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Abstract. Itis well known that the integrability (solvability) of a differential equation is related to

the singularity structure of its solutions in the complex domain—an observation that lies behind the
Painle test. A number of ways of extending this philosophy to discrete equations are explored.
First, following the classical work of Julia, Birkhoff and others, a natural interpretation of these
equations in the complex domain as difference or delay equations is described and it is noted
that arbitrary periodic functions play an analogous role for difference equations to that played by
arbitrary constants in the solution of differential equations. These periodic functions can produce
spurious branching in solutions and are factored out of the analysis which concentrates on branching
from other sources. Second, examples and theorems from the theory of difference equations are
presented which show that, modulo these periodic functions, solutions of a large class of difference
equations are meromorphic, regardless of their integrability. It is argued that the integrability of
many difference equations is related to the structure of their solutions at infinity in the complex
plane and that Nevanlinna theory provides many of the concepts necessary to detect integrability in
alarge class of equations. A perturbative method is then constructed and used to developzseries in
and the derivative of 0§ (z), wherez is the independent variable of the difference equation. This
method provides an analogue of the series developed in the Ratelvor differential equations.
Finally, the implications of these observations are discussed for two tests which have been studied
in the literature regarding the integrability of discrete equations.

AMS classification scheme numbers: 30D35, 39A10, 39A12

1. Introduction

An ordinary differential equation (ODE) is said to possess the Pdrpesperty if all of its
solutions are single-valued about all movable singularities. A singularity is said to be movable
ifit varies with initial conditions, i.e. itis not a singularity of the equation itself. The observation
that this property is related to integrability has proved most fruitful, cf [4-7, 27]. It is widely
believed that all ODEs that possess the Pamignoperty are integrable (i.e. solvable) either
explicitly or via a related linear problem. We also remark, however, that certain equations
solvable via an evolving monodromy problem do not possess the Painteperty [1-3, 10].
Painlee and his colleagues identified all second-order ODEs within a large class that
possess the Painleroperty [16, 17, 30, 31]. All of these equations were integrated in terms
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of known functions except six which are now known as the Paméxations #,—Py,). The
first two of these are

d?y

P — =6y’ + 1

| gz =Bz (1)
d2

Py 2 =234y ta 2
dz?

whereq is a constant.

The six Painle& equations are integrable (solvable) via associated (linear) isomonodromy
problems [14, 23]. There are many ways in which one could discretize these equations (Euler's
method, for example). Most of these will no longer possess the many special properties that the
differential equations (1) and (2) possess; e.g. related isomonodromy problems and solutions
that are asymptotically well behaved. However, a number of discretizations of equations (1)
and (2) have been studied in the literature and are believed to be integrable (i.e. solvable via
an associated linear problem) [15, 24, 26, 29, 32, 33]. For example,

an+p+y(=1)"
YprrtYyntyp1=—m—
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wherea, 8 andy are constants, are some known well behaved discretizatioRsaofd
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are some known special discretizationsPyf

A natural question arises: is it possible to deterrmargiori whether a given difference
equation is integrable? In the case of differential equations, at least a partial answer is provided
by the Painle@ test cf[4-6, 27]. This property is suggested by the inverse scattering transform,
however, itis still not fully understood why the integrability of a real differential equation should
be reflected in the singularity structure of its solutions in the complex domain.

The purpose of this paper is to analyse the behaviour of solutions of difference equations
in the complex domain through a number of examples and by exploring the implications of
several known theorems. This problem was studied byluxd, Birkhoff, Batchelder and
others earlier this century for linear difference equations. Juléaludd, and more recently,
Kimura [25], Shimomura [37] and Yanagihara [40, 41], have derived a nhumber of valuable
results for nonlinear difference equations.

We undertake this investigation with the intention of identifying a structure or structures
that can be associated with the integrability (or non-integrability) of the difference equation
in the spirit of the Painle¥ property for ODEs. That is, we wish to find conditions, framed in
the language of complex analysis, under which a difference equation would be considered to
be of Painle@ type. Some of the conclusions to which we are led are the following.
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(a) Arbitrary periodic functions play an analogous role in the solutions of difference
equations to that played by constants in the solutions of ODEs and arbitrary functions on
characteristic functions on characteristic manifolds in solutions of PDEs. This classical
observation plays a central role in our analysis.

(b) Apart from branching due to the above-mentioned arbitrary periodic functions, the
solutions of many difference equations can be extended to the complex plane and are
meromorphic.

(c) The integrability of a large class of difference equations is associated with the asymptotic
structure of its solutions at infinity.

(d) Nevanlinna theory provides a number of important concepts and tools that can be used
as detectors of equations that are integrable. In particular, the order of solutions plays a
central role.

(e) Perturbative techniques which are difference versions of those used by Paiatebe
constructed and used to find expansions of solutions that are analogues of the Laurent/psi-
series for differential equations.

The tests we describe are not necessary conditions for integrability, just as the &ainlev
property is not necessary for the integrability of a differential equation.

Recently, two tests have been proposed as discrete analogues of the&P@stevi he
singularity confinemenmnethod of Grammaticos and co-workers [18, 36] involves examining
solutions (sequences of iterates) of a discrete equation which pass arbitrarily close to a
singular point of the equation. The associated test is applicable to a certain class of
equations (reversible, strictly rational) and associates integrability with the preservation of
information beyond the singularity. This test has been used successfully to find a number
of integrable discrete equations. Later we discuss how our analytical observations can be
related to this singularity confinement method. Also,diserete Painle& propertyhas been
introduced by Conte and Musette together with an associated test [11, 12]. We will explore
some of the strengths and weaknesses of this property and how it relates to our asymptotic
analysis.

This paper is structured as follows. In section 2 we discuss why difference (or delay)
equations allow a natural extension of their solutions to the complex domain as opposed to
discrete (or lattice) equations which are defined on the integers only. Thus we adopt the
approach of Birkhoffet al. In this setting arbitrary functions of peridd'm (whereh is the
step size angk is some positive integer) play a role analogous to that played by constants in the
theory of differential equations. These periodic functions can introduce complicated branching
into solutions of the most benign difference equations and so they must be ‘factored out’ or
otherwise dealt with in the analysis as we are only concerned with singularities other than those
generated by the periodic functions. In some sense, branching due to the arbitrary periodic
functions in solutions of difference equations is analogous to branching about characteristic
manifolds in solutions of partial differential equations.

After factoring out possible branching due to the periodic functions we note that the
solutions of a large class of difference equations (including many chaotic examples) are
meromorphic in the finite plane. This leads usto the conclusion that for a great many difference
equations the natural place where the integrability (or otherwise) could be encoded is in the
structure of the singularitgt infinity. This suggests that Nevanlinna theory (value distribution
theory for meromorphic functions) is an important ingredient in the study of integrable discrete
or difference systems.

In section 3 we describe some fundamental concepts from Nevanlinna theory and we
note that all meromorphic solutions of many classes of integrable differential and difference
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equations, including the important examples of the Riccati and Pairdguations, are of

finite order. Section 4 describes, via examples, a method to obtain a series representation of
a solution of a difference equation that is the natural analogue of the expansions obtained in
Painlee’s analysis of differential equations. In section 5 we discuss some of the existing tests
that appear in the literature in light of our results.

2. Difference equations in the complex domain

We begin by examining some simple discrete equations and the problems that arise when
we try to extend their solutions to the complex domain. Consider the discrete (or lattice)
equation

1

Up+l — Up = n—on 3)
If we specifyug we can determine,, for all n € N, namely
n—1 1
u, =uo+;m. (4)

Note that this solution involves an unbounded number of terms and, from a calculational point
of view, involves as much work to evaluate as iterating equation (3). Note thet# positive
integer theru,, is infinite for alln > ¢. This is also related to the singularity confinement
property which we discuss in section 5.1.

We wish to explore the singularity structure of solutions to equations such as (3) in the
complex domain. There appears to be no compelling way to extend the solution (4) off the
integers uniquely because the independent variahleppears as an endpoint in the sum.
Since equation (3) is only defined on the integers, there is no constraint on extefigipn$
u, to the complex domainf (n) = u,,n € N).

We find it convenient to reinterpret discrete (or lattice) equations such as (3) as difference
(or delay) equations such as

(+D) -y = — ©)
yz yz) = z— N
wherez is complex. The homogeneous part of equation (5) is

Ay(z) :'=y(z+1) —y() =0

The general solution of this equation is any function of period 1 (et for some positive
integerm). In fact, it is well known that arbitrary periodic functions (which we refer to later
asm(z)) play the same role in solutions of difference equations as that played by arbitrary
constants in the solutions of differential equations. Since these functions can introduce any
type of singularity into solutions of trivial difference equations we will factor them out of our
analysis.

Recall that the gamma function is meromorphic and satisfies

F(z+1 =zI'(2). (6)
On taking the logarithm of equation (6) we obtain

logT'(z +1) —logT(z) = logz. (7)
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Replacingz with z — ¢ in equation (7) and differentiatingy times with respect tq, we see
that the general solution of equation (5) is
( )_ (_1)N71 d
YO=N -1 \d
wherer is a periodic function (as described above). It is important to note that other than the
singularities due tar, the only singularities 0f(z) are poles. This contrasts markedly with
the solution of the analogous differential equation

dy 1
dz -0V

which, in the cas&v = 1, has a logarithmic singularity at= c.

Since essential branching (i.e. branching that does not arise from the arbitrary periodic
function) is absent in the solutions of the first-order linear difference equation (9), in stark
contrast to the differential case, we are naturally led to ask whether essential branching is absent
from nonlinear difference equations. Note that equations (5) and (9) have fixed singularities
atz = c¢. Throughout the rest of this paper we consider only equations whose solutions have
movable singularities. Although there is to date no complete theory of difference equations,
the following results are of importance. These theorems were largely motivated by the work
of Kimura [25] on the iteration of analytic functions.

N
)lmr@—o+mm (8)

9)

Theorem 1 (Shimomura [37]). For any polynomialP (y), the difference equation
y(z+1D = P(y() (10)
has a non-trivial entire solution.

Theorem 2 (See Yanagihara [40]) For any rational functionR(y), the difference equation

y(z+1 =R(y(@) 11)
has a non-trivial meromorphic solution.

Yanagihara has extended theorem 2 to a limited class of higher-order difference equations
[41]. Note that since equations (10) and (11) are autonomous then the general solution of
equation (10) is a particular entire functionzef 7 (z) and the general solution of equation (11)
is a particular meromorphic function of- 7 (z), wherer (z) is an arbitrary function of period
one.

Theorem 1 says that even the quintessential chaotic difference equation, the logistic
equation [8, 28],

Y+ =puy@)A - y@) (12)

where i is a parameter, which includes the (non-integrable) discretization of the Riccati
equation (whemn = 1),

y(z+1) —y(@) +y*(z) =0 (13)
has solutions of the form
y(@) = wu(z — 7(2) (14)

wherew, is a non-trivial entire function (which depends on the choice of paramétafiewed
as a map, equation (12) is chaotic on its (non-empty) Julia set (see, for example, [13]). If all
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the solutions of equation (12) have this form then the only singularitigsarise from the
periodic functionr .

Thus we see that the same (meromorphic) singularity structure in the finite complex plane
is found throughout a wide class of difference equations which includes both integrable and
non-integrable examples. The solutions of these equations show no essential branching (i.e.
branching due to sources other than the arbitrary periodic functions). It appears that for this
class the only way in which solutions can differ in their singularity structure is through their
behaviours at infinity.

Given that the solutions of first-order rational difference equations admit no essential
branching, yet solutions of most first-order rational differential equations do show branching
about movable singularities, it is natural to enquire into the process whereby branching arises
in the process of taking a continuous limit in which a difference equation becomes a differential
equation. To this end we consider the difference equation

yz+1 —y(@) =hF(y() (15)

whereh is a small parameter arfdis a rational function of (z). In order to take the (standard)
continuum limit we perform the change of variables

y(z) = u(x) x =hz

which gives
h) —
w = F(u(x)). (16)
We take the limith — 0 such thak is fixed to obtain
j—u = F(u(x)). 17)
X

Recall that solutions of equation (16) are single-valued (modulo the periodic function) while,
for generic choices of (for example,F (1) = u®), the general solution of equation (17) is
branched. Note that sinae= /7 is held fixed ag: — 0, thenz — oco. Hence the behaviour

of solutions of equation (17) for finite values ofis related to the behaviour of solutions of
equation (15) at = oo.

3. Nevanlinna theory

The relationship between the value distribution of meromorphic functions and their behaviour
at infinity is the principal subject of Nevanlinna theory. In this section we describe some of the
key quantities of Nevanlinna theory; namely the characteristic, order and type of ameromorphic
function. We consider differential and difference equations whose meromorphic solutions are
of finite order and type.

The Nevanlinna characteristic

IT(r, /)=N@, f)+m(r, f)
of a meromorphic functionf(z) is the sum of thecounting functionN (r, f) which is a
measure of the number of poles withis] < » and theproximity functionm(r, f) which
has contributions from the segmentggdf= r where| f(z)| is large. Explicitly, the counting
function is defined by

t

NG, f) :for 2N =nO 1) 4w, f)logr
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wheren(r, f) is the number of poles (counting multiplicities) éfin |z| < r. The proximity
function is defined by

2
m(r, f) = i/ log* | £ (re”)| do
2 0
where
log" x = max(0, logx).

Theorderof a meromorphic functiorf is defined by

logT
o (f) = lim supogT(r’f). (18)
If f is entire, this agrees with the definition
loglogM
00 logr

where

M(r, ) = ‘njlgflf(z)l.
Since the order is a natural measure of the growth of a function at infinity, we consider
differential and difference equations whose meromorphic solutions are of finite order. In
this case the type of is defined to be

t(f) =limsupr=°T(, f).
r—>00
It is a classical result due to Malmquist (see, for example, Hille [21]) that any first-order
differential equation of the form
dy
— = P(z,
4 (z,y)
whereP is polynomialiny(z) and analytic irz, that admits non-rational meromorphic solutions
is a special case of the Riccati equation:

dy 2
Pl ao(z) +a1(2)y +az(2)y”.

Z
All meromorphic solutions of the Riccati equation (where the coefficientare rational
functions ofz) are of finite order [39]. The Weierstrass and Jacobi elliptic functions are of
order two and satisfy first-order second-degree equations of the form

dy 2_
<d7z> =Py

where P is a polynomial of degree at most four (see [21]). Moving on to second-order
differential equations, we note that, of the six Paigl@quationsP—Py,, only P, P, and

Py have meromorphic general solutions. The order of the non-rational solutions of these
equations are also finite (bei@ 3 and 4, respectively) [9,21]. We note that, as outlined
above, Nevanlinna theory is not directly applicable to equations such &, theecause its
general solution is branched about fixed singularities.
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Next let us consider difference equations. For first-order difference equations, Yanagihara
[40] has shown that if the equation

ao(z) tar(2)y +- - +ap(@)y?
bo(z) + b1(2)y + -+ + by (2)y?
wherea; andb; are polynomials, admits a non-rational meromorphic solution of finite order,
then maxp, ¢) = 1 (i.e. equation (20) is the integrable difference Riccati equation). Note that
this result implies that all non-rational meromorphic solutions of the logistic equation (12) are
of infinite order foru # 0. For example, it = 4, the general solution of equation (12) is

y(@) = 3 {1 - cosh(Zn(2))}

wherez is an arbitrary periodic function. So fqt = 4, the logistic equation (12) is
integrable in the sense that it is solvable but its solution grows very rapidly and is badly
behaved numerically.

In the appendix we prove the following.

yz+1) = (20)

Theorem 3. If the second-order difference equation

ao(z) +ai(x)y +---+a,(2)y?
(z+D+y@z—1 =Rz y@) = 21
y y y bo(Z)+b1(Z)y+"'+bq(Z)yq ( )
whereq; andb; are polynomials, admits a non-rational meromorphic solution of finite order,

thenmax(p, ¢) = 2.

Note thatthis class of equations includes all the discretizatioRsasfd P, of the form (21)
that are known to have associated linear problems. This class also contains equations solvable
in terms of elliptic functions [18, 22, 34]. For example, from the addition formulae for Jacobi
elliptic functions it follows that the equation

2y(z)

y(z+1)+y(Z—l)=l_7yz(Z)

(22)

has the general solution

¥(2) = m1(2) N[ (z — m2(2)), k (2)] (23)

wherer; andx, are arbitrary periodic functions, ¢®) = dr?(2), and the modulus of the
elliptic function isx(z) = im1(z) sn(2)/dn(£2). For suitabler; andn, (e.g. constant), the
general solution (23) is of finite order.

We remark that theorem 3 does not give a complete classification of second-order rational
equations of the form (21) with respect to the order of solutions. In particular, we prove the
following theorem in the appendix.

Theorem 4. Any entire non-polynomial solution of the equation
Y+ +y—1) =a(@) +b@)yE) +cy?) (24)
wherea andb are polynomials and # O is a constant, is of infinite order.
The proof of theorem 3 readily extends to a proof of the following.
Theorem 5. If the second-order difference equation

aop(z) +ai(z)y +---+a,(2)y?
(z+Dy(z—1) =R(z,y(2) = 25
Y Y Y bo(z) +b1(2)y +--- +by(2) 4 (29)
where they;, b; are polynomials, admits a non-rational meromorphic solution of finite order,

thenmax(p, ¢q) = 2.
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The class of equations of the form (25) includes integrable difference versions of the third
and fourth Painle& equations [35]. IR(z, y(z)) = y?(z) then equation (25) has the general
solutiony(z) = m1(z)[72(z)]?, whererr; andrn, are periodic. Hence, for; andx, constant,

y has finite order. Note that theorems 3 and 5 do not single out only those equations that one
would consider to be of Painlévype.

Throughout this section we have only considered equations with polynomial or rational
dependence on the independent variable. In general, the rate of growth of a meromorphic
solution of differential and difference equations depends on the rate of growth of coefficients
in the equation.

4. Series expansions

In this section we consider a particular perturbation of equation (22), namely

ety - 1= XSG (26)
1-y%(2)
wheree is a small parameter anfl is an analytic function. The techniques developed here
can be generalized to analyse equation (21) with (pax) = 2. It is sufficient for our
purposes to consider this example. We will develop a series expansion for solutions of
equation (26). In general, this expansion will be a Laurent series-ng and the digamma
functiony (z — z0) = dlogT'(z — zp)/dz. In these expansiong plays a role analogous to
the role played by log in the expansions of solutions of differential equations. We will see that
demanding that these expansions have/ndependence leads to the known integrable cases
of equation (26).
We begin by substituting the expansion

Y(2) = yo(2) + €y1(2) + €%ya(2) + -+ + €y (2) + - (27)

into equation (26). Equating the terms independenrtstiows thatyy satisfies equation (22).
The terms proportional te gives

(1 +y3(2)) yo(2) f(2)
(1 - y5(2))? 1-y3)"

Differentiating equation (22) with respectishows that ¢p/dz solves the homogeneous part
of equation (28). Following the method of variation of parameters, we substitute

y1(2) = u(2)yp(2) (29)
into equation (28), which yields

yiz+1) -2 (@) +y1z =1 = (28)

v(z)
u(z) —u(z—-1 = m (30)
wherev satisfies
¥0(2)¥0(2) £ (2)
1-y2)
To illustrate our method in a concrete way, we choose the simplest non-trivial solution of
equation (22),

v(z+1) —v(z) = (31)

yo(z) = ; where & =z—zg (32)
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andzg is arbitrary. We will later drop this restriction and illustrate a method that uses properties
of the general solution (23) of equation (22).
Substituting (32) into equation (31) gives
fG +z0)
¢E-DEE+D
=A(E)+} fo+D 2fGo) , fzo—1D
2| -1 £ £+1

v(z+1) —v(z) =

(33)

whereA is analytic. Equation (33) gives

V(@) = QE) + 3 {f 2o+ DY (E — 1) —2f @)Y (E) + f(zo— DY (& + D} + mi(2).

Hence, using the fact that the digamma functignsatisfies

1
vE+D —y(é) =%

we have

fo—1D  flzot+1
2 2¢6-1
wherer; is an arbitrary periodic functiorB is analytic and

c(z0) = 2{f (20— 1) — 2f (z0) + f(z0 + D)}.

Note that ifc(zo) # 0 then from equations (29)—(34y; will contain an explicit (linear)
dependence otf. In fact, if c(zg) # O then the expansion (27) forwill contain infinitely

manyy-terms. Ifc(zo) = 0 for all zo then f(z) = az + b, wherea andb are periodic, which
we choose to be constant, and equation (26) becomes

(2+e(a+b2))y(2)

1-y2(2)

This is a known integrable difference equation which,#g# 0, has a continuum limit to the
second Painlevequation (2) witlw = 0.

Next we discuss how to derive this result by perturbing off the general elliptic function
solution (23) where for convenience we take and 7, to be constant. We begin by
locating the singular points of the right-hand side of equation (31). Sigpde a (scaled)
Jacobi elliptic function, it takes on every value (includisg) exactly once in each period
parallelogram P. There are at most three point@ndzo in P where the right-hand side of
equation (31) can be singular. These points are defineghtay) = 1 andyp(zg) = o
(y has a simple pole af). On choosing initial conditions such that P is sufficiently large
and balancing the poles on both sides of equation (31) we find that either zo += 1 or
z+ = zo F 1. Without loss of generality we assume = zo £ 1 and hencey has the
expansions

v(z) = B(§) + +ey(§) + mu(é) (34)

Y+ +y(z—-1) =

€0

yo(z) = Z—20
£1+c(z —[z0 £ 1) +O((z — [20 £ 1])?) z~z0£1

+0) 7~ 20

for some constanis andc... These expansions allow us to calculate residues of the poles of
the right-hand side of equation (31)zatandzo + 1. Hence equation (31) has the form (33)
where nowA is analytic throughout P. The argument then proceeds as above.



The Painlee property and difference equations 899

In this section we have described a method for difference equations which is analogous
to that used by Painlévin the context of branching of solutions of differential equations (see,
e.g. Ince). They function plays the role of log in Painléis analysis. We note that is a
meromorphic function of finite order but infinite type. Difference equations whose solutions
are of finite order and type (up to the arbitrary periodic functions) are natural candidates to be
further investigated regarding their integrability.

5. Other approaches

In this section we discuss two properties and their associated tests that have been introduced
recently. These are ttengularity confinement propergnd thediscrete Painle& property

5.1. The singularity confinement property

Grammaticos and Ramagiial[18, 19, 35] have proposed a test for the integrability of discrete
equations that involves examining solutions (lists of iterates) that pass arbitrarily close to
singularities of the equation. The basic idea is that for a generic (i.e. non-integrable) rational
equation, if initial conditions are chosen so that the next iterate becomes infinite, then all future
iterates will be infinite (such iterations of infinity are defined perturbatively—see the examples
below). In this case the singularity is said to be not confined. Grammaticos and Ramani
et al claim that the integrability of discrete equations is associated with the preservation of
information contained within the initial conditions after the solution has passed through a
singularity.

The singularity confinement property has been used by several authors and has identified
many discrete equations which possess many of the properties that continuous integrable
equations have, for example, the (so-called) discrete P&mguations. Indeed, the test was
used to identify the first known integrable discretizations of the third, fourth and fifth Painlev
equations [35]. Hence this test has been successful in isolating interesting and important
equations.

We remark, however, that recently Hietarinta and Viallet [20] have shown that the equation

(39)

Upsr FlUp1 = Uy + —
u}l
possesses the singularity confinement property and yet it is (numerically) chaatie4@r.
On the other hand, from theorem 3 we see thatfgr 0, non-rational meromorphic solutions
of equation (35) have infinite order. From our point of view, such equations should not be
included within the class of Painlesype difference equations (the infinite-order growth of
their solutions indicates that they are too ‘ill-posed’ in the complex plane). The singularity
confinement test also contains a number of restrictions: for example, the maps must be strictly
rational and there must be no ‘proliferation of pre-images’ (see [19]). In particular, the test
cannot be used to analyse the logistic equation (12). On the other hand, the discussion here
includes all equations of the form (10) as a special case of equation (20).

Consider the reversible, rational, second-order discrete equation

Yn — Yn-1
Y+l = Yo ¥ . (36)
’ 1+ (Yn - Ynfl)
This equation becomes singular when %,+ y,_1 = 0. In order to explore this singularity
we consider the initial conditions

Yo=k yi=k—1l+e
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wherek is an arbitrary parameter. Following the ideas of Grammaticos and co-workers[18, 36],
we calculate the next few iteratesy = —e 2+ k + O(¢), y3 = —e 1 + (k + 1) + O(e),
ya = — 1+ (k+ g) + O(¢). It appears that the singularity is not confined in the sense of
Grammaticos, Ramat al. We will now show that this is indeed true, despite the fact that
equation (36) has a simple solution.

Let

Wy = — ya) "
Equation (36) becomes
Aw, = wpe1 —w, =1

which, in turn, sums to give, = n — ng, whereng is an arbitrary constant. Hence

1
Yo+l — Yn =
n—ngp
which sums to give
n—1 1
= + . 37
Yn Yo n;) m—no ( )

We see that equation (36) is integrable and (from equation 372) —e 1+ O(1), forn > 2
(so the singularity is not confined).

On the other hand, if we consider equation (36) as a difference equation, the solution of
this equation isi{ — z)

y(2) = m1(z) + ¥ (z — m2(2)) (38)

where r; and wp are arbitrary periodic functions angl(z) = dlogI'(z)/dz (digamma
function). This example and others suggest the following. For difference equations with
solutions of finite order, the singularity confinement test can be interpreted as a test for the
appearance af in expansions of solutions of difference equations. We also note that in terms
of the variablez, y(z) is meromorphic for alk modulor; andsns.

A (natural) continuum limit of equation (36) is

Y+ (=0 (39)
which has the general solution
y(2) = z2 +109(z — z2) (40)

wherez; andz; are constants. Although equation (39) does not possess the RBginigerty,

we still consider it to be integrable as the single log can be transformed away. Similarly,
we consider equation (36) to be integrable because its general solution cambirsey
function(digamma function). However, many of the equations related to P&rmquations

can be considered perturbations of autonomous equations which have elliptic functions as
solutions. In this case, if an expansion near a pole of the elliptic function gives rise to a series
involving digamma functions arises, then there would be contributions from the infinity of
poles of the elliptic function which we take to be an indication of non-integrability. This is

a difference analogue of the psi-series which arise in the singularity analysis of differential
equations.



The Painlee property and difference equations 901

5.2. The discrete Painléproperty

Conte and Musette [12] define their discrete Paialgvoperty as follows. A difference
equation,

F(x,h, {u(x +kh),k—ko=0,...,N})) =0

is said to possess the discrete Paialpwoperty if and only if there exists a neighbourhood of
h = 0 within which the general solution+— u(x, #) has ho movable critical singularities as a
function ofx. Thus this definition demands that the difference equation has a paramdtieh
allows us to obtain a meaningful continuum limit/asends to zero. Hence we are restricted
to a non-generic subclass of difference equations. In general, a difference equation will not
have a parameter or a continuum limit. In the broad sense, the integrability of a difference
equation should not depend on the existence of an arbitrary parameter in the equation. This
definition also presents us with other difficulties if we are to associate the discrete Bainlev
property with integrability.

Under this definition the trivial difference equation

y@z+h) —y(z)=0

fails to possess the discrete Paird@roperty since its general solution is an arbitrary periodic
function. For example,

2nz
y(z) = log (cos<7)>

is a solution with logarithmic branching for arbitrarily smalt# 0. This kind of difficulty can

be removed by adding a caveat to the definition to the effect that we are only concerned with
essential branching (branching due to sources other than the periodic functions). With this in
mind consider the difference equation

u(x +h) —ux) + hu?(x) = 0. (41)

Under the transformation= x/k, y(z) = hu(x), equation (41) becomes equation (13). Thus
equation (41) admits the family of solutions

w(hx + m(hx))

ulx) = A

wherer is an arbitrary periodic function and is an entire function (cf equation (14) and
[37]). Also, in the limith — 0, equation (41) becomes + u? = 0 which has only rational
solutions. So ignoring singularities due to the periodic functiqby, for example, restricting
7 to be entire), we see thatis meromorphic for alk and hence equation (41) possesses the
discrete Painle¥ property. Equation (41), however, is known to be non-integrable. From our
point of view, equation (41) should be excluded from our analysis because its meromorphic
solutions are of infinite order.

This test has, nonetheless proved to be successful and yields some information about the
asymptotic structure of the solution at infinity. Recall from section 4 that if we takehz
to be held fixed as we Igt become arbitrarily small, then an expansiominvould be an
expansion in 1z in terms of the original, unscaled equation (15). These expansions are limits
of the expansions described above in section 4.
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6. Summary and conclusion

In this paper we have explored the singularity structure of solutions of certain classes of
difference equations in the complex domain.

We note that for a large class of difference equations the singularity structure of the
solutions is meromorphic in the complex domain, apart from singularities that may arise due
to the arbitrary periodic functions. This leads us to conclude that the integrability of many
difference equations is encoded in the nature of the singularity at infinity in the same way that
the integrability of many differential equations is encoded in the movable singularities in the
finite plane. Much research remains to be done to determine exactly what type of singularities
at infinity are acceptable.

Our analysis has led us to consider a special class of equations whose solutions (up to
the arbitrary periodic functions) are well behaved in the complex plane. In particular, the
equations that we consider to be of Pai@éype have solutions that are:

(a) finite order in the sense of Nevanlinna, and

(b) have no digamma functions (is’s) in their series expansions as outlined in section 4. The
digamma functions play an analogous role to the logs in psi-series (Fa)igbgpansions
of differential equations.

We have only considered difference analogues of logarithmic singularities in the series
method described above. Meromorphic functions sudh(as- %)/ I'(z), which plays the role
of /7 for difference equations, will be considered elsewhere.
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Appendix. Order of solutions of second-order rational difference equations
In this appendix we provide a proof of theorem 3 based on arguments used by Yanagihara [40]
for first-order equations. We begin by proving the following lemma.

Lemma 1. Givene > 0and a meromorphic function, the Nevanlinna characteristic function
T satisfies

Tr,yz£1) < Q+e)Tr+1,y(2) +«
forall r > 1/¢, for some constant.

Proof. We will use the following identity which follows from Cartan’s identical relation (see,
for example, [42]):

dT . 1 2 . ‘
érlogiz)) -+ /O n(r €, f(2))do (A1)

wheren(r, €%, f(z)) is the number of solutions of
f)=¢" (A2)

(counting multiplicities) insidez| < r. _
It follows from the definition of thatn(r + 1, €%, y(z)) is the number of solutions of
equation (A2) inR := {z : |z| < r +1} andn(r, €, y(z £ 1)) is the number of solutions of
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y(z £ 1) = €’ inside|z| < r or, equivalently, the number of solutions of equation (A2) in
Ry = {z ! |zF 1| < r}. Using the fact thak, and R_ are subsets oR, we conclude that
n(r,i6, y(z £ 1)) < n(r + 1, €%, y(z)) for all  and using the identity (A1) we find

d7(rye£1) dTr+1y@) _ ( +}) d7'(r, y(2))
dlogr = dlog(r +1) dlogr

Integrating this equation for > 1/¢ establishes the lemma. O

r

Proof of theorem 3. Equating the Nevanlinna characteristics of both sides of equation (21),
we find

T(r,y(z+D+y(z—1)=T(r,R(z, y(z)) = mT (r, y(z)) + O(logr) (A3)

wherem = max(p, ¢) and the second equality in equation (A3) follows from a theorem of
Valiron [38]. Using lemma 1, together with the fact that the left-hand side of equation (A3) is
bounded above by (r, y(z + 1)) + T (r, y(z — 1)) + log 2 (see, for example, [21]) gives

T(r+1y(@)=kT(r,y2) +gr) (Ad)
wherek = m/2(1 +¢) and|g(r)| < K logr for someK and allr greater than somg. Hence
forr > ro,

T(r+j,y@) =k T y@)+E;r) (A5)
where

|E;(r)| = [k g(r) +k/2g(r+ D+ +g(r+ j — 1)

2 log(r +i)
< Kkt e
X log(r +i)
< Kkit _
Using logr +i) < logrlogi, for r andi sufficiently large, we note that sinée> 1 the series
converges and hence

|E;(r)| < Ck/logr

whereC is a positive constant.

A meromorphic functionf is rational if and only ifT(r, f) = O(logr). Since, by
hypothesisy is non-rational we can choosg sufficiently large such that for al > ro, we
haveT (r, y(z)) > 2C logr (where we have used the fact tHats an increasing function of
logr, cf equation (Al)). Hence equation (A5) implies

T(r+j,y(z) > Ck’logr.

and so
logT(r+j,y(z))  jlogk +log(Clogr)
log(r + j) - log(r + j) ’
Sofork > 1,0(y) = oo (cf equation (18)). O

Proof of theorem 4. Without loss of generality we rescale equation (24) so¢hat3. Let

M(r) = Enaxly(z)l.

z|=r
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By considering the maximum ¢f(z +1)| on|z| = r we see that the maximum principle gives

M@r+1) > {naXIy(z +1)).

Hence

2M(r+1) > ranIy(z +1)| + maXIy(z -

fDaXIy(z +D+y(z -1

> maxja(z) +b2)y(z) + 3%(2)| (A6)

where we have used equation (24). Sin@ndb are polynomials angl is not, there exists an
ro such that

M?(r) —maXIy(z)l2 > maxla(z) +b()y ()|

for all r > ro. Hence, using equation (A6), we find for sufficiently large

M@ +1) > M2(r)

and so
M(r+i) > M?(r).
This gives
loglogM (r +1i) < ilog2+loglogM(r)
logr +i) = log(r +1)
which, from equation (19), shows thahas infinite order. O

The proof oftheorem 5 uses the idenfityr, f1/2) < T(r, f1)+T (r, f2) (See, forexample,

[21]) but is otherwise identical to the proof just given for theorem 3.
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