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Abstract

It is shown that classically known generalizations of the Chazy
equation and Darboux Halphen system are reductions of the self-dual
Yang-Mills (SDYM) equations with an infinite-dimensional gauge al-
gebra. The general ninth-order Darboux-Halphen system is reduced
to a Schwarzian equation which governs conformal mappings of re-
gions with piecewise circular sides. The generalized Chazy equation
is shown to correspond to special mappings where either the triangles
are equi-angular or two of the angles are π/3.

The self-dual Yang-Mills (SDYM) equations are known to be a rich source of
integrable systems [1, 2, 3]. The complexified SDYM equations are a system
of three partial differential equations for four Lie algebra-valued functions of
C4. Most of the earlier work in the literature have considered the SDYM
equations with finite-dimensional Lie algebras where the integrability of the
equations is well understood [4, 5, 6, 7]. The study of the SDYM equations
with infinite-dimensional Lie algebras, however, has led to several interesting
and important symmetry reductions including the Kadomtsev-Petviashvili
equation, the 2+1-dimensional N-wave equation, the self-dual Einstein equa-
tions, and the classical Darboux-Halphen system (which is equivalent to the
classical Chazy equation) [8, 2, 4, 3].

In this paper we investigate a particular reduction of the SDYM equations
with an infinite-dimensional Lie algebra to a ninth-order system of ODEs
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9703850. S.C. acknowledges partial support from an Australian Research Council Grant,
no. A69803721.
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which we call DH–IX (equation 9, see also [9]). In the generic case, this
system can be transformed into the following third-order system

ω̇1 = ω2ω3 − ω1(ω2 + ω3) + τ 2,

ω̇2 = ω3ω1 − ω2(ω3 + ω1) + τ 2, (1)

ω̇3 = ω1ω2 − ω3(ω1 + ω2) + τ 2,

where

τ 2 = α2(ω1−ω2)(ω3−ω1)+β2(ω2−ω3)(ω1−ω2)+γ2(ω3−ω1)(ω2−ω3), (2)

and α, β, and γ are constants. Note that τ 2 is given by equation (2) only
when the ωi are distinct (i.e. ωi �= ωj, i �= j). The case τ 2 = 0 is the
classical Darboux-Halphen system which appeared in Darboux’s analysis of
triply orthogonal surfaces [10] and was later solved by Halphen [11]. Halphen
also studied and solved equations (1–2) [12] which are linearizable in terms
of Fuchsian differential equations with three regular singular points. More
recently, solutions of equations (1–2) for special choices of {α, β, γ} were
determined in terms of automorphic forms. [13, 14]. We will show that
equation (1–2) in the special case α = β = γ =: 2/n is equivalent to the
equation

d3y

dt3
− 2y

d2y

dt2
+ 3

(
dy

dt

)2

=
4

36 − n2

(
6
dy

dt
− y2

)2

, (3)

where y = −2(ω1 + ω2 + ω3).
Equation (3) was studied by Chazy ([15, 16, 17]) and is usually referred to

as the generalized Chazy equation (to contrast it with the special case n = ∞
which is called the Chazy equation).

We show that the general solution of the system (1–2) can be expressed in
terms of the general solution of the Schwarzian equation that corresponds to
the conformal mapping of circular triangles (and some degenerate cases which
correspond to the mappings of crescent-shaped regions). These Schwarzian
equations can be linearized via the hypergeometric equation.

We remark that for generic choices of α, β, γ, the general solution of
equation (1) is densely branched about movable singularities and so possesses
neither the Painlevé nor the poly-Painlevé properties which are often closely
associated with integrability (see [18, 19, 20, 2, 21, 22]).
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The Reduction of the SDYM Equations to DH–IX
With respect to the standard Cartesian coordinates {xµ}µ=0,1,2,3 on R4 the
self-dual Yang-Mills equations are [3]

F01 = F23, F02 = F31, F03 = F12, (4)

Fµν = ∂µAν − ∂νAµ − [Aµ, Aν ],

where ∂µ = ∂ /∂xµ and the components Aµ of the Yang-Mills connection lie
in the Lie algebra g. One of the simplest reductions of the SDYM equations
is obtained by demanding that the Aµ are functions of t =: x0 only. The
SDYM equations then become the well known Nahm equations [23]

∂tAi +
1

2

3∑
j,k=1

εijk[Aj, Ak] = 0, (5)

where without loss of generality we have taken A0 ≡ 0.
In order to obtain the generalized Darboux-Halphen system as a reduction

of SDYM, we consider the infinite-dimensional Lie algebra of vector fields on
S3 and express the components of the connection as

Ai(t) = −
3∑

j,k=1

Mij(t)OjkXk, (6)

where the operators {Xk} are the standard generators of sdiff(S3). The Xk

are divergence-free vector fields which satisfy the su(2) commutator relations

[Xi, Xj] =
3∑

k=1

εijkXk, (7)

where εijk is totally antisymmetric and ε123 = 1. The points of S3 are
represented by the SO(3) matrix [Oij] (see, e.g. [24]) and the action of the
vector fields Xi on Ojk is given by [25]

XiOjk =
3∑

l=1

εiklOjl. (8)

Substituting equation (6) into equation (5) and using (7) and (8) together
with the identities

3∑
i,j,k=1

εijkOipOjqOkr = εpqr,
3∑

i=1

εijkεimn =
1

2
(δjmδkn − δjnδkm),
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yields the following ordinary differential equation for the coefficient matrix
M(t)

Ṁ = (Adj M)T + MT M − (Tr M)M, (9)

where (Adj M) := (det M)M−1 is the adjoint of M and the dot denotes
differentiation with respect to t (see also [26]). We refer to equation (9)
as DH–IX (the ninth-order generalization of the classical Darboux-Halphen
system). We have investigated special reductions of equation (9), e.g. the
fifth-order reduction [27, 28] in previous work.

The Solution of DH–IX
The DH–IX system (equation 9) admits a simple factorization upon decom-
posing M into its symmetric (Ms) and antisymmetric (Ma) parts. The sym-
metric part, Ms, can be diagonalized by an orthogonal matrix P giving

M = Ms + Ma = P (d + a)P−1, (10)

where d is diagonal and a := P−1MaP is antisymmetric. We begin by con-
sidering the case in which the eigenvalues of Ms are distinct. Substituting
equation (10) into equation (9), we obtain

Ṗ = −Pa, (11)

ȧ = −ad − da, (12)

ḋ = 2
{
d2 − (Tr d)d

}
+

1

2

{
(Tr d)2 − Tr(d2) − Tr a2

}
I, (13)

from the off-diagonal symmetric, anti-symmetric, and diagonal parts respec-
tively. Note we have used the characteristic polynomial equation for M,

M3 − (Tr M)M2 +
1

2

[
(Tr M)2 − (Tr M2)

]
M − (det M)I = 0,

in deriving equations (11–13). Since P does not appear in equations (12–13),
these equations form an independent subsystem. After equations (12–13)
have been solved, P can be obtained by solving the linear equation (11). If
two or more eigenvalues of Ms are the same, equation (11) is no longer valid
but a suitable choice of P can still be determined (e.g. it is convenient to take
P to be the 3 × 3 identity matrix when ω1 = ω2 = ω3). Equations (12–13)
remain unchanged in these degenerate cases.
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We introduce the parameterization d = diag(ω1, ω2, ω3) and aij =
∑

k εijkτk.
Equations (12–13) generate the three equations (1) together with the three
equations

τ̇1 = −τ1(ω2 + ω3), τ̇2 = −τ2(ω3 + ω1), τ̇3 = −τ3(ω1 + ω2), (14)

where
τ 2 = τ 2

1 + τ 2
2 + τ 2

3 . (15)

Hence the solution of equations (1) and (14) together with the determination
of P provide a complete solution of the DH–IX system (9). Using equations
(1) and (14), it can be directly verified that the quantities

α2 :=
τ 2
1

(ω1 − ω2)(ω3 − ω1)
,

β2 :=
τ 2
2

(ω2 − ω3)(ω1 − ω2)
, (16)

γ2 :=
τ 2
3

(ω3 − ω1)(ω2 − ω3)
,

are constants, for ωi �= ωj, i �= j. Without loss of generality we choose
α, β, and γ to have non-negative real parts. Solving equation (16) for τi

and substituting into equation (15) gives equation (2) and so the generalized
Darboux-Halphen system can be written as the third-order system (1–2).

We remark that the reduction of the SDYM equations to DH–IX induces a
corresponding reduction from the associated linear problem of SDYM [7] to
a linear problem for DH–IX [27, 28]. This linear problem is monodromy-
evolving in contrast to the isomonodromy problems associated with the
Painlevé equations. The variable

s :=
ω1 − ω3

ω2 − ω3

(17)

plays a special role in linearizing the generalized Darboux-Halphen system.
Repeatedly differentiating equation (17) and using equation (1) gives

ṡ = 2s(ω1 − ω2), (18)

s̈ = 2(ṡ − 2ω3s)(ω1 − ω2), (19)
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where the dots denote differentiation with respect to t. From equations (17–
19) we see that the ω’s are parameterized as

ω1 = −1

2

d

dt
ln

ṡ

s(s − 1)
,

ω2 = −1

2

d

dt
ln

ṡ

s − 1
, (20)

ω3 = −1

2

d

dt
ln

ṡ

s
.

From equation (1) we see that s is the general solution of the Schwarzian
equation

{s, t} +
ṡ2

2
V (s) = 0 (21)

where

{s, t} :=
d

dt

(
s̈

ṡ

)
− 1

2

(
s̈

ṡ

)2

is the Schwarzian derivative and V is given by

V (s) =
1 − β2

s2
+

1 − γ2

(s − 1)2
+

β2 + γ2 − α2 − 1

s(s − 1)
. (22)

The general solution of the Schwarzian equation (21) is given implicitly
by

t(s) =
χ2(s)

χ1(s)
, (23)

where χ1(s) and χ2(s) are two independent solutions of the hypergeometric
equation

s(1 − s)
d2χ

ds2
+ [c − (a + b + 1)s]

dχ

ds
− abχ = 0, (24)

where a = (1 + α − β − γ)/2, b = (1 − α − β − γ)/2, and c = 1 − β (see,
e.g. [29, 30]). Thus the general solution of the DH–IX system (equation (1))
is given in terms of solutions of the linear differential equation (24). The
solution procedure may be summarized as follows: The Schwarz function
s(t) obtained by inverting t(s) in equation (23) provides the explicit solution
for the ωi’s in equation (20) and hence of the system (1–2). Then the τi’s
obtained from equations (14) determine P via the solution of equation (11).
Finally, the DH–IX matrix M is reconstructed from equation (10).
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The Generalized Chazy Equation
We will now derive a third-order differential equation for

y := −2(ω1 + ω2 + ω3) = −2Tr M, (25)

which we write as
d3y

dt3
= P

(
d2y

dt2
,
dy

dt
, y; t

)
. (26)

We will consider the general case in which the ω’s are distinct. From equa-
tions (20) and (25), we find that y can be written in terms of the Schwarzian
s-function as

y(t) =
1

2

d

dt
ln

ṡ6

s4(s − 1)4
. (27)

The Schwarzian equation (21) is invariant under the SL(2,C)-transformation

s(t) �→ s(µ(t)), where µ(t) :=
at + b

ct + d
, ad − bc = 1. (28)

Under this transformation the derivative of s transforms as

ṡ(t) �→ (ct + d)−2ṡ(µ(t)).

This induces, via equation (27), corresponding transformations for y and its
derivatives that leaves equation (26) invariant. In particular,

y(t) �→ (ct + d)−2y(µ(t)) − 6c(ct + d)−1.

SL(2,C)-invariant equations of the form ∆(t; y, ẏ, ÿ, . . .) = 0 (c.f. equation
26) can be generated by the forms Fj which are polynomial in y and its
derivatives and transform as

Fj(t) �→ (ct + d)−(2j+2)Fj(µ(t)). (29)

The first three are given by

F1 := 6
dy

dt
− y2,

F2 := 9
d2y

dt2
− 9y

dy

dt
+ y3, (30)

F3 :=
d3y

dt3
− 2y

d2y

dt2
+ 3

(
dy

dt

)2

.
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On repeatedly differentiating equation (27), using equation (21) with (22),
and substituting the resulting expressions for y and its derivatives in terms
of s, ṡ and s̈ into the definitions of F1, F2, F3 in equation (30) we find that
all the Fi are of the form (ṡ)i+1 multiplied by a function of s. Hence equation
(26) can be expressed as

F3 = G(s)F 2
1 , (31)

where G(s), which depends on the SL(2,C)-invariant s only, is given by

G(s) =

(
α2 − β2

s + γ2

s − 1

)
[
(9α2 − 1) − (9β2 − 1)

s
+

(9γ2 − 1)

s − 1

]

+

α2 − γ2

s − α2 − β2

s − 1[
(9α2 − 1) − (9β2 − 1)

s
+

(9γ2 − 1)

s − 1

]2 . (32)

Note that equation (31) is consistent with the transformation property (29).

It also follows from the transformation property (29) that I := F2/F
3/2
1 is

another SL(2,C)-invariant and hence a function of s only. So in equation
(31) s, and hence G(s), can be expressed in terms of y, ẏ, and ÿ via the
invariant I. Therefore, in general, the form of P in equation (26) will be
algebraic. In order for equation (26) to be of polynomial type in y and its
derivatives, G must be constant (i.e. independent of s). This is possible only
for certain values of the parameters α, β, and γ.

Note that G(s) is regular at s = 0, 1,∞ provided β2 �= 1/9, γ2 �= 1/9,
and α2 �= 1/9 respectively. Hence we evaluate G(s) in equation (32) at the
special points s = 0, 1,∞ and set them equal to obtain restrictions on the
parameters α, β, and γ. There are two cases.

Case I: If none of α, β, and γ is equal to 1/3, then we have

G(0) =
β2

9β2 − 1
, G(1) =

γ2

9γ2 − 1
, G(∞) =

α2

9α2 − 1
,

and so, from G(0) = G(1) = G(∞) we have α2 = β2 = γ2.
Case II: One or more of the parameters are 1/3. We first consider the

case when exactly one of the parameters, say β, is 1/3. From G(1) = G(∞),
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we still have γ2 = α2, hence

G(s) =
1

9α2 − 1

(
α2 − 2

9

s − 1

s2

)
.

So G(s) is not constant if exactly one of the parameters is 1/3. However, if
exactly two of the parameters are 1/3 then G(s) will be a constant, regardless
of the value of the other parameter. In particular, if β2 = γ2 = 1/9, then

G(s) =
α2

9α2 − 1
.

Both cases I and II lead to the same third-order equation for y(t) with
an arbitrary parameter. Namely, from equation (31) and the constant G(s)
from case I or II, we find that y satisfies

d3y

dt3
− 2y

d2y

dt2
+ 3

(
dy

dt

)2

=
A2

9A2 − 1

(
6
dy

dt
− y2

)2

. (33)

In case I, α2 = β2 = γ2 = A2 whereas in case II, α2 = A2, β2 = γ2 = 1/9
et cyc. Note, however, that the Schwarzian s(t) underlying equation (33) is
different for the two cases since s(t) satisfies equation (21) with

V (s) = (1 − A2)

(
1

s2
+

1

(s − 1)2
− 1

s(s − 1)

)

for case I and

V (s) =
8

9

(
1

s2
+

1

(s − 1)2

)
− 7 + 9A2

9s(s − 1)

for case II.
Equation (21) is of central importance in the theory of conformal map-

pings. When the parameters α, β, γ are non-negative real numbers satisfying
α+β+γ < 1, the function s(t) maps a circular triangle (a region bounded by
arcs of three circles) with angles απ, βπ, γπ to the upper or lower half-plane.
The corners of the triangles are mapped to the singular points of equation
(21–2), namely s = 0, s = 1 and s = ∞.

The solutions of equation (21) and hence equations (1–2) and (33) can
be analytically extended across each of the sides of the circular triangle by
the Schwarz Reflection Principle (see e.g. [29, 30]). The Schwarz function
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s(α, β, γ; t) has the following expansions in the neighborhoods of the singular
points of the Schwarzian equation (21):

Singular Leading Order Behavior
point for s as t → t0

s = 0 s ∼ κ0(t − t0)
1/β

s = 1 s ∼ 1 + κ1(t − t0)
1/γ

s = ∞ s ∼ κ∞(t − t0)
−1/α

where κ0, κ1, and κ∞ are constants. If the parameters are of the form
α = 1/p, β = 1/q, and γ = 1/r, where p, q, r are integers, then the so-
lution is single-valued but possesses a movable natural barrier (a circle or
line across which the solution cannot be extended). In general, however, the
solution of equations (1–2) and (33) will be densely branched about movable
singularities.

Equation (33) becomes the generalized Chazy equation (3) if we set A =
2/n. Chazy [15, 16, 17] analyzed equation (3) and showed that its solution is
related to the Schwarz function J which solves equation (21) with (22) and
α = 1/n, β = 1/3, γ = 1/2. The general solution of equation (3) is given by

y =
1

2

d

dt
ln

J̇6

J4(J − 1)3
. (34)

The function J, and hence y, is single-valued if n is an integer greater than 1.
The choice n = ∞ (A = 0) corresponds to the classical Chazy equation. We
note that when n is odd the Schwarz functions s(2/n, 2/n, 2/n; t) (in case I)
and s(2/n, 1/3, 1/3; t) (in case II) appearing in equation (27) are branched
yet y given by (25) is single-valued. In the case of s(2/n, 2/n, 2/n; t)

J =
4

27

(s2 − s + 1)3

s2(s − 1)2
,

and similarly, for the function s(2/n, 1/3, 1/3; t) we have

J = −4s(s − 1),
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(see [31]). It follows from the above identities that

J̇6

J4(J − 1)3
= ks

ṡ6

s4(s − 1)4
, (35)

for both Schwarzian functions s(2/n, 2/n, 2/n; t) (corresponding to ks = 432)
and s(2/n, 1/3, 1/3; t) (corresponding to ks = −16). Consequently the two
expressions for y given in equations (27) and (34) are equivalent. Moreover,
y(t) given by equation (34) is single-valued when n > 1 is an integer (because
J is single-valued in this case).

In the special case α = β = γ = A = 1/3, differentiating equation (27)
and using equation (21) with (22) we obtain

F1 = 6ẏ − y2 = 0,

giving

y(t) = − 6

t − t0
,

where t0 is a constant. This is the case n = 6 in the generalized Chazy
equation (3). Note, however, that in general the ωi depend on t in a nontrivial
fashion thru (20–22) despite the fact that their sum (−y/2) only has a simple
pole.

The Degenerate Cases
In this section we consider the case in which the eigenvalues of Ms are not
distinct. Motivated by the classical Darboux-Halphen system, in the case
ω3 = ω2 �= ω1 we define

s := e2
∫

(ω1−ω2)dt

which gives

ω1 = −1

2

d

dt
ln

ṡ

s2
, ω2 = ω3 = −1

2

d

dt
ln

ṡ

s
,

τ1 = A
ṡ

s
, τ2 = B

ṡ

s3/2
, τ3 = C

ṡ

s3/2
,

where A, B, and C are constants and s satisfies equation (21) with

V (s) =
µ2

s3
+

1 − ν2

s2
, (36)

where µ2 = 4(B2 + C2) and ν2 = −4A2.
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If µ �= 0, the general solution of the Schwarzian equation (21) with (36)
is given implicitly by

t(s) =
Θ2(x)

Θ1(x)
, s = (µ/x)2,

where Θ1 and Θ2 are independent solutions of Bessel’s equation

x2d2Θ

dx2
+ x

dΘ

dx
+ (x2 − ν2)Θ = 0. (37)

Note that Bessel’s equation has an irregular singular point at infinity in con-
trast with the hypergeometric equation (24) which has three regular singular
points.

If µ = 0, then the equation (21) with (36) becomes another well known
case of the Schwarzian equation whose solutions map crescent-shaped regions
to the upper or lower half-plane. The “corners” of the crescent-shaped regions
both form angles νπ and are mapped to the singular points s = 0 and s = ∞.
Note that s = 1 is not a singular point of equation (21) with (36). For y
defined by (25) we find that y solves(

9
d2y

dt2
− 9y

dy

dt
+ y3

)2

=
1

9ν2 − 1

(
6
dy

dt
− y2

)3

,

which has the general solution

y =

{
1 − 3ν

ν (t − t1)
−1 − 1 + 3ν

ν (t − t2)
−1, for ν �= 0,

−6(t − t0)
−1 + k(t − t0)

−2, for ν = 0,

where t0, t1, t2, and k are arbitrary constants.
Finally we consider the totally degenerate case ω1 = ω2 = ω3 =: ω. The

system (1,14) reduces to

ω̇ + ω2 = τ 2, τ̇j + 2ωτj = 0,

which has the general solution

ω = −1

2

d

dt
ln s, τj = κjs, τ 2 = τ 2

1 + τ 2
2 + τ 2

3 ,

where

s =
1

At2 + Bt + C
, 4(κ2

1 + κ2
2 + κ2

3) = 4AC − B2

and, if A �= 0 then, without loss of generality, we take A = 1. In this case ω
satisfies a simple second-order polynomial differential equation:

ω̈ + 6ωω̇ + 4ω3 = 0.
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