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Abstract. The equationy′′ = f (x)y2 arises in the study of a class of fluid models in relativity
and possesses the Painlevé property (closely connected with integrability) if and only iff satisfies
a certain sixth-order ODE which admitsGL(2,C) as its symmetry group. Using differential
invariants of this non-solvable group, the general solution is obtained. A special case of the
sixth-order equation is equivalent to the generalized Chazy equation with parametern = 6

7 . All
known explicit choices forf considered in the literature arise in a natural way in this framework.
Generalizations of the techniques described here lead to a novel class of integrable equations.

AMS classification scheme numbers: 58F35, 83C15

1. Introduction

Kustaanheimo and Qvist [19] showed that Einstein’s field equations for an expanding
spherically symmetric shear-free fluid lead to the equation

y ′′ = f (x)y2, (1)

where the primes denote differentiation with respect tox andf is an arbitrary function (which
we take to be locally analytic). The algorithm for constructing the spacetime metric from
a solution of equation (1) is outlined below. Several authors have addressed the problem
of determining which functionsf allow us to solve equation (1) explicitly (Kustaanheimo
and Qvist [19], Chakravarty [6], Wyman [26, 27], Stephani [24], Srivastava [23], Maharaj
et al [20], also see references in Krasiński [17]). Most of these approaches have involved
analysing conditions onf to ensure that equation (1) admits two symmetries. Wyman [26]
and later Maharajet al [20] determined conditions onf that ensure equation (1) possesses the
Painlev́e property (that all solutions in the complex plane are single-valued about all movable
singularities).

The Painlev́e property is intimately connected with integrability [3–5,18]. This property
was first used by Kowalevskaya last century to find a new integrable case of the classical
equations for the spinning top [14, 15]. Painlevé and his colleagues (Painlevé [21, 22],
Fuchs [12], Gambier [13]) classified all equations of the form

y ′′(x) = 
(x, y(x), y ′(x)), (2)
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that possess the Painlevé property, where
 is rational iny andy ′ with coefficients (locally)
analytic inx. They showed that all of these equations can be transformed by a change of
independent variable and a Möbius transformation of the dependent variable into one of
approximately 50 canonical equations. These equations were solved in terms of known
functions with the exception of six equations, now called the Painlevé equations:PI–PV I .
The first Painlev́e equation,PI , has the form

y ′′ = 6y2 + x, (3)

and will appear again in the analysis below.
Although any case of equation (1) possessing the Painlevé property can in principle be

mapped to one of the canonical equations discovered by Painlevé, it is important to note
that these mappings themselves arise as solutions of differential equations and may be very
complicated.

The following result follows from Wyman [26].

Theorem 1. Equation (1) possesses the Painlevé property if and only ifλ(x) := {6/f (x)}1/5

satisfies the sixth-order ODE

d

dx

{
λ2 d

dx
(λ3F [λ])

}
= 0 (4)

where

F [λ] := 2(λ4λ′′)′′ − λ3(λ′′)2 (5)

and the primes denote differentiation with respect tox.

In this paper we use symmetry methods to find the general solution of equation (4) (due to
Wyman) and to systematically recover all known particular closed-form solutions in a natural
way.

Equation (4) possesses a four-parameter non-solvable Lie group of symmetries
(isomorphic toGL(2; C)). Following Clarkson and Olver [11] we identify two differential
invariants of this Lie group and use them to reduce equation (4) to an equation of second order
which is solvable in terms of either the Weierstrass elliptic function or solutions of the first
Painlev́e equation. A special case of equation (4) is shown to correspond to the generalized
Chazy equation with parametern = 6

7. All of the known explicit choices off that have
appeared in the literature to date are shown to correspond to either the case where the above
reduction fails (in which the would-be independent variable of the reduced equation is constant)
or to the known explicit solutions of the generalized Chazy equation.

We conclude by discussing methods of deriving similar integrable equations to equation (4)
that are associated with each of the Painlevé equations. The solutions of these equations have
an interesting singularity structure in the complex domain and will be the subject of a further
study.

2. Painlev́e analysis of shear-free fluids

In this section we review a number of known results.

2.1. Spherically symmetric shear-free fluids

The metric for an expanding shear-free spherically symmetric spacetime can be written in the
form

ds2 = e2a(r,t)(r2 d�2 + dr2)− e2b(r,t) dt2,
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where d�2 is the standard metric on the sphere (see, e.g., Krameret al [16]). Einstein’s
equations for this metric admit two arbitrary functions of integration;

g(t) = ln at − b, (6)

h(x) = ea(arr − a2
r − ar/r), (7)

(Wyman [25], Kustaanheimo and Qvist [19]). Givena, b, g andh satisfying equations (6) and
(7), Einstein’s equations allow us to determine the local energy and pressure densities (see,
e.g., Krameret al [16]).

Kustaanheimo and Qvist [19] noted that under the change of variables

y(x, t) = e−a(r,t), x = r2, f (x) = −4r2h(r),

equation (7) becomes (1). Although it is apparent from this transformation thaty will, in
general, be a function oft as well asx, we study equation (1) as an ODE. Thet-dependence
can be recovered by allowing any arbitrary constants that appear in solutions of equation (1)
to be functions oft .

2.2. Painlev́e analysis

Following Painlev́e we introduce the transformation

z = φ(x), y(x) = λ(x)Y (z) +µ(x), (8)

whereλ(x) andφ′(x) are nonzero. If we chooseφ, λ andµ such that

λφ′′ + 2λ′φ′ = 0, (9)

λ′′ − 2fµλ = 0, (10)

f λ− 6(φ′)2 = 0, (11)

then equation (1) becomes

d2Y (z)

dz2
= 6Y 2(z)− ν(z), (12)

where

ν(z) = µ′′ − fµ2

λ(φ′)2
. (13)

Painlev́e also showed that equation (12) (and hence equation (1)) possesses the Painlevé
property if and only if

ν(z) = Az +B, (14)

whereA andB are constants (Painlevé [21, 22], see also Kruskalet al [18]). So from
equation (13), we have

µ′′ − fµ2 = (Aφ +B)λ(φ′)2. (15)

We have shown that equation (1) possesses the Painlevé property provided we can solve
the system of equations (9)–(11) and (15). By elimination we will reduce this system to a
single equation (equation (4)).

Dividing equation (9) through byλφ′ and integrating with respect tox givesλ2φ′ = κ,
whereκ is a constant. Sinceκ cannot be zero we takeκ = 1 since the Painlev́e property for
equation (1) is invariant under a rescaling oft . Hence

φ =
∫
λ−2 dx. (16)
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Equation (11) then gives

f = 6λ−5, (17)

and equation (10) gives

µ = 1
12λ

4λ′′. (18)

Substituting equations (16)–(18) into (15), we have

λ3F [λ] = 12

(
A

∫
λ−2 dx +B

)
, (19)

whereF [λ] is defined by equation (5). Next we differentiate equation (19) with respect tox,
multiply through by 2λ2, and differentiate once more with respect tox to obtain equation (4).
This concludes our proof of theorem 1 (Wyman [26]).

Given any solution,λ(x), of equation (4), then (1) withf (x) given by (17) possesses the
Painlev́e property and is therefore integrable. IfA �= 0 then equation (12) is the first Painlevé
equation (cf equation (3)) up to a translation inz and a rescaling ofz andY . If A = 0,
equation (12) can be solved in terms of Weierstrass elliptic functions.

3. Symmetries

In this section we use symmetry methods to find solutions of equation (4). Three symmetries of
equation (4) can be seen immediately:t �→ t + ε, t �→ eε t , andλ �→ eελ. A fourth symmetry
follows from the observation of Krameret al [16] that

d2y

dx2
− f (x)y2 = x̃3

{
d2ỹ

dx̃2
− f̃ (x̃)ỹ2

}
,

wherex̃ = 1/x, ỹ(x̃) = x−1y(x) and f̃ (x̃) = x5f (x). This transformation preserves the
Painlev́e property and therefore induces the (discrete) symmetry(x, λ(x)) �→ (1/x, xλ(x−1))

of equation (4).
Combining all of the above symmetries, we see that equation (4) is invariant under

GL(2; C) transformations of the form

x �→ x̂ := αx + β

γ x + δ
, λ(x) �→ λ̂(x̂) := (γ x + δ)−1λ(x),

whereαδ − βγ �= 0. The infinitesimal generators of this group are

X0 = ∂λ, X1 = ∂x, X2 = x∂x, X3 = x2∂x + xλ∂λ.

It is important to note that since{Xµ}µ=0,...,3 span the non-solvable Lie algebragl(2; C), we
cannot simply reduce equation (4) by these symmetries one at at time, in any order, without
losing some of the symmetries. We begin by reducing equation (4) by the scaling symmetry
generated byX0. Writing

w(x) = − d

dx
ln λ(x), (20)

equation (4) is reduced to fifth order:

Gxx − 18wGx + 8(w2 − w′)G = 0, (21)

where

G[w] := 2w′′′ − 24ww′′ − 13w′2 + 98w2w′ − 49w4.
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Under this transformation, the remaining generators,X1,X2,X3 have been mapped to

X̃1 = ∂x, X̃2 = x∂x − w∂w, X̃3 = x2∂x − (1 + 2xw)∂w,

which generate the non-solvableSL(2; C) group of symmetries

x �→ x̂ := αx + β

γ x + δ
, w(x) �→ ŵ(x̂) := (γ x + δ)2w(x) + γ (γ x + δ),

whereαδ − βγ = 1. Clarkson and Olver [11] note that this Lie group admits the differential
invariants;

η = 2λ4(wx − w2) = −2λ3λxx, (22)

ζ = 2λ6(wxx − 6wwx + 4w2
x) = −2λ4(λλxxx + 3λxλxx) = λ2 dη

dx
. (23)

These invariants are central to our solution of equation (4).

3.1. The general case

In the general caseηx �= 0, η can be used as a local coordinate. Define

ξ :=
∫
ζ−1 dη =

∫
λ−2 dx. (24)

It follows from equations (23) and (24) that
dη

dξ
= −2λ2(λ2λxx)x, (25)

d2η

dξ2
= 2λ3(λ3λ2

xx − (λ4λxx)xx) = λ3(λ3λ2
xx − F [λ]), (26)

whereF is given by equation (5). Using equations (22), (24) and (26), equation (19) becomes

d2η

dξ2
= 1

4
η2 − 24(Aξ +B). (27)

A rescalingξ andη and a translation inξ shows that the general solution of equation (27) is
given in terms of solutions ofPI , the first Painlev́e equation (3), providedA �= 0. If A = 0 the
general solution of equation (27) can be written in terms of the Weierstrass elliptic function.

Given a solutionη(ξ) of equation (27), the general solution of (19) is given by

λ(x) = 1

ψ(ξ)
, x = 1

W(ψ,ψ1)

ψ1(ξ)

ψ(ξ)
, (28)

whereψ andψ1 are linearly independent solutions of

d2ψ

dξ2
− 1

2
η(ξ)ψ = 0 (29)

andW(ψ,ψ1) := ψ∂ξψ1 − ψ1∂ξψ is the corresponding Wronskian. The choices forf

for which equation (1) possesses the Painlevé property are then given by equation (17). The
solution of equation (1) is given by (12) and (14) whereφ andµ are given by equations (16) and
(18), respectively. Note that in the case whereη is an elliptic function(A = 0), equation (29)
is the Laḿe equation.

3.2. The degenerate case

In the previous section we assumedηx �= 0. If η is a constant then

f (x) = (c0 + c1x + c2x
2)−5/2,

which was known to Kustaanheimo and Qvist [19] and has been rediscovered many times since
then (see Krasiński [17]).
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3.3. The generalized Chazy equation

In this section we consider the special caseν(z) = Az +B = 0 for all z. The substitution (20)
in equation (19) (withA = B = 0) gives

G[w]/2 = wxxx − 12wwxx − 13
2 w

2
x + 49w2wx − 49

2 w
4 = 0. (30)

If we rescalew such thatq(x) = 6w(x), then equation (30) becomes

qxxx = 2qqxx − 3q2
x +

4

36− n2
(6qx − q2)2, (31)

for the special choice of parametern = 6
7. Equation (31) was first written down and solved

by Chazy [8–10] and is known today as thegeneralized Chazy equation. We note that the
classical Chazy equation, which is equivalent to the Darboux–Halphen system, corresponds
to the limitn → ∞ of equation (31).

Chazy [9,10] showed that the general solution of equation (31) is

q(x) = −6
d

dx
ln r(t), x = r1(t)

r(t)
,

wherer andr1 are independent solutions of the hypergeometric equation

t (1 − t)
d2r

dt2
+

(
1

2
− 7t

6

)
dr

dt
− 1

4

(
1

36
− 1

n2

)
r = 0. (32)

We note that equation (32) can be mapped to (29) in this case (see Clarkson and Olver [11]).
Chazy also showed that equation (31) admits the particular solutions

q(x) = 6

x − x0
, (33)

and

q(x) = n− 6

2(x − x1)
− n + 6

2(x − x2)
. (34)

The solution (33) corresponds to

f (x) = c(x − x0)
−5,

where c and x0 are constant. The solution (34) in the casesn = 6
7 (corresponding to

equation (30)) we havew(x) = −4/(7(x + a1))− 3/(7(x + a2)), which corresponds to

f (x) = (c1x + c2)
−20/7(c3x + c4)

−15/7, (35)

where theai and thecµ are constants (only three of the constantsc1, . . . , c4 are essential). This
solution was discovered by Srivastava [23].

4. Discussion and generalizations

We have used symmetry methods to find all choices of the functionf for which equation (1)
possesses the Painlevé property and we proceeded to give its general solution in terms of
solutions of the first Painlevé equation (or its autonomous form which is solvable in terms of
Weierstrass elliptic functions).

For the special caseA = B = 0 the choice off for which equation (1) possesses the
Painlev́e property is related to the generalized Chazy equation (31) for the special choice of
parametern = 6

7. Chazy noted that the general solution of equation (31) has a rich singularity
structure in the complex domain including movable natural barriers (curves across which a
particular solution cannot be analytically continued). He showed that equation (31) possesses
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the Painlev́e property (i.e. it is single-valued about movable singularities) ifn is an integer
greater than 1 and does not possess the Painlevé property for non-integern, despite the fact
that it is solvable via the hypergeometric equation (32). The case considered above clearly
gives rise to a general solution that is branched about movable singularities. However, the
movable singularities of equation (4) become fixed singularities of (1) and so the branching in
f does not violate the fact that equation (1) possesses the Painlevé property.

We note that equation (31) is a reduction of the self-dual Yang–Mills equations with
an infinite-dimensional gauge algebra (Ablowitzet al [1, 2]). The classical Chazy equation
(n = ∞ in equation (31)) was shown to be a reduction of the self-dual Yang–Mills equations
by Chakravartyet al [7].

It is easy to generalize equation (19) (or, equivalently, equation (4)) to a large class of
equations that are integrable through similar techniques. Equation (27) can be rescaled to have
the form

d2η

dξ2
= αη2 + 2βξ + 2γ, (36)

whereα, β, andγ are constants. Using equations (22), (24) and (26), equation (36) becomes

λ3
[
(λ4λxx)xx + (2α − 1)λ3λ2

xx

]
+ β

∫
λ−2 dx + γ = 0. (37)

The general solution of equation (37) is given by (28) whereψ andψ1 are independent
solutions of equation (29) andη(ξ) solves (36). In the special caseβ = γ = 0, q := −6λx/λ
solves the generalized Chazy equation (31) where

α = − 12n2

(n− 6)(n + 6)
.

Note that rescalingx andλ in equation (37) will not removeα from the equation despite the
fact that a rescaling ofη can removeα from equation (36). We can replace equation (36) with
any integrable ODE and repeat the above procedure.

The behaviour of solutions of equations such as (37) will be the subject of future study.
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[17] Krasiński A 1997Inhomogeneous Cosmological Models(Cambridge: Cambridge University Press)
[18] Kruskal M D, Joshi N and Halburd R 1997 Analytic and asymptotic methods for nonlinear singularity analysis:
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