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Abstract
The heights of iterates of the discrete Painlevé equations over number fields
appear to grow no faster than polynomials while the heights of generic solutions
of non-integrable discrete equations grow exponentially. This gives rise to a
simple and effective numerical test for the integrability of discrete equations.
Numerical evidence and theoretical results are presented. Connections with
other tests for integrability and Vojta’s dictionary are discussed.

PACS numbers: 05.45.−a, 02.30.Ik, 02.10.De

Over the past decade and a half several criteria have been suggested as detectors of integrability
for maps and discrete equations. Many of these criteria echo the observation of Veselov that
. . . integrability has an essential correlation with the weak growth of certain characteristics
[1]. A number of authors have studied rational maps and discrete equations for which the
degree of the nth iterate yn as a rational function of the initial conditions grows no faster than
a polynomial in n [1–3]. In particular, the algebraic entropy introduced by Hietarinta and
Viallet [3] is a measure of this degree growth and is related to Arnold’s idea of complexity.

The singularity confinement property of Grammaticos, Ramani and Papageorgiou has
led to the discovery of many integrable discrete equations [4]. Hietarinta and Viallet [3]
have shown that there are non-integrable equations that possess the singularity confinement
property, which led them to add the (growth-type) condition of zero algebraic entropy.

It was suggested in [5] that the existence of sufficiently many finite-order meromorphic
solutions of a difference equation is a natural analogue of the Painlevé property and
a detector of integrability. It has been shown in [6] that if an equation of the form
y(z + 1) + y(z − 1) = R(z, y(z)), where R is rational in its arguments, admits a non-rational
finite-order meromorphic solution then either the equation can be transformed to one of the
known discrete Painlevé equations or y also satisfies a (first-order) discrete Riccati equation.

Important connections between the differential and discrete Painlevé equations,
representations of affine Weyl groups and the geometry of certain rational surfaces have
been found in [7]. Costin and Kruskal have suggested that the theory of analysable
functions is the appropriate language in which to describe the Painlevé property for discrete
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Figure 1. Plot of log log H(yn) versus log n for equation (1).

equations [8]. Roberts and Vivaldi have considered maps over finite fields and used orbit
statistics to single out detect maps with a polynomial integral of motion [9].

In this letter a slow-growth property is described which is very easy to test numerically.
It involves considering the iterates of a discrete equation in an appropriate number field (i.e., a
finite extension of the rationals) and examining the growth of the height of these iterates. The
height H(x) of an element x of a number field k is a measure of the complexity of x.

We will, for the most part, only deal with the case k = Q. The height of a non-zero
rational number x ∈ Q is H(x) = max{|p|, |q|}, where x = p/q and p and q have no common
factors. The height of 0 is defined to be H(0) = 1.

We begin by considering the growth of heights of iterates yn of the equation

yn+1 + yn−1 = an

yn

+ bn, (1)

where y0 and y1 are given rational numbers and an and bn are chosen to be in Q for all n ∈ Z.
This guarantees that all finite iterates yn are also rational numbers. In figure 1, log log H(yn)

has been plotted against log n for three solutions of equation (1). In each case, the initial
conditions are y0 = 2/5, y1 = 3/7 but the choices of an and bn differ.

When an and bn are constants, equation (1) can be solved in terms of elliptic functions.
When an = λn + µ and bn = ν, for constants λ, µ and ν, then equation (1) is an integrable
discrete equation related to the first Painlevé equation. In figure 1 there are two integrable
cases (an = 3, bn = 5 and an = 3 + n, bn = 5) corresponding to the asymptotically straight
line plots, while the third non-integrable case (an = 3, bn = 5 + n) corresponds to the
asymptotically nonlinear curve.

The above example motivates defining a polynomial discrete equation such as (1) to be
Diophantine integrable if the logarithmic height of iterates, h(yn) = log H(yn), grows no
faster than a polynomial in n. This idea is certainly related (and possibly equivalent) to the
degree growth/algebraic entropy approaches described above but is much quicker to check
numerically for a large number of iterates.
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Figure 2. Plot of log log max{H(fn), H(gn)} versus log n for equation (2).

To deal with the case in which an iterate becomes infinite it is natural to work in projective
space, however, for the purposes of this letter we will only consider finite iterates. Many
autonomous versions of the discrete Painlevé equations are known to be solved in terms of
elliptic functions. In fact, these equations are essentially the addition law on the cubic. For
any infinite sequence of rational points on an elliptic curve such that any iterate is the sum (on
the cubic) of the previous two, the logarithmic height grows like n2.

Next, we consider the so-called qPVI equation, which is the system

fnfn+1

cd
= gn+1 − αqn+1

gn+1 − γ

gn+1 − βqn+1

gn+1 − δ
,

gngn+1

γ δ
= fn − aqn

fn − c

fn − bqn

fn − d
, (2)

subject to the constraint q = αβγ δ/abcd. The system (2) was discovered by Jimbo
and Sakai as the compatibility condition for an isomonodromy problem [11] and is
an integrable discretization of the sixth Painlevé equation (PVI). Figure 2 is a plot
of log log max{H(fn),H(gn)} against log n for iterates of equation (2) with the initial
conditions f0 = 2/3, g0 = 3/4 and the choice of parameters (α, β, γ, δ, a, b, c, d) =
(15/7, 4/3, 1/2, 1, 8/7, 5/7, 2, 1/7). The two graphs represent two different choices for q,
namely, q = 1/2 (=αβγ δ/abcd , i.e., the integrable case corresponding to the asymptotically
linear graph) and q = 2. Once again we see that the logarithmic heights h(fn) and h(gn)

appear to grow polynomially in the integrable case and exponentially in the non-integrable
case.

Now we will discuss some fundamental identities concerning heights and discrete
equations. Let

R := a0 + a1x + · · · + apxp

b0 + b1x + · · · + bqxq
,

be an irreducible rational function of x of degree d = max{p, q}. Then,

C1H(x)d � H(R) � C2H(x)d, (3)
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where C1 and C2 are polynomials in the heights of the coefficients ai, bj . The second
inequality in (3) is straightforward. In the first inequality, C1 is proportional to the resultant
of the denominator and numerator of R. So the logarithmic height h(·) = log H(·) satisfies

|h(R) − dh(x)| � log C, (4)

where C is a polynomial in H(ai) and H(bj ).
Consider the first-order discrete equation

yn+1 = a0(n) + a1(n)yn + · · · + ap(n)y
p
n

b0(n) + b1(n)yn + · · · + bq(n)y
q
n

, (5)

where the ai’s and bj ’s are in Q[n] and ap and bq are both not identically zero. It follows
that for all integers n larger than some n0, the degree of the right-hand side of equation (5)
as a function of yn is independent of n. If the right-hand side of equation (5) is written in
irreducible form for n > n0 then this degree is d = max{p, q}. Taking the logarithmic height
of both sides of equation (5) and using equation (4) gives

h(yn+1) = dh(yn) + O(log n).

So if H(yn) grows faster than any polynomial in n (i.e., if h(yn) grows faster than log n)
then h(yn) grows exponentially unless d � 1. In this case, we are left with the (integrable)
discrete Riccati equation yn+1 = {a0(n) + a1(n)yn}/{b0(n) + b1(n)yn}, which can be solved
via a second-order linear discrete equation. Hence, the demand that solutions grow no faster
than polynomials singles out the discrete Riccati equation in the same way that the Painlevé
property for differential equations singles out the differential Riccati equation. Note that any
periodic orbit of equation (5), h(yn) = O(1).

Osgood [12] observed that there is an uncanny formal similarity between the basic
definitions and theorems of Diophantine approximation and those of Nevanlinna theory.
Independently, Vojta [13] constructed a dictionary which provides a detailed heuristic for
the ‘translation’ of concepts and propositions between the two theories.

The fundamental idea of Nevanlinna theory is that much information about a meromorphic
function f is obtained by studying a kind of averaged behaviour of f on the disc
Dr := {z : |z| � r}. The main tool is the Nevanlinna characteristic T (r, f ). For an
entire function, T (r, f ) behaves like log max|z|=r |f (z)|. In general, T (r, f ) is the sum of two
terms, one of which is the average of a certain function of |f | on |z| = r and the second is a
measure of the number of poles of f in the disc Dr .

According to Vojta’s dictionary, a statement in Nevanlinna theory about the Nevanlinna
characteristic of a meromorphic function corresponds to a statement in Diophantine
approximation about an infinite set of numbers in a number field. In [5], it has been argued
that a natural analogue of the Painlevé property for difference equations is the existence of
sufficiently many finite-order meromorphic solutions. Suppose that, in going from a difference
equation for y(z) (in the complex plane) to the corresponding discrete equation for yn (in which
the independent variable is restricted to the integers), we find that all iterates yn are in some
number field k for initial values chosen in k. Via Vojta’s dictionary, the statement that y(z) is a
finite-order meromorphic function corresponds to the statement that h(yn) grows no faster than
a polynomial. Hence, Diophantine integrability is the natural analogue for discrete equations
of the finite-order growth Painlevé-type condition for difference equations.

We now derive a number of results about Diophantine integrability by exploiting
this formal similarity with Nevanlinna theory. It is straightforward to check that for
any rational numbers x1, . . . , xN , the height satisfies H

(∑N
j=1 xj

)
� N

∏N
j=1 H(xj ) and
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H
(∏N

j=1 xj

)
�

∏N
j=1 H(xj ). It follows that the logarithmic height h has the following

properties.

h


 N∑

j=1

xj


 �

N∑
j=1

h(xj ) + log N, (6)

h


 N∏

j=1

xj


 �

N∑
j=1

h(xj ). (7)

Note that if we replace the rational numbers xj and the logarithmic height function h(·) in (6)
and (7) by meromorphic functions fj and the Nevanlinna characteristic T (r, ·), respectively,
we obtain two standard identities in Nevanlinna theory. Similarly, it is natural to consider
equation (4) to be the Diophantine analogue of the Valiron–Mohonko theorem [14]. These
are some of the fundamental results used in [5, 15–17] to find necessary conditions for the
existence of finite-order meromorphic solutions of difference equations.

Consider either of the two second-order discrete equations

yn+1 + yn−1 = R(n, yn) or yn+1yn−1 = R(n, yn), (8)

where R(n, yn) is as in equation (5). Taking the logarithmic height of either of the equations
in (8) and using equation (4) and the inequality (6) or (7) yields

h(yn+1) + h(yn−1) � dh(yn) + O(log n).

It follows that, provided h(yn) grows faster than O(log n), either it grows faster than any
polynomial in n or d := degyn

(R(n, yn)) � 2. The condition d � 2 is consistent with
a number of known integrable discrete Painlevé equations such as the special cases of
equation (1) described above. It is also consistent with the equation

yn+1 + yn−1 = an + bnyn

1 − y2
n

, (9)

which is integrable when an is a constant and bn is linear in n, when it is known as the so-called
discrete Painlevé II equation, dPII.

Figure 3 consists of two sequences corresponding to solutions of equation (9) in the
non-integrable case an = 2n − 1, bn = 2n2 − 2n + 3. The initial conditions (y0, y1)

are (11/12, 11/23) and (11/23, 11/12). The second initial condition corresponds to the
asymptotically linear case in figure 3. This solution is not generic in that it is also a solution
of the first-order (Riccati) discrete equation yn+1 = (n2 + yn)/(1 − yn).

The conclusion that d � 2 in equations (8) if yn has ‘slow growth’ (more precisely, h(yn)

grows faster than O(log n) but is bounded above by a power of n) is analogous, both in the
conclusion and in the proof, to a result proved in [5]. A number of generalizations of the result
in [5] have appeared in [16, 17]. Many of these results also have Diophantine analogues,
including the results in [16] related to qPVI (equation (2) above.)

In order to find Diophantine analogues of all the proofs in [16], we need to have one extra
identity. Fix N, let I be the set I = (1, . . . , N) and for each non-empty J ⊆ I assume aJ ∈ Q.
Then,

H


∑

J⊆I

aJ

∏
j∈J

xj


 � |I |

(∏
J⊆I

H(aJ )

)(
N∏

i=1

H(xi)

)
.
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Figure 3. Plot of log log H(yn) versus log n for equation (9).
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Figure 4. Plot of log log H(yn,n) versus log n for equation (11).

It follows that

h


∑

J∈I

aJ

∏
j∈J

xi


 �

N∑
i=1

h(xi) + log(C), (10)
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where C = ∑
J⊆I h(aJ ) + log |I |, which is independent of the xi’s. Inequality (10) is a

natural Diophantine analogue of a useful inequality in Grammaticos, Tamizhmani, Ramani
and Tamizhmani [16] (number 2.11), which is used to obtain the general form of many
integrable discrete equations. The details of this and other calculations will be published
elsewhere.

Finally, we consider the lattice equation

ym+1,n+1 = ym,n +
1

ym,n+1
− a

ym+1,n

, (11)

where a is a constant. In figure 4, log log H(yn,n) has been plotted against log n for two different
values of a (a = 1 is the asymptotically linear case, the other is a = 2) corresponding to the
same initial conditions. The case a = 1 is known to be integrable while a = 2 is not.
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