry group. Using differential
invariants of this non-solvable group, the general solution is obtained. A special case of the
sixth-order equation is equivalent to the generalized Chazy equation with parametér. All

known explicit choices foif considered in the literature arise in a natural way in this framework.
Generalizations of the techniques described here lead to a novel class of integrable equations.

AMS classification scheme numbers: 58F35, 83C15

1. Introduction

Kustaanheimo and Qvist [19] showed that Einstein’s field equations for an expanding
spherically symmetric shear-free fluid lead to the equation

Y = f0)y2 1)

where the primes denote differentiation with respeat émd f is an arbitrary function (which

we take to be locally analytic). The algorithm for constructing the spacetime metric from
a solution of equation (1) is outlined below. Several authors have addressed the problem
of determining which functiong allow us to solve equation (1) explicitly (Kustaanheimo
and Quvist [19], Chakravarty [6], Wyman [26, 27], Stephani [24], Srivastava [23], Maharaj
et al [20], also see references in Kraski [17]). Most of these approaches have involved
analysing conditions oif to ensure that equation (1) admits two symmetries. Wyman [26]
and later Maharagt al[20] determined conditions ofi that ensure equation (1) possesses the
Painlee property (that all solutions in the complex plane are single-valued about all movable
singularities).

The Painlee property is intimately connected with integrability [3-5, 18]. This property
was first used by Kowalevskaya last century to find a new integrable case of the classical
equations for the spinning top [14, 15]. Pairdemnd his colleagues (Pain&\21, 22],
Fuchs [12], Gambier [13]) classified all equations of the form

Y'(x) = @ (x, y(x), y'(x)), 2

0951-7715/99/040931+08%$19.50 © 1999 IOP Publishing Ltd and LMS Publishing Ltd 931



932 R Halburd

that possess the Pain&eproperty, where is rational iny andy’ with coefficients (locally)
analytic inx. They showed that all of these equations can be transformed by a change of
independent variable and adius transformation of the dependent variable into one of
approximately 50 canonical equations. These equations were solved in terms of known
functions with the exception of six equations, now called the Paénémuations:P;—Py;.
The first Painle& equation P, has the form
Y =6y +x, ®

and will appear again in the analysis below.

Although any case of equation (1) possessing the Pdnpewperty can in principle be
mapped to one of the canonical equations discovered by Pajnieis important to note
that these mappings themselves arise as solutions of differential equations and may be very
complicated.

The following result follows from Wyman [26].

Theorem 1. Equation (1) possesses the Paieroperty if and only if.(x) := {6/f (x)}¥5
satisfies the sixth-order ODE

d 2 d 3 _

e {x e F[)\])} =0 Q)
where

F[Al =20 — 23(W")? (5)

and the primes denote differentiation with respect to

In this paper we use symmetry methods to find the general solution of equation (4) (due to
Wyman) and to systematically recover all known particular closed-form solutions in a natural
way.

Equation (4) possesses a four-parameter non-solvable Lie group of symmetries
(isomorphic toGL(2; C)). Following Clarkson and Olver [11] we identify two differential
invariants of this Lie group and use them to reduce equation (4) to an equation of second order
which is solvable in terms of either the Weierstrass elliptic function or solutions of the first
Painlee equation. A special case of equation (4) is shown to correspond to the generalized
Chazy equation with parameter = g All of the known explicit choices off that have
appeared in the literature to date are shown to correspond to either the case where the above
reduction fails (in which the would-be independent variable of the reduced equation is constant)
or to the known explicit solutions of the generalized Chazy equation.

We conclude by discussing methods of deriving similar integrable equations to equation (4)
that are associated with each of the Paialeguations. The solutions of these equations have
an interesting singularity structure in the complex domain and will be the subject of a further

study.

2. Painle\e analysis of shear-free fluids

In this section we review a number of known results.

2.1. Spherically symmetric shear-free fluids

The metric for an expanding shear-free spherically symmetric spacetime can be written in the
form

ds? = 00 (2 dQ? + dr?) — 0 di?,
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where d2? is the standard metric on the sphere (see, e.g., Kramat [16]). Einstein’s
equations for this metric admit two arbitrary functions of integration;

g®) =Ina, — b, (6)

h(x) = € (a,, —a? —a,/r). @
(Wyman [25], Kustaanheimo and Qvist [19]). Giveb, g andh satisfying equations (6) and
(7), Einstein’s equations allow us to determine the local energy and pressure densities (see,
e.g., Krameet al [16]).

Kustaanheimo and Qvist [19] noted that under the change of variables

Yo =€ x=rt f) =47,

equation (7) becomes (1). Although it is apparent from this transformationytial, in
general, be a function afas well asx, we study equation (1) as an ODE. Thdependence

can be recovered by allowing any arbitrary constants that appear in solutions of equation (1)
to be functions of.

2.2. Painlee analysis

Following Painlee we introduce the transformation

z=¢ (), Y(x) = A(x)Y (2) + pu(x), (8)
wherel(x) andg¢’(x) are nonzero. If we choosg A andu such that

A" +2)¢' =0, 9)

A —2fur =0, (10)

fr—6(¢)*=0, 1)
then equation (1) becomes

FYD) _ 6r2(2) - v, (12)

dz?
where
W — fu?
v(z) = W (13)

Painlee also showed that equation (12) (and hence equation (1)) possesses theePainlev
property if and only if

v(z) = Az + B, (14)

where A and B are constants (Painlevi21, 22], see also Kruskalt al [18]). So from
equation (13), we have

W' — fu? = (Ag + B)A($)>. (15)

We have shown that equation (1) possesses the Paipleperty provided we can solve
the system of equations (9)—(11) and (15). By elimination we will reduce this system to a
single equation (equation (4)).

Dividing equation (9) through by¢’ and integrating with respect togivesi?¢’ = «,
wherex is a constant. Since cannot be zero we take = 1 since the Painlévproperty for
equation (1) is invariant under a rescaling oHence

¢ = / A2 dx. (16)
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Equation (11) then gives

f=6."7 17
and equation (10) gives

= A" (18)
Substituting equations (16)—(18) into (15), we have

A3F[A] = 12<A f A2 dx + B), (19)

whereF[A] is defined by equation (5). Next we differentiate equation (19) with respegt to
multiply through by 22, and differentiate once more with respecktto obtain equation (4).
This concludes our proof of theorem 1 (Wyman [26]).

Given any solutioni.(x), of equation (4), then (1) witlf (x) given by (17) possesses the
Painlee property and is therefore integrable Al£ 0 then equation (12) is the first Painéev
equation (cf equation (3)) up to a translationzirand a rescaling of andY. If A = 0,
equation (12) can be solved in terms of Weierstrass elliptic functions.

3. Symmetries

Inthis section we use symmetry methods to find solutions of equation (4). Three symmetries of
equation (4) can be seen immediately:> ¢ + ¢, r > €1, andi — € A. A fourth symmetry
follows from the observation of Kramet al [16] that

¢’y RS L

@—f(x)y =X {diz — f®)y },

wherei = 1/x, $(X) = x~1y(x) and f(¥) = x®f(x). This transformation preserves the
Painlee property and therefore induces the (discrete) symngetry(x)) — (1/x, xA(x 1))
of equation (4).

Combining all of the above symmetries, we see that equation (4) is invariant under
G L(2; C) transformations of the form

, A(X) B AR) 1= (yx +8) ),

wheread — By # 0. The infinitesimal generators of this group are
Xo = &, X1 = 0y, X, = xd,, X3 = x20, +x\9;.
It is important to note that sinceX .} ,.—o,....3 Span the non-solvable Lie algeby2; C), we
cannot simply reduce equation (4) by these symmetries one at at time, in any order, without
losing some of the symmetries. We begin by reducing equation (4) by the scaling symmetry
generated by,. Writing
d
w(x) = ——InAi(x), (20)
dx
equation (4) is reduced to fifth order:
Gy — 18wG, + 8(w? — w)G =0, (21)
where

Glw] := 2w"” — 24ww” — 13w + 98w?w’ — 49w,
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Under this transformation, the remaining generatks,X», X3 have been mapped to

X1 = 8, Xo = x0y — wdy, X3 = x%8; — (1 + 2xw)d,,
which generate the non-solvalié (2; C) group of symmetries
~ ax +f PN 2
X X = w(x) = wx) == (yx +8)“wx) +y(yx +9),

yx+8’
wherea§ — By = 1. Clarkson and Olver [11] note that this Lie group admits the differential
invariants;

n = 224wy — w?) = —23,,, (22)
d
¢ = ZXG(UJ):X — bww, + 4w§) = _2)¥4()“)‘xxx + 3 Ay, = )‘zdl- (23)
X
These invariants are central to our solution of equation (4).
3.1. The general case
In the general casg, # 0, n can be used as a local coordinate. Define

&= /;fldnz/.)ﬁzdx. (24)
It follows from equations (23) and (24) that

dn 2,42

— = —222(A % )ss 25

& (W) (25)

dz?? 377342 4 377342

dEZ =2 (A )‘xx — (A" A)a) = A7 (A )‘xx - F[)\.]), (26)
whereF is given by equation (5). Using equations (22), (24) and (26), equation (19) becomes

&y 1 2

_— = = — + .

gz = 27 ~2HAE+B) (27)

A rescalingé andn and a translation i shows that the general solution of equation (27) is

given in terms of solutions af;, the first Painle& equation (3), provided # 0. If A = 0 the

general solution of equation (27) can be written in terms of the Weierstrass elliptic function.
Given a solutiom (¢) of equation (27), the general solution of (19) is given by

1 1 Ya(§)

Mx) = ——, X = : (28)
V(&) W, ¥1) ¥ (&)
whereyr andy; are linearly independent solutions of
d? 1
% - 57](&)1// =0 (29)

and W(yr, Y1) = ¥d:¥1 — Y10y is the corresponding Wronskian. The choices for
for which equation (1) possesses the Pai@lprvoperty are then given by equation (17). The
solution of equation (1) is given by (12) and (14) whe¢randu are given by equations (16) and
(18), respectively. Note that in the case wheiis an elliptic function(A = 0), equation (29)

is the Lang equation.

3.2. The degenerate case

In the previous section we assumgd# 0. If » is a constant then

f ) = (co+crx +cx?) 2,
which was known to Kustaanheimo and Qvist [19] and has been rediscovered many times since
then (see Krasiski [17]).
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3.3. The generalized Chazy equation

In this section we consider the special caég = Az + B = 0 for all z. The substitution (20)
in equation (19) (withA = B = 0) gives

Glw]/2 = wyex — 120wy, — Zw? +4%w’w, — Yw? = 0. (30)
If we rescalew such thay (x) = 6w(x), then equation (30) becomes
4
xxvc:2 xx — 2+ x — 227 31
Guer = 2qqxx — 345 + 5o 5(69x —47) (31)

for the special choice of parameter= % Equation (31) was first written down and solved
by Chazy [8-10] and is known today as theneralized Chazy equatioWWe note that the
classical Chazy equation, which is equivalent to the Darboux—Halphen system, corresponds
to the limitn — oo of equation (31).

Chazy [9, 10] showed that the general solution of equation (31) is

d rl(t)
= —0— I =
q(x) de nr(), *=T0
wherer andr; are independent solutions of the hypergeometric equation
d?r 1 7t\Ndr 1/1 1
- ) ——+|--"—)—— | = - — =
1d=0gz (2 6) dr 4(36 nZ)’ 0 (32)

We note that equation (32) can be mapped to (29) in this case (see Clarkson and Olver [11]).
Chazy also showed that equation (31) admits the particular solutions

q(x) = (33)

X —x0
and
n—=6 n+6
(x—x1)  2(x—x2)’
The solution (33) corresponds to

&) =cx —x0)7°,
wherec and xo are constant. The solution (34) in the cases= 2 (corresponding to
equation (30)) we have (x) = —4/(7(x + a1)) — 3/(7(x + az)), which corresponds to

f) = (erx +c2) "2 (cax +ca) 7, (35)
where they; and ther,, are constants (only three of the constanis . ., c4 are essential). This
solution was discovered by Srivastava [23].

q(x) = 5 (34)

4. Discussion and generalizations

We have used symmetry methods to find all choices of the fungtifor which equation (1)
possesses the Painéeproperty and we proceeded to give its general solution in terms of
solutions of the first Painlé&vequation (or its autonomous form which is solvable in terms of
Weierstrass elliptic functions).

For the special cas@ = B = 0 the choice off for which equation (1) possesses the
Painlee property is related to the generalized Chazy equation (31) for the special choice of
parameten = % Chazy noted that the general solution of equation (31) has a rich singularity
structure in the complex domain including movable natural barriers (curves across which a
particular solution cannot be analytically continued). He showed that equation (31) possesses
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the Painle@ property (i.e. it is single-valued about movable singularitie) i an integer
greater than 1 and does not possess the P&imlrperty for non-integer, despite the fact
that it is solvable via the hypergeometric equation (32). The case considered above clearly
gives rise to a general solution that is branched about movable singularities. However, the
movable singularities of equation (4) become fixed singularities of (1) and so the branching in
f does not violate the fact that equation (1) possesses the Rajmieperty.

We note that equation (31) is a reduction of the self-dual Yang—Mills equations with
an infinite-dimensional gauge algebra (Ablowgtizal [1, 2]). The classical Chazy equation
(n = oo in equation (31)) was shown to be a reduction of the self-dual Yang—Mills equations
by Chakravartyet al [7].

It is easy to generalize equation (19) (or, equivalently, equation (4)) to a large class of
equations that are integrable through similar techniques. Equation (27) can be rescaled to have

the form
dn 2
7d$2 =an+2BE+ 2y, (36)

whereq, 8, andy are constants. Using equations (22), (24) and (26), equation (36) becomes
A + o — DAZ2 ] + B / A2dx +y =0. 37)

The general solution of equation (37) is given by (28) whgrand vy, are independent
solutions of equation (29) ang§) solves (36). In the special cage=y = 0,q := —61, /A
solves the generalized Chazy equation (31) where

B 1202

RG]
Note that rescaling anda in equation (37) will not remove from the equation despite the
fact that a rescaling of can remover from equation (36). We can replace equation (36) with

any integrable ODE and repeat the above procedure.
The behaviour of solutions of equations such as (37) will be the subject of future study.
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