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Abstract. It is well known that the integrability (solvability) of a differential equation is related to
the singularity structure of its solutions in the complex domain—an observation that lies behind the
Painlev́e test. A number of ways of extending this philosophy to discrete equations are explored.
First, following the classical work of Julia, Birkhoff and others, a natural interpretation of these
equations in the complex domain as difference or delay equations is described and it is noted
that arbitrary periodic functions play an analogous role for difference equations to that played by
arbitrary constants in the solution of differential equations. These periodic functions can produce
spurious branching in solutions andare factored out of the analysiswhich concentrates onbranching
from other sources. Second, examples and theorems from the theory of difference equations are
presented which show that, modulo these periodic functions, solutions of a large class of difference
equations are meromorphic, regardless of their integrability. It is argued that the integrability of
many difference equations is related to the structure of their solutions at infinity in the complex
plane and that Nevanlinna theory provides many of the concepts necessary to detect integrability in
a large class of equations. A perturbative method is then constructed and used to develop series inz

and the derivative of log�(z), wherez is the independent variable of the difference equation. This
method provides an analogue of the series developed in the Painlevé test for differential equations.
Finally, the implications of these observations are discussed for two tests which have been studied
in the literature regarding the integrability of discrete equations.

AMS classification scheme numbers: 30D35, 39A10, 39A12

1. Introduction

An ordinary differential equation (ODE) is said to possess the Painlevé property if all of its
solutions are single-valued about all movable singularities. A singularity is said to be movable
if it varieswith initial conditions, i.e. it is not a singularity of theequation itself. Theobservation
that this property is related to integrability has proved most fruitful, cf [4–7, 27]. It is widely
believed that all ODEs that possess the Painlevé property are integrable (i.e. solvable) either
explicitly or via a related linear problem. We also remark, however, that certain equations
solvable via an evolving monodromy problem do not possess the Painlevé property [1–3, 10].

Painlev́e and his colleagues identified all second-order ODEs within a large class that
possess the Painlevé property [16, 17, 30, 31]. All of these equations were integrated in terms
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of known functions except six which are now known as the Painlevé equations (PI–PVI ). The
first two of these are

PI
d2y

dz2
= 6y2 + z (1)

PII
d2y

dz2
= 2y3 + zy + α (2)

whereα is a constant.
The six Painlev́e equations are integrable (solvable) via associated (linear) isomonodromy

problems [14, 23]. There aremanyways in which one could discretize these equations (Euler’s
method, for example). Most of thesewill no longer possess themany special properties that the
differential equations (1) and (2) possess; e.g. related isomonodromy problems and solutions
that are asymptotically well behaved. However, a number of discretizations of equations (1)
and (2) have been studied in the literature and are believed to be integrable (i.e. solvable via
an associated linear problem) [15, 24, 26, 29, 32, 33]. For example,

yn+1 + yn + yn−1 = αn + β + γ (−1)n

yn

+µ

α(n + 1) + β

yn+1 + yn

+
αn + β

yn + yn−1
= −y2n + γ

yn+1 + yn−1 = αn + β

yn

+
γ

y2n

yn+1 + yn−1 = αn + β

yn

+ γ

whereα, β andγ are constants, are some known well behaved discretizations ofPI and

yn+1 + yn−1 = (αn + β)yn + γ

1− y2n

αn + β

ynyn+1 + 1
+

α(n − 1) + β

yn−1yn + 1
= 1

yn

− yn + αn + γ

are some known special discretizations ofPII .
A natural question arises: is it possible to determinea priori whether a given difference

equation is integrable? In the case of differential equations, at least a partial answer is provided
by the Painlev́e test cf [4–6, 27]. This property is suggested by the inverse scattering transform,
however, it is still not fully understoodwhy the integrability of a real differential equationshould
be reflected in the singularity structure of its solutions in the complex domain.

The purpose of this paper is to analyse the behaviour of solutions of difference equations
in the complex domain through a number of examples and by exploring the implications of
several known theorems. This problem was studied by Nörlund, Birkhoff, Batchelder and
others earlier this century for linear difference equations. Julia, Nörlund, and more recently,
Kimura [25], Shimomura [37] and Yanagihara [40, 41], have derived a number of valuable
results for nonlinear difference equations.

We undertake this investigation with the intention of identifying a structure or structures
that can be associated with the integrability (or non-integrability) of the difference equation
in the spirit of the Painlev́e property for ODEs. That is, we wish to find conditions, framed in
the language of complex analysis, under which a difference equation would be considered to
be of Painlev́e type. Some of the conclusions to which we are led are the following.
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(a) Arbitrary periodic functions play an analogous role in the solutions of difference
equations to that played by constants in the solutions of ODEs and arbitrary functions on
characteristic functions on characteristic manifolds in solutions of PDEs. This classical
observation plays a central role in our analysis.

(b) Apart from branching due to the above-mentioned arbitrary periodic functions, the
solutions of many difference equations can be extended to the complex plane and are
meromorphic.

(c) The integrability of a large class of difference equations is associated with the asymptotic
structure of its solutions at infinity.

(d) Nevanlinna theory provides a number of important concepts and tools that can be used
as detectors of equations that are integrable. In particular, the order of solutions plays a
central role.

(e) Perturbative techniques which are difference versions of those used by Painlevé can be
constructed and used to find expansions of solutions that are analogues of the Laurent/psi-
series for differential equations.

The tests we describe are not necessary conditions for integrability, just as the Painlevé
property is not necessary for the integrability of a differential equation.

Recently, two tests have been proposed as discrete analogues of the Painlevé test. The
singularity confinementmethod of Grammaticos and co-workers [18, 36] involves examining
solutions (sequences of iterates) of a discrete equation which pass arbitrarily close to a
singular point of the equation. The associated test is applicable to a certain class of
equations (reversible, strictly rational) and associates integrability with the preservation of
information beyond the singularity. This test has been used successfully to find a number
of integrable discrete equations. Later we discuss how our analytical observations can be
related to this singularity confinement method. Also, thediscrete Painlev́e propertyhas been
introduced by Conte and Musette together with an associated test [11, 12]. We will explore
some of the strengths and weaknesses of this property and how it relates to our asymptotic
analysis.

This paper is structured as follows. In section 2 we discuss why difference (or delay)
equations allow a natural extension of their solutions to the complex domain as opposed to
discrete (or lattice) equations which are defined on the integers only. Thus we adopt the
approach of Birkhoffet al. In this setting arbitrary functions of periodh/m (whereh is the
step size andm is some positive integer) play a role analogous to that played by constants in the
theory of differential equations. These periodic functions can introduce complicated branching
into solutions of the most benign difference equations and so they must be ‘factored out’ or
otherwise dealt with in the analysis aswe are only concernedwith singularities other than those
generated by the periodic functions. In some sense, branching due to the arbitrary periodic
functions in solutions of difference equations is analogous to branching about characteristic
manifolds in solutions of partial differential equations.

After factoring out possible branching due to the periodic functions we note that the
solutions of a large class of difference equations (including many chaotic examples) are
meromorphic in the finite plane. This leads us to the conclusion that for a greatmany difference
equations the natural place where the integrability (or otherwise) could be encoded is in the
structure of the singularityat infinity. This suggests that Nevanlinna theory (value distribution
theory formeromorphic functions) is an important ingredient in the study of integrable discrete
or difference systems.

In section 3 we describe some fundamental concepts from Nevanlinna theory and we
note that all meromorphic solutions of many classes of integrable differential and difference
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equations, including the important examples of the Riccati and Painlevé equations, are of
finite order. Section 4 describes, via examples, a method to obtain a series representation of
a solution of a difference equation that is the natural analogue of the expansions obtained in
Painlev́e’s analysis of differential equations. In section 5 we discuss some of the existing tests
that appear in the literature in light of our results.

2. Difference equations in the complex domain

We begin by examining some simple discrete equations and the problems that arise when
we try to extend their solutions to the complex domain. Consider the discrete (or lattice)
equation

un+1 − un = 1

(n − c)N
. (3)

If we specifyu0 we can determineun for all n ∈ N, namely

un = u0 +
n−1∑
i=0

1

(i − c)N
. (4)

Note that this solution involves an unbounded number of terms and, from a calculational point
of view, involves as much work to evaluate as iterating equation (3). Note that ifc is a positive
integer thenun is infinite for all n � c. This is also related to the singularity confinement
property which we discuss in section 5.1.

We wish to explore the singularity structure of solutions to equations such as (3) in the
complex domain. There appears to be no compelling way to extend the solution (4) off the
integers uniquely because the independent variable,n, appears as an endpoint in the sum.
Since equation (3) is only defined on the integers, there is no constraint on extensionsf (z) of
un to the complex domain(f (n) = un, n ∈ N).

We find it convenient to reinterpret discrete (or lattice) equations such as (3) as difference
(or delay) equations such as

y(z + 1) − y(z) = 1

(z − c)N
(5)

wherez is complex. The homogeneous part of equation (5) is

�y(z) := y(z + 1) − y(z) = 0.

The general solution of this equation is any function of period 1 (or 1/m for some positive
integerm). In fact, it is well known that arbitrary periodic functions (which we refer to later
asπ(z)) play the same role in solutions of difference equations as that played by arbitrary
constants in the solutions of differential equations. Since these functions can introduce any
type of singularity into solutions of trivial difference equations we will factor them out of our
analysis.

Recall that the gamma function is meromorphic and satisfies

�(z + 1) = z�(z). (6)

On taking the logarithm of equation (6) we obtain

log�(z + 1) − log�(z) = logz. (7)
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Replacingz with z − c in equation (7) and differentiatingN times with respect toz, we see
that the general solution of equation (5) is

y(z) = (−1)N−1

(N − 1)!

(
d

dz

)N

log�(z − c) + π(z) (8)

whereπ is a periodic function (as described above). It is important to note that other than the
singularities due toπ , the only singularities ofy(z) are poles. This contrasts markedly with
the solution of the analogous differential equation

dy

dz
= 1

(z − c)N
(9)

which, in the caseN = 1, has a logarithmic singularity atz = c.
Since essential branching (i.e. branching that does not arise from the arbitrary periodic

function) is absent in the solutions of the first-order linear difference equation (9), in stark
contrast to the differential case, weare naturally led to askwhether essential branching is absent
from nonlinear difference equations. Note that equations (5) and (9) have fixed singularities
at z = c. Throughout the rest of this paper we consider only equations whose solutions have
movable singularities. Although there is to date no complete theory of difference equations,
the following results are of importance. These theorems were largely motivated by the work
of Kimura [25] on the iteration of analytic functions.

Theorem 1 (Shimomura [37]).For any polynomialP(y), the difference equation

y(z + 1) = P(y(z)) (10)

has a non-trivial entire solution.

Theorem 2 (See Yanagihara [40]).For any rational functionR(y), the difference equation

y(z + 1) = R(y(z)) (11)

has a non-trivial meromorphic solution.

Yanagihara has extended theorem 2 to a limited class of higher-order difference equations
[41]. Note that since equations (10) and (11) are autonomous then the general solution of
equation (10) is a particular entire function ofz−π(z) and the general solution of equation (11)
is a particular meromorphic function ofz−π(z), whereπ(z) is an arbitrary function of period
one.

Theorem 1 says that even the quintessential chaotic difference equation, the logistic
equation [8, 28],

y(z + 1) = µy(z)(1− y(z)) (12)

whereµ is a parameter, which includes the (non-integrable) discretization of the Riccati
equation (whenµ = 1),

y(z + 1) − y(z) + y2(z) = 0 (13)

has solutions of the form

y(z) = wµ(z − π(z)) (14)

wherewµ is a non-trivial entire function (which dependson the choice of parameterµ). Viewed
as a map, equation (12) is chaotic on its (non-empty) Julia set (see, for example, [13]). If all
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the solutions of equation (12) have this form then the only singularities ofy arise from the
periodic functionπ .

Thus we see that the same (meromorphic) singularity structure in the finite complex plane
is found throughout a wide class of difference equations which includes both integrable and
non-integrable examples. The solutions of these equations show no essential branching (i.e.
branching due to sources other than the arbitrary periodic functions). It appears that for this
class the only way in which solutions can differ in their singularity structure is through their
behaviours at infinity.

Given that the solutions of first-order rational difference equations admit no essential
branching, yet solutions of most first-order rational differential equations do show branching
about movable singularities, it is natural to enquire into the process whereby branching arises
in the process of taking a continuous limit in which a difference equation becomes a differential
equation. To this end we consider the difference equation

y(z + 1) − y(z) = hF(y(z)) (15)

whereh is a small parameter andF is a rational function ofy(z). In order to take the (standard)
continuum limit we perform the change of variables

y(z) = u(x) x = hz

which gives

u(x + h) − u(x)

h
= F(u(x)). (16)

We take the limith → 0 such thatx is fixed to obtain

du

dx
= F(u(x)). (17)

Recall that solutions of equation (16) are single-valued (modulo the periodic function) while,
for generic choices ofF (for example,F(u) = u3), the general solution of equation (17) is
branched. Note that sincex = hz is held fixed ash → 0, thenz → ∞. Hence the behaviour
of solutions of equation (17) for finite values ofx is related to the behaviour of solutions of
equation (15) atz = ∞.

3. Nevanlinna theory

The relationship between the value distribution of meromorphic functions and their behaviour
at infinity is the principal subject of Nevanlinna theory. In this section we describe some of the
keyquantitiesofNevanlinna theory; namely thecharacteristic, order and typeof ameromorphic
function. We consider differential and difference equations whose meromorphic solutions are
of finite order and type.

The Nevanlinna characteristic

T (r, f ) = N(r, f ) +m(r, f )

of a meromorphic functionf (z) is the sum of thecounting functionN(r, f ) which is a
measure of the number of poles within|z| < r and theproximity functionm(r, f ) which
has contributions from the segments of|z| = r where|f (z)| is large. Explicitly, the counting
function is defined by

N(r, f ) =
∫ r

0

n(t, f ) − n(0, f )

t
dt + n(0, f ) logr
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wheren(r, f ) is the number of poles (counting multiplicities) off in |z| � r. The proximity
function is defined by

m(r, f ) = 1

2π

∫ 2π

0
log+

∣∣f (reiθ )
∣∣dθ

where

log+ x = max(0, logx).

Theorderof a meromorphic functionf is defined by

σ(f ) = lim sup
r→∞

logT (r, f )

logr
. (18)

If f is entire, this agrees with the definition

σ(f ) = lim sup
r→∞

log logM(r, f )

logr
(19)

where

M(r, f ) = max
|z|=r

|f (z)|.

Since the order is a natural measure of the growth of a function at infinity, we consider
differential and difference equations whose meromorphic solutions are of finite order. In
this case the type off is defined to be

τ(f ) = lim sup
r→∞

r−σ T (r, f ).

It is a classical result due to Malmquist (see, for example, Hille [21]) that any first-order
differential equation of the form

dy

dz
= P(z, y)

whereP is polynomial iny(z)andanalytic inz, that admitsnon-rationalmeromorphic solutions
is a special case of the Riccati equation:

dy

dz
= a0(z) + a1(z)y + a2(z)y

2.

All meromorphic solutions of the Riccati equation (where the coefficientsaj are rational
functions ofz) are of finite order [39]. The Weierstrass and Jacobi elliptic functions are of
order two and satisfy first-order second-degree equations of the form

(
dy

dz

)2

= P(y)

whereP is a polynomial of degree at most four (see [21]). Moving on to second-order
differential equations, we note that, of the six Painlevé equationsPI–PVI , only PI , PII and
PIV have meromorphic general solutions. The order of the non-rational solutions of these
equations are also finite (being52, 3 and 4, respectively) [9, 21]. We note that, as outlined
above, Nevanlinna theory is not directly applicable to equations such as thePVI because its
general solution is branched about fixed singularities.
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Next let us consider difference equations. For first-order difference equations, Yanagihara
[40] has shown that if the equation

y(z + 1) = a0(z) + a1(z)y + · · · + ap(z)y
p

b0(z) + b1(z)y + · · · + bq(z)yq
(20)

whereai andbi are polynomials, admits a non-rational meromorphic solution of finite order,
thenmax(p, q) = 1 (i.e. equation (20) is the integrable difference Riccati equation). Note that
this result implies that all non-rational meromorphic solutions of the logistic equation (12) are
of infinite order forµ �= 0. For example, ifµ = 4, the general solution of equation (12) is

y(z) = 1
2

{
1− cosh

(
2zπ(z)

)}
whereπ is an arbitrary periodic function. So forµ = 4, the logistic equation (12) is
integrable in the sense that it is solvable but its solution grows very rapidly and is badly
behaved numerically.

In the appendix we prove the following.

Theorem 3. If the second-order difference equation

y(z + 1) + y(z − 1) = R(z, y(z)) := a0(z) + a1(z)y + · · · + ap(z)y
p

b0(z) + b1(z)y + · · · + bq(z)yq
(21)

whereai andbi are polynomials, admits a non-rational meromorphic solution of finite order,
thenmax(p, q) = 2.

Note that this classof equations includesall thediscretizationsofPI andPII of the form (21)
that are known to have associated linear problems. This class also contains equations solvable
in terms of elliptic functions [18, 22, 34]. For example, from the addition formulae for Jacobi
elliptic functions it follows that the equation

y(z + 1) + y(z − 1) = 2y(z)

1− y2(z)
(22)

has the general solution

y(z) = π1(z) cn[)(z − π2(z)), κ(z)] (23)

whereπ1 andπ2 are arbitrary periodic functions, cn()) = dn2()), and the modulus of the
elliptic function isκ(z) = iπ1(z) sn())/dn()). For suitableπ1 andπ2 (e.g. constant), the
general solution (23) is of finite order.

We remark that theorem 3 does not give a complete classification of second-order rational
equations of the form (21) with respect to the order of solutions. In particular, we prove the
following theorem in the appendix.

Theorem 4. Any entire non-polynomial solution of the equation

y(z + 1) + y(z − 1) = a(z) + b(z)y(z) + cy2(z) (24)

wherea andb are polynomials andc �= 0 is a constant, is of infinite order.

The proof of theorem 3 readily extends to a proof of the following.

Theorem 5. If the second-order difference equation

y(z + 1)y(z − 1) = R(z, y(z)) := a0(z) + a1(z)y + · · · + ap(z)y
p

b0(z) + b1(z)y + · · · + bq(z)yq
(25)

where theai , bi are polynomials, admits a non-rational meromorphic solution of finite order,
thenmax(p, q) = 2.
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The class of equations of the form (25) includes integrable difference versions of the third
and fourth Painlev́e equations [35]. IfR(z, y(z)) = y2(z) then equation (25) has the general
solutiony(z) = π1(z)[π2(z)]z, whereπ1 andπ2 are periodic. Hence, forπ1 andπ2 constant,
y has finite order. Note that theorems 3 and 5 do not single out only those equations that one
would consider to be of Painlevé type.

Throughout this section we have only considered equations with polynomial or rational
dependence on the independent variable. In general, the rate of growth of a meromorphic
solution of differential and difference equations depends on the rate of growth of coefficients
in the equation.

4. Series expansions

In this section we consider a particular perturbation of equation (22), namely

y(z + 1) + y(z − 1) = (2 + εf (z))y(z)

1− y2(z)
(26)

whereε is a small parameter andf is an analytic function. The techniques developed here
can be generalized to analyse equation (21) with max(p, q) = 2. It is sufficient for our
purposes to consider this example. We will develop a series expansion for solutions of
equation (26). In general, this expansion will be a Laurent series inz − z0 and the digamma
functionψ(z − z0) = d log�(z − z0)/dz. In these expansionsψ plays a role analogous to
the role played by log in the expansions of solutions of differential equations. We will see that
demanding that these expansions have noψ dependence leads to the known integrable cases
of equation (26).

We begin by substituting the expansion

y(z) = y0(z) + εy1(z) + ε2y2(z) + · · · + εnyn(z) + · · · (27)

into equation (26). Equating the terms independent ofε shows thaty0 satisfies equation (22).
The terms proportional toε gives

y1(z + 1) − 2
(1 +y20(z))

(1− y20(z))
2
y1(z) + y1(z − 1) = y0(z)f (z)

1− y20(z)
. (28)

Differentiating equation (22) with respect toz shows that dy0/dz solves the homogeneous part
of equation (28). Following the method of variation of parameters, we substitute

y1(z) = u(z)y ′
0(z) (29)

into equation (28), which yields

u(z) − u(z − 1) = v(z)

y ′
0(z)y

′
0(z − 1)

(30)

wherev satisfies

v(z + 1) − v(z) = y0(z)y
′
0(z)f (z)

1− y20(z)
. (31)

To illustrate our method in a concrete way, we choose the simplest non-trivial solution of
equation (22),

y0(z) = 1

ξ
where ξ = z − z0 (32)
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andz0 is arbitrary. Wewill later drop this restriction and illustrate amethod that uses properties
of the general solution (23) of equation (22).

Substituting (32) into equation (31) gives

v(z + 1) − v(z) = f (ξ + z0)

(ξ − 1)ξ(ξ + 1)

= A(ξ) +
1

2

{
f (z0 + 1)

ξ − 1
− 2f (z0)

ξ
+

f (z0 − 1)

ξ + 1

}
(33)

whereA is analytic. Equation (33) gives

v(z) = Q(ξ) + 1
2 {f (z0 + 1)ψ(ξ − 1) − 2f (z0)ψ(ξ) + f (z0 − 1)ψ(ξ + 1)} + π1(z).

Hence, using the fact that the digamma function,ψ , satisfies

ψ(ξ + 1) − ψ(ξ) = 1

ξ

we have

v(z) = B(ξ) +
f (z0 − 1)

2ξ
− f (z0 + 1)

2(ξ − 1)
+ cψ(ξ) + π1(ξ) (34)

whereπ1 is an arbitrary periodic function,B is analytic and

c(z0) = 1
2 {f (z0 − 1) − 2f (z0) + f (z0 + 1)}.

Note that if c(z0) �= 0 then from equations (29)–(34),y1 will contain an explicit (linear)
dependence onψ . In fact, if c(z0) �= 0 then the expansion (27) fory will contain infinitely
manyψ-terms. Ifc(z0) = 0 for all z0 thenf (z) = az + b, wherea andb are periodic, which
we choose to be constant, and equation (26) becomes

y(z + 1) + y(z − 1) = (2 + ε(a + bz))y(z)

1− y2(z)
.

This is a known integrable difference equation which, forb �= 0, has a continuum limit to the
second Painlev́e equation (2) withα = 0.

Next we discuss how to derive this result by perturbing off the general elliptic function
solution (23) where for convenience we takeπ1 and π2 to be constant. We begin by
locating the singular points of the right-hand side of equation (31). Sincey0 is a (scaled)
Jacobi elliptic function, it takes on every value (including∞) exactly once in each period
parallelogram P. There are at most three pointsz± andz0 in P where the right-hand side of
equation (31) can be singular. These points are defined byy0(z±) = ±1 andy0(z0) = ∞
(y has a simple pole atz0). On choosing initial conditions such that P is sufficiently large
and balancing the poles on both sides of equation (31) we find that eitherz± = z0 ± 1 or
z± = z0 ∓ 1. Without loss of generality we assumez± = z0 ± 1 and hencey has the
expansions

y0(z) =



c0

z − z0
+ O(1) z ∼ z0

±1 + c±(z − [z0 ± 1]) + O
(
(z − [z0 ± 1])2

)
z ∼ z0 ± 1

for some constantsc0 andc±. These expansions allow us to calculate residues of the poles of
the right-hand side of equation (31) atz0 andz0 ± 1. Hence equation (31) has the form (33)
where nowA is analytic throughout P. The argument then proceeds as above.
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In this section we have described a method for difference equations which is analogous
to that used by Painlevé in the context of branching of solutions of differential equations (see,
e.g. Ince). Theψ function plays the role of log in Painlevé’s analysis. We note thatψ is a
meromorphic function of finite order but infinite type. Difference equations whose solutions
are of finite order and type (up to the arbitrary periodic functions) are natural candidates to be
further investigated regarding their integrability.

5. Other approaches

In this section we discuss two properties and their associated tests that have been introduced
recently. These are thesingularity confinement propertyand thediscrete Painlev́e property.

5.1. The singularity confinement property

Grammaticos and Ramaniet al [18, 19, 35] have proposed a test for the integrability of discrete
equations that involves examining solutions (lists of iterates) that pass arbitrarily close to
singularities of the equation. The basic idea is that for a generic (i.e. non-integrable) rational
equation, if initial conditions are chosen so that the next iterate becomes infinite, then all future
iterates will be infinite (such iterations of infinity are defined perturbatively—see the examples
below). In this case the singularity is said to be not confined. Grammaticos and Ramani
et al claim that the integrability of discrete equations is associated with the preservation of
information contained within the initial conditions after the solution has passed through a
singularity.

The singularity confinement property has been used by several authors and has identified
many discrete equations which possess many of the properties that continuous integrable
equations have, for example, the (so-called) discrete Painlevé equations. Indeed, the test was
used to identify the first known integrable discretizations of the third, fourth and fifth Painlevé
equations [35]. Hence this test has been successful in isolating interesting and important
equations.

We remark, however, that recently Hietarinta andViallet [20] have shown that the equation

un+1 + un−1 = un +
a

u2n
(35)

possesses the singularity confinement property and yet it is (numerically) chaotic fora �= 0.
On the other hand, from theorem 3 we see that fora �= 0, non-rational meromorphic solutions
of equation (35) have infinite order. From our point of view, such equations should not be
included within the class of Painlevé-type difference equations (the infinite-order growth of
their solutions indicates that they are too ‘ill-posed’ in the complex plane). The singularity
confinement test also contains a number of restrictions: for example, the maps must be strictly
rational and there must be no ‘proliferation of pre-images’ (see [19]). In particular, the test
cannot be used to analyse the logistic equation (12). On the other hand, the discussion here
includes all equations of the form (10) as a special case of equation (20).

Consider the reversible, rational, second-order discrete equation

yn+1 = yn +
yn − yn−1

1 + (yn − yn−1)
. (36)

This equation becomes singular when 1 +yn − yn−1 = 0. In order to explore this singularity
we consider the initial conditions

y0 = k y1 = k − 1 + ε
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wherek is anarbitrary parameter. Following the ideasofGrammaticosandco-workers [18, 36],
we calculate the next few iterates:y2 = −ε−1 + k + O(ε), y3 = −ε−1 + (k + 1) + O(ε),
y4 = −ε−1 + (k + 3

2) + O(ε). It appears that the singularity is not confined in the sense of
Grammaticos, Ramaniet al. We will now show that this is indeed true, despite the fact that
equation (36) has a simple solution.

Let

wn = (yn − yn−1)
−1 .

Equation (36) becomes

�wn ≡ wn+1 − wn = 1

which, in turn, sums to givewn = n − n0, wheren0 is an arbitrary constant. Hence

yn+1 − yn = 1

n − n0

which sums to give

yn = y0 +
n−1∑
m=0

1

m − n0
. (37)

We see that equation (36) is integrable and (from equation (37))yn = −ε−1 +O(1), for n � 2
(so the singularity is not confined).

On the other hand, if we consider equation (36) as a difference equation, the solution of
this equation is (n �→ z)

y(z) = π1(z) +ψ(z − π2(z)) (38)

where π1 and π2 are arbitrary periodic functions andψ(z) = d log�(z)/dz (digamma
function). This example and others suggest the following. For difference equations with
solutions of finite order, the singularity confinement test can be interpreted as a test for the
appearance ofψ in expansions of solutions of difference equations. We also note that in terms
of the variablez, y(z) is meromorphic for allz moduloπ1 andπ2.

A (natural) continuum limit of equation (36) is

y ′′ + (y ′)2 = 0 (39)

which has the general solution

y(z) = z1 + log(z − z2) (40)

wherez1 andz2 are constants. Although equation (39) does not possess the Painlevé property,
we still consider it to be integrable as the single log can be transformed away. Similarly,
we consider equation (36) to be integrable because its general solution containsonly oneψ
function(digamma function). However, many of the equations related to Painlevé equations
can be considered perturbations of autonomous equations which have elliptic functions as
solutions. In this case, if an expansion near a pole of the elliptic function gives rise to a series
involving digamma functions arises, then there would be contributions from the infinity of
poles of the elliptic function which we take to be an indication of non-integrability. This is
a difference analogue of the psi-series which arise in the singularity analysis of differential
equations.
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5.2. The discrete Painlevé property

Conte and Musette [12] define their discrete Painlevé property as follows. A difference
equation,

F(x, h, {u(x + kh), k − k0 = 0, . . . , N}) = 0

is said to possess the discrete Painlevé property if and only if there exists a neighbourhood of
h = 0 within which the general solutionx �→ u(x, h) has nomovable critical singularities as a
functionofx. Thus this definitiondemands that thedifferenceequationhasaparameterhwhich
allows us to obtain a meaningful continuum limit ash tends to zero. Hence we are restricted
to a non-generic subclass of difference equations. In general, a difference equation will not
have a parameter or a continuum limit. In the broad sense, the integrability of a difference
equation should not depend on the existence of an arbitrary parameter in the equation. This
definition also presents us with other difficulties if we are to associate the discrete Painlevé
property with integrability.

Under this definition the trivial difference equation

y(z + h) − y(z) = 0

fails to possess the discrete Painlevé property since its general solution is an arbitrary periodic
function. For example,

y(z) = log

(
cos

(
2πz

h

))

is a solution with logarithmic branching for arbitrarily smallh �= 0. This kind of difficulty can
be removed by adding a caveat to the definition to the effect that we are only concerned with
essential branching (branching due to sources other than the periodic functions). With this in
mind consider the difference equation

u(x + h) − u(x) + hu2(x) = 0. (41)

Under the transformationz = x/h, y(z) = hu(x), equation (41) becomes equation (13). Thus
equation (41) admits the family of solutions

u(x) = w(hx + π(hx))

h

whereπ is an arbitrary periodic function andw is an entire function (cf equation (14) and
[37]). Also, in the limith → 0, equation (41) becomesu′ + u2 = 0 which has only rational
solutions. So ignoring singularities due to the periodic functionπ (by, for example, restricting
π to be entire), we see thatu is meromorphic for allh and hence equation (41) possesses the
discrete Painlev́e property. Equation (41), however, is known to be non-integrable. From our
point of view, equation (41) should be excluded from our analysis because its meromorphic
solutions are of infinite order.

This test has, nonetheless proved to be successful and yields some information about the
asymptotic structure of the solution at infinity. Recall from section 4 that if we takex = hz

to be held fixed as we leth become arbitrarily small, then an expansion inh would be an
expansion in 1/z in terms of the original, unscaled equation (15). These expansions are limits
of the expansions described above in section 4.
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6. Summary and conclusion

In this paper we have explored the singularity structure of solutions of certain classes of
difference equations in the complex domain.

We note that for a large class of difference equations the singularity structure of the
solutions is meromorphic in the complex domain, apart from singularities that may arise due
to the arbitrary periodic functions. This leads us to conclude that the integrability of many
difference equations is encoded in the nature of the singularity at infinity in the same way that
the integrability of many differential equations is encoded in the movable singularities in the
finite plane. Much research remains to be done to determine exactly what type of singularities
at infinity are acceptable.

Our analysis has led us to consider a special class of equations whose solutions (up to
the arbitrary periodic functions) are well behaved in the complex plane. In particular, the
equations that we consider to be of Painlevé type have solutions that are:

(a) finite order in the sense of Nevanlinna, and
(b) havenodigamma functions (i.e.ψ ’s) in their seriesexpansionsasoutlined in section4. The

digamma functions play an analogous role to the logs in psi-series (Painlevé) expansions
of differential equations.

We have only considered difference analogues of logarithmic singularities in the series
method described above. Meromorphic functions such as�

(
z+ 1

2

)
/�(z), which plays the role

of
√
z for difference equations, will be considered elsewhere.
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Appendix. Order of solutions of second-order rational difference equations

In this appendix we provide a proof of theorem 3 based on arguments used by Yanagihara [40]
for first-order equations. We begin by proving the following lemma.

Lemma 1. Givenε > 0and a meromorphic functiony, the Nevanlinna characteristic function
T satisfies

T (r, y(z ± 1)) � (1 + ε)T (r + 1, y(z)) + κ

for all r � 1/ε, for some constantκ.

Proof. We will use the following identity which follows from Cartan’s identical relation (see,
for example, [42]):

dT (r, f (z))

d logr
= 1

2π

∫ 2π

0
n(r,eiθ , f (z))dθ (A1)

wheren(r,eiθ , f (z)) is the number of solutions of

f (z) = eiθ (A2)

(counting multiplicities) inside|z| � r.
It follows from the definition ofn thatn(r + 1,eiθ , y(z)) is the number of solutions of

equation (A2) inR := {z : |z| � r + 1} andn(r,eiθ , y(z ± 1)) is the number of solutions of
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y(z ± 1) = eiθ inside |z| � r or, equivalently, the number of solutions of equation (A2) in
R± := {z : |z ∓ 1| � r}. Using the fact thatR+ andR− are subsets ofR, we conclude that
n(r, iθ, y(z ± 1)) � n(r + 1,eiθ , y(z)) for all θ and using the identity (A1) we find

dT (r, y(z ± 1))

d logr
� dT (r + 1, y(z))

d log(r + 1)
�

(
1 +

1

r

)
dT (r, y(z))

d logr
.

Integrating this equation forr � 1/ε establishes the lemma. �

Proof of theorem 3. Equating the Nevanlinna characteristics of both sides of equation (21),
we find

T (r, y(z + 1) + y(z − 1)) = T (r, R(z, y(z)) = mT (r, y(z)) + O(logr) (A3)

wherem = max(p, q) and the second equality in equation (A3) follows from a theorem of
Valiron [38]. Using lemma 1, together with the fact that the left-hand side of equation (A3) is
bounded above byT (r, y(z + 1)) + T (r, y(z − 1)) + log 2 (see, for example, [21]) gives

T (r + 1, y(z)) � kT (r, y(z)) + g(r) (A4)

wherek = m/2(1 + ε) and|g(r)| < K logr for someK and allr greater than somer0. Hence
for r > r0,

T (r + j, y(z)) � kjT (r, y(z)) +Ej(r) (A5)

where

|Ej(r)| = |kj−1g(r) + kj−2g(r + 1) + · · · + g(r + j − 1)|

� Kkj−1
j−1∑
i=0

log(r + i)

ki

� Kkj−1
∞∑
i=0

log(r + i)

ki
.

Using log(r + i) � logr log i, for r andi sufficiently large, we note that sincek > 1 the series
converges and hence

|Ej(r)| � Ckj logr

whereC is a positive constant.
A meromorphic functionf is rational if and only ifT (r, f ) = O(logr). Since, by

hypothesis,y is non-rational we can chooser0 sufficiently large such that for allr > r0, we
haveT (r, y(z)) > 2C logr (where we have used the fact thatT is an increasing function of
logr, cf equation (A1)). Hence equation (A5) implies

T (r + j, y(z)) > Ckj logr.

and so

logT (r + j, y(z))

log(r + j)
>

j logk + log(C logr)

log(r + j)
.

So fork > 1, σ(y) = ∞ (cf equation (18)). �

Proof of theorem 4.Without loss of generality we rescale equation (24) so thatc = 3. Let

M(r) := max
|z|=r

|y(z)|.
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By considering themaximum of|y(z±1)| on|z| = r we see that themaximum principle gives

M(r + 1) � max
|z|=r

|y(z ± 1)|.

Hence

2M(r + 1) � max
|z|=r

|y(z + 1)| + max
|z|=r

|y(z − 1)|

� max
|z|=r

|y(z + 1) + y(z − 1)|

� max
|z|=r

|a(z) + b(z)y(z) + 3y2(z)| (A6)

where we have used equation (24). Sincea andb are polynomials andy is not, there exists an
r0 such that

M2(r) = max
|z|=r

|y(z)|2 � max
|z|=r

|a(z) + b(z)y(z)|

for all r > r0. Hence, using equation (A6), we find for sufficiently larger

M(r + 1) � M2(r)

and so

M(r + i) � M2i (r).

This gives

log logM(r + i)

log(r + i)
� i log 2 + log logM(r)

log(r + i)

which, from equation (19), shows thaty has infinite order. �
Theproof of theorem5uses the identityT (r, f1f2) � T (r, f1)+T (r, f2) (see, for example,

[21]) but is otherwise identical to the proof just given for theorem 3.
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Painlev́e Property, One Century Later (CRM Series in Mathematical Physics)ed R Conte (Berlin: Springer)

[3] Ablowitz M J, Chakravarty S and Herbst B M 1995 Integrability, computability and applicationsActa Appl.
Math.395–37

[4] Ablowitz M J and Clarkson P A 1991Solitons, Nonlinear Evolution Equations and Inverse Scattering (London
Mathematical Society Lecture Note Series vol 149)(Cambridge: Cambridge University Press)

[5] Ablowitz M J, Ramani A and Segur H 1978 Nonlinear evolution equations and ordinary differential equations
of Painlev́e typeLett. Nouvo Cimento23333–8

[6] Ablowitz M J, Ramani A and Segur H 1980 A connection between nonlinear evolution equations and ordinary
differential equations of P-type. IJ. Math. Phys.21715–21

Ablowitz M J, Ramani A and Segur H 1980 A connection between nonlinear evolution equations and ordinary
differential equations of P-type. IIJ. Math. Phys.211006–15

[7] Ablowitz M J and Segur H 1977 Exact linearization of a Painlevé transcendentPhys. Rev. Lett.381103–6
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lequationJ. Phys. Soc. Japan45321–32
[23] Jimbo M and Miwa T 1981 Monodromy preserving deformation of linear ordinary differential equations with

rational coefficients IIPhys. D2 407–48
[24] Joshi N, Burtonclay D and Halburd R G 1992 Nonlinear nonautonomous discrete dynamical systems from a

general discrete isomonodromy problemLett. Math. Phys.26123–31
[25] Kimura T 1971 On the iteration of analytic functionsFunkcial. Ekvac.14197–238
[26] Kitaev A V and Fokas A S 1990 An isomonodromy approach to the theory of two-dimensional quantum gravity

Russ. Math. Surv.45155–7
[27] Kruskal M D, Joshi N and Halburd R 1997 Analytic and asymptotic methods for nonlinear singularity analysis:
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France28201–61
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